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Summary 
 
 
Microalgae have high potential to be used for energy production. Growth of algae depends on 
inputs as light, temperature, etc. Models are needed to describe growth in algae cultivation. This 
thesis aims the design of experimental methods to obtain algae growth kinetics more accurate 
than with conventional experimental methods. The growth kinetics that concerned are Monod 
and Haldane. In this work, the approach to design experimental procedure is based on 
parametric sensitivity function.  
 
Optimal input design method is a way to find a good estimate of parameters by designing 
optimal trajectories for the experimental inputs that maximize the parametric sensitivity over an 
experiment. Here, optimal input design is applied on three types of model which are Monod, 
extended Monod (Monod and Lambert-Beer law), and extended Haldane (Haldane and 
Lambert-Beer law). The light attenuation of light intensity inside the photobioreactor can be 
described by using Lambert-Beer law equation. As the inputs for the models, light intensity and 
dilution rate were selected.  
 
The estimated parameters (µmax and KI) were obtained for Monod and extended Monod model 
by using optimal input design method. Whereas, three parameters (µmax, K1, and K2) were 
estimated for extended Haldane model. The correct choice of weighting factors for this 
optimisation was observed to reduce the confidential interval of the estimated parameters. 
Then, the estimated parameters were compared with the estimated parameters from intuitive 
input trajectories such as constant, stepwise, and linear increasing light intensity for Monod and 
extended Monod model. The correlation among the parameters was considered. 
 
By giving weighting factor priority to KI for Monod model and µmax for Haldane model in 
optimisation, the best estimated parameters with low confidential interval were obtained. The 
optimised input trajectories in Monod and extended Monod model has the best result in 
parameter estimation when it is compared to intuitive input trajectories. This experimental 
design can minimise the confidential interval of the estimated parameters, but it did not cancel 
the influence of correlation. The noise at the output trajectory will significantly reduce the 
precision and the accuracy of the estimated parameter. 
 
The influence of noise to the parameter estimation was observed in order to accommodate the 
measurement error in reality. Therefore, it is recommended to add noise filtering in order to 
obtain accurate estimate with low confidential interval. Another approach is also recommended 
to overcome the correlation problem in parameter estimation. 
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1. Introduction 
 
The demand of fuel is increasing rapidly faster than the world population growth. The world 
population grew by 6.4% from 6.09 billion in 2000 to 6.48 billion in 2005 
(http://www.census.gov/ipc/www/idb/worldpop.html), whereby, according to Energy Information 
Administration (EIA), the world oil consumption increased by 9.5%, from 76.712 to 84.005 
million barrels per day (http://www.eia.doe.gov/pub/international/iealf /table12.xls). Most of the 
fuels used nowadays are produced from fossil fuel which is refined and burned. Significant 
amounts of energy are distributed among sectors like transportation, residential, commercial, 
and industrial. However, fossil fuel is considered as non-renewable energy where the available 
quantity has been decreasing. 
 
As renewable energy source, biofuel becomes an alternative source to fulfil the daily needs. 
One of the emerging alternatives is biodiesel which substitutes the requirement of fossil-based 
for transportation and industries. Biodiesel is derived from vegetable oil which has a long carbon 
chain so that the viscosity becomes high. Due to the high viscosity of vegetable oil, incomplete 
combustion and carbon decomposition take place when it is applied directly to the engine; 
therefore, further processing called transesterification is needed to shorten its carbon chain 
structure. 
 
Various oils have been in use in different countries as raw materials for biodiesel production. 
Soybean oil is commonly used in United States and rapeseed oil is used in many European 
countries, whereas, coconut oil and palm oils are used in Malaysia. Transesterification of edible 
oils has also been carried out from the oil of canola and sunflower. Other edible and non-edible 
oils, animal fats, algae and waste cooking oils have also been investigated by researchers for 
the development of biodiesel (Chisti, 2008). In fact, most of this vegetable oil is produced from 
plants used for food production. This development creates a competition between the use for 
fuel and food. 
 
Microscopic algae often called as microalgae have fast growth and can produce lipids and have 
a high potential to be used for biodiesel production. Microalgae have fast growth due to its 
exponential growth. Oil levels of 20–50% are quite common (Table1). Oil productivity, that is the 
mass of oil produced per unit volume of the microalgae broth per day, depends on the algae 
growth rate and the oil content of the biomass. Microalgae with high oil productivities are 
desired for producing biodiesel (Chisti, 2007). The total oil and fat content of microalgae ranges 
from 1% to 70% of the dry weight and tends to be inversely proportional to the rate of growth 
with greater accumulations during stationary phase. The percentage of total lipid as neutral lipid, 
glycolipid, and phospholipid also varies widely among and within groups of microalgae 
(Guschina and Harwood, 2006). 
 
Table 1. Oil content of some microalgae 

Microalgae 
Oil content  
(% dry wt) 

Botryococcus braunii 25–75 
Chlorella sp. 28–32 

Crypthecodinium cohnii 20 

Cylindrotheca sp. 16–37 
Dunaliella primolecta 23 
Isochrysis sp. 25–33 

Monallanthus salina > 20 

Nannochloris sp. 20–35 

Microalgae 
Oil content  
(% dry wt) 

Nannochloropsis sp. 31–68 
Neochloris oleoabundans 35–54 
Nitzschia sp. 45–47 

Phaeodactylum tricornutum 20–30 

Schizochytrium sp. 50–77 

Tetraselmis sueica 15–23 
Source: (Chisti, 2007) 
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Some factors influence the algae growth and lipid production. Photosynthetic growth requires 
light, carbon dioxide, water and inorganic salts. Temperature must remain generally within 20 to 
30 °C (Chisti, 2007). To minimize expenses, biodies el production must rely on freely available 
sunlight, despite daily and seasonal variations in light levels. Growth medium must provide the 
inorganic elements that constitute the algal cell. Essential elements include nitrogen (N), 
phosphorus (P), iron and in some cases silicon.  

1.1. Problem definition 
 
The interesting part of the algae cultivation is the way to control its productivity by the given 
inputs (light, temperature, and other operational conditions). In order to improve and to control 
the cultivation, models that describe the cultivation including algae growth and its kinetic 
expression are needed (Figure 1).  
 
Algae growth and its kinetic expression are described by using many types of mathematical 
equations i.e. Michaelis-Menten or Monod equation (Grima et al., 1994; Holmberg, 1982; Rorrer 
and Mullikin, 1999), Haldane equation (Chisti, 2007), and Steele equation (Baquerisse et al., 
1999; Benson et al., 2007).   
 
The design of optimal inputs experiment by employing a model-based optimisation approach to 
estimate parameters was becoming a challenge these days. It is supposed that only light 
intensity and dilution are the main control inputs and other inputs, such as nutrients and the 
temperature remain in the optimal condition. Some experimental designs were conducted in 
previous studies. An experimental design which used Monod equation with constant light 
intensity and increased dilution rate (A-stat) as the inputs were used in optimisation of 
microalgae cultivation parameters (Barbosa et al., 2003). On the other hand, another 
experimental design which used constant light intensity and decreased dilution rate (D-stat) as 
the inputs was used to determine biomass yield and maintenance coefficient of phototrophic 
bacterium (Hoekema et al., 2006).  
 
An alternative experimental design was proposed by using optimal parametric sensitivity control 
with Monod model to find the optimal input trajectory. The input is then used to estimate the  
parameters in the model (Stigter and Keesman, 2004). This approach for experimental design 
should result in the best input design which can produce accurate estimates of cultivation 
parameters with low confidential intervals. In this thesis we aim to test the potential for this 
method of the estimation of algae growth kinetic. 
 

time

time

time

time

input

light intensity

dilution

temperature

nutrients

controlled condition

optimal condition

 mathematical model algae concentration

time

output (y):

input (u):

state variables (x):

algae concentration (x1)

parameter (θ):

specific growth (µmax)

saturation constant (KI)

kinetic 

expression

 
Figure 1. Algae growth model 
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1.2. Research objectives 
 
The research aims to evaluate the estimation of kinetic parameters in Monod and Haldane 
kinetic for algae growth by using optimal input design based on parametric sensitivities. 

1.3. Research approach 
 
In order to accurately estimate the parameter values, the optimal input design approach was 
used. The optimal input design aims to find the input trajectory in such a way that the 
parameters are optimally estimated with low confidential intervals. Due to this problem, the 
optimal parametric sensitivity approach as presented by Stigter and Keesman (2004) was used 
as a reference in this thesis. First, Monod type kinetics with affine input is considered. An 
optimal input was found based on a singular control arc by applying a parametric sensitivity 
function and quadratic cost function using Optimal Control Theory (Bryson, 1999).  
 
Both analytical and numerical solution approaches can be used to find the solution for optimal 
input. The analytical approach can be done either by hand or often symbolic manipulation with 
Mathematica for simple mathematical models, while, numerical solution is done either using 
trajectories with piecewise linear intervals or by continuous trajectories. The trajectories are 
obtained from the optimisation of a cost function which contains parametric sensitivity functions, 
where parametric sensitivity functions are added as new state variables. 
 
The kinetic expression for growth has an effect on the trajectories for experimental design. 
Therefore, two growth kinetic expressions are chosen for that purpose: Monod and Haldane. 
For light attenuation, the law of Lambert-Beer is used.  
 
Standard methods by using constant, stepwise, or linear increasing inputs are normally used in 
experimental designs. Therefore, in this work of optimal input design, these standard input 
strategies are compared with the optimised input in order to estimate parameters. Confidential 
intervals of estimated parameters are used in the evaluation of the accuracy of estimation. 
 

1.4. Thesis outline 
 
Chapter 1 defines the problem, research objective, and research approach. 
Chapter 2 describes mass balance, models used in this research and its kinetic expression. 
Chapter 3 explains optimal input design problem. 
Chapter 4 shows the result of some experimental designs. 
Chapter 5 discusses the results of the experiment designs. 
Chapter 6 concludes the work in this thesis and some recommendations. 
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2. Algae photobioreactors 
 
Photobioreactors have been successfully used for producing large quantities of microalgae 
biomass (Chisti, 2007). In addition, photobioreactors are easy to control and permit to have 
single-species culture. In algae production, open pond system, flat-plate or flat panel 
photobioreactor, and tubular photobioreactor are used. These reactors can be operated as 
batch, fed-batch, and continuous bioreactor. In this thesis, a flat-plate photobioreactor system is 
considered. 

2.1. Photobioreactor model 
 
A mathematical model is a representation of a real system which is usually focused on a set of 
selected properties and features of the latter. Models are the essential components for modern 
process systems engineering methods (i.e. simulation, optimisation and control), and they are 
usually classified into three categories (Banga et al., 2003):  
• First-principles (or white-box) models, which are derived from well known physical and 

chemical relationships, reflecting the underlying principles that govern the process 
behaviour.  

• Data-driven (or black-box) models, which are of empirical nature (e.g. artificial neural 
networks, time series).  

• Hybrid (grey-box) models: a combination of the above. 
 
Generally, in order to develop a model, components involved in a photobioreactor system were 
identified and it can be described in Figure 2.  
 

  
Figure 2. Algae photobioreactor 

 
In Figure 2,  lgAC  [g.l-1] is the algae concentration, in or outF  [l.h-1] the incoming or outgoing 

liquid flow in photobioreactor, µ [ h-1] the specific growth rate of algae, V [l] the photobioreactor 

volume capacity, and I [ 2 1.mol m sµ − − ] the light intensity. 
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The mass balance in this system is: 
 

[ ] [ ] [ ] [ ]mass accumulation mass flow in mass flow out mass production or consumption= − ±
 

lg

lg, lg lg

A

in A in out A A

d VC
F C F C C V

dt
µ

   = − +  (2-1) 

lg
lg lg, lg lg

A
A in A in out A A

dC dV
V C F C F C C V

dt dt
µ+ = − +  

 
The change of volume is the difference between the incoming and outgoing flow. 

outin FF
dt

dV −=  (2-2) 

 
Substituting Equation 2-1, then:   
 

( )lg
lg lg, lg lg

A
A in out in A in out A A

dC
V C F F F C F C C V

dt
µ+ − = − +  

lg
lg, lg lg lg lg

A
in A in out A A in A out A

dC
V F C F C C V F C F C

dt
µ= − + − +  

 
Because lg, lgA out AC C= and it assumes that no algae coming into the system ( lg, 0A inC = ), then: 

 

lg
lg lg

A in
A A

dC F
C C

dt V
µ= −   (2-3) 

 
In Equation 2-3, the change of algae concentration depends on two terms. The first term is 

called the dilution factor 
F

D
V

 = 
 

and the second term is the specific growth rate of algae 

( )µ which depends on kinetic expression.  
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2.2. Kinetic expression 
 
The kinetic expression is that part of the model which determines the specific production or 
consumption inside a bioreactor system. Michaelis-Menten equation is the most commonly used 
in biological, chemical, pharmacological, and medical processes to describe saturation 
phenomena. It was first applied to microbiology by Monod (Holmberg, 1982). The equation was 
also used as light-limited growth kinetic models with µmax as maximum specific growth rate, KI 
the saturation constant for light intensity, and I the light intensity (Barbosa et al., 2003; Grima et 
al., 1994). 
 

max
I

I

I K
µ µ=

+
  (2-4) 

 
For bacterial growth, a non-monotonic kinetic model, Haldane, can be used as well (Versyck et 
al., 1997). In the case of light-limited growth kinetic model, it becomes :  
 

max 2

1
2

I

I
I K

K

µ µ=
+ +

  (2-5) 

 
The parameter K1 indicates how fast the optimum for the specific growth rate µmax is reached, K2 
is the inhibition parameter. The smaller K2 the larger the inhibition effect of the light intensity. 
 

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Light intensity [/mmol/m²s]

S
pe

ci
fic

 g
ro

w
th

 r
at

e 
[/

h]

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

Light intensity [/mmol/m²s]

S
pe

ci
fic

 g
ro

w
th

 r
at

e 
[/

h]

 
(a)     (b) 

Figure 3. Specific growth rate as a function of light intensity for Monod model (a) and Haldane 
model (b)  

 
Combining Equation 2-3 and Equation 2-4 leads to one state equation. 

lg
max lg lg

A in
A A

I

dC FI
C C

dt I K V
µ= −

+
  (2-6) 

 
While by combining Equation 2-3 and Equation 2-5, it becomes: 

lg
max lg lg2

1
2

A in
A A

dC FI
C C

Idt V
I K

K

µ= −
+ +

  (2-7) 
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2.3. Light attenuation 
 
Light attenuation also contributes to the algae growth limitation due to light transmission and 
self shading phenomena. Light intensity is decreasing along path length at photobioreactor 
which is presented in Figure 4. Lambert-Beer’s law was used to determine the average light 
intensity and the light gradient inside a flat-plate photobioreactor (Barbosa et al., 2005).  
 

g. .. c Ala C b

out inI I e−=   (2-8) 

 

 
Figure 4. Light attenuation in photobioreactor 

 
In order to find the average light intensity, integration over the path length inside the reactor 
yields: 
 

lg. .

0

0

.

1.

c A

b
a C x

in

ave b

I e dx

I

dx

−

=
∫

∫
 

( )lg. .

lg

1 1
. 1 .

.
c Aa C b

ave in
A c

I I e
b C a

−= −   (2-9) 

 
where b is photobioreactor light path and ac is spectral-averaged absorption coefficient  on a 
dry weight basis (Barbosa et al., 2003). The values of these constants are cited from this 
literature and are applied in this work: 
b    = 0.03 m 
ac   = 200 m2kg-1  

 
CAlg 

 

 
Iin 

Iout 

path length (b) = 0.03 m 
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3. Optimal input design 
 
A good estimate of model parameters can be possibly achieved by applying optimal input 
design method (Stigter and Keesman, 2004). Optimal input design method is a way to find a 
good estimate of parameters by designing optimal trajectories for the inputs that maximize the 
parameter sensitivity over an experiment. In order to maximize the parameter sensitivity, the 
system model is extended with additional state variables related to the sensitivity function. 
Further, a cost function will be defined to optimize this sensitivity. 
 

3.1. Parametric sensitivity  
 
In parametric models the output sensitivity with respect to a parameter θ is ∂y/∂θ, and 
determines whether and how accurate a parameter can be estimated from the input/output data. 
In the following it is assumed, without loss of generality, that the states are directly observed so 
that y(t)=x(t). If the sensitivity of y with respect to θ is small or even zero, then the 
instrumentation may not be well chosen or the input sequence u(t) is not strong enough to 
excite the parametric sensitivities sufficiently (Stigter and Keesman, 2004). 
 
Hence, by using the general dynamical equation: 

( , , , )x f x u tθ=&   (3-1) 
 
Then, assuming θ is time invariant, differentiation with respect to θ and time gives: 

( ) ( )
f f

x t x t
xθ θ θ

∂ ∂≈ +
∂ ∂

&   (3-2) 

i.e. the change of parametric sensitivity in time. 
 
Applying these definitions to the algae model and by using x1 for the algae concentration CAlg 
yields Equation 3-3 for Monod growth kinetic model or Equation 3-4 for Haldane growth kinetics 
model results. 
 

1
max 1 1

in

I

Fdx I
x x

dt I K V
µ= −

+
 (3-3) 

 

1
max 1 12

1
2

inFdx I
x x

Idt V
I K

K

µ= −
+ +

  (3-4) 

 
The numbers of the sensitivity functions depend on the number of parameters which will be 
estimated. In this research, three types of model are considered in three cases:  
• Case 1 : Monod growth kinetic model  
• Case 2  :  Extended Monod growth kinetic model which is combination of Monod growth 

kinetic model and law of Lambert-Beer 
• Case 3   :  Extended Haldane growth kinetic model which is combination of Haldane 

growth kinetic model and law of Lambert-Beer 
 
In Case 1, two parameters (µmax and KI) will be studied. Then, for the additional state variable 
with respect to first parameter (KI): 

IK

x
x

∂
∂= 1

2  
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IK

f
x

x

f
x

∂
∂+

∂
∂= 1

2
1

1
2&  

( )
2

2 max 2 max 12
I I

dx F I I
x x x

dt V K I K I
µ µ= − + −

+ +
 (3-5) 

 
And for the second additional state variable with respect to second parameter (µmax): 

1
3

max

x
x

µ
∂=

∂
 

max

1
3

1

1
3 µ∂

∂+
∂
∂= f

x
x

f
x&  

( )3
3 3 max 1

I

dx F I
x x x

dt V K I
µ= − + +

+
 (3-6) 

 
In Case 2, when light attenuation in the Monod model is considered, then the first state variable 
is given by substituting Equation 2-9 to Equation 3-3. 
 

( )

( )

lg

lg

. .

lg1
max 1 1

. .

lg

1 1
. 1 .

.

1 1
. 1 .

.

c A

c A

a C b
in

a c in

a C b
in I

A c

I e
b C a Fdx

x x
dt V

I e K
b C a

µ

−

−

−
= −

 
− +  

 

 (3-7) 

 
The two additional states are derived by using the symbolic toolbox and are given in Appendix 
1. 
 
In addition, Haldane growth kinetic model, three parameters (µmax, K1, and K2) are considered in 
Case 3. Therefore, three additional states were added. The first state variable is given by 
substituting Equation 2-9 to Equation 3-4. 
 

( )

( )
( )

lg

lg

lg

. .

lg1
max 1 12

. .

lg. .
1

lg 2

1 1
. 1 .

.

1 1
. 1 .

.1 1
. 1 .

.

c a

c A

c a

a C b
in

A c in

a C b
in

A ca C b
in

A c

I e
b C a Fdx

x x
dt V

I e
b C a

I e K
b C a K

µ

−

−

−

−
= −

 
−     − + +  

 

 (3-8) 

 
The other three additional states are derived by using the symbolic toolbox and are given in 
Appendix 2. 
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3.2. Cost function 
 
The general problem optimises the cost function ( J ) which is defined as: 

0

( ) ( , , )
ft

f

t

J x t L x u t dtφ  = +  ∫  (3-9) 

where ( )fx tφ     the terminal condition and ),,( puxL the running cost; with start time 0t , final 

time ft , and initial condition 0( )x t specified. 

 
In optimal input design problem, additional state variables of parametric sensitivity need to be 
evaluated in time by the running cost which is part of the cost function. Weighting factors are 
also added in order to make priorities during optimisation. For the optimisation of the trace of the 
Fisher Information Matrix, we define the following quadratic cost function. 

( )
0

2 2 2
1 1 2 2 ...

ft

n n

t

J q s q s q s dt= + + +∫  (3-10) 

where qi is the weighting factor, si is the parametric sensitivity, and n is the amount of additional 
state variables. 
 
Furthermore, in order to optimize the cost function itself in time, it can be added as one new 
additional state variable, which is known as the Mayer formulation.  

( )
0

2 2 2
1 1 1 2 2 ...

ft

n n n

t

J x q s q s q s dt+= = + + +∫  (3-11) 

If the formulation is expressed into running cost of Case 1 and also at Case 2, then the equation 
becomes: 

2 2 2 24
1 1 2 2 1 2 2 3

dx
L q s q s q x q x

dt
= = + = +  (3-12) 

 

where q1 is the weighting factor for the parametric sensitivity 
1

I

x

K

∂
∂ (x2) and q2 is the weighting 

factor for sensitivity 1

max

x

µ
∂

∂
 (x3). 

 

3.3. Dynamic optimisation 
 
The continuous dynamic system (Equation 3-1) is described in term of the n-dimensional state 
vector x(t) and an m-dimensional input vector u(t) with parameter vectorθ . The optimisation 
problem is then to find the control vector u(t) for  t0 ≤ t ≤ tf  which minimizes the cost function. 
For this purpose Equation 3-1 is adjoined to the cost function (Equation 3-9) with a time varying 
Lagrange multiplier vector ( )tλ  (Bryson, 1999): 

( ) ( ) ( ) ( ) ( ){ }
0

( ) , , , ,
ft

T
f

t

J x t L x t u t t t f x t u t t x dtφ λ       = + + −      ∫ &  (3-13) 

Define the scalar Hamiltonian function ( ) ( ) ( ), , ,H x t u t t tλ    or ( )H t for compact notation: 
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( ) ( ) ( ) ( ) ( ) ( ), , , ,TH t L x t u t t t f x t u t tλ   = +      (3-14) 

 
 

Using Hamiltonian function (Equation 3-14) together with the integration of the term T xλ &  in 
Equation 3-13, the equation yields to: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
0

0 0( ) , , ,
ft

T T T
f f f

t

J x t t x t t x t H x t u t t t x t dtφ λ λ λ λ   = − + +   ∫ &  (3-15) 

Consider an infinitesimal variation in ( )u t  that can be written in term of small changes ( )u tδ . 

Such variation will produce variations in the state histories ( )x tδ and a variation in the 

performance index Jδ that could be calculated from (Bryson, 1999): 
 

( ) ( )
0

0

f

f

t

T T T
x x ut tt t

t

J x x H x H u dtδ φ λ δ λ δ λ δ δ
==

    = − − + + +    ∫ &  (3-16) 

 

To avoid having to determine the function ( )x tδ produced by ( )u tδ , the multiplier Tλ was 

chosen in such a way that the coefficients of ( )x tδ and ( )fx tδ vanish.  Bryson makes a few 

choices for solving this problem. The first term under the integral should be zero: 
 

0T
xH λ+ =& , (3-17) 

 
with boundary conditions 
 

( ) ( )T
f x ft tλ φ= . (3-18) 

 
Then, Equation 3-16 develops into: 
 

( ) ( )
0

0 0

ft

T
u

t

J t x t H udtδ λ δ δ= + ∫  (3-19) 

In order to keep 0Jδ = , ( )uH t must be zero and either ( )0
T tλ or ( )0x tδ . ( )uH t can be 

interpreted as an impulse response function for J . Unit impulse in uδ at time 1t  will 

produce ( )1uJ H tδ = . Also ( ) ( )0 0xt J tλ ≡& , i.e. ( )0tλ is gradient of J with respect to ( )0x t , 

while holding ( )u t constant and satisfying Equation 3-1. If ( )0x t is specified, then ( )0 0x tδ = . 

 

For a stationary solution, 0Jδ = for arbitrary ( )u tδ ; this can only happen if: 

00,u fH t t t= ≤ ≤ . (3-20) 

 

Hence, to find a control vector ( )u t that produces a stationary value of the cost function J , the 

optimisation problem must satisfy the following conditions: 
 
State equation  

( , , )x f x u t=&   (3-21) 
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Co-state equation  
T T T
x x xH L fλ λ= − ≡ − −& , (3-22) 

0T T T
u u uH L fλ≡ + =  

 
Boundary condition  

( )0 0x t x= , (3-23) 

( ) ( )T
f x ft tλ φ=  (3-24) 

 

3.4. Analytical solution 
 
In the same special cases, the solution for optimal input trajectory can be derived analytically, 
as is the core when light intensity is considered as the input. To solve the problem light intensity 
is considered to be a state variable. Therefore, two state variables are necessary: algae 
concentration x1(t) and the integral of the control input x2(t). 

( ) ( )
( ) ( )max 2

1 1 1
2

'
I

x t
f x t x t

K x t

µ
= =

+  (3-25) 

( ) ( )2 2 'f x t u t= =  (3-26) 

 
The Jacobi matrix and the parametric sensitivities are evaluated and augmented to the system: 

1 1

1 2

2 2

1 2

f f

x xf

f fx

x x

∂ ∂ 
 ∂ ∂∂  =
 ∂ ∂∂
 ∂ ∂  

 

1
3

I

x
x

K

∂=
∂

, 1
4

max

x
x

µ
∂=

∂
, 2

5
I

x
x

K

∂=
∂

, and 2
6

max

x
x

µ
∂=

∂
 

 
Changing the ordering of the derivation with respect to parameters and time is allowed since the 
parameter is time invariant according to Equation 3-2. Consequently, we obtain: 
 

1 11 1 1 1
3 5 4 6

max1 2 1 2

2 2 2 2 2 2
3 5 4 6

1 2 1 2 max

I

I

f ff f f f
x x x x

Kx x x x
x S

f f f f f f
x x x x

x x x x K

θ
µ

µ

∂ ∂∂ ∂ ∂ ∂   + +    ∂∂ ∂ ∂ ∂   = = +
  ∂ ∂ ∂ ∂ ∂ ∂

+ +   
∂ ∂ ∂ ∂ ∂      

&  (3-27) 

 
By considering only f1 as the function, then it becomes: 

1 1 1 1 1 1
3 5 4 6

1 2 1 2 maxI

f f f f f f
S x x x x

x x K x x µ
 ∂ ∂ ∂ ∂ ∂ ∂

= + + + + ∂ ∂ ∂ ∂ ∂  
 (3-28) 

 
 
Thus, the equation above yields: 

2
max 2 2 3 1 2 5 max 2 2 4 1 2 2 max 6

2 2
2 2

( [ ]( [ ]) [ ] [ ]( [ ] [ ])) ( [ ]( [ ]) [ ] [ ]( [ ] [ ] [ ]))

( [ ]) ( [ ])

x t KI x t x t x t x t KIx t x t KI x t x t x t KIx t x t KI x t
S

KI x t KI x t

µ µ µ + + − + + + + +
 =
 + + 

 

 
The optimisation problem must satisfy the conditions from Equation 3-21 until Equation3-24 
which are given in Section 3.6. The complete solution is presented in Appendix 3 by using 
Mathematica. The solution is only considered for constant input trajectory. Therefore, the next 
sub-chapter constant input is also considered in parameter estimation. 
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3.5. Numerical methods for dynamic optimisation 
 
Bryson developed software to find the optimum trajectories according the conditions given in 
Section 3-3. The problem is solved by integration. The state equation is integrated forward in 
time, whereas the co-state equation is integrated backward in time. This procedure continuous 

until the conditions Hu

H

u

∂ 
 ∂   nearly zero are satisfied. The algorithm delivers for the time 

interval under consideration smooth continuous trajectories (see Figure 5 continuous line).  
 
As an alternative for Bryson’s method which is presented in Section 3.3, optimized trajectories 
can be obtained by approximation of the input trajectories by piecewise linear functions over 
time intervals (see Figure 5 long dash line). In this case, the optimisation concerns the values at 
the edges of each interval. This approach is faster than continuous optimisation since there are 
less interval divisions. A large value for the weighting factor is chosen due to convergence rate 
improvement. For this approach, fmincon function in Matlab is used.  

 
Figure 5. Piecewise linear optimisation (long dash) and continuous optimisation (line) 

 

3.6. Parameter estimation  
 
When the optimal trajectory inputs are obtained then it is used in model simulation. The 
obtained data with or without noise are fitted to estimate the parameters by an error norm 
minimisation. In this step, Matlab function lsqnonlin is used.  
 
A good estimate of parameter should have high precision and high accuracy. An illustration of 
precision and accuracy are described in Figure 6. The precision of estimated parameters can be 
evaluated by confidential intervals. Therefore, confidential intervals are also calculated by using 
nlparci function in Matlab.  
 
In this work, we only focused on having a precise estimate of the parameters by properly 
choosing the control input u(t). 
 

           
Figure 6. Precision and accuracy  

(Source: Matlab help files) 
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4. Results  
 
Experimental design is made based on the model availability. In Chapter 3.1, three cases are 
defined based on the type of the model. Then, some constants are obtained based on previous 
study with Dunaliella tertiolecta as a  model microalgae (Barbosa et al., 2003). 

µmax  = 0.09 1h−  

KI    = 69.86 2 1. .mol m sµ − −  

with initial algae concentration (
1(0)x ) is 1 1.g l− . 

 
In addition, existing types of equipments which are used in experimental design have limitations 
on providing light. Based on Table 2, a light source range from 0 µmol/m²s to 1500 µmol/m²s is 
chosen for upper boundary in the input trajectory during the simulation. 
 

Table 2. Artificial light source in cultivation 
type of light source used in 

real practice 
maximum output 

red LED  2200 µmol/m²s 
red/blue LED 2800 µmol/m²s 
60 tungsten-halogen lamps 1500 µmol/m²s 
Source : Carsten Vejrazka, Kenniseenheid Agrotechniek & Voeding 

 

4.1. Case 1: Monod model 
 
A strategy to estimate two parameters (µmax and KI) by combining cost function’s weighting 
factors to set a priority of optimisation is discussed. Then, a comparison of constant, stepwise, 
linear increasing and optimized light intensity by using Monod growth kinetic; without and with 
noise application are presented. Here, it is assumed that the light path is very thin, so that light 
extinction can be neglected.  

4.1.1. Choice of weighting factors 
 
Equation 3-12 contains two weighting factors which are q1 the sensitivity of KI and q2 the 
sensitivity of µmax. The optimisation is affected by q1 and q2.  
 
The first step, optimisation result by using q1: q2= 0 : 1; q1: q2 = 1 : 0; and q1: q2= 1 : 1 as the 
weighting factors are compared.  
 
Figure 7, for umax =1500 µmol/m²s, shows that q1: q2= 0 : 1 and q1: q2=  1 : 1 have trajectories 
which coincide with the upper boundary of light intensity. Whereas q1: q2 = 1 : 0 give a unique 
increasing trajectory for light intensity. For all choices of the weighting factor, the optimised 
dilution rate is set equal to zero. This examination shows that q2 has a dominant effect in this 
optimisation. The reason is that the sensitivity of µmax is always much higher than the sensitivity 
of KI for all the choices of weighting factors in Figure 8. Therefore, the cost function J value is 
dominated by q2 which also becomes high. As a consequence of the dominance is µmax will be 
estimated more accurately than KI. If we want to estimate KI accurately then it is recommended 
to give q1 a high value. 
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   (a)              (b) 
Figure 7. Optimised input trajectory by using continuous optimisation with (a) q1:q2 = 0:1 which fall 

together with q1:q2 = 1:1 and (b) q1:q2 = 1:0  
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   (a)              (b) 
Figure 8. Sensitivity trajectory and cost function J trajectory with (a) q1:q2 = 0:1 which fall together 

with q1:q2 = 1:1and (b) q1:q2 = 1:0 
 
Analogue with continuous optimisation, an optimised trajectory is obtained by using piecewise 
linear approach with weighting factor of q1 : q2 = 1E8 : 0 with 12 intervals. A choice of large 
value as the weighting factor is chosen due to convergence rate improvement. This approach is 
conducted in order to assure the right trajectory from the continuous optimisation.  
 
Figure 9 shows that the light intensity trajectories which are obtained by piecewise linear 
optimisation have similar trajectories with those which are obtained by continuous optimisation.  
 

0 2 4 6 8 10 12
0

500

1000

1500

2000

Time [h]

Li
gh

t 
In

te
ns

ity
 [

/m
m

ol
 /

m
²s

]

 
0 2 4 6 8 10 12

100

105

110

115

120

Time [h]

Li
gh

t 
In

te
ns

ity
 [

/m
m

ol
 /

m
²s

]

 
   (a)              (b) 

Figure 9. Optimised input trajectory by using piecewise linear with (a) q1:q2 = 0:1E8 which fall 
together with q1:q2 = 1E8:1E8 and (b) q1:q2 = 1E8:0 

 
The next step is to examine the results of the parameter estimation. The output trajectories 
which are used in this optimisation are obtained from optimised input trajectories with different 
choices of weighting factors without noise.  
 
Obtained results are presented in Table 3 (Appendix 4) and Figure 10. By maximising only the 
sensitivity of KI with the choice of q1: q2 = 1 : 0,  accurate and precise estimation is obtained for 
both µmax and KI.  
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Whereas, by using the other two weighting factors choices, parameter µmax is almost accurately 
estimated, but it is not accurate for KI. In addition, both estimated parameters are not precise 
due to a small deviation of the results. 
 
Therefore, the weighting factor choice of q1: q2 = 1 : 0 is recommended in order to have better 
estimate of both parameters. 
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Figure 10. Parameter estimation for weighting factor combination without noise for Case 1 

 
From Figure 11, the contour lines show that a wide range of parameter combination can be 
found due to the strong correlation. 
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Figure 11. Sum of squares contour lines of continuous optimisation with q1:q2 = 1:0 

 
As the next step, parameter estimation is conducted by applying 1 % relative random noise at 
the output as a consequence of measurement error. Afterwards, the parameters are estimated 
using optimised input trajectories with different choices of weighting factors. 
 
As a result, the parameters are not accurately estimated for all the choices of weighting factors. 
However, the choice of q1: q2 = 1 : 0 gives the lowest confidential interval among the other 
choices. Therefore, this choice of weighting factor is recommended to estimate the parameters 
from noisy output trajectory. The result is presented in Figure 12 and the data is presented in 
Appendix 4. 
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Figure 12. Parameter estimation for weighting factor combination with noise for Case 1 
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4.1.2. Light intensity and dilution rate trajectories during optimisation 
 
It is observed that the optimised dilution rate is zero for all weighting factor choices in Figure 7. 
This is a logical outcome if we regard to Equation 3-5 and Equation 3-6. It is observed that the 
dilution rate term (D = F / V) has negative contribution to the maximisation of sensitivity of µmax 
and sensitivity of KI.  
 
Whereas, it is shown that a unique trajectory is obtained as optimised light intensity depends on 
the weighting factors choice. This is also a logical outcome from Equation 3-5 and Equation 3-6. 
It is observed that light intensity (I) has strong contribution to the maximisation of sensitivity of 
µmax and sensitivity of KI.  

4.1.3. Comparing optimised trajectories with alternative experimental practice  
 
In this step, the optimised trajectories are compared with trajectories which are used in 
experimental practice. Three types of trajectories are considered. The applied values are 
derived from the optimised trajectories: 
• constant light intensities are chosen which are  

(i) at lower level of optimisation result (102.5 µmol.m-2s-1) and  
(ii) at upper level of optimisation result (118 µmol.m-2s-1), 

• stepwise light intensity is chosen at the lower level and the upper level of optimised 
trajectory, 

• linear increasing light intensity is chosen from the lower level until the upper level of 
optimised trajectory and fourthly, the optimised trajectory by giving priority to KI. 

 
The effectiveness of these trajectories to estimate the kinetic parameters are compared with the 
optimised trajectory for KI. For all these cases, the optimised dilution rate trajectory is zero. The 
trajectories are presented in Figure 13. 
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     c) stepwise light     d) linear increasing light 
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     e) optimised light      f) optimised dilution rate 
 
Figure 13. Constant, stepwise, linear increasing, and optimised input of Monod model for 12 hours 

cultivation 
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As the next step, input trajectories are used in simulation for 12 hours cultivation. The total of 
101 data points of algae concentration are taken from the output trajectories without additional 
noise as measurement data. Afterwards, measured data are compared with the model output 
trajectory to extract the parameters. Obtained results are presented in Table 4 (Appendix 4). 
 
Figure 14 shows that parameters for both parameters can be accurately estimated except for 
two types of constant light input trajectories.  
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Figure 14. Estimated parameters without noise application of Monod model for 12 hours cultivation 
 
Estimated parameters from stepwise, linear increasing, and optimised input trajectories are 
considered in detail in Figure 15.  
 
It is observed that the estimate value of µmax is precisely and accurately estimated using those 
three input trajectories. Whereas, the estimate value of KI is accurately estimated with the 
lowest confidential interval by using optimised input trajectory.  
 
Therefore, parameter estimation by using optimised input trajectory by maximising the cost 
function value gives the best result under free noise condition.  
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Figure 15. Estimated parameters without noise application of Monod model for 12 hours cultivation 
 
As the last step of examination, 1 % relative noise is added as perturbation in the output for 
three types of light intensity trajectories. Then, total of 101 obtained data points are used as 
measured data and compared with the model output trajectory to extract the parameters. 
 
The results are presented in Figure 16. Since no noise filtering in the estimation, none of 
parameters are accurately estimated with those three types of input trajectories. Moreover, a 
large deviation of the estimated parameters is obtained from the estimation. However, it can be 
drawn that the optimised input trajectory can reduce the noise influence and gives the smallest 
confidential interval among the other input trajectories.  
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Figure 16. Estimated parameters with 1% relative noise application of Monod model for 12 hours 

cultivation 
 

4.1.4. The effect of additional data points and cultivation time in parameter estimation 
 
By using the optimised input trajectory and given parameters from Barbosa et al., (2003), algae 
concentration increase almost twice of initial algae concentration for 12 hours cultivation and 
almost five times of initial algae concentration for 25 hours cultivation (Figure 17).  In the 
following steps, comparison of additional data points and cultivation time in parameter 
estimation are conducted. The results are presented in Table 5 (Appendix 4). 
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Figure 17. Algae concentration as a result of optimised light intensity for Case 1 

 
 
Firstly, a comparison of parameter estimation between 12 hours cultivation and 25 hours 
cultivation is conducted with the same amount of data points. Three types of light intensity 
trajectories are compared in parameter estimation. 
 
The estimated parameters are presented in Figure 18 for 12 hours cultivation and Figure 19 for 
25 hours cultivation. As a result, the extension of cultivation time until 25 hours with 101 data 
points has nearly similar result with the 12 hours cultivation. The extension of cultivation time 
has no influence with the same data points in parameter estimation. 
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Figure 18. Estimated parameters with 101 data points by using Monod model for 25 hours 

cultivation 
 
Secondly, a comparison of different amount data points with the same cultivation time is 
conducted. The estimated parameters with additional data points up to 251 points which are 
obtained from 25 hours cultivation are presented in Figure 19.  
 
It yields that extra data points for a longer cultivation increases the accuracy and precision of 
estimated parameters. 
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Figure 19. Estimated parameters with 251 data points by using Monod model for 25 hours 

cultivation 
 
In this case, the optimised light input trajectory in Figure 20 has the same form as in Figure 13e 
but the values are at higher level. Whereas, the dilution rate trajectory is zero in time. 
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Figure 20. Optimised input of Monod model of 25 hours cultivation 
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4.2. Case 2: Extended Monod model 
 
A strategy to estimate two parameters (µmax and KI) for a system with light attenuation due to the 
algae and light transmission due to light path is considered now in combination with Monod 
growth kinetic. Also here a comparison of constant, stepwise, linear increasing and optimized 
light intensity trajectories by using extended Monod growth kinetic; without and with noise 
application are presented.  

4.2.1. Optimised light intensity trajectory 
 
A 12 linear intervals trajectory is obtained by using piecewise linear approach with weighting 
factor priority to KI. It is presented in Figure 21.  
 
In this case, the light intensity trajectory falls together with the upper boundary of light intensity 
after 12 hours cultivation. After that, the optimisation generates constant input in the upper level 
of light intensity as shown after 12 hours cultivation.  
 
Therefore, it is concluded that a longer period than 12 hours cultivation has a trajectory that 
nearly a constant level at the upper boundary. And according to the result from Case 1, an 
accurate estimate of parameters is hardly obtained by using the constant light intensity 
trajectory input.  
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Figure 21. Optimised light intensity by using piecewise linear for Case 2 

 

4.2.2. Comparing optimised trajectories with alternative experimental practice 
 
As initial step, a continuous optimisation of 12 hours cultivation is obtained with weighting factor 
priority to KI. It is presented in Figure 22a for incoming light intensity trajectory and Figure 22b 
for average light intensity trajectory along the path light.  
 
It is observed that the demand of incoming optimised light intensity in Case 2 is larger than the 
demand of optimised light intensity in Case 1. An examination showed that the average light 
intensity along the light path in Case 2 is just about the same with the optimised light intensity 
Case 1. In addition, the optimised dilution rate of Case 2 is similar with Case 1. 
 
Moreover, the growth rate trajectory as the function of light intensity increases quickly in the 
initial light intensity. Then, it increases slowly as the light intensity increases. The correlation 
between the growth rate and the light intensity is given in Figure 22d and e. The graphs show 
that the growth rate is nearly constant. 
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     a) incoming light intensity           b) average light intensity along light path 
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e) optimised dilution rate  

 
 

Figure 22. Optimised input trajectory for Case 2 by using continuous optimisation 
 
 
As a result of given input during cultivation, the algae concentration in Case 2 has the same 
amount as in Case 1 (Figure 23). Moreover, even without giving weighting factor at µmax, it is 
observed in Figure 23 that the sensitivity of µmax has stronger value than the sensitivity of KI. 
While the cost function J is maximised in time. 
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Figure 23. Algae concentration, sensitivity of parameters, cost function trajectories for Case 2 

 
 
As the next step, parameters estimation is conducted by using continuous optimisation input 
trajectory. Again, the estimated parameters is compared with the estimated parameters which is 
obtained by using standard input trajectories which are constant, stepwise, and linear increasing 
light intensity. Total of 101 data points from output trajectory free noise are used in this case. 
The results are presented in Figure 24 and Table 6 (Appendix 4).  
 
It is observed that all input trajectories give accurate and precise estimate of µmax. However, the 
estimate of KI is accurate for constant, stepwise, and optimised light intensity trajectories. But, 
by using linear increasing light intensity trajectory, the estimate of KI is not accurate with quite 
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high confidential interval compared to the others. Significantly, the most accurate estimate of KI 
with the lowest confidential interval is obtained by using optimised trajectory. 
 
Therefore, optimised input trajectory is recommended for accurate and precise results in 
extended Monod growth kinetic model.  
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Figure 24. Estimated parameters without noise application of extended Monod model for 12 hours 

cultivation 
 

The last step of examination, additional 1 % relative noise is added as perturbation in the output 
for standards light intensity trajectories and optimised light intensity trajectory. Then, total of 101 
obtained data points are used as measured data and compared with the model output trajectory 
to extract the parameters. 
 
The results are presented in Figure 25. Since no noise filtering in the estimation, none of 
parameters are accurately estimated with those input trajectories. Moreover, a large deviation of 
the estimated parameters is obtained from the estimation. However, it can be drawn that the 
noise influences the accuracy and precision of estimated parameters.  
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Figure 25. Estimated parameters with 1% relative noise application of extended Monod model for 

12 hours cultivation 
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4.3. Case 3: Extended Haldane model  
 
A strategy to estimate three parameters (µmax, K1, and K2) in the Haldane growth kinetic is 
discussed. Then, the evaluation of optimized light intensity trajectories by using Haldane growth 
kinetic; without and with noise application are discussed.  

4.3.1. Choice of weighting factors 
In order to estimate three parameters, three parametric sensitivity equations are needed. 
Therefore, three weighting factors are needed which are q1 the sensitivity of K1, q2 the sensitivity 
of K2, and q3 the sensitivity of µmax. The optimisation is affected by q1, q2, and q3.  
 
The trajectory optimisation according to Bryson takes too much iteration to be successful. 
Therefore, the optimised input trajectories are obtained using piecewise linear approach. This 
optimisation is about the simple version of the continuous optimisation with limited optimisation 
points. The optimised light input trajectories have nearly linear increasing trajectories with 
different value for every choice of optimisation. It is presented in Figure 26. In all cases, the 
optimal dilution trajectory remains zero in time.  
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        (c) priority to µmax     (d) dilution rate 

 
Figure 26. Input trajectories with weighting factor choices of (a) q1=1E8, q2=0, q3=0; (b) q1=0, 

q2=1E8, q3=0; (c) q1=0, q2=0, q3=1E8; (d) dilution rate trajectory for all choices 
 

4.3.2. Parameter estimation using optimised input 
 
For the examination of the parameter estimation the output trajectories which are obtained from 
optimised input trajectories with different choices of weighting factors with and without noise 
application are applied. 
 
Obtained results are presented in Table 7 (Appendix 4). The sensitivity of µmax is more dominant 
among the other sensitivities. Therefore, it is shown that the choice of q1=0, q2=0, q3=1E8 has 
the lowest confidential interval among the other choices for both noise free (Figure 27) and with 
noise application (Figure 28).  
 
Due to a strong correlation among three parameters of Haldane kinetic growth, parameter 
estimation of these parameters is difficult. Stepwise approach which analyse the parameter one 
by one can be a solution. However, it is suggested to apply it after parameter estimation with 
three parameters procedure in order to find every parameter with low confidential interval. 
Different initial guesses of parameter converge into different estimate of parameters. 
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In free noise case, the larger the sensitivity, the faster it converge to the expected value. The 
parameter µmax has the largest sensitivity value; therefore the value is close to the expected 
value. The results with noise seem reasonable, however, the final values (K1; K2) are close to 
the initial guest values. So, the identification did not improve the parameter values due to low 
sensitivity value of the parameters. 
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Figure 27. Estimated parameters without noise application of extended Haldane model for 12 hours 

cultivation 
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Figure 28. Estimated parameters with noise application of extended Haldane model for 12 hours 

cultivation 
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5. Discussion 
 
The analytical approach was used as a starting point and yielded a constant input while the 
numerical optimisation methods yielded in time varying trajectories for the input. In this work, an 
explanation for the difference was not found. And so a further comparison of the methods is 
required.  
 
For noise free experimental design, a comparison with intuitive experimental practice inputs 
using Monod model, the best estimate of parameters are obtained by using the optimised input 
trajectory. Input strategies based on stepwise input and linear increasing are better than using 
constant input in most of cases. By using a range of light intensity values, a range of growth rate 
(µ) can be obtained to estimate the specific growth rate (µmax) and saturation constant for light 
(KI). From practice, it was observed that µmax was best estimated from high level of light intensity 
and KI was best estimated from low level of light intensity.  
 
By using extended Monod (Monod + light attenuation) model, constant inputs yielded a better 
estimate of parameters than linear increasing light intensity inputs at noise free experimental 
design which is out of the expectation (Figure 24). There is a probability that more points were 
laid in low level of light intensity so that the parameters especially KI can be well estimated. 
 
The influence of the light intensity to the light path length and algae concentration is conducted. 
It is observed that the light intensity demand increases along with the algae concentration and 
light path length. The optimum light path length is not considered for reasonable light intensity in 
this thesis. Therefore, a consideration of optimum light path length is important because it will 
influence the incoming light intensity level. 
 
Despite trajectories for optimal sensitivity have been developed, the estimation results show a 
high correlation between the parameters (Figure 11). So, sensitivity optimisation improves the 
quality of estimation but does not cancel the correlation. 
 
An accurate and precise estimate of parameters can be obtained by parameter estimation of 
Monod growth kinetic model with noise free design. However, if data is subject to noise the 
accuracy of the results goes down. As conducted in this research, the noise is located only at 
the output trajectory. The parameter estimation is conducted by using noise free input 
trajectories model. Therefore, noise filtering is needed in order to minimize the effect of the 
noise in parameter estimation. 
 
Three types of model have been presented. For Monod model and extended Monod model, the 
best result of parameter estimation is obtained by giving priority to the sensitivity of KI. While 
extended Haldane model, the best result of parameter estimation is obtained by giving priority to 
the sensitivity of µmax. 
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6. Conclusion and recommendations 
 
The objective of this result was to evaluate the estimation of kinetic parameters from the Monod 
and Haldane kinetic for algae growth by using optimal input design based on parametric 
sensitivity. Hereby, three models are used which are Monod model with 2 parameters, extended 
Monod (Monod + light attenuation) model with 2 parameters, and extended Haldane (Haldane + 
light attenuation) with 3 parameters.  
 
In order to obtain the parameters, analytical and numerical approaches have been conducted. 
Analytical approach in this thesis is only possible for systems that are affine in the input, 
therefore, constant input trajectory is considered as the solution for this approach. Numerical 
approaches are conducted by using either continuous optimisation or piecewise linear 
optimisation. Both methods yield similar input trajectories. 
 
General method which is used in this thesis is described as follows: 
a. Determine the kinetic expressions together with photobioreactor model 
b. Determine parametric sensitivity equations from the model. 
c. Obtain optimal input trajectories by analytical solution or dynamical optimisation. 
d. Estimate parameters by using optimised input trajectories. 
 
Case 1, Monod model: 
a. Two parameters are estimated using this model which are the specific maximum growth 

rate µmax and the light saturation constant KI. 
b. The parametric sensitivity of µmax is larger than KI, therefore, the optimal input trajectories 

are depend at the weighting factors for the parameters.  
c. Giving priority of weighting factor only for KI is the best choice to obtain optimised input 

trajectory for parameter estimation. 
d. Additional data from the extension of cultivation length increases the accuracy and precision 

of parameter estimation. 
 
Case 2, extended Monod model: 
a. Two parameters are estimated using this model which are the specific maximum growth 

rate µmax and the light saturation constant KI. 
b. Giving priority of weighting factor only for KI is the best choice to obtain optimised input 

trajectory for parameter estimation. 
c. Light intensity demand increases along with the algae concentration and light path length. 
 
Case 3, extended Haldane model: 
a. Three parameters are estimated using this model which are the specific maximum growth 

rate µmax, the light saturation constant K1, and the inhibition constant K2. 
b. Giving priority of weighting factor for µmax is the best choice to obtain optimised input 

trajectory for parameter estimation. 
 
For those three cases,  
a. Despite optimising the sensitivity function, the correlation between these parameters is 

strong, therefore, there are a wide range of parameter combination can be found. 
b. Initial guess determines the estimated parameter values, indicating the existence of local 

minima. 
c. Noise on measured data significantly reduces the precision and the accuracy of the 

estimated parameters. 
 
In this thesis, three cases are studied in noise free and under noisy conditions. It is observed 
from the practice that the estimate of the parameters under noisy conditions is inaccurate and 
imprecise. Therefore, one of the recommendations is to add noise filtering to deal with noisy 
condition.  

In fact, sensitivity optimisation improves the quality of estimation but does not cancel the 
correlation. Alternative methods are then needed to obtain more accurate parameter estimation 
and minimise the correlation problem. 
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7. List of symbols 
 
notation meaning unit 

lgAC  algae concentration 1.g l−    

lg,A inC  algae density coming into photo bioreactor 1.g l−    

d  
depth of the suspension in flat-plate 
photobioreactor  [ ]m  

D  dilution rate 1h− 
  

 

inF  water flow coming into photo bioreactor 3 1.m s−    

outF  water flow coming out from photo bioreactor 3 1.m s−    

( )H t  scalar Hamiltonian function  

I  light intensity 2 1. .mol m sµ − −  
 

inI  light intensity coming into photobioreactor 2 1. .mol m sµ − −  
 

aveI  average light intensity 2 1. .mol m sµ − −  
 

J  cost function  

IK  half-saturation constant for light intensity 2 1. .mol m sµ − −  
 

1K  half-saturation constant for light intensity 2 1. .mol m sµ − −  
 

2K  half-saturation constant for light intensity 2 1. .mol m sµ − −  
 

L  running cost  
n  amount of additional state variables  

iq  weighting factor  

is  parametric sensitivity  

0t  start time s    

ft  final time s    

V  photo bioreactor volume capacity 3m 
  

 

1x  algae concentration 1.g l−    

 
 
Greek Letters 
notation meaning unit 

α  attenuation constant for glass [m-1] 
φ  terminal condition  

λ  Lagrange multiplier  

maxµ  specific growth rate of algae at saturation [h-1] 
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9. Appendices 

9.1. Appendix 1. Derivation of Monod and Lamber-Beer law 
 
dx1dt = 
mumax*(Iin*(1/b)*(1-exp(-ac*x1*b))*(1/(x1*ac))) 
/(KI+(Iin*(1/b)*(1-exp(-ac*x1*b))*(1/(x1*ac))))*x1  
- D*x1 
 
 dx2dt = 
 
-(-x2*mumax*Iin*exp(-ac*x1*b)*ac^2*x1^2*b^2*KI 
-x2*mumax*Iin^2 
+2*x2*mumax*Iin^2*exp(-ac*x1*b) 
-x2*mumax*Iin^2*exp(-2*ac*x1*b) 
+x2*D*KI^2*ac^2*x1^2*b^2 
+2*x2*D*KI*ac*x1*b*Iin 
-2*x2*D*KI*ac*x1*b*Iin*exp(-ac*x1*b) 
+x2*D*Iin^2 
-2*x2*D*Iin^2*exp(-ac*x1*b) 
+x2*D*Iin^2*exp(-2*ac*x1*b) 
+mumax*Iin*b*ac*x1^2 
-mumax*Iin*b*ac*x1^2*exp(-ac*x1*b)) 
/(KI*ac*x1*b+Iin-Iin*exp(-ac*x1*b))^2 
  
 dx3dt =  
 
-(-x3*mumax*Iin*exp(-ac*x1*b)*ac^2*x1^2*b^2*KI 
-x3*mumax*Iin^2 
+2*x3*mumax*Iin^2*exp(-ac*x1*b) 
-x3*mumax*Iin^2*exp(-2*ac*x1*b) 
+x3*D*KI^2*ac^2*x1^2*b^2 
+2*x3*D*KI*ac*x1*b*Iin 
-2*x3*D*KI*ac*x1*b*Iin*exp(-ac*x1*b) 
+x3*D*Iin^2-2*x3*D*Iin^2*exp(-ac*x1*b) 
+x3*D*Iin^2*exp(-2*ac*x1*b) 
-Iin*x1^2*KI*ac*b-Iin^2*x1 
+2*Iin^2*x1*exp(-ac*x1*b) 
+Iin*x1^2*exp(-ac*x1*b)*KI*ac*b 
-Iin^2*x1*exp(-2*ac*x1*b)) 
/(KI*ac*x1*b+Iin-Iin*exp(-ac*x1*b))^2 
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9.2. Appendix 2. Derivation of Haldane and Lamber-Beer law 
 
dx1dt = 
mumax*(Iin*(1/b)*(1-exp(-ac*x1*b))*(1/(x1*ac)))/(KI1+(Iin*(1/b)*(1-exp(-
ac*x1*b))*(1/(x1*ac)))+((Iin*(1/b)*(1-exp(-ac*x1*b))*(1/(x1*ac)))^2/KI2))*x1 - D*x1 
  
 dx2dt =  
-(x2*D*Iin^4+x2*mumax*Iin^3*exp(-ac*x1*b)*b^2*x1^2*ac^2*KI2-x2*mumax*Iin*exp(-
ac*x1*b)*b^4*x1^4*ac^4*KI2^2*KI1+x2*D*Iin^4*exp(-4*ac*x1*b)-
2*x2*D*KI1*b^3*x1^3*ac^3*KI2^2*Iin*exp(-ac*x1*b)+6*x2*mumax*Iin^3*b*ac*x1*KI2*exp(-
ac*x1*b)+2*x2*mumax*Iin^2*b^2*ac^2*x1^2*KI2^2*exp(-ac*x1*b)-
6*x2*D*Iin^3*b*x1*ac*KI2*exp(-ac*x1*b)-2*x2*D*Iin^2*b^2*x1^2*ac^2*KI2^2*exp(-ac*x1*b)-
6*x2*mumax*Iin^3*b*ac*x1*KI2*exp(-2*ac*x1*b)-4*x2*D*KI1*b^2*x1^2*ac^2*KI2*Iin^2*exp(-
ac*x1*b)-2*x2*D*Iin^3*b*x1*ac*KI2*exp(-3*ac*x1*b)+6*x2*D*Iin^3*b*x1*ac*KI2*exp(-2*ac*x1*b)-
x2*mumax*Iin^2*b^2*ac^2*x1^2*KI2^2*exp(-2*ac*x1*b)-mumax*Iin*b^3*ac^3*x1^4*KI2^2*exp(-
ac*x1*b)-4*x2*D*Iin^4*exp(-ac*x1*b)-4*x2*D*Iin^4*exp(-3*ac*x1*b)+6*x2*D*Iin^4*exp(-
2*ac*x1*b)-2*x2*mumax*Iin^3*exp(-2*ac*x1*b)*b^2*x1^2*ac^2*KI2+x2*mumax*Iin^3*exp(-
3*ac*x1*b)*b^2*x1^2*ac^2*KI2+2*x2*D*KI1*b^2*x1^2*ac^2*KI2*Iin^2*exp(-
2*ac*x1*b)+2*x2*mumax*Iin^3*b*ac*x1*KI2*exp(-
3*ac*x1*b)+x2*D*Iin^2*b^2*x1^2*ac^2*KI2^2*exp(-
2*ac*x1*b)+2*x2*D*Iin^3*b*x1*ac*KI2+x2*D*Iin^2*b^2*x1^2*ac^2*KI2^2-
x2*mumax*Iin^2*b^2*ac^2*x1^2*KI2^2-
2*x2*mumax*Iin^3*b*ac*x1*KI2+x2*D*KI1^2*b^4*x1^4*ac^4*KI2^2+2*x2*D*KI1*b^3*x1^3*ac^3*
KI2^2*Iin+2*x2*D*KI1*b^2*x1^2*ac^2*KI2*Iin^2+mumax*Iin*b^3*ac^3*x1^4*KI2^2)/(KI1*b^2*x1^
2*ac^2*KI2+Iin*b*x1*ac*KI2-Iin*b*x1*ac*KI2*exp(-ac*x1*b)+Iin^2-2*Iin^2*exp(-
ac*x1*b)+Iin^2*exp(-2*ac*x1*b))^2 
  
 dx3dt =  
-(x3*D*Iin^4*exp(-4*ac*x1*b)-4*x3*D*Iin^4*exp(-3*ac*x1*b)+6*x3*D*Iin^4*exp(-
2*ac*x1*b)+6*x3*D*Iin^3*b*x1*ac*KI2*exp(-2*ac*x1*b)-2*x3*D*Iin^2*b^2*x1^2*ac^2*KI2^2*exp(-
ac*x1*b)-6*x3*D*Iin^3*b*x1*ac*KI2*exp(-ac*x1*b)-3*mumax*Iin^3*b*ac*x1^2*exp(-2*ac*x1*b)-
4*x3*D*Iin^4*exp(-ac*x1*b)+x3*D*Iin^2*b^2*x1^2*ac^2*KI2^2*exp(-2*ac*x1*b)-
6*x3*mumax*Iin^3*b*ac*x1*KI2*exp(-2*ac*x1*b)+3*mumax*Iin^3*b*ac*x1^2*exp(-ac*x1*b)-
x3*mumax*Iin*exp(-ac*x1*b)*b^4*x1^4*ac^4*KI2^2*KI1+x3*mumax*Iin^3*exp(-
ac*x1*b)*b^2*x1^2*ac^2*KI2+2*x3*mumax*Iin^2*b^2*ac^2*x1^2*KI2^2*exp(-
ac*x1*b)+6*x3*mumax*Iin^3*b*ac*x1*KI2*exp(-ac*x1*b)-
2*x3*D*KI1*b^3*x1^3*ac^3*KI2^2*Iin*exp(-ac*x1*b)-4*x3*D*KI1*b^2*x1^2*ac^2*KI2*Iin^2*exp(-
ac*x1*b)-mumax*Iin^3*b*ac*x1^2-2*x3*D*Iin^3*b*x1*ac*KI2*exp(-
3*ac*x1*b)+x3*mumax*Iin^3*exp(-
3*ac*x1*b)*b^2*x1^2*ac^2*KI2+x3*D*Iin^4+2*x3*mumax*Iin^3*b*ac*x1*KI2*exp(-
3*ac*x1*b)+mumax*Iin^3*b*ac*x1^2*exp(-3*ac*x1*b)-2*x3*mumax*Iin^3*exp(-
2*ac*x1*b)*b^2*x1^2*ac^2*KI2+2*x3*D*Iin^3*b*x1*ac*KI2+x3*D*Iin^2*b^2*x1^2*ac^2*KI2^2-
x3*mumax*Iin^2*b^2*ac^2*x1^2*KI2^2-
2*x3*mumax*Iin^3*b*ac*x1*KI2+x3*D*KI1^2*b^4*x1^4*ac^4*KI2^2+2*x3*D*KI1*b^3*x1^3*ac^3*
KI2^2*Iin+2*x3*D*KI1*b^2*x1^2*ac^2*KI2*Iin^2+2*x3*D*KI1*b^2*x1^2*ac^2*KI2*Iin^2*exp(-
2*ac*x1*b)-x3*mumax*Iin^2*b^2*ac^2*x1^2*KI2^2*exp(-
2*ac*x1*b))/(KI1*b^2*x1^2*ac^2*KI2+Iin*b*x1*ac*KI2-Iin*b*x1*ac*KI2*exp(-ac*x1*b)+Iin^2-
2*Iin^2*exp(-ac*x1*b)+Iin^2*exp(-2*ac*x1*b))^2 
 dx4dt =  
-(-2*x4*D*KI1*b^3*x1^3*ac^3*KI2^2*Iin*exp(-ac*x1*b)-
4*x4*D*KI1*b^2*x1^2*ac^2*KI2*Iin^2*exp(-ac*x1*b)-2*x4*D*Iin^2*b^2*x1^2*ac^2*KI2^2*exp(-
ac*x1*b)+Iin*b^3*ac^3*x1^4*KI2^2*exp(-ac*x1*b)*KI1+x4*D*Iin^4*exp(-
4*ac*x1*b)+2*Iin^2*b^2*ac^2*x1^3*KI2^2*exp(-ac*x1*b)-4*x4*D*Iin^4*exp(-3*ac*x1*b)-
Iin*b^3*ac^3*x1^4*KI2^2*KI1+3*Iin^3*b*ac*x1^2*KI2*exp(-ac*x1*b)-
6*x4*D*Iin^3*b*x1*ac*KI2*exp(-ac*x1*b)-4*x4*D*Iin^4*exp(-ac*x1*b)+6*x4*D*Iin^4*exp(-
2*ac*x1*b)-x4*mumax*Iin*exp(-ac*x1*b)*b^4*x1^4*ac^4*KI2^2*KI1+x4*mumax*Iin^3*exp(-
ac*x1*b)*b^2*x1^2*ac^2*KI2+2*x4*mumax*Iin^2*b^2*ac^2*x1^2*KI2^2*exp(-
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ac*x1*b)+6*x4*mumax*Iin^3*b*ac*x1*KI2*exp(-
ac*x1*b)+x4*D*Iin^4+2*x4*D*Iin^3*b*x1*ac*KI2+x4*D*Iin^2*b^2*x1^2*ac^2*KI2^2-
x4*mumax*Iin^2*b^2*ac^2*x1^2*KI2^2-
2*x4*mumax*Iin^3*b*ac*x1*KI2+x4*D*KI1^2*b^4*x1^4*ac^4*KI2^2+2*x4*D*KI1*b^3*x1^3*ac^3*
KI2^2*Iin+2*x4*D*KI1*b^2*x1^2*ac^2*KI2*Iin^2-Iin^2*b^2*ac^2*x1^3*KI2^2-
Iin^3*b*ac*x1^2*KI2+2*x4*D*KI1*b^2*x1^2*ac^2*KI2*Iin^2*exp(-
2*ac*x1*b)+6*x4*D*Iin^3*b*x1*ac*KI2*exp(-2*ac*x1*b)+x4*D*Iin^2*b^2*x1^2*ac^2*KI2^2*exp(-
2*ac*x1*b)-2*x4*D*Iin^3*b*x1*ac*KI2*exp(-3*ac*x1*b)+Iin^3*b*ac*x1^2*KI2*exp(-3*ac*x1*b)-
3*Iin^3*b*ac*x1^2*KI2*exp(-2*ac*x1*b)-Iin^2*b^2*ac^2*x1^3*KI2^2*exp(-2*ac*x1*b)-
2*x4*mumax*Iin^3*exp(-2*ac*x1*b)*b^2*x1^2*ac^2*KI2+x4*mumax*Iin^3*exp(-
3*ac*x1*b)*b^2*x1^2*ac^2*KI2-6*x4*mumax*Iin^3*b*ac*x1*KI2*exp(-2*ac*x1*b)-
x4*mumax*Iin^2*b^2*ac^2*x1^2*KI2^2*exp(-2*ac*x1*b)+2*x4*mumax*Iin^3*b*ac*x1*KI2*exp(-
3*ac*x1*b))/(KI1*b^2*x1^2*ac^2*KI2+Iin*b*x1*ac*KI2-Iin*b*x1*ac*KI2*exp(-ac*x1*b)+Iin^2-
2*Iin^2*exp(-ac*x1*b)+Iin^2*exp(-2*ac*x1*b))^2 
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9.3. Appendix 3. Analytical solution  
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9.4. Appendix 4. Tables of experimental design  
 
Table 3. Comparison of weighting factors 

S IK : S maxµ = q1 : q2 

weighting factor 0:1 1:0 1:1 
noise  0% 1% 0% 1% 0% 1% 

maxµ  0.090 0.090 0.090 0.090 0.090 0.090given parameter in generated 
data 

IK  69.86 69.86 69.86 69.86 69.86 69.86

maxµ  0.01 0.01 0.01 0.01 0.01 0.01
initial guess parameter 

IK  10 10 10 10 10 10

maxµ high 0.0905 137.9518 0.09 0.0982 0.0905 65.9833
confidential interval 

maxµ low 0.0903 -137.7696 0.09 0.0412 0.0903 -65.8038

estimated parameter maxµ  0.0904 0.0911 0.09 0.0697 0.0904 0.0898

IK high 78.9146 2.4061E+06 69.8596 85.8919 78.9146 1.1490E+06
confidential interval 

IK low 75.0465 -2.4059E+06 69.8594 -25.3547 75.0465 -1.1489E+06

estimated parameter IK  76.9806 89.8435 69.8595 30.2686 76.9806 65.1978

sensitivity value of maxµ  32.1793 14.0105 32.1793 

sensitivity value of IK  -0.0018 -0.0071 -0.0018 

cost function J 2.6544E+03 1.4996E-04 2.6544E+03 

 
 
Table 4. Light intensity trajectories by using Monod model with 12 hours cultivation 

light intensity 
constant 1 
(- noise) 

constant 1 
(+ noise) 

constant 2 
(- noise) 

constant 2 
(+ noise) 

stepwise 
(- noise) 

stepwise 
(+ noise) 

linear 
increasing 
(- noise) 

linear 
increasing 
(+ noise) 

optimised 
(- noise) 

optimised 
(+ noise) 

light intensity trajectory constant 1 constant 2 stepwise linear increasing optimised 

noise application 0% 1% 0% 1% 0% 1% 0% 1% 0% 1% 

light intensity (µmol 
/m²s) I 102.5 102.5 118 118 

102.5 and 
118

102.5 and 
118

from 102.5 
to 118

from 102.5 
to 118 

from 102.5 to 
118

from 102.5 to 
118

time span (h) t 12 12 12 12 12 12 12 12 12 12

µmax 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090given parameter in 
generated data KI 69.86 69.86 69.86 69.86 69.86 69.86 69.86 69.86 69.86 69.86

µmax 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01initial guess 
parameter KI 10 10 10 10 10 10 10 10 10 10

µmax high 0.1261 407.7452 0.1244 677.3865 0.0900 0.1535 0.0900 0.293 0.0900 0.1176
confidential interval 

µmax low 0.0064 -407.6126 0.0132 -677.2496 0.0900 0.0638 0.0900 -0.0031 0.0900 0.0383

estimated 
parameter µmax 0.0662 0.0663 0.0688 0.0684 0.0900 0.1087 0.0900 0.145 0.0900 0.078

KI high 138.9074 7.81E+05 141.6475 1.41E+06 69.8465 195.5567 69.8299 475.1789 69.8596 123.4584
confidential interval 

KI low -90.3376 -7.81E+05 -90.458 -1.41E+06 69.8275 18.2546 69.7954 -114.8421 69.8594 -31.1548

estimated 
parameter KI 24.2849 24.4474 25.5948 24.3112 69.8370 106.9057 69.8127 180.1684 69.8595 46.1518

fitting tolerance 1.E-10 1.E-10 1.E-10 1.E-10 1.E-10 1.E-10 1.E-10 1.E-10 1.E-10 1.E-10

sensitivity value of KI -0.0071 -0.0071 -0.0071 -0.0071 -0.0071 -0.0071 -0.0071 -0.0071 -0.0071 -0.0071

sensitivity value of µmax 13.5643 13.5643 14.854 14.854 14.1946 14.1946 14.2184 14.2184 14.0105 14.0105

cost function J 1.4979E-04 1.4979E-040.000148980.00014898 1.4981E-041.4981E-04 1.4990E-041.4990E-04 1.4996E-04 1.4996E-04
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Table 5. Light intensity trajectories by using Monod model for 25 hours cultivation (noise free) 

light intensity constant 1 constant 2 stepwise linear increasing optimised 

light intensity 
(µmol /m²s) I 155.3418 155.3418 194 194 

155.3418 
and 194 

155.3418 
and 194 

From 
155.3418 

to 194 

From 
155.3418 

to 194 

From 
155.3418 

to 194 

From 
155.3418 

to 194 

time span (h) t 25 25 25 25 25 25 25 25 25 25

µmax 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090given 
parameter in 
generated 
data 

KI 69.86 69.86 69.86 69.86 69.86 69.86 69.86 69.86 69.86 69.86

µmax 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01initial guess 
parameter KI 10 10 10 10 10 10 10 10 10 10

µmax high 0.0956 0.0662 0.0967 0.0697 0.09 0.09 0.09 0.09 0.09 0.09confidential 
interval 

µmax low 0.0368 0.0662 0.0427 0.0697 0.09 0.09 0.09 0.09 0.09 0.09

estimated 
parameter µmax 0.0662 0.0662 0.0697 0.0697 0.09 0.09 0.09 0.09 0.09 0.09

KI high 83.9749 10.3358 89.5741 10.3769 69.8591 69.86 69.8599 69.8492 69.852 69.86confidential 
interval KI low -63.3096 10.3281 -68.826 10.3683 69.8481 69.86 69.8407 69.8461 69.848 69.86

estimated 
parameter KI 10.3326 10.3319 10.3741 10.3726 69.8536 69.86 69.8503 69.8476 69.85 69.86

fitting tolerance 1.E-10 1.E-10 1.E-10 1.E-10 1.E-10 1.E-10 1.E-10 1.E-10 1.E-10 1.E-10

amount of data 101 251 101 251 101 251 101 251 101 251 

sensitivity value of KI -0.0325 -0.0325 -0.0328 -0.0328 -0.0327 -0.0327 -0.0328 -0.0328 -0.0327 -0.0327

sensitivity value of µmax 81.4128 81.4128 96.1204 96.1204 88.4787 88.4787 88.8949 88.8949 85.407 85.407

cost function J 4.700E-03 4.700E-03 4.600E-03 4.600E-03 4.7171E-03 4.7171E-03 4.723E-03 4.723E-03 4.7323E-03 4.7323E-03

 
Table 6. Light intensity trajectories by using Monod model and Lambert-Beer law 

light intensity constant 1 
(- noise) 

constant 1 
(+ noise) 

constant 2 
(- noise) 

constant 2 
(+ noise) 

stepwise 
(- noise) 

stepwise 
(+ noise) 

linear 
increasing 
(- noise) 

linear 
increasing 
(+ noise) 

optimised 
(- noise) 

optimised 
(+ noise) 

light intensity trajectory constant 1 constant 2 stepped increased optimised 

noise application 0% 1% 0% 1% 0% 1% 0% 1% 0% 1% 

light intensity  
(/m m²s) 

I 634 634 1484 1484 634 and 
1484

634 and 
1484

from 634 to 
1484

from 634 to 
1484 

from 634 to 
1484 

from 634 to 
1484

time span (h) t 12 12 12 12 12 12 12 12 12 12

µmax 0.090 0.090 0.090 0.090 0.09 0.09 0.09 0.09 0.09 0.09given parameter in 
generated data KI 69.86 69.86 69.86 69.86 69.86 69.86 69.86 69.86 69.86 69.86

µmax 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01initial guess 
parameter KI 10 10 10 10 10 10 10 10 10 10

µmax high 0.09 0.0991 0.09 0.089 0.09 0.0939 0.09 0.1095 0.09 0.0976
confidential interval 

µmax low 0.09 0.0687 0.09 0.078 0.09 0.0765 0.09 0.0446 0.09 0.0501

estimated 
parameter µmax 0.09 0.0839 0.09 0.0835 0.09 0.0852 0.09 0.0771 0.09 0.0738

KI high 69.8684 85.6335 69.8724 66.5656 69.8582 78.4786 69.852 110.8656 69.8597 85.0723
confidential interval 

KI low 69.8646 33.7761 69.8667 36.1124 69.854 43.1935 69.8192 -26.356 69.8595 -9.8863

estimated 
parameter KI 69.8665 59.7048 69.8695 51.339 69.8561 60.836 69.8356 42.2548 69.8596 32.293

fitting tolerance 1.E-05 1.E-05 1.E-05 1.E-05 1.E-05 1.E-05 1.E-05 1.E-05 1.E-05 1.E-05

sensitivity value of KI -0.0059 -0.0059 -0.0061 -0.0061 -0.0062 -0.0062 -0.0063 -0.0063 -0.0063 -0.0063

sensitivity value of µmax 9.7863 9.7863 15.9873 15.9873 13.072 13.072 13.4428 13.4428 12.7529 12.7529

cost function J 1.1670E-04 1.1670E-041.0771E-041.0771E-04 1.1973E-04 1.1973E-041.2232E-04 1.2232E-04 1.2287E-04 1.2287E-04
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Table 7. Light intensity trajectories by using Haldane model and Lambert-Beer law 
 

 S K1 : S K2 : S Mumax = q1 : q2 : q3 

weighting factors 1E8:0:0 0:1E8:0 0:0:1E8 

noise without with without with without with 

time span (h) t 12 12 12 12 12 12

noise % 0% 1% 0% 1% 0% 1%

µmax 0.09 0.09 0.09 0.09 0.09 0.09

K1 69.86 69.86 69.86 0 0 0
given parameter in 
generated data 

K2 10 10 10 0 0 0

µmax 0.08 0.08 0.08 0.08 0.08 0.08

K1 69 69 69 69 69 69initial guess parameter 

K2 9 9 9 9 9 9

µmax high 0.1126 39.5042 0.1757 184.3894 0.0923 7.3244confidential interval 
µmax low 0.0658 -39.3214 0.0028 -184.1966 0.0859 -7.1364

estimated parameter µmax 0.0892 0.0914 0.0892 0.0964 0.0891 0.094

K1 high 89.2152 3.30E+04 160.2763 1.80E+05 72.0081 6.46E+03confidential interval 
K1 low 49.159 -3.28E+04 -22.0325 -1.79E+05 66.0435 -6.32E+03

estimated parameter K1 69.1871 68.9912 69.1219 69.0013 69.0258 69.0001

K2 high 13.6967 5.04E+03 20.8777 1.88E+04 10.5481 8.12E+02confidential interval 
K2 low 6.5577 -5.02E+03 -0.6794 -1.88E+04 9.6919 -7.94E+02

estimated parameter K2 10.1272 8.9385 10.0991 9.0153 10.12 9.0003

fitting tolerance  
1.E-05 1.E-05 1.E-05 1.E-05 1.E-05 1.E-05

sensitivity value of K1  -0.0016 -0.0016-0.00047575-0.00047575 -0.0011 -0.0011

sensitivity value of K2  0.0034 0.0034 0.0118 0.0118 0.0092 0.0092

sensitivity value of µmax  1.8637 1.8637 1.9477 1.9477 2.2746 2.2746

cost function J  9.4577E+02 9.4577E+02 5.1264E+04 5.1264E+041.8985E+091.8985E+09
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9.5. Appendix 5. Program scripts 
 
The scripts are compiled in a CD which is included in this thesis. It has some files as follows: 
 
• General files 

o clip : a function for clipping input arrays 
o derivation : derive parametric sensitivity equations 
o fop0 : a function optimisation by using Bryson method that perform some 

iterations 
o fop0_b : subroutine of fop0 that perform backward integration 
o fop0_f : subroutine of fop0 that perform forward integration 
o linvfu_vec : differentiate a vector function of x, u, and theta with respect to u 
o linvfx_vec : differentiate a vector function of x, u, and theta with respect to x 
o mysurface : provide mesh and contour plot with 10% interval 

 
• Monod model files 

o fitfunA : calculate error between model and measurement values based on 
Bryson approach with Monod model 

o fitfunPW : calculate error between model and measurement values based on 
piecewise linear approach with Monod and extended Monod model  

o fittingA : estimate parameter µmax and KI based on Bryson approach with 
Monod model 

o fittingPW : estimate parameter µmax and KI based on piecewise linear approach 
with Monod and extended Monod model 

o functionA : a function which has calculation switch of cost function to determine 
forward and backward integration by using Monod model 

o functionPW_A : a function contains cost function calculation for piecewise linear 
approach by using Monod model 

o functionPW F_A: a function which calculate state variables and input values from 
optimised input values for piecewise linear approach by using Monod 
model 

o modelA : Monod model for Bryson approach 
o modelPW_A : Monod model for piecewise linear approach 
o sensitivityA : perform input optimisation with Bryson approach by using Monod 

model 
o sensPW_A : perform input optimisation with piecewise linear approach by using 

Monod model 
o testmodelA : perform simulation with constant, stepwise and linear increasing input 

trajectories by using extended Monod model 
 
• Extended Monod model files 

o fitfunB : estimate parameter µmax and KI based on Bryson approach with 
extended Monod model 

o fitfunPW : calculate error between model and measurement values based on 
piecewise linear approach with Monod and extended Monod model  

o fittingB : estimate parameter µmax and KI based on Bryson approach with 
extended Monod model 

o fittingPW : estimate parameter µmax and KI based on piecewise linear approach 
with Monod and extended Monod model 

o functionB : a function which has calculation switch of cost function to determine 
forward and backward integration by using extended Monod model 

o functionPW_B : a function contains cost function calculation for piecewise linear 
approach by using extended Monod model 

o functionPW F_B: a function which calculate state variables and input values from 
optimised input values for piecewise linear approach by using 
extended Monod model 

o modelB : extended Monod model for Bryson approach 
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o modelPW_B : extended Monod model for piecewise linear approach 
o sensitivityB : perform input optimisation with Bryson approach by using extended 

Monod model 
o sensPW_B : perform input optimisation with piecewise linear approach by using 

extended Monod model 
o testmodelB : perform simulation with constant, stepwise and linear increasing input 

trajectories by using extended Monod model 
 
• Extended Haldane model files 

o fitfunC : estimate parameter µmax , K1 and K2 based on Bryson approach with 
extended Haldane model 

o fitfunPW_C : calculate error between model and measurement values based on 
piecewise linear approach extended Haldane model  

o fitfunPW_C1P : calculate error between model and measurement values based on 
piecewise linear approach with extended Haldane model  

o fitfunPW_C2P : calculate error between model and measurement values based on 
piecewise linear approach with extended Haldane model  

o fittingC : estimate parameter µmax , K1 and K2 based on Bryson approach with 
extended Haldane model 

o fittingPW_C : estimate parameter µmax , K1 and K2 based on piecewise linear 
approach with extended Haldane model 

o fittingPW_C1P : estimate parameter one of µmax or  K1 or K2 based on piecewise linear 
approach with extended Haldane model 

o fittingPW_C2P : estimate parameter two combination of parameters based on 
piecewise linear approach with extended Haldane model 

o fittingPW_C_ID : estimate parameter µmax , K1 and K2 based on piecewise linear 
approach with extended Haldane model 

o functionC : a function which has calculation switch of cost function to determine 
forward and backward integration by using extended Haldane model 

o functionPW_C : a function contains cost function calculation for piecewise linear 
approach by using extended Haldane model 

o functionPW_C_ID: a function contains cost function calculation for piecewise linear 
approach by using extended Haldane model for 2 inputs optimisation 

o functionPW F_C: a function which calculate state variables and input values from 
optimised input values for piecewise linear approach by using 
extended Haldane model 

o functionPW F_C_ID: a function which calculate state variables and input values from 
optimised input values for piecewise linear approach by using 
extended Haldane model for 2 inputs optimisation 

o modelC : extended Haldane model for Bryson approach 
o modelPW_C : extended Haldane model for piecewise linear approach 
o modelPW_C1P : extended Haldane model for piecewise linear approach for estimating 

1 parameter only 
o modelPW_C2P : extended Haldane model for piecewise linear approach for estimating 

2 parameters  
o modelPW_C_ID : extended Haldane model for piecewise linear approach for 2 inputs 

optimisation 
o sensitivityC : perform input optimisation with Bryson approach by using extended 

Haldane model 
o sensPW_C : perform light intensity input optimisation with piecewise linear 

approach by using extended Haldane model 
o sensPW_C_ID : perform light intensity and dilution inputs optimisation with piecewise 

linear approach by using extended Haldane model 
o testmodelC : perform simulation with constant, stepwise and linear increasing input 

trajectories by using extended Haldane model 
 
 
 


