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Abstract: In this paper, linear regressive model structures are deduced from single input - single
output (SISO) deterministic LTI systems in state space form. The resulting linear regression
and predictor are exact representations of a discrete-time LTI state space model Σd belonging
to a certain class S. As an illustrative example, a process with first-order reaction and advective
transport is approximated by a discrete-time state space model Σd, where the one-dimensional
space is divided into n compartments and is reparametrized such that Σd ⊆ S. The system
output can then be explicitly predicted by y(t) = θT φ(t−1)−γ̌(t−1) as a function of the number
of compartments n, the sensor position j∗, the parameter vector θ= ξ(ϑ) with ϑ a vector with
original (physical) parameters, and input-output data. The method is attractive for experimental
design, direct parameter estimation and prediction when prior (physical) parameter knowledge
is to be preserved.

Keywords: LTI systems, distributed parameter systems, linear regression, sensitivity analysis,
sensor location, prediction

1. INTRODUCTION

Estimation of physical parameters in continuous-time lin-
ear time-invariant (LTI) state space models generally leads
to nonlinear estimation problems (see e.g. [1, 2]). It is
well known that nonlinear estimation problems frequently
lead to local minima solutions. Furthermore, solving these
problems can be very (computer) time consuming, es-
pecially when multi-start procedures are used. Since the
global solution is not known beforehand, no characteriza-
tion of the systematic error in the estimates can be given.

Our overall goal is to uniquely estimate model parame-
ters in state space model structures while preserving the
(original) physical model structure (see also [3],[4],[5]).
For continuous-time LTI systems, our approach consists
of two steps, i.e. first the system is explicitly discretized
and subsequently a linear regressive realization of the
dynamical system is found. Unlike data based methods,
such as subspace identification [6, 7], we will conserve the
physical model structure.

In particular, we will consider the class of finite LTI state
space systems S(Σ). Under some mild assumptions, we
are able to find a linear regressive realization of Σ which
is suited for linear estimation and prediction. It will be
shown later on, that the resolvent of the system matrix
(R(A)) of the discrete-time system, plays a key role in
this. In specific cases, the discrete-time system matrix
(I + A(ϑ)), with ϑ a vector with physical parameters,
becomes a bidiagonal matrix or a symmetric tridiagonal
matrix. For the latter case, explicit expressions of R(A)
are known (see e.g. [8, 9, 10, 11]). In particular, we want
to unravel the structure of R(A) in such a way that we
can write the LTI system in state space form as a linear
regressive set of equations: θT φ = γ. Herein, θ = ξ(ϑ)

contains known reparametrization functions that are not
confounded with coefficients that originate from either the
discretization step or from constants in A. From here, it
is rather straightforward to arrive at a direct least-squares

type of estimate θ̂ and at an explicit expression for the
output at time instant k.

The key objective of the paper is twofold: to show the
derivation of linear regressive model structures from de-
terministic LTI state space models, while conserving the
physical model structure, and to illustrate this to an
advection-reaction system.

First, we formulate the problem in section 2. In section
3, we illustrate the methodology to arrive at an exact
linear regressive realization suitable for linear estimation
and prediction for the class S(Σ). Further, it will be shown
that explicit expressions of the linear regressive realization
can be found without the use of explicit matrix inversion.
In section 4, we work out the derivation of an explicit
linear regression and predictor for an infinite-dimensional
advection-reaction process with boundary input at one
side of the 1D-dimensional spatial plane. Furthermore, the
results of a sensitivity analysis are presented. In section
5, the proposed method is shortly discussed. Finally, in
section 6, conclusions are drawn and a future outline is
given.

2. PROBLEM STATEMENT

Let us start by describing the problem in some more
detail. In this contribution, we study the deduction
of a physically-based linear regressive output predic-
tor y(t|θ;Z−) from a deterministic LTI system in state
space form belonging to the class S(Σ), with Z =
[u(1), y(1), · · · , u(t − 1), y(t − 1), u(t), y(t)], the noise-free
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input-output data set, and Z− = Z \ y(t). In particular,
we would like (i) to find the linear regression θT φ = γ and
associated reparametrized vector function θ = ξ(ϑ) and
(ii) to derive an expression for the predictor y(t|θ;Z−) in
terms of the number of compartments n and the sensor
location j∗.

We consider the following structured parametrization state
space model structure as given,

Σ(A,B, C,D) :=

{

ẋ(t) = A(ϑ)x(t) + B(ϑ)u(t)

y(t) = C(ϑ)x(t) + D(ϑ)u(t)
(1)

with x ∈ R
n, u ∈ R

m, y ∈ R
s and matrices A,B, C

and D of appropriate dimensions and with ϑ the physi-
cal parameter vector. Hence, the problem is to find the
reparametrized vector function θ = ξ(ϑ) and the transfor-
mation of Σ to the linear regressive system,

Σ̃d(φ, γ) :=

{

θT φ(Z) = γ(Z)

y(t) = g(θ;Z−)
(2)

In the following, we will restrict ourselves to the SISO case
with C a constant vector and D a constant.

3. REALIZATION OF A LINEAR REGRESSIVE
PARAMETRIC SYSTEM REPRESENTATION

3.1 Discretization

The first step towards a linear regressive realization of
the continuous-time model (1) is to approximate it by
a discrete-time model with time instant k. For ease of
notation, we will write the time instant k ∈ {0, 1, · · ·N} as
an index. Typically, an Euler forward scheme, with ∆t = 1
as a result of appropriate scaling guaranteeing a stable
approximation, leads to

Σd :

{

xk+1 = (I + A(ϑ))xk + B(ϑ)uk

yk = Cxk + Duk

(3)

where x ∈ R
n and u, y ∈ R. In what follows, it is assumed

that A(ϑ) and B(ϑ) can be written linearly in ϑ as

A(ϑ) = A +
∑

Ãiϑi (4)

B(ϑ) = B +
∑

B̃iϑi (5)

with ϑ a lumped combination of original physical parame-
ters such that (3)-(5) holds. For instance, for an advection-
reaction process, we will see later on that the original
parameters are the velocity, (first-order) reaction constant
and the time and spatial discretization constants and that
ϑ contains lumped combinations of these.

Alternatively, applying the trapezium rule in the numerical
scheme leads to the following rational system,

Σ∗

d :



























xk+1 =

(

I −
A(ϑ)

2

)

−1 (

I +
A(ϑ)

2

)

xk

+

(

I −
A(ϑ)

2

)

−1
B(ϑ)

2
(uk+1 + uk)

yk = Cxk + Duk

(6)

Remark 1. (a) Notice from the first step in the discretiza-
tion of (1) using the trapezium rule, i.e.

xk+1 − xk =
A(ϑ)

2
(xk+1 + xk)

+
B(ϑ)

2
(uk+1 + uk)

that an implicit numerical scheme inevitably leads to
a (mixed) error-in-variables (EIV) estimation prob-
lem if noise would have been considered (see [4],[5]
for estimation of rational systems). However, as yet
we only focus on the realization problem from (1) to
(2).

(b) Recall that (1), with C and D constant, has the
recursive solution

xk+1 = eA(ϑ)∆txk +

∫ t+∆t

t

eA(ϑ)[t+∆t−s]B(ϑ)u(s)ds

yk = Cxk + Duk

and thus for each time index k the output can be
accurately calculated. Hence, the approximation error
is smaller than in the case of an explicit or implicit
scheme. However, notice that this approach still does
not allow a linear regression realization of (1), since
the parameters in A(ϑ) appear nonlinearly in the
expression.

In the sequel, the arguments of A and B will be omitted
for reasons of eligibility. Introducing the forward-shift
operator q for manipulating the linear difference equations
of (3) and (6) gives for the explicit scheme

G(ϑ, q) = C(qI − (I + A))−1B + D (7)

and for the implicit scheme

G(ϑ, q) = C(qI − (I −
A

2
)−1(I +

A

2
))−1B + D (8)

Hence, introducing the forward-shift operator leads di-
rectly to a discrete-time transfer function of (3)-(6), which
will appear to be an effective step towards a linear re-
gressive realization Σ̃d (see Eqn. 2). In the next sec-
tion, we will consider the transfer function G(ϑ, q) =
C(qI − (I + A(ϑ)))−1B(ϑ) + D, obtained from an explicit
scheme (see Eqn. 7), as a rational function of polynomials
in the forward shift operator q and the parameter(s) ϑ.

3.2 Linear regression by reparametrization

As yet, our focus is on the classical Euler forward approx-
imation of the deterministic state space model (1). Split-
ting the rational transfer function G(ϑ, q) in a numerator

Ñ(ϑ, q) and a denominator M̃(ϑ, q) gives

M̃(ϑ, q)yk = Ñ(ϑ, q)uk (9)

with M̃ and Ñ polynomials in ϑ and q. For instance,
Pintelon et al. (see [12]) split M̃ and Ñ in functions
of the polynomial variable q (or the Laplace variable
s) and the parameter vector ϑ. Hence, they consider
M(ϑ)m(q)yk = N(ϑ)n(q)uk. Consequently, the entries of
the row vectors M(ϑ) and N(ϑ) are considered as black-
box parameters for further estimation and prediction. As a
consequence, the link to the underlying model parameters
ϑ will soon be lost as the polynomial order of M and/or
N increases. However, to prevent this loss we introduce
the so-called pqR-decomposition, by decomposing M̃ and
Ñ not only in a shift operator (’q’) dependent, but also
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in a parameter (’p’) dependent part so to obtain regressor
weighting matrices (’R’). More specifically,

M̃ = p̃T
MMψ(q), Ñ = p̃T

NNψ(q) (10)

with p̃M ∈ R
p1 , p̃N ∈ R

p2 and ψ(q) =
(

1 q · · · qn−1 qn
)T

.
Notice that the maximum order of q in ψ(q) equals the
dimension of the state vector x. For each parameter p̃ •i,
a polynomial function ξi(ϑ) for i = 1, 2, · · · will be found.
The polynomial coefficient matrices are defined as,

M =

(

M aM

bM cM

)

∈ R
p1×(n+1) (11)

N =

(

N aN

bN cN

)

∈ R
p2×(n+1) (12)

with aM ∈ R
(p1−1)×1 and aN ∈ R

(p2−1)×1. Both bM , bN ∈
R

1×n and cM , cN ∈ R.

Furthermore, define

Zk =
(

UT
k | Y T

k

)T
=

(

U
T

k uk+n | Y
T

k yk+n

)T

(13)

where

Uk = (uk uk+1 · · ·uk+n−1)
T

Y k = (yk yk+1 · · · yk+n−1)
T

Substituting (10)–(12) in (9), a transfer function represen-
tation of Σd is given by

p̃T
MMψ(q)yk = p̃T

NNψ(q)uk (14)

Let the polynomial pT
MMψ(q) be monic. Then, we choose

M such that p̃M = (pT
M 1)T . In a similar way, but now

because of constants in matrix A, we define p̃N = (pT
N 1)T .

Hence, we obtain

(

pT
N 1 | pT

M 1
)









(

N aN

bN cN

)

O
p2×(n+1)

O
p1×(n+1)

(

−M −aM

−bM −cM

)









(

UT
k

Y T
k

)

= 0 (15)

Notice that we have decomposed the transfer function
representation into a part with only physical parameters
and a part that contains pre-filtered input-output data.
Correspondingly, (15) covers the classical linear regression
case with black-box parameters that are linear combina-
tions of the original physical parameters. Expanding (15)
gives

(pT
NN + bN | pT

NaN + cN | − pT
MM − bM |

− pT
MaM − cM )







Uk

uk+n

Y k

yk+n






= 0 (16)

Notice that aM 6= 0 naturally leads to an error-in-variables
problem. Collecting the physical parameters gives

(

pT
N pT

M

)

(

N aN O

O −M − aM

)

Zk +

+bNUk + cNuk+n − bMY k − cMyk+n = 0 (17)

Consequently, we arrive at the linear regression

θT φk = γk (18)

with θT = (pT
N pT

M ), γk = (−bN −cN bM cM )Zk and

φk =

(

N aN O

O −M − aM

)

Zk (19)

In addition to this, the linear predictor can be written as

yk+n = c−1
M (θT φk − γ̌k), cM 6= 0 (20)

with γ̌k = bNUk + cNuk+n − bMY k. After multiplication
of (14) by q−n (i.e. introducing a backward time shift), we
may write (18)–(20) as:

Σ̃d :

{

θT φk−n = γk−n

yk = g(θ, Žk−n)
(21)

with g(·, ·) a function in θ and Žk−n = (UT
k−n Y

T

k−n)T .
This leads to the following proposition, for D = 0 (without
loss of generality).

Proposition 1. Given system Σd(A,B, C) as in (3). Then,

(i) exact explicit expressions of M and N as a function
of n exist.

(ii) Σd can be written in the form of Σ̃d with θ = ξ(ϑ), a
polynomial vector function in ϑ.

Due to space limitations only a sketch of the proof is given.

Proof.

(i) Let r(A, q) = (qI − Ã) with Ã as in (7) or (8). Given

that G = Ñ

M̃
= CRB with R = r−1, the resolvent of

Ã, it follows that: R = adj(r)/|r|, iff r non-singular.
Hence,

M̃ = |r| and Ñ = C adj(r)B (22)

Since we consider only SISO systems:

Ñ = adj(r)i∗j∗ = (−1)i∗+j∗ |rj́í| (23)

with i∗ and j∗ the non-zero entry indices of B and
C, respectively. The matrix rj́í is the sub-matrix of
r, resulting from the deletion of row i∗ and column
j∗. From induction, and given (4)-(5), it follows that
|r| and adj(r) will be a polynomials in q and ϑ
with maximal order n. Since G = CRB and A,
B linear in ϑ, it follows that M̃(ϑ, q) and Ñ(ϑ, q)
can be decomposed as in (10)–(12), with polynomial
coefficient matrices M and N being functions of n.

(ii) Given G(ϑ, q) = Ñ(ϑ,q)

M̃(ϑ,q)
, the transfer function of Σd.

Then, M̃(ϑ, q)yk = Ñ(ϑ, q)uk and via direct algebra
(see (10)–(18)) and the proof of part (i) one readily
obtains θT φk = γk with θ = ξ(ϑ), a polynomial vector
function. Notice that γk contains yk+n and we can

write the equivalent form Σ̃d (21) after multiplication
with q−n.

2

Remark 2. From the proof of Proposition 1 it directly
follows that,

(a) The polynomial order of Ñ(ϑ, q) in q and ϑ is de-

termined by B, C and adj(r). Ñ is a polynomial of
maximal order n in ϑi and maximal order n− 1 in q,
since D = 0.

(b) Explicit expressions of M̃(ϑ, q) are much easier to

find than those for Ñ(ϑ, q), since Ñ also depends on
B and C, i.e. the non-zero entry indices i∗ and j∗,
respectively.
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(c) In general, B(ϑ) will lead to pN 6= pM , while a
constant B allows pN = pM .

Before continuing, let us first demonstrate the pqR-
decomposition on a simple example with constant B.

Example 1. Given a discrete-time LTI state space system
Σd(A,B, C) with

A =

(

1 − ϑ2 1
1 1 − ϑ1

)

, B =

(

1
0

)

, C = (1 0)

Then, the transfer function of this system reads G(ϑ, q) =
(q − 1 − ϑ2)/(q2 − (ϑ1 + ϑ2 + 2)q + ϑ1 + ϑ2 + ϑ1ϑ2)
with the cross term ϑ1ϑ2. After defining pT

N = (ϑ2 1),
pT

M = (ϑ1ϑ2 ϑ1 ϑ2 1) and ψ(q)T = (q0 q1 q2), we
obtain the coefficient matrices M and N :

M =







1 0 0
1 −1 0
1 −1 0
0 −2 1






, N =

(

−1 0 0
−1 1 0

)

2

Alternatively, we could have chosen pN = pM , which would
add two zero row vectors in N .

3.3 Sensitivity analysis

Recall that so far the model structure representation
Σ̃d(φ, γ), which contains the parameter vector θ as a func-
tion of the physical parameter vector ϑ, has been derived.
Let us now, on the basis of this, investigate its sensitivities.
It can be easily verified that the parameter sensitivities in
a linear regression structure dγk

dθ
are completely defined by

φk. If we substitute Yk by its convolution sum HUk, with
H ∈ R

nH×nH , the sensitivities only become dependent on
the input Uk. The entries of the Hankel matrix H contain
the Markov parameters and can be directly found by an
impulse response as a function of the real parameters as
θ0. Consequently, after substitution of Yk = HUk in φk the
second derivative γθU := dγθ

dU
only depends on the Hankel

matrix and the coefficient matrices M and N . Since the
sensor location only affects the entries in N via C, for good
estimation conditions evaluation of N suffices, providing
that no pole-zero cancelation occurs.

A full demonstration of the linear regression realization
approach to an advection-reaction system is given in the
next section.

4. RESULTS

4.1 An advection-reaction process

Consider the infinite dimensional system Σe on [0,∞) ×
[0,∞),

Σe :















∂w

∂t
(z, t) +ν

∂w

∂z
(z, t) = −κw(z, t),

w(z, 0) = w0(z), w(0, t) = u(t)

y(t) = w(z∗, t)

(24)

where w(z, t) is the concentration of some solute, ν a
constant flow velocity and κ a constant reaction constant.
Furthermore, we assume that w0(z) ∈ L2(0,∞), z∗ ∈
[0,∞) and u(t) ∈ R.

Typically, the unknown parameters ν and κ are estimated
from data via non-linear estimation techniques using a
numerical solution of (24). As mentioned before, this may
easily lead to local solutions and a high computational
effort. Following the line of this paper, we seek an approx-
imation of (24), Σe

d, such that the linear regressive realiza-

tion Σ̃d as in (21) can be constructed. In the sequel, we
will follow the same name conventions for the subsections
as in section 3.

4.2 Discretization and shift-operator calculus

After applying an Euler forward scheme in space and time,
we get the discrete-time compartmental system Σe

d in the
form of (3) by defining the lumped physical parameters,

ϑ1 = (κ +
ν

∆z
)∆t, ϑ2 =

ν∆t

∆z

where ∆t and ∆z denote the time and space differences,
respectively. Notice that, for this specific case, A becomes
a bi-diagonal matrix with A(ϑ) = −ϑ1I + ϑ2I−1. Further-

more, B(ϑ) = [ϑ2 0 · · · 0]
T
, and thus i∗ = 1. The observa-

tion y(t) = w(t, z∗) is approximated by yk = Cwk, with C
mapping a ‘point’ observation at the j∗-th compartment
(i.e cj∗ = 1 and cj = 0 for j 6= j∗). Finally, from (24)
we directly derive that D = 0. Notice that a grid with n
points directly leads to n states, because in the distributed
parameter system Σe we consider only one state variable
in one spatial direction.

After forward-shift operations on Σe
d we obtain G(ϑ, q) =

CR(A, q)B. To obtain further insight into this, let us focus
on the structure of the matrix R.

4.3 Linear regression realization

Recall that R(A, q) = r(A, q)−1 = (qI − (I + A))−1. For
our example, r(A, q) is given by

r(A, q) =











q − 1 + ϑ1 0 . . . 0
−ϑ2 q − 1 + ϑ1 0 . . .

0
. . .

. . .
...

... . . . −ϑ2 q − 1 + ϑ1











(25)

We can decompose the numerator Ñ and the denominator
M̃ of the transfer function G as in (10), given B and C. For
a bi-diagonal system matrix A, as in the advection-reaction
case, with unknown diagonal elements ϑ1 and sub-diagonal
elements ϑ2 we obtain the following.

Proposition 2. Given Σe
d(A,B, C), with A, B and C as

defined above and i∗ = 1, then exact explicit expressions
for M̃ , Ñ and their components are given by
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p̃T
M = (ϑj∗

1 . . . ϑ1 1)

p̃T
N = (ϑj∗

2 )

ψ(q) =
(

1 q · · · qj∗
)T

M = (mkl) =







(−1)−k+l

(

j∗

j∗ − k + 1

)(

k − 1

l − 1

)

, k ≥ l

0 elsewhere

N = (nkl) =

{

1 for k = l = 1

0 elsewhere

where l = 1, . . . , j∗ + 1.

Proof. Via direct application of (22) and (23), we obtain

M̃ = |r(A, q)| = (q − 1 + ϑ1)
n

Ñ = (−1)i∗+j∗ |r(A, q)j́∗ í∗ |Bi∗

=

{

0 i∗ > j∗

(q − 1 + ϑ1)
n+i∗−j∗−1ϑj∗−i∗+1

2 i∗ ≤ j∗

with i∗ = 1 and j∗ free. Hence, Ñ = (q − 1 +

ϑ1)
n−j∗ϑj∗

2 , j∗ ≥ 1. Pole-zero cancelation leads to

Ñ

M̃
=

ϑj∗

2

(q − 1 + ϑ1)j∗

Decomposition of the polynomials M̃ and Ñ , using direct
algebra, gives p̃N , p̃M , ψ and the matrices M and N .

2

Remark 3. From the proof we deduce the following:

(a) There is no need for full matrix inversion. The calcu-
lation of relevant minors suffices.

(b) For n-compartment models, the transfer function con-
tains 2n+1 parameters. However, taking the structure
into account, will usually lead to less parameters. As
an illustration of this, consider the case with constant
B. Then, as presented before in Example 1, pN = pM ,
and only n + 1 parameters result.

(c) Identifiability can be easily checked from the matrices
M and N . The parameter (combinations) in p̃M and
p̃N are identifiable iff (N | − M) (see Eqns 11–12)
is a full row rank matrix, where N and M may
contain zero rows to accomplish appropriate matrix
dimensions.

From (18 – 20) and Proposition 2 for k = j∗ + 1 the
predictor of the output (ŷk+n), which can be based on
the unique estimate of θ, is given by

ŷk+n = θT φk − (bNU − bMY ) (26)

with

bN = 0

bM = (−1)−j∗−1+l

(

j∗

l − 1

)

, l = 1, . . . , j∗

4.4 Sensitivity analysis results

As mentioned before, the data-independent sensitivity
(γθU ) is a function of the given Hankel matrix and the
coefficient matrices M and N . From the proof of Propo-
sition 2, it follows that both M̃ and Ñ depend on the

sensor location j∗. If we fix the actuator location, as before
at i∗ = 1, then we are able to evaluate the polynomial
quotient Ñ/M̃ only as a function of j∗. Since in this

advection-reaction process the polynomials M̃ and Ñ do
not depend on the number of compartments n, j∗ looses its
interpretation of sensor location index. Hence, it reduces to
a parameter that defines the model order. Table 1 presents
the determinant and condition number of (N | − M), as
a function of j∗. Notice that the number of parameters
that have to be estimated from the filtered input-output
data is equal to j∗ + 1. On the basis of this, we suggest
to take j∗ small, preferably j∗ = 1, because that will keep
the estimation of the original physical parameters simple.
However, an appropriate selection of j∗ can only be done
if the input-output data set is also taken into account.

Table 1. Determinant and condition number C
of (N | − M) as a function of j∗.

j∗ 1 2 5 10 20

det(N | − M) 1 2 2500 3.1016 8.1073

C(N | − M) 1 2 10 252 184756

5. DISCUSSION

As expected, for n-compartment models as derived from
(24), the quality of the (yet deterministic) predictor (26)
directly depends on n, which follows from the discretiza-
tion grid in the spatial domain. Hence, there is an ap-
proximation of the solution of the original LTI infinite
dimensional system caused by the finite difference scheme
and characterized by n, which needs further numerical
analysis.

Also, we may numerically approximate a given LTI infi-
nite dimensional system in the spatial domain by other
methods such as finite element or finite volume methods
[11]. As shown by equation (6), the application of other
numerical methods effects the entries of A, and thus M
and N .

When dealing with the identification of infinite dimen-
sional systems, it is a common approach to determine
a minimal basis such that the estimation problem can
be solved in a finite-dimensional space, e.g. [13, 14] for
the application of Galerkin approximation schemes, [15]
for rational approximations, [16] for collocation methods
and [17] for minimal finite element approximations. Our
approach, as illustrated to an advection-reaction system,
is to handle the parameter estimation problem via a lin-
ear regressive realization of the approximate discrete-time
system in order to obtain unique estimates.

6. CONCLUDING REMARKS

The proposed procedure allows the conservation of the
underlying physical model structure in combination with
linear regressive parameter estimation. The realization of
a linear regressive system Σ̃d from a state space system
Σd is based on linearity of the system and linearity in
the parameter ϑ of A(ϑ) and B(ϑ). An a priori sensitivity
analysis is performed on the basis of the regression weight-
ing matrices M and N .
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In practice, however, there will be measurement noise
deteriorating both the inputs and outputs of the linear
regressive system Σ̃d. This will naturally lead to a (mixed)
errors-in-variables problem and thus the need for e.g total
least-squares solutions, which is a subject for further
research.
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