

System for Environmental and Agricultural Modelling;
Linking European Science and Society

Report no.: 21
November 2006
Ref: PD1.3.4
ISBN no.: 90-8585-048-7

The Conceptual design of SeamFrame

van der Wal, T., Rizzoli, A.E., Svensson, M., Villa, F., Knapen, R.,
Athanasiadis, I.

Partners involved: Alterra, IDSIA, LU, UVM

 Logo’s main partners involved in this publication Sixth Framework Programme

http://creativecommons.org/licenses/by-nc/2.5/

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

Page 2 of 46

SEAMLESS integrated project aims at developing an integrated framework that allows ex-
ante assessment of agricultural and environmental policies and technological innovations.
The framework will have multi-scale capabilities ranging from field and farm to the EU25
and globe; it will be generic, modular and open and using state-of-the art software. The
project is carried out by a consortium of 30 partners, led by Wageningen University (NL).

Email: seamless.office@wur.nl
Internet: www.seamless-ip.org

Authors of this report and contact details

Name: Tamme van der Wal Partner acronym: Alterra
Address: Alterra, PO Box 47, 6700 AA Wageningen, the Netherlands
E-mail: tamme.vanderwal@wur.nl

Name: Andrea Emilio Rizzoli Partner acronym: IDSIA
Address: IDSIA, Galleria 2, 6928 Manno, Switzerland.
E-mail: andrea@idsia.ch

Name: Mats G E Svensson Partner acronym: LU
Address: Lund University, PO Box 170, S-22100, Sweden.
E-mail: mats.svensson@lucsus.lund.se

Name: Ferdinando Villa Partner acronym: UVM
Address: University of Vermont, 590 Main Street, Burlington, 05405, Vermont, USA
E-mail: ferdinando.villa@uvm.edu

Name: Rob Knapen Partner acronym: Alterra

Address: PO Box 47, 6700 AA Wageningen, the Netherlands
E-mail: rob.knapen@wur.nl

Name: Ioannis Athanasiadis Partner acronym: IDSIA
Address: IDSIA, Galleria 2, 6928 Manno, Switzerland.
E-mail: ioannis@idsia.ch

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

Page 3 of 46

Disclaimer 1:

“This publication has been funded under the SEAMLESS integrated project, EU 6th
Framework Programme for Research, Technological Development and Demonstration,
Priority 1.1.6.3. Global Change and Ecosystems (European Commission, DG Research,
contract no. 010036-2). Its content does not represent the official position of the European
Commission and is entirely under the responsibility of the authors.”

"The information in this document is provided as is and no guarantee or warranty is given
that the information is fit for any particular purpose. The user thereof uses the information at
its sole risk and liability."

Disclaimer 2:

Within the SEAMLESS project many reports are published. Some of these reports are
intended for public use, others are confidential and intended for use within the SEAMLESS
consortium only. As a consequence references in the public reports may refer to internal
project deliverables that cannot be made public outside the consortium.

When citing this SEAMLESS report, please do so as:

van der Wal, T., Rizzoli, A.E., Svensson, M., Villa, F., Knapen, R., Athanasiadis, I. 2006.
The Conceptual design of SeamFrame, SEAMLESS Report No.21, SEAMLESS integrated
project, EU 6th Framework Programme, contract no. 010036-2, www.SEAMLESS-IP.org, 46
pp, ISBN no. 90-8585-048-7.

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 5 of 46

Table of contents
Table of contents.. 5

General information.. 7

Executive summary ... 7

Specific part ... 9

1 Introduction .. 9

2 Ontologies in SEAMLESS.. 11
2.1 The composing elements of an ontology .. 12
2.2 Development of an ontology... 13
2.3 Ontology paradigms... 13
2.4 Ontologies and data representation... 14
2.5 Ontologies and model representation .. 15
2.6 Ontologies and representation of workflows.. 16

3 The SEAMLESS Conceptual Model ... 19
3.1 The core ontology... 19
3.2 SEAMLESS agro-environmental domain ... 20

3.2.1 Environment .. 20
3.2.2 Actors .. 20
3.2.3 Actions and Conditions.. 21

3.3 Modelling domain .. 21
3.4 Application domain .. 22

4 The SeamFrame Conceptual Design ... 25
4.1 The SeamFrame software system model .. 25
4.2 The Knowledge Base.. 26
4.3 SOFA parts... 27
4.4 The Knowledge Manager ... 27
4.5 The Model Manager... 28
4.6 The Tool Manager.. 29
4.7 Module Management.. 29
4.8 The Development Environment .. 30
4.9 The Modelling Environment... 30
4.10 The Processing Environment ... 32

4.10.1 Components... 33
4.10.2 Workflows... 34

4.11 Model Handling: where the Modelling and the Processing environment meet 35
4.12 Applications ... 36

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 6 of 46

References...39

Glossary ..41

Appendix – Object-Oriented Programming Fundamentals...43

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 7 of 46

General information

Task(s) and Activity code(s): Activity 1.3.4

Input from (Task and Activity codes): T5.2 and T5.3

Output to (Task and Activity codes): T1.4

Related milestones:

Executive summary

This project deliverable provides the underlying architecture of a concept for linking models
and databases and it provides the design of SeamFrame, delivering its architecture to provide
an integration framework for models and simulation algorithms, supported by procedures for
data handling and spatial representation, quality control, output visualization and
documentation

Knowledge in SeamFrame is created by organizing and structuring the information we gather
from a number of sources: from databases, from models, from expertise and world-views of
the modellers and scientists. We use ontologies to store, organize and manipulate knowledge.
Ontologies are a knowledge representation tool, which is becoming more and more popular
and standardized, given its support by the World Wide Web Consortium. In ontologies, the
knowledge is represented by Concepts and Properties. Ontologies will be used in
SEAMLESS to represent data, models and workflows. Thanks to ontologies, all the
knowledge stored in SEAMLESS-IF will be open, accessible and re-usable and it is therefore
independent as much as possible from SeamFrame, the software implementation of
SEAMLESS-IF.

SeamFrame is therefore organized according to a layered architecture: we have Sources, the
data and models which are then represented in the Knowledge Base by means of ontologies.
On top of this, we have the Modelling and the Processing Environments, which are in turn
used to deliver Applications. The Modelling Environment is used to access the Knowledge
Base and deliver Model Components (discrete software units), which can be processed thanks
to the Processing Environment within workflows. A workflow is a sequence of operations
which involve data pre-processing, model runs, and data post-processing to perform policy
analyses within the context of SEAMLESS-IF. SeamFrame offers a number of Modelling
Environments, to target the different needs of different types of modellers, from bio-physical
to economic modellers. The Processing Environment will conform to a revised version of the
OpenMI standard for model linking and interoperability in order to promote reuse of
SeamFrame software components beyond the life of the SEAMLESS project itself.

This document is a snapshot of the current development of design and prototypes in WP5,
which is evolving in a series of design/test/evaluate loops, which will converge towards the
18 month prototype.

The document is structured as follows: first an introduction to ontologies and their role to
structure the conceptual model of SEAMLESS is provided. Then, the overall design of
SeamFrame is presented. Finally, the first version of the implementation design of
SeamFrame is discussed.

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 9 of 46

Specific part

1 Introduction

This project deliverable provides the underlying architecture of a concept for linking models
and databases and it provides the design of SeamFrame, delivering its architecture to provide
an integration framework for models and simulation algorithms, supported by procedures for
data handling and spatial representation, quality control, output visualization and
documentation

The document is structured as follows: first an introduction to ontologies and their role to
structure the conceptual model of SEAMLESS is provided. Then, the design of SeamFrame is
presented and discussed.

This document is a snapshot of the current development of design and prototypes in WP5,
which is evolving in a series of design/test/evaluate loops, which will converge towards the
18 month prototype.

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 11 of 46

2 Ontologies in SEAMLESS

The most popular definition of ontology is ‘a specification of a conceptualisation’
(Gruber,1993). However, this does not help much if one wants to discover the benefits and
challenges ontologies have to offer. Ontology is also a container concept and there are many
interpretations and uses.

One of the simplest notions of a possible ontology may be a controlled vocabulary: a finite
list of terms, like a catalogue. One step further we have a glossary: a list of terms and
meanings. A thesaurus provides extra semantics through the relationship between terms. One
step further is a taxonomy where a hierarchy in relations is introduced. A taxonomy makes
useful subdivisions in (large) groups. One step further is the definition of formal inheritance
through “IS A” relationships. Here, we define types of relations that are used i.e. in thesauri.

As stated, an ontology specifies the conceptualisation of a specific domain. So it gives a list
of terms with meanings and relations, for that specific domain. Now the kind of ontology
(catalogue, glossary etc.) we need depends on our ambition. What do we want to do with it?
In SEAMLESS we have introduced the use of ontology for our Knowledge Base: to provide a
structure where we can re-use knowledge and combine components like databases, models,
rules and methods. Therefore we need to develop standards (vocabulary, formats etc.) for
storing and retrieving, we need a common language to define and mine our knowledge. This
implies that we do not have enough on selecting (limiting) the terms we use and describe and
organise them. We also need intelligent applications to help us exploit our Knowledge Base.

A useful ontology usually contains more than just a list of terms and their definitions. Here is
a set of increasingly complex uses of ontologies:

• Controlled vocabulary: A set of concepts with no properties, whose IDs define a
vocabulary. For instance, you would not be allowed to use ‘w_temp’ as the name of a
variable which measures water temperature, if the controlled vocabulary contains the
entry ‘water_temp’.

• Taxonomy: Concepts are arranged in a generalization (is-a) hierarchy. For instance,
Wheat ‘is a’ Crop.

• Database schema (relational and object-oriented): Properties other than is-a are
defined for classes. Generalization hierarchy may or may not be present. No instance
information are given. Limited constraints (such as cardinality) are present. For
instance, the Wheat crop has a set of attributes or properties, such as its nutrient and
water demand. These properties can be stored in a table, where they are defined for
each crop type.

• Frame-oriented Knowledge Base: Concepts are arranged in a taxonomy, with
arbitrary properties, constraints, objects, values. This is an extension of the above two
concept. We can define ‘frames’ which define a concept, such as: Wheat is a crop. It
has a nutrient demand of xx kg/ha of P and xx kg/ha of N.

• Description Logics: specify necessary and sufficient conditions for concepts and
instances to belong to a class, allowing full reasoning and implicitly defining an
inferred hierarchy as well as defining one explicitly through is-a properties. For
instance, Description Logic can be used to infer properties of crop types.

The main rationale for the existence of ontologies is to enable reasoning on them, either by a
human actor or by an automated program (reasoner). The main operations in reasoning are
subsumption (inferring that class A is more general than class B) and classification (inferring

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 12 of 46

that instance X is a child of class B). Both operations can entail significantly complexities if
restrictions are present (see Data example).

Now what is important for SEAMLESS is that we define a common ontology. For our
internal communication (both formal and informal) we need to have a shared understanding
of terms we use. We need to comply to already existing terminologies, first of all because we
do not want to reinvent wheels, but secondly because we need to communicate with others
(humans and applications). If we are successful, our ontology can even get a broader impact
in our science community. What is also important is that an ontology is not a dead thing. It
must be maintained, updated, extended etc. This requires an active process and software tools
to support it.

2.1 The composing elements of an ontology

An ontology is a formal description of a conceptualization of a domain of interest. This
conceptualisation is structured as a list of concepts, identified by their names, connected by
their properties, again identified by their names. For instance, crop could be a concept, grows
can be a property and soil-type can be another concept. In most frameworks, an ontology is a
declaration of one or more resources of the following types:

• Concept (also known as: Class, Set, Type, Predicate): the statement of a concept,
usually including at least textual description and a short label. . Concept names (IDs)
and descriptions do not define meanings formally: concepts are always defined by
their properties (see below), not by their names. Most ontology frameworks admit
equivalence statements to account for synonyms and alternative definitions of the
same concept.

• Property (aka Attribute): the statement of a property, always associated to a concept.
One must always specify the type of the property value and its cardinality, or the
admitted number of possible values. For example, concept Person has a birth-date
property whose value must be a Date and whose cardinality is one. The value of a
property can be a Concept, an Instance (see below) or a Literal (see below), although
some frameworks place restrictions. Special properties allow building the bones of
the knowledge structure: notably the is-a property allows building generalization-
specialization hierarchies (e.g. Employee is-a Person) and instance-of allows to
define actual instances (e.g JohnSmith instance-of Employee). Properties can be
generalized or specialized just like concepts: e.g. “depends-on-economically isa:
depends-on”.

• Instance (aka Individual, Object) is a real-world entity that must be the incarnation of
a stated Concept. For example, if the concept crop has the property grows on concept
soil-type, the individual crop named Wheat grows on soil-type #12 (where 12 is an
arbitrary soil classification, which can also be described in the ontology). All
properties that have cardinality greater than zero in the concept must have at least a
correspondent Relationship in the instance (see below). Concepts can be categorized
as abstract, preventing the definition of their instances (e.g. FoodWebConcept), or
concrete (e.g. Predator). An ontology comprising a set of Instances is often called a
Knowledge Base, although the term is not rigorous. Any database with a formally
specified schema can always be considered a set of instances.

• Relationship (aka Slot) links an Instance to the value of a specified Property. E.g. the
statement “JohnSmith birth-date 10–10–1972″ can be considered the statement of a
relationship in simplified RDF (Resource Description Framework,
http://www.w3c.org/RDF, a lightweight ontology system to support the exchange of

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 13 of 46

knowledge) . Relationships must adhere to the model specified by the Concept and its
Properties.

• Literal (aka Value): the value of a property expressed in textual form, e.g. “10.4″,
“August 10, 1978″ or “John Smith”. Ontology frameworks usually accept and
validate of literals according to a limited set of base types (e.g. Floating Point
Number, Date), often modelled on the XML Schema types.

• Restriction (aka Constraint) Define allowable values and patterns of values for
concepts within an ontology, with varying levels of sophistication. The
aforementioned cardinality of properties can be seen as a restriction. Some
frameworks (e.g. OWL) allow considerable sophistication in specifying restrictions,
as in the example below (Data section).

2.2 Development of an ontology

There are three main paths to the development of ontologies, and some of them can be
travelled at the same time:

1. reuse of existing ontologies: applicable to all generic things;

2. knowledge acquisition: design our own conceptualisation for our own purpose. In
fact the SEAMLESS domain model is a good example of knowledge acquisition and
engineering;

3. text mining: automated extraction from large quantities of texts: not applicable in the
context of the SEAMLESS project, because of lack of time and resources.

2.3 Ontology paradigms

Two main paradigms are used in ontology development: Open world vs. Closed world. The
closed world assumption corresponds to the normative use: ontologies lists all the possible
Concepts and specifies a compulsory schema for an instance of each concept, which can be
used e.g. to define the structure of a data base. The open world assumption relies mostly on
Restrictions to specify necessary and sufficient conditions for an Object to belong to a Class.
These are used by a reasoner to classify pre-existing instances rather than provide a schema to
define or validate them. Both paradigms have their uses in knowledge-based systems and are
supported by different frameworks. A common closed-world framework is RDF Schema
(RDF). A common open-world framework is the Ontology Web Language (OWL).

Normally, each individual ontology refers to a well-defined, narrow domain, and all ontology
frameworks have ways to connect concepts across different ontologies. A complete
knowledge-based framework usually comprehends many ontologies with different roles, that
can be broadly classified as follows:

Generic (a.k.a. upper, core or reference): provide common high level concepts such as
“Physical”, “Abstract”, “Structure”, “Substance”, “Unit of measurement” and define the
conceptual core of the system.

Domain-oriented: provide domain-specific concepts (e.g. SolarRadiation) and domain
generalizations (e.g. FarmTypology).

Task-oriented: provide task-specific concepts (e.g. RiskAnalysis) and task generalizations
(e.g. DynamicModel)

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 14 of 46

2.4 Ontologies and data representation

Data can be considered “static models” of systems: they always conform to conceptual
models, and depend on (usually implicit) assumptions and world views just as much as
dynamic models. Conventional wisdom divides “raw data” – actual numeric measurements –
from “metadata”, the information that allows a user to “make sense” out of the numbers,
providing needed spatiotemporal, measurement, and other informative contexts for the
numbers. In an ontology-informed framework, we start from accurately formalizing the
concept that is represented in the data, and we define all its characteristics as properties. Each
dataset or piece of data will be represented as one instance of that concept. One of its
properties will be numeric-value and will link to the raw data represented as literal values.
The other properties are the “metadata” – only connected to an explicit knowledge model (the
ontology) whose arbitrary richness now allows reasoning and mediation with other data using
different, compatible knowledge models. An example can clarify some of these concepts:
<Measurement rdf:ID="MyLayeredSoilTempereture">
 <hasSpatialContext>
 <Axis_elevation rdf:ID="Vector_Elevation_10">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 A vector consisted of 10 points on the elevation axis
 </rdfs:comment>
 <height rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
 10
 </height>
 </Axis_elevation>
 </hasSpatialContext>
 <observes rdf:resource="#SoilTemperature"/>
</Measurement>

In the ontology snippet above, we find the definition of an instance of the ‘Measurement’
concept. The ID of this concept is the string MyLayeredSoilTemperature. The
metadata specifies that is has an axis, which measures elevation, which is represented as a
vector of ten elements.

The ontology paradigm in its simplest incarnation offers a field-by-field substitution for the
relational schemata conventionally used to represent data. Schema information contained in
normative ontologies can be construed as an add-on to an existing Data Base Management
System, to be mapped over a relational database engine or another (such as an XML
database) in a modular fashion. In addition to that, ontologies offer a powerful synthetic way
to specify both the data schema and the structure of the knowledge behind it. While a
relational schema can be considered the “structural” component of the knowledge, ontologies
allow specifying the how and the why at the same time. The database paradigm that includes
a rich knowledge model such as that specified by open world ontologies is often called
deductive database. Klein et al. (2000) describe the relation between ontologies and XML
schemas, comparing it to the relationship between Entity-Relationship (ER) diagrams and
database schemas. An ontology iss a formal description which can be mapped on an XML
schema, as an ER diagram is a formal description of a database schema. In the same way, an
ontology can be used to describe a database schema.

Most common metadata standards can be and have been formalized as ontologies: e.g. the
ISO 19115 standard or the Ecological Metadata Language (EML). Yet, providing a set of
upper ontologies to define the actual meaning of the metadata properties is another matter,
and lends itself to different, competing interpretations that ultimately depend on the
application. All mediator systems that can integrate data and models need such a set of
ontologies; the ones related to the process of measurement and the conceptualization of time
and space are usually crucial. Efforts are underway in projects such as SEEK, IMA, SWEET
and SEAMLESS to develop the set of ontologies that best fits the application domain.

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 15 of 46

2.5 Ontologies and model representation

Dynamic models, like data, always conform to a conceptualization, and there is in fact no
philosophical difference between specifying data or models when this is done using
ontologies. Any sort of model can be successfully specified as a set of instances of the
appropriate ontologies. The main practical difference between data and models is the
increased conceptual richness necessary to describe how things change in time and space.
This requires at least notions of linkage between concepts with causative or dependency
relationships that are not necessary when specifying data. It also requires developing ways to
interpret this causality. The set of abstractions (concepts) that allows conceptualizing and
expressing those cause-effect relationships and their results is the adopted modelling
paradigm, of which examples abound (e.g. ordinary differential equations, stock-and-flow, or
individual-based systems). A modelling paradigm, like any consistent conceptualization, can
be easily captured into an ontology. Most existing modelling software systems conform to
one implicit ontology, which defines their notion of entities familiar to the user such as state
variables, flux variables etc. Advanced integrative systems can load different ontologies,
which, supplemented by the necessary software, enable them to manipulate models adopting
heterogeneous modelling paradigms. Such systems are in the best position to enable
integration of independently developed models adopting different paradigms into a higher-
level, multiple-paradigm model.

There are several definitions of a ‘model’ found in the literature, each one of which
accommodates specific needs. The one that seems more suitable for SEAMLESS practical
needs, where models are used for describing and simulating the agro-environmental and agro-
economical domains, could be the following one: Model is a mental construction that, based
on the reality, reproduces the main components and relationships of the analyzed segment of
the reality (add references). In this respect a model in SEAMLESS can be considered as a
construction capable to represent biophysical, economical or farm-economic processes, as:

• a set of variables, that characterize the state of the analyzed segment of reality (often
called system), and

• a set of quantitative relationships, that describe the relations between the variables,
i.e. describe the behaviour of the system.

Sanchez, Cavero and Marcos (2005) have concluded that in computer science, ontologies can
be considered as subsets of models. This is particularly true also for the environmental
modelling exercise we try within SEAMLESS project. Our goal is to use ontologies as part of
our (biophysical, economical, or farm-economic) models, in order to:

• Build a common consensus on terms used among a wide and diverse research
community.

• Ensure interoperability and “openness” of models,

• Add semantics in the description of model interfaces.

In SEAMLESS, ontologies support declarative modelling by providing, at the same time,
schemata for model declaration and meaning for these schemata. We can use the ontology
concepts to describe the mathematical relationships among model variables, the variables and
the parameters themselves, and so on. Thus, declaratively expressed models refer to concepts
laid out in the ontologies. Such declarations contain enough information to enable the
SEAMLESS infrastructure to simulate the behaviour of the systems represented over a user-
defined temporal and spatial extent. Thanks to the rich meaning made possible by ontologies,
the SEAMLESS workflow environment can properly connect models to data, and feed
quantities calculated by simulation to other models in SeamFrame.

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 16 of 46

2.6 Ontologies and representation of workflows

A scientific workflow is a pathway between two or more processing steps, along which a
flow of data is transformed until a desired result is reached. Workflows are usually assembled
by users to connect sources of input data (such as a database query) to models, pre- and post-
processing algorithms (such as statistical data reduction or calculation of indicators from
model results) and visualization software.

A workflow environment is thus a “black board” for users to assemble the flow of
computation needed to address a particular problem. In functional terms, a model can be seen
as a workflow, because in the end all models process input information and produce a set of
output results. The similarity, however, does not hold when models and workflows are
considered in semantic terms: the meaning of a model is not to produce outputs, but to
describe a natural process. In fact, a more correct generalization sees workflows as special
cases of models, whose “paradigm” entails data transfer and transformation along the
connections of an artificial system. In this sense, a workflow is amenable to the same
ontology-based description as any other model: concepts of “input”, “output”, “processing
step” can be specialized as needed using ontologies that can describe all steps of any
workflow environment.

The most important use of ontologies in workflow environments, however, is another: to
allow the system to enforce meaningful, correct connections between inputs and outputs, and
– if necessary and possible – insert transformation steps in the workflow that guarantee a
proper match. The operation of enforcing and supporting semantic consistency along data
paths in workflows is usually called semantic mediation, and it is essential to guaranteeing
correct results particularly when processing steps are heterogeneous and users are not domain
experts. To allow semantic mediation, all inputs and outputs must come tagged with concepts
from ontologies that are known to the workflow environment, and the latter needs to use a
reasoner program that ensures the consistency of concepts along each connection made by the
user. The operation of associating concepts from ontologies to input and output “ports” of
workflow components is usually called semantic annotation, and it is done by the same
experts that have developed the models or processing steps.

Semantic mediation is a young discipline and there are frequent misunderstanding about the
way it’s done. In particular, it’s common to think that the ontology-supported system will
enforce the conceptual identity along connections, and other operations in the workflow
environment will ensure the matching of numeric boundaries, machine types, units of
measurement and so on. In fact, a well-designed set of upper ontologies, supported by
software, can take care of all those checks in one operation, usually a subsumption check.
Another common mistake is the simplistic notion that identity means a literal matching of
type IDs: temperature = temperature. In reality, the conceptual compatibility is most often
tested with a reasoning operation that can check if different names actually mean the same
concept. The example below illustrates how this may be done.

A model X is “packaged” as a workflow component and all its inputs are semantically
annotated by its developer according to a set of commonly understood ontologies. The
semantic annotation operation requires that all the conceptual details of each “port” is
understood and appropriately defined. As an example, an input I representing temperature at
surface may require that the temperature is expressed as monthly data over the simulated time
span, and the model has only been calibrated for temperatures in the 19–30 C range so it
should not accept data outside of these boundaries. Semantic annotation is a way to express
such conditions, which normally are only expressed verbally in the model’s documentation,
in a formal and machine-readable way. In order to do so, an ontology is created to define

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 17 of 46

model X, with concept defined for each exposed “port”. Using restrictions and concepts from
appropriate ontologies, the concept definition associated with input I may look similar to this:
I ::=

is-a: Temperature,

vertically-distributed-in: PlanetarySurface,

has_unit: Fahrenheit,

max-value:

(Temperature, has-value: 30.0, has-unit: Celsius)

min-value:

(Temperature, has-value: 19.0, has-unit: Celsius)

distributed-in:

(TimeSpan, step: 1, has-unit: Month)

When a semantically annotated model is used in a workflow, inputs and outputs are
connected by the user. For example, a temporal series of temperature data retrieved from a
database may be connected to input I. Upon connection, a semantically aware workflow
environment can ensure the appropriate match between the input and the output by feeding
the respective semantic annotations to a reasoner and ask if they describe the same concept (a
subsumption operation). A reasoner can make the necessary inferences to assess the
equivalence of types that have different names, based on their properties. In some cases, the
compatibility may not exist directly, but the reasoner can establish that a transformation can
be inserted in the dataflow to make the input and output compatible. For example, the data
source could be weekly data rather than monthly. A sophisticated workflow environment can
understand that the data need to be aggregated into a monthly timeseries, and direct the
workflow environment to create a transformation step to perform the aggregation and insert it
between the data source and the model.

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 19 of 46

3 The SEAMLESS Conceptual Model

The SEAMLESS conceptual model defines the scope of our view of the agri-environmental-
economic domain we want to model and analyse.

We propose a conceptualisation based on three domains:

1. The SEAMLESS agro-environmental domain (SeamAg);

2. The Application domain;

3. The Modelling domain;

We will refer to this subdivision as the SeAM concept. Each sub-domain is in fact a separate
dimension, orthogonally situated to the others. It is important that we have a shared
understanding about all three ‘worlds’ in order to deliver a comprehensive product of use to
all user roles.

The three domains will build on the core ontology, which provides fundamental concepts to
reason about space and time.

3.1 The core ontology

The core ontology contains the following basic concepts:

• Units: the units used to measure quantity. For instance, a unit is ‘kilograms’.

• Dimensions: the dimensional information on a measure. For instance, a dimension is
Length, which can have different units, meters, kilometres, miles, and so on. You can
convert among units, but not among dimensions.

• Quantities: the quantities which are observed, measured, computed in the
SEAMLESS conceptual model. A quantity has the following properties:

o data type (e.g. float);

o default unit (e.g. m3);

o dimension (e.g. volume);

o domain, a property that describes to which domain this variable is attached.
For instance, a crop yield is attached to the crop domain in the SeamAg
domain.

• Measurement: quantities that are measured and can be processed by models. The
processing establishes a role for a quantity (input, output, state variable or parameter)
and it also defines an observation context, that is, the spatial and temporal resolution
adopted in measuring the variable. Thus, a model variable has:

o Temporal context: it is a point or a time series;

o Spatial context: it is a-dimensional or 1D,2D,3D;

o Observation context: the quantity that is observed by this variable.

• Observation context: as said, it is a concept used to specify the characteristics of a
model variable, that is, the spatial and temporal context, the sampling frequency (on a
spatial grid or over the temporal axis) and the native type (integer, Boolean, float).

An important issue in SEAMLESS is the scale, and the integration of scales in policy
analysis. In this conceptual business model, scales are represented by the composition of

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 20 of 46

Environments. In modelling, scale is not so much the same as in cartography / GIS (like
1:1 000 000, or 1-km2 grid) but it rather is the level of aggregation of the state variable in the
model. For instance, a farm can be seen as an input-output unit, where you get an annual
yield of a number of products, given the available resources, but you can also describe the
biophysicial processes taking place day by day.

3.2 SEAMLESS agro-environmental domain

The SEAMLESS agri-environment domain (SeamAg) includes ecological, social, economical
and institutional dimensions.

Central theme is the systems (-theory) paradigm: A system is an assemblage of inter-related
elements comprising a unified whole (source: Wikipedia). To understand a system one must
study the individual parts of the system as well as the relationships between them.

The SeamAg is organised according to the concepts of Environment, Actors, Actions,
Conditions.

3.2.1 Environment

In the study domain of SEAMLESS we study the behaviour of systems in relation to changes
in their environment or within themselves.

For our purposes, the words system and environment are compatible: since we both accept
them as composites. For connecting as much as possible with real-world words, the term
environment prevails.

An environment is an abstract term, leaving to each specific use the task of further specifying
what it means in practical terms. One very important aspect of Environment is the fact that it
can/must/should have a temporal and spatial extent.

We can distinguish between different types of environment. For instance, we have a
biophysical environment (e.g. watershed or mountain region), a socio-economic environment
(e.g. country, city) and a market (e.g. the European wheat market).

In another example, the AgroDomain is an Environment which contains subdomains such as
Soil, Climate, Water. Soil, in turn, is specialised in SoilWater, SurfaceSoil and so on.

3.2.2 Actors

Another central element in SeamFrame is the Actor. Actor again is a very abstract term. An
Actor explicits its behaviour into (meaningful) action, based on preferences, possibilities and
conditions. Actor is abstract, meaning that we leave the task of further specifying what it
means to each specific use. Actor is a composite.

We can obviously distinguish different types of actors, such as The Farmer, The Government,
The Consumer, The Sugar Factory etc. Important aspects of Actors are there preferences,
possibilities and conditions imposed by the environment(s) they operate in.

The relation between environment and actors is manifold, but the most direct relation is that
(certain) environments are managed by actors. The Farm is managed by The Farmer, and The
Country is managed by The Government. When The Farm is located within The Country, the
environment The Country imposes conditions onto The Farm and therefore influences the
behaviour of The Farmer. The relationship between government and farmer is therefore made

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 21 of 46

explicit through the (nesting of) environments. Finally, also Climate can be seen as an actor
which affects the Environment.

3.2.3 Actions and Conditions

As mentioned above, Actors take (meaningful) Actions that operate on an Environment. And
Environment imposes Conditions onto Actors.

For instance, nutrient and water management are actions. On the other hand, also soil erosion
is an action, which affects soil surface.

This all will look like as in Figure 3.1.

Figure 3.1. The SEAMLESS agri-environmental domain.

3.3 Modelling domain

While the Application domain is listed after the SeamAg domain, that is for cosmetic reasons,
related to making up a nice acronym. The flow of logic requires the Modelling domain to be
introduced now.

The modelling domain is composed of Components.

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 22 of 46

Figure 3.2. The Modelling domain.

Components consist of Concepts: they are ‘packages’ of models and tools, which have been
aggregated because of their logical proximity and their functions. In the same component we
find all models that are related to the same domain in SeamAg. For instance, we can have a
Clima component, which contains all models related to Climate actions, such as rainfall,
evapotranspiration, solar radiation, etc.

In Figure 3.2 a UML diagram explains how Models are made of Equations and their Context
in time and space (e.g. their parameters). Besides Models we have Tools, such as numerical
integration routines. We call Modules the class which includes models and tools. Modules are
expressed by Concepts, which provide a gateway to store all information in the Knowledge
Base.

Models are basic modelling units. The variables of a model are Measurements defined in the
core ontology. Models are packaged in Components and they refer to Domains. We can
therefore query the ontology to discover all models related to a given domain which are
packaged in a specific component.

We have the following model classes:

• Biophysical models: They can compute one or more outputs, based on their inputs
and states. Inputs, outputs, states and rates are variables. Models also have
parameters. Static models do not have rates.

• Farm economic models: these are mathematical programming models, but we still
can distinguish among input variables (exogenous data and decision variables),
output variables (endogenous data) and parameters. They also need an objective
function to be minimized or maximised.

• Management models: these models process information and return management
actions such as irrigate, harvest, and so on. Management models can be open-loop
(decisions are taken once and then applied according to a set schema, such as
irrigation according to the day of the year) or closed-loop (decisions are revised
according to the system state, such as irrigation time as a function of soil water
content.

• Constraint models: these are rule-based models, which can be expressed as if-then-
else clauses. Constraint models can be used within management models.

3.4 Application domain

The Application domain reflects the way we want to compose / assemble applications from
individual / composite software components. We have adopted the application domain from
the EU5FP project HarmonIT. In this project, modellers from across Europe have determined

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 23 of 46

how components can work together in a meaningful way in order to look like one cohesive
application for supporting a specific task.

In HarmonIT this domain is captured in the Open Modelling Interface: OpenMI. This
framework consists of two prime components: Linkables and Links. In this way, OpenMI
provides a conceptual model of coupling components, which are linkables, exchanging data
between components and directing the order of calculations.

Figure 3.3. The Application domain.

As shown in Figure 3.3, an application implements a number of generic workflows, which is
a chain of linkables and links, where each link connects two linkables.

We can determine, based on the different user roles, several workflows within SEAMLESS-
IF:

• Analyze (a current policy);

• Simulate (business as usual, a new policy etc.);

• Communicate (what happens if …);

• Evaluate (scenario’s);

• Visualize (results, outcomes etc.).

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 25 of 46

4 The SeamFrame Conceptual Design

In any development process we can identify a number of ‘analyse-design-implement-test’
cycles, which can repeat themselves in tighter loops during product prototyping, and become
less frequent while the product becomes more and more mature.

The same process can be discovered in the analysis and development of the SeamFrame
conceptual model. In the analysis phase, we identified the structure of the conceptual model.

In this section we describe the design of the architecture of SeamFrame, that is the structure
and organization of the software architecture that enables us to deliver end-user applications
that will support the conceptual model we previously described in Section 3.

The reading of this section can be facilitated by reading the Appendix on Object-Oriented
programming, which introduces a lot of the terminology we use here.

4.1 The SeamFrame software system model

During the preparation of the SEAMLESS proposal many meetings were held, during which
requirements were collected and screened and modelling frameworks were reviewed. The
result of this stage of the project is available in PD 5.2.2.

From the requirements, a first sketch of SeamFrame emerged. In this chapter we briefly
describe the SeamFrame system model, which is aimed at supporting a component-oriented
approach to software development (Szyperski, 2002).

Figure 4.1. The SeamFrame architecture, with its development environment, composed by the
modelling and processing environment, the Knowledge Base, and the end-user applications.

The presentation of the system is instrumental to the matching of the requirements to the
main architectural elements (see Figure 4.1): the Knowledge Base, the SOFA, that is the
SeamFrame core (Knowledge Manager, Model Manager, Tool Manager), the SeamFrame
Development Environment (Modelling Environment, Processing Environment), a set of
support applications: Seam:REF, Seam:LINK, Seam:GAMS, Seam:MOD. Using this
framework it will be possible to deliver a number of SEAMLESS applications (SeamApps:
e.g. APES, FSSIM, SEAMCAP).

The core classes and components of SeamFrame are structured in a package named SOFA, or
SEAMLESS OpenMI+ Framework Architecture. The SOFA contains the basic components

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 26 of 46

needed for the Knowledge Base and to manage the OpenMI+ compliant executable modules
constructed from models and tools.

On top of the SOFA sit the packages that contain the modelling and processing environments.
The modelling environment package sets the structure that a modelling application (such as
MODCOM) must conform to so that it can integrate into SEAMLESS. For example, it must
retrieve its data (knowledge objects) through the SOFA and implement an integration
interface (IEmbeddable).

The processing environment contains the implementation of the workflow environment for
SEAMLESS. It enables the creation of workflows of modules, which are “executable”
models and tools that implement OpenMI+ (an adapted version of OpenMI 1.0) interfaces.

4.2 The Knowledge Base

The Knowledge Base (KB) is a repository for references to sources of information, from data
to models to workflows and scenarios. Differently from the database, where SeamFrame-
independent data are stored, the KB contains data elaborations which strictly depend on the
SeamFrame architecture and functions.

The information is structured according to Ontologies which we have used to model the agri-
enviro-economic sector. (the SeAM conceptual model) The ontologies will be represented
using the standard OWL/RDFS languages. Adopting such language standards will pave the
way to future interoperability with other frameworks and it will make possible the
distribution of the SEAMLESS ontology on the web, in the spirit of collaboration with
similar initiatives.

Ontologies also serve as a precious aid in browsing and querying a Knowledge Base, as they
connect concepts in a meaningful way and lend themselves to powerful and intuitive forms of
interactive graphical representation.

Building on the most recent advances in ontology-driven modelling and data mining (Villa,
2001; Ludaescher, 2001), we will employ the semantic characterization of models and data to
enable substitutability of components and data within models and analytical pipelines,
automatic generation of transformations to enforce compatibility of storage type, units of
measurement and mode and scale of representation, and definition of proper aggregation
strategies.

The SOFA classes and components need to exchange information with the Knowlede Base.
The information to be exchanged is organized in data structures we have named Concepts.
The Concepts provide a software layer to access the ontology. The concepts and the
properties defined in the ontology become ‘fields’ or attributes of the Concept data structures.
Among Concepts we list Models, Tools and Workflows. The KB will contain Models, both in
binary format and declarative format. Models will be characterised by their inputs, states,
outputs and parameters. Models will be searchable. This part of the KB is called the Model
Base.

The KB will contain Tools, implemented as software components, that provide services such
as numerical integration, data analyses, data visualisation, scenario optimisation and so on.
All these software components communicate with models through a standard interface. This
part of the KB is called the Toolbox.

The KB will contain Workflows, which are ordered sequence of operations performed by
tools on models and data. Scenarios are instances of workflows. This part of the KB is called
the Experiment Base.

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 27 of 46

4.3 SOFA parts

The SeamFrame Core is constituted by a set of co-operating classes and abstract interfaces
packaged in components:

• the Knowledge Manager: provides software components that process the ontology and
produce classes to be used in modelling (Concepts);

• the Module Manager, which includes:

• the Model Manager: provides abstract classes open for implementation inheritance and
a set of components able to perform transformations from model’s declarative code to
imperative code;

• the Tool Manager: is a set of abstract interfaces to be implemented to deliver
processing tool components operating on models and data.

4.4 The Knowledge Manager

The KnowledgeManager manages the concepts stored in an ontology, that is, in a Knowledge
Base. Concepts relate to ontology. Everything used by SeamFrame can be considered to be a
Concept. These Concepts are created by a ConceptManager, which manipulates information
in the Knowledge Base (the ontology) and returns object instances.

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 28 of 46

Figure 4.2. The Concept and the Knowledge manager.

As said, a Concept instance contains information extracted from the Knowledge Base. This
information can range from numerical values, to pointers to a binary object (i.e. a DLL) that
is the execution core for a module, and even to a reference to a database. These instances of
Concepts thus can be viewed as configuration settings.

For SeamFrame a number of key concepts are introduced (Figure 4.2):

Module

A module is a part in a schema. Module itself is an abstract term.

Schema

The schema is a description of interlinked modules.

Model

A model is a module and can be part of a schema. A model can calculate and output
data based on calculations or by retrieving it from a data source.

Tool

A tool is a module and can be part of a schema. A tool can control data flow in the
schema, visualize data, log data, etc.

Equation

Equations are the parts a model is constructed from.

Context

The context makes a model domain and scale specific.

The KnowledgeManager implements the IKnowledgeManager interface. It contains methods
to search (query) the Knowledge Base for concepts, and to store and retrieve them.

4.5 The Model Manager

The ModelManager is a module manager that knows how to handle models, based on
information it retrieves from the KnowledgeManager. It can create (OpenMI+ compliant)
components from a model and knows which modelling environment to start for viewing and
editing of the model

The Model Manager also contains a Model processor which delivers the (more complex)
functionality to transform a model in declarative specification (retrieved from the Knowledge
Base) into model source code. It can generate some type of documentation of the model (e.g.
in HTML), and transform it to address scaling problems or to create aggregated models from
base models. It must interface with compilers for generating binary code from source code
and/or declarative code.

The ModelManager implements two interfaces:

IModelManagement

Provides the methods for model management, giving access to the functionality
defined for the ModelProcessor. Methods can result in the creation of new models.

IModuleManagement

Functionality for searching (querying) of Modules and creation of Components from
them by the ModelManager and the ToolManager.

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 29 of 46

4.6 The Tool Manager

Processing tools are software components that operate on models and data. An example is a
simulator, which takes as input a model, with its parameters and input data, and the
simulation parameters (horizon, integration routine, step, etc.) and produces the simulation
results, which, in turn, can be passed on to another component, a grapher, that displays them
in a window.

There is a wide range of processing tools able to perform various activities. Tools can be
added by a third-party developer since SeamFrame must be extensible. The key to
extensibility is provided by the fact that tools, models and data communicate through
interfaces. As long as a new processing tool implements an interface which is recognised by
SeamFrame, the new tool will be usable within the framework. The interfaces are specified
by the part of SeamFrame core named the Tool Manager.

This component defines the interfaces for SEAMLESS compatible tools (basically
OpenMI+), can retrieve tool meta-information from the Knowledge Base and instantiate a
tool as a component. Tool components provide additional functionality for workflows,
besides the calculation and data mining functionality of the model components. Examples of
possible tools are a grapher, that displays data, a simulator that runs a model according to
specifications (e.g. a time horizon), a calibrator, an optimizer, or data processing tools (to
convert, aggregate, dis-aggregate, interpolate, extrapolate data).

The ToolManager therefore implements the same two interfaces of the ModelManager:
IModelManagement and IModuleManagement.

4.7 Module Manager

Module manager is the mother class of the ModelManager (which deals with models) and the
ToolManager (which deals with tools).

Figure 4.3 describes how a ModuleManager will take the Concepts from the Knowledge Base
and use them to create Components. These components are OpenMI+ compliant (they
implement the (extended) OpenMI interfaces) and can be linked to each other for data
exchange.

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 30 of 46

Figure 4.3. The Module Manager.

A Component refers to the Concept it was derived from. This allow to the possibility to
process the knowledge contained in the Concept and associated with the Component so that
matches and relations can be verified with other components. This functionality is contained
in the IApplicable interface.

ModelManager and ToolManager both are types of ModuleManagers, allowing for different
handling of models and tools, and to have method signatures for the specific types.

4.8 The Development Environment

The SeamFrame Development Environment is composed of two main applications: the
Modelling Environment and the Processing Environment. In the first application, the
modeller can define and edit the data structures to be used within the model and s/he can then
write a model, which will be then saved in the model base. In the Processing Environment
models can be run, tested, optimised, the result visualised and all these operations can be
structured for later re-play in work-flows.

4.9 The Modelling Environment

The modelling environment is a part of SeamFrame’s development environment. It aims to
provide the users with all the appropriate infrastructure for building, retrieving and editing
agro-environmental models of various types and scales, by exploiting the functionalities of
the Knowledge Manager, the Model Manager and the Tool Manager we find in the SOFA.

In order to be able to place multiple modelling environments on the SOFA they must conform
to the provided abstract modelling environment component, i.e. conform to the interfaces
IModelManagement and IEmbeddable and operate in a similar fashion.

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 31 of 46

The IEmbeddable interface provides methods for object linking and embedding to integrate
modelling environments into the processing environment (and applications). Preferably so
that a modelling application can be “seamlessly” integrated into one of the applications.

Implementing IEmbeddable ensures that applications like MODCOM, SIMILE, GAMS, etc.
can all be used with the SeamFrame. Seam:MOD will be a OpenMI+ compliant version of
MODCOM, while Seam:GAMS will be a modelling environment which delivers GAMS
models which have been wrapped up as OpenMI+ compliant components. All realizations of
modelling environments use the ModelProcessor to retrieve from and store information in the
Knowledge Base. It might prove to be necessary to have a dependency on the
IKnowledgeManagement interface of the KnowledgeManager as well. The modelling
environments provide the infrastructure for developing both opaque (accessible only through
its interface) and clear (exposing its equations) models. An opaque model is accessible only
through its interface, while a clear model exposes its equations. The terms opaque and clear
refer to the software interpretation and they do not have anything in common with the more
usual terms of black and white box modelling. For instance, a white box model, which is a
conceptual or process-based model where the causal relationships among variables are
explicit, can be implemented as an opaque model component.

Development of opaque models: using the classes and components provided by Knowledge
Manager and the Model Manager, a programmer will be able to use pre-formatted templates
of a model. Based on these templates, written in source code, s/he will be “guided” to write
the model’s code, compatible with the SeamFrame standard interface, in the same way we
can fill a form given its template.

Development of clear models: through the Modelling Environment’s GUI a modeller will be
enabled to define variables and parameters of a model using the ontology, specify the model
algorithm in a declarative way (XML-based model-representation language) and finally, to
create the complete source of the model, by the use of Model Manager facilities.

Thus, the Modelling Environment enables:

 Introduction of new concepts into the Knowledge Base;
 Creation of collections of concepts;
 Definition of model variables;
 Build simple models in a guided way, declarative or imperative;
 Retrieve, edit and store models in the Knowledge Base;
 Create composite models by assembling models;
 Semantic based navigate through data and model worlds.

Figure 4.4 illustrates the relation between modelling environment, concepts, components, and
the IEmbeddable and OpenMI+ compliant interfaces. The modelling environment creates
models based on equations, context and (sub)models. The ModelManager can turn a model
concept into an OpenMI compliant component for use in workflows.

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 32 of 46

Figure 4.4. The Modelling Environment.

A modelling environment might be made OpenMI+ compliant as well. The properties
argument of the initialize() method could be used to load a model configuration, which than
should be run to be able to answer to getValue() calls. Since this solution might raise some
performance issues mitigation measures will be considered for the software implementation.

4.10 The Processing Environment

The Processing Environment is a software application built on top of SeamFrame. Its purpose
is to let the user apply processing tools to models and data in order to perform the operations
implemented by the tools.

The Processing Environment is designed adopting some key ideas of the OpenMI architecture
(Brakkee et al. 2004).

Models and tools (as Components) can be included in workflows, that can be executed for
defined experiments so that results can be obtained, viewed and analyzed. A workflow is
composed of Links and Components, following the concepts of the OpenMI standard.
Functions provided are:

 Prepare and run a calibration experiment:
o Select a model, define the free parameters;
o Select a calibration data set;

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 33 of 46

o Select a calibration tool and objective function;
o Create a data sink to store the calibration outputs;
o Link the calibration tool to the model and to the data sink;
o Store the set of calibration parameters.

 Prepare and run a simulation experiment:
o Select a model;
o Instantiate the model for a domain context;
o Select data feeds for exogenous inputs;
o Select a simulation tool, set the simulation parameters;
o Run the simulation;
o Store the simulation results.

 Prepare and run an optimization experiment;
 Prepare and run a scenario comparison experiment.

The ProcessingEnvironment will be implemented based on the current OpenMI
specifications, but with the necessary fixes and adaptations (hence OpenMI+). This core is
then extended with packages containing the functionality for ontology’s and support for
working with transparent models (in contrast to the opaque – legacy – model access from
OpenMI). The processing environment will have a minimal user interface, most of that will
be in the seam:LINK end-user application.

Everything that is to be included in a workflow must be a generalization of the abstract
Component. These are the tools and executable models that process the raw data in an
experiment. Components should conform to the OpenMI+ interfaces. The next sections
examine in greater detail Components and Workflows.

4.10.1 Components

From one point of view there are two types of components, the models and the tools.
However, from the workflow perspective there are just components with different capabilities
and it is more important to know how they are technically constructed. This leads to a number
of subtypes, LibComponent, SourceComponent, ScriptComponent, etc.

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 34 of 46

Figure 4.5. The different kinds of components.

Whether a component is based on a library (e.g. a DLL), or on source code that needs to be
compiled (e.g. Java or C#), it must be contained within the Concept. The ModuleManager
can then use it when instantiating a Component. This is graphically represented in Figure 4.5.

4.10.2 Workflows

A Workflow consists of a number of Components connected through Links. This will be based
on OpenMI+ specifications, a Component must implement the OpenMI ILinkableComponent
interface and a Link the ILink interface. For OpenMI a linkable component must specify its
inputs and outputs as ExchangeItems (implementing the IExchangeItem interface).

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 35 of 46

Figure 4.6. Workflows .

In Figure 4.6, which extends Figure 3.3, it is shown how one of the updates to OpenMI will
be that an ExchangeItem must also be connected to a Concept (or an attribute of a concept)
and implement the IApplicable interface, so that links can be validated based on the ontology.

A Workflow uses the Schema concept for its persistency in the Knowledge Base (using the
KnowledgeManager).

4.11 Model Handling: where the Modelling and the Processing environment meet

Figure 4.7 illustrates the relation for modules, models and components, based on interactions
of a user (a modeller) with the processing environment.

Three interactions are shown; searching for a model; adding a model to a workflow; editing a
model in a workflow. The user always interacts with the processing environment and the
resulting actions are shown for the ModelManager, the KnowledgeManager, a Model
(concept) instance, and a modelling environment. The Component created by the
ModelManager (step 10) is not shown to contain the diagram within the page.

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 36 of 46

Figure 4.7. A diagram showing the interaction between the processing environment and the

modelling environment, via the model and the knowledge managers.

4.12 Applications

Thanks to the Processing Environment of SeamFrame, it will be possible to use it for building
end-user applications like seam:LINK (workflow construction and execution) and seam:REF
(reference book application for viewing workflows and experiments). Moreover it will be
possible to deliver applications targeting specific problems (SeamApps). In particular: APES,
FSSIM, SEAMCAP, Landscape models and the integration of SEAMLESS with GTAP. This
is not a limited set, in the future it will be possible to develop and deliver other applications
exploiting the features of SeamFrame.

APES is a modular system of biophysical components that will allow quantification of
biophysical impacts of management (management actions will be treated as inputs by APES)
and weather variability (also an input) on agricultural systems, by estimating input and output
coefficients, including production and externalities of production activities. APES will
provide components for the main agricultural activities related to plant production (arable
crops, orchards, agroforestry, grasses, vineyards) .

FSSIM models the technical aspects and the decision making at the farm level given specific
biophysical conditions, using different sets of constraints to derive a set of feasible
technological alternatives for each farm model. The objective function will represent farmers’
behaviour in particular concerning risk. FSSIM connects the bio-physical processes modelled
by APES, given the bio-physical and technological parameters, and the resource constraints
of farm types.

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 37 of 46

SEAMCAP is a re-factoring of parts of the CAPRI model, on the basis of the SeamFrame
architecture and design principles.

Landscape models will allow to quantitatively or visually assess changes in land use due to
the consequences of the application of new policies and conditions. The interplay of
SEAMCAP and FSSIM will produce a series of results which will provide the inputs to
specialized landscape models that, in turn, help to study landscape spatial patterns and
landscape dynamics, and to test hypotheses related to environmental or ecological objectives.

GTAP will also be integrated in SEAMLESS, even if not as tightly as CAPRI. The
integration will happen at the data level, in order to allow agricultural policies, designed with
SEAMCAP, to be inserted in the global economic model described by means of GTAP.

As anticipated, this list is not closed. The extendibility of SeamFrame is one of its key
features. SeamFrame will deliver tools to build new applications using the core features of the
framework.

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 39 of 46

References

Antoniou, G., Van Harmelen, F. 2004. A Semantic Web Primer. The MIT Press, Boston.

Brakkee, Brinkman, Gergersen, Hummel, Westen et al. 2004. HamronIT Document Series
Part C – the org.OpenMI.Standard interface specification. The HarmonIT Document Series,
IT Frameworks (HarmonIT) Contract EVK1-CT-2001-00090.

Gruber, T.R. 1993. A translation approach to portable ontologies. Knowledge Acquisition,
5(2), 199-220.

Klein, M., Fensel, D., van Harmelen, F., Horrocks, I. 2000. The relation between ontologies
and XML schemas. Proceedings of the ECAI'00 workshop on applications of ontologiesa and
problem-solving methods. August 2000. Berlin, Germany.

Ludaescher, B., Gupta, A., and Martone, M.E. 2001. Model-based mediation with Domain
Maps. In: Proceedings of 17th Intl. Conference on Data Engineering (ICDE), Heidelberg,
Germany, IEEE Computer Society.

Pasetti, A. 2002. Software Frameworks and Embedded Control Systems. Lecture Notes in
Computer Science, 2231. Springer Verlag, Berlin.

Sanchez, D.M., J.M. Cavero, E. Marcos. 2005. On models and ontologies. 1st International
Workshop on Philosophical Foundations of Information Systems Engineering (PHISE'05), 13
June 2005, Porto, Portugal.

Szyperski, C., Gruntz, D., Murer, S. 2002. Component Software: Beyond Object-Oriented
Programming, 2nd Edition. ACM Press, New York.

Villa, F. 2001. Integrating modelling architecture: a declarative framework for multi-
paradigm, multi-scale ecological modelling. Ecological Modelling 137, 23-42.

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 41 of 46

Glossary

Application: it is a software package obtained from the modelling environment. An
application includes a custom GUI and it includes several components.

Architecture: Blue-print and styles to define structure;

Attribute: a property of a instance of a real world concept;

Class: in object oriented programming a class is a data type. It provides an implementation of
the concept of an Abstract Data Type, that is a data type with a set of attributes (often called
data members) and a set of operations (named methods) associated with the class. For
instance, a Crop class might have a biomass attribute and an irrigate method.

Component: it is a model of a physical piece of the system being built. For example, source
code files, DLL's, Java beans and other discrete pieces of the system may be represented as
components. By building the system in discrete components, localisation of data and
behaviour allows for decreased dependency between classes and objects, providing a more
robust and maintainable design. Components may be either models or tools/utilities.

Conceptual model: describing (relevant) aspects of the real world in a functional context.

Conceptualization: Making (usually) a graphical representation of a model, a scenario,
processes etc, for improved and joint understanding.

Declarative modelling: as opposed to the procedural/imperative approach to modelling,
where the model equations are translated into code as a set of imperative statements. In
declarative modelling we represent a model not as a series of assignment and control
statements, but as a set of facts that are true about the model. Declarative modelling is strictly
affine to the Prolog programming language.

Experiment: in the context of SeamFrame an Experiment defines all the information related
to a simulation or an optimization run. This includes the data used as inputs, the model
parameters, the simulation parameters (horizon, time step, etc). If the Experiment has been
performed, it also contains links to the results.

Framework: productivity tool(box) to assemble components using architecture.

Indicators: outputs of either static or dynamic models which allow evaluating system
performance.

Inheritance: in object-oriented programming inheritance is the property that allows a data
type which inherits from another data type to include all its attributes without the need for
their redefinition.

Integrated framework: an application which allows the evaluation of agricultural systems
accounting for technical, environmental, economic and social indicators. One or more
integrated frameworks will be the main deliverables of the integrated project.

Model: focused simplification of (a phenomena or process in) the real world;

Modelling environment: a software which allows developing components and applications.
The modelling environments contains components which include a GUI for either component
or application development

Modelling framework: the kernel component for static and dynamic model components use.

Object-oriented programming: The idea behind object-oriented programming is that a
computer program is composed of a collection of individual units, or objects, as opposed to a

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 42 of 46

traditional view in which a program is a list of instructions to the computer. Each object is
capable of receiving messages, processing data, and sending messages to other objects.

Ontology: it is a specification of a conceptualisation. Once a modelling exercise has defined
all the variables and relationships existing in a given model, this information can be stored in
an ontology. There are many languages which can be used to represent an ontology, but
RDFS/OWL is one of the most common since, being based on XML, it can be easily
processed by computers.

Project: when referred in the use cases of the user Application/component developer (see
below) a project is either a component or a system model which includes several components.
When the user is a farmer or a policy maker, a project is the use of an application in specific
conditions (a farm, a region etc.)

Programming interface: a set of component interfaces, packaged in a binary object together
with their implementations, with the necessary documentation to reuse them in a software
application.

Simulation: monitoring dynamics of attributes (in time and/or in space);

Software framework: see Framework.

Source: a source produces the value of an attribute;

System: a portion of the real world, with clearly defined borders, described both in a static
and dynamic fashion by models

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 43 of 46

Appendix – Object-Oriented Programming Fundamentals

An object is a software entity that has attributes, behaviour and identity. Objects are members
of a class. An object is often called an instance of a class. Attributes and behaviour are
defined in the class. A class is a description of a set of objects. It is analogous to the concept
of data type in non object-oriented programming languages. What’s the difference then? It is
called inheritance. A class may inherit attributes and behaviour from its predecessors.

Properties of an object oriented system

A software program can be defined as ‘object-oriented’ if it implements the following
properties:

1. Abstraction

2. Encapsulated

3. Communication via messages

4. Object lifetime

5. Class hierarchies

6. Polymorphism

Abstraction

The complexity of the real-world is represented by a simpler model, which is described by
the object. In the context of abstraction, an object is a thing or a concept. To adopt a good
object-oriented programming style, one must start to ‘think in objects’: a crop is an object, a
farm is an object, a rotation is an object, soil is an object.

Encapsulation

The meaning of encapsulation is to hide the internal details from the outside world. Thanks to
encapsulation different data structures and algorithms can be adopted and implemented
without changing the class interface. In other words, we hide the implementation from the
rest of the world. Encapsulation is enforced thanks to the structure of the class itself: Each
class has attributes (their values define the state of the object instance), which are analogous
to fields in a record data type, and methods (which define the class’ behaviour), which are
analogous to functions, procedures. Encapsulation is achieved by making the class’ state
inaccessible from the outside. This means that the class attributes must be made private. For
example, let’s assume we have a class Soil which has an attribute named waterContent. If this
was a standard record, a user of the class could write in her program a statement such as
‘mySoil.waterContent’ to access the value. In an encapsulated class this is not possible and it
is forbidden. Access to attributes shall only happen through accessor methods (also known as
setters and getters).

Messages

The interaction between objects is handled by sending messages. Messages are methods,
operations we can perform on an object. The program ‘tells’ an object to do something. For
instance: in an object-oriented programming language we write myStack.push(‘a’), that is
Object.Message(Params), while in a procedural language we would have written something
in the form Procedure(Variable, Params), where Procedure can be mapped to Message,
Variable to Object.

Object lifetime

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 44 of 46

If Classes are similar to data types, objects can be assimilated variables, so they need to be
initialised. While in existence they maintain their identity and state. Identity, each object has
a unique name, State, each object is characterised by the values assumed by its attributes.
Objects are allocated in memory (typically in the part of memory which grows dynamically
and it’s called ‘heap’), so they can be eventually destroyed, freeing up memory again.

The creation of an object is called instantiation. An object variable is called an instance. The
method that returns an initialised instance is called constructor.

Hierarchies

Object-oriented programming languages offer a number of powerful constructs which are
useful to organise and represent our knowledge about the modelled system. Among these we
find hierarchies, which allow to express a number of relationships which exists among
classes.

The main relationships are:

• Association: a class has an attribute which puts it in relation with another class (a
company has an employee)

• Aggregation/Composition: a class has attributes which define other classes as its
parts (a car has 4 wheels)

• Inheritance: a class descends from the definition of another class (a bear is a
mammal)

UML (Unified Modelling Language) is a powerful tool to represent such relationships. In the
following Figures we present some examples of UML, in particular Class diagrams. Other
important diagrams are State and Sequence diagrams, used to represent the dynamics of
object interactions.

In Figure A.1 a UML class diagram is used to represent an inheritance relationship between
SimpleClass and SuperClasss.

The box which describes SuperClass also contains the names of the attributes and the
operations. A minus sign in front of an operation or attribute means it is private (they can be
accessed only within the class), while a plus sign means it is public (they can be accessed
from the outside). A hash sign means protected, that is, they can be accessed only from
classes which are derived (inherit from) that class.

The inheritance relationship is also called an ‘is-a’ relationship.

Also in Figure A.1 we find an instantiation relationship. The variable named myObject is an
instance of SimpleClass, and this is represented by means of the dashed arrow pointing to
SimpleClass. The attributes in the object instance (e.g. ‘id’) assume specific values, that
define the object’s state.

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 45 of 46

Figure A.1. Inheritance and instantiation. SimpleClass inherits from ClassName, while object

is an Instance of SimpleClass.

Figure A.2. An association relationship between ClassA and ClassB. The association can be

named ‘teaches to’ and we can also quantify the relationship (from o to n instances of ClassA
can teach to 0 to 1 instances of ClassB).

Figure A.3. An aggregation relationship. Class B is part of Class A, but Classs A can still

exist even without Class B.

Figure A.4. A composition relationship. It’s like the aggregation relationship, but in this case

the whole does not exist without the parts.

In an association (Figure A.2) two classes are related by a named relationship. Multiplicity
can quantify the relationship. The two classes are independent of each other. They simply
collaborate and for this reason they must be (mutually) aware of the other class.

In an aggregation (Figure A.3) the two classes are not independent, and a whole-part
relationship is expressed. For instance, a Library has a number of Books, and a Book can be
part of the Library.

A composition (Figure A.4) is very similar to an aggregation, but the whole cannot exist
without the parts, as in the example of a Book and its Pages. If you take away a Page from a

SEAMLESS
No. 010036
Deliverable number: PD1.3.4
27 October 2005

 Page 46 of 46

Book, it’s not the same book anymore, while if you borrow a Book from a Library it’s still a
valid Library!

The relationships are expressed by means of attributes of a class. For instance, the class
Library may have an attribute which is a List of Books.

Finally, a very important relationship is generalization/specialization, which represents
inheritance relationships among classes (see Figure A.1 and Figure A.5). In Figure A.5 we
represent the fact that Felines and Bears are Animals and that Panda Bears and Polar Bears
are Bears, but they are also Animals.

Figure A.5. An inheritance tree.

Polymorphism

Polymorphism (from Greek, it means ‘many shapes’) it is a fundamental property of object-
oriented programming languages. Thanks to polymorphism the behaviour of specialised
classes (classes lower in the inheritance tree) can be different from the one of the generalised
classes. This means that the same method can have different implementations in the different
classes (this is called overriding). Polymorphism thus allows to send the same message to
different objects and have them behave differently. For example, think of a composed model
of a Farm, which is composed of submodels for the Crop, the Animals, the Soil and so on.
Each submodel is a subclass of the generalised class Model, that has the polymorphic method
run() (also called a virtual method). The main simulation algorithm will simply dispatch the
message run() to each model in the farm. This has a considerable impact on extensibility of
the code: let’s imagine we now want to add a new model component in the Farm, such as
Orchards. We just need to implement the model class Orchard and to provide an appropriate
implementation of the run() method and finally to add it to the list of Farm components. The
simulation algorithm will not change at all, since it simply sends the message run() to each
element in the collection.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

