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ABSTRACT

This paper describes the usefulness of the group of multivariate techniques belonging to ordination for the analysis of ecotoxicological
datasets. It isargued that although ecotoxicol ogists often gather multivariate data sets, they usually do not evaluate them with techniques
that can handle multivariate data. Ordination techniques enable the researcher to extract an underlying structure out of a data set (eg.
differencesin composition of macro-invertebrate community between sites) and, if measured, relatethis structureto explanatory variables
(eg. concentrations of toxicantsat the same sites). Five example datasetsare presented to il lustrate the underlying theory and the possibilities
of ordination techniques. Two methods are presented, one based on weighted summation (eg. Principal Component Analysis, PCA) and
one on weighted averaging (eg. Correspondence Analysis, CA). These techniques differ in the shape of the modelled response (linear
versus unimodal) as the type of datathey model (absolute versus relative). Results of these two methods are illustrated using a data set
comprising levels of different PCB congeners measured in the blood of Adélie penguinsin three periods. After thisthe constrained forms
of PCA and CA are discussed, ie. constrained means that they are able to optimally display the differences in species composition (here
levels of PCB congeners) due to explanatory variables (here period). Further examples illustrate the use of covariables, continuous and
nominal explanatory variables, supplementary explanatory variablesand forward selection of explanatory variables. Finally, two examples
of Principal Response Curves (PRC) analyses are given. PRC isatechnique that is especially developed to anayse time-seriesin which
acontrol or referenceis present. The PRC results are discussed for adesigned experiment and a monitoring data set. The paper endswith
adiscussion focussing on the compari son between ordination techni quesand other multivariate techniques used in thefield of ecotoxicology.

Keywords: multivariate analysis, principal component analys's, redundancy analysis, principal response curves, ordination.

INTRODUCTION

To study the influence of abiotic environmental variables on the
biotic composition of ecosystems, multivariatetechniqueshave been
used for many years in ecology (Legendre and Legendre 1998).
Dissimilaritiesin community composition between sampled sites
are analysed and the differences detected are related to measured
or observed variables such as pH, habitat quality and dissolved
oxygen. In particular ordinaion has proved to be a very useful
techniquefor this purpose becauseit resultsin adiagram (biplot or
triplot) displaying both the sites and the species and, if measured,
the environmental variablesin areduced space (Ter Braak 1995).
It therefore enablesthe researcher to eval uate differencesin species
composition between sites and to identify the environmental
variablesresponsiblefor these differencesinasingleanalysis. This
property of ordination isthe main advantage over other multivariate
techniques such as, for instance, clustering and similarity anaysis.

In ecotoxicology, multivariate analyses have been used in recent
years to display differences in community composition among
treatments or sites and to relate these differences to imposed
chemical trestment or measured chemical stress (see for instance,
Van Wijngaarden et al. 1995; Shaw and Manning 1996; Sparks et
al. 1999; Kedwards et al. 1999a, b). The multivariate analysis of
designed experimentswith artificial ecosystems (microcosms and
mesocosms) became more informative by the new ordination
technique Principa Response Curves (Van den Brink and Ter Braak
1999). The use of multivariate analysis, however, is not widely
accepted yet in ecotoxicology (Maund et al. 1999). In this paper
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wetry to demongtrate that multivariate techniques can be valuable
in the analysis of a variety of ecotoxicologica data. In this paper
we will restrict ourselves to ordination techniques that operate on
the original data set for its analysis and thus alow a direct
interpretation intermsof theorigina variables, in most casespecies
(Ter Braak 1994 1995). These techniques are more direct than
techniques that operate on (dis)similarity indices (eg. similarity
analysis, clustering and multidimensiona scaling). Thetechniques
used inthis paper and those based on (dis)similarity indiceswill be
compared in the discussion section. Ordination techniques are
capable of summarising very complex responses because they are
not restricted to asingle dimension (asfor instance (dis)similarity
analysis). When combined with Monte Carlo permutation testing
not only isagraphical summary of the structure present in the data
set obtained, but also the statistical significance of hypothesised
differences(Ter Braak and Smilauer 2002). Thispaper will present
the analysis of five example data sets to illustrate the value of
multivariate methods for the analysis of ecotoxicologicd data. We
go beyond the traditional example in which a sample by species
matrix is compared with a sample by environmental/explanatory
variables matrix. In our examples, toxicity values, contaminant
concentrations and physico-chemica parameters play the part of
the species; and time, geographical position, chemical treatment
and molecul e characteristics play the part of explanatory variables.
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BACKGROUND OF ORDINATION

Scientific investigation does not always alow the collection of
species and environmental data simultaneoudly, often only species
datais gathered to monitor changesin time. The datagathered can
be comprised of samples containing either chemical or biologica
speciesor both. Ordination isableto expressdifferencesin species
composition between samples without the use of measured
environmental or explanatory variables. In such an analysis,
ordination constructsimaginary, latent explanatory variableswhich
maximise the variation in species composition between sites, ie.
which best represent the underlying structure in the data set (Ter
Brask 1995). Thefirgt latent variable is constructed in such away
that it explainsthelargest part of thetota variance, the second one
the largest part of the remaining variance etc. The first two latent
variables are normally used to construct an ordination diagram of
which they form the axes. Samples and species are represented in
the diagram by points (or arrows) plotted at the scores (values)
they have onthelatent variables (seefor instance Figure 1). Samples
with nearly identical species composition lie close together in the
diagram, while samplesthat liefar apart havevery different species
composition. In biplots, arrows (for species or environmental
variables) point in the direction of higher values. In the example
section apreciseinterpretation of ordination diagramswill begiven.

When explanatory variables are measured, they can beincludedin
the analysis in two ways. Firgt, the explanatory variables can be
laid over the ordination diagram using their values at the different
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sites. After the ordination analysis of the species by sample matrix
they aresimply regressed upon thelatent variables. Thisanalysisis
caled an indirect or unconstrained analysis with supplementary
explanatory variables, ie. the explanatory variables do not play an
activerolewithintheanaysis. Theandysis can also be constrained
to the part of the variance that is captured by the explanatory
variables. The analysisis performed using this explained variance
only, and the latent variables constructed are alinear combination
of the measured explanatory variables. This analysis is called a
direct or constrained analysis. Therow entriesof Table 1 summarise
the digtinction between unconstrained and constrained analysis.

Sometimes the effects of some explanatory variables can a priori
be expected but oneisnot interested in the effects of thesevariables.
On the one hand, these variables are important leading factors
influencing the data set, on the other hand one does not want these
variablesto dominate the analysis. The variance explained by such
variables can beexcluded from theanalysis. Theresulting analysis
is called a partial ordination or an ordination with covariables.
Covariables can be used in both unconstrained and constrained
ordination.

We discuss two groups of methods: methods based on Principal
Component Analysis(PCA) and methods based on Correspondence
Analysis (CA). PCA isbased on alinear response mode relating
species and environmental variables, whereas CA can be derived
from a unimodd response model (column entries of Table 1). In
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Figure 1. PCA biplot, with focus on samples, showing the absolute differences in concentrations of PCB congeners in the different penguin blood
samples. The different numbers refer to the different PCB congeners, eg. the number 177 refers to the PCB177 congener. Of all the variation in concentration
of PCB congeners, 55% is displayed on the first axis, and another 12% on the second one. For clarity samples taken at period 1, 2 and 3 are represented

by different symbols.
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Table 1. Overview of multivariate methods used in this paper arranged by their characteristics

Weighted summation Weighted averaging
— linear response model — unimodal response model
— analysis of absolute differences — analysis of compositional differences
Unconstrained analysis Principal Component Analysis (PCA) | Correspondence Analysis (CA)
— analysis of all species with or without supplementary Detrended Correspondence Analysis
variation explanatory variables (DCA)
— indirect analysis of species —
environment interaction
Constrained analysis Redundancy Analysis (RDA), Principal | Canonical Correspondence Analysis
— analysis of species responses Response Curves (PRC) (CCA)
to explanatory variables Detrended Canonical Correspondence
— direct analysis of species — Analysis (DCCA)
environment interaction

ecology mainly CA is used because it fits the concept of niche-
space partitioning with speciesrising and falling along an ecol ogical
gradient (Ter Braak 1995). In this model each species can be
characterised by its position (optimum or centre) along thegradient.
This position is estimated in CA by weighted averaging, whereas
the score of a species in PCA is estimated by linear regression,
whichinthecaseof PCA smplifiesto aweighted summation (Table
1; Ter Braak 1995; Legendre and Legendre 1998). The linearity of
PCA must not be misinterpreted, as PCA iswell ableto show non-
linear patterns(eg. Figure 1). Sometimesthe sampled Sitesrepresent
only a smdl part of this ecological gradient, eg. when only sites
with apH value between 7.0 and 7.5 are sampled. In these cases a
linear modd is used because it describes the rise (or fall) dong a
short gradient better than aunimodal one. In ecotoxicology it may
be expected that a species normally does not have an optimum
along the gradient of a stressor. Therefore attempts to use
multivariate techniquesin ecotoxicology mainly focussed on linear
methods (Van Wijngaarden et al. 1995; Kedwardset al. 1999aand b).

The choice to either use PCA or CA can be based on two
characterigtics, thelength of gradient present inthedata set and the
type of data gathered. The length of gradient is a measure for the
degree of unimodality of a latent variable (ordination axis). If a
length of gradient of the latent variableis short, PCA isthe model
to choose, and when itislong CA isbest (Table 1). Thislength of
gradient can be calculated using Detrended Correspondence
Analysis(DCA), amethod wewill not discussin thispaper because
of its limited use for ecotoxicology. For a description and the
background of the DCA method isreferred to Ter Braak (1995). A
generd rule of thumb is that when the length of gradient islonger
than 4 Standard Deviations (SD), the species data clearly show a
unimoda response along the latent variable and CA is preferred.
Another difference between CA and PCA isthat CA modelsrelative
abundance instead of the absolute abundance, which is modelled
using PCA (Ter Braak and Smilauer 2002). Themethodswe discuss
are cross-classified in Table 1.

INDIRECT AND DIRECT ORDINATION: THE PENGUIN
EXAMPLE (1)

The dynamicsof the concentrations of PCB congenersinthe blood
of Adélie penguins were studied during the breeding season
(Table2). From 15 birds, blood sampleswere collected during three
periods: 1) egg laying period, a period prior to breeding in which
thebirds starvefor aprolonged period on the nest; 2) egg-hatching
period in which parental birds takes shifts on the nest while the
other goes out to seaforaging and 3) the créche-stage when chicks
are |eft by the parents, although each parent returns regularly to
feed the chicks (Van den Brink et al. 1998). This resulted in 45
blood samples (15individual stimes 3 periods) whichwereanaysed
for concentrations of 30 different PCB congeners by GC-electron
capture detection (ECD). All procedures and the univariate
evauation of the data are described in detail by Van den Brink et
al. (1998). The concentrationswereln-transformed beforeanalysis.
All multivariate analyses in this paper were carried out using the
Canoco for Windows package, version 4.5 (Ter Braak and Smilauer
2002). In Canoco, one can choose between predominantly
interpreting relationships among samples or among species from
the ordination diagram. In our case scaling was focussed on inter-
sample distances because differences between periods were of
interest, for al other questions the default options were chosen.

Sincethelength of gradient of the data set wasvery short (0.6 SD),
thedataareanaysed by PCA. Figure 1 showstheordination diagram
resulting from the PCA analysis of the 45 samples by 30 PCB
species matrix. In this diagram, the blood samples are represented
by squares and species (different PCB congeners) by circles. (Ina
linear biplot, species could berepresented by arrows by connecting
the points with the origin, but because many species are analysed
simultaneoudly thiswould haveresulted inacluttered biplot.) Figure
2 givesan example of theinterpretation of linear biplots. In Figure
2 the circle denoting the species point for the grouped congener
Species 138/163/164 is enlarged abit and not filled for clarity. For
the interpretation a help line is drawn through this species point
and the origin of the plot. When al sample points are projected
perpendicularly onto thisline, asis shown for afew samplesasan
examplein Figure 2, thefitted concentration of the PCB congener
can easily be ordered from high to low. Sample A has the highest
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Figure 2. PCA biplot, with focus on samples, that shows an example on how to interpret biplot ordination diagrams. The numbers refer to the different
PCB congeners, ie. the 138/163/164 point represents the summated levels of the congeners PCB138, PCB163 and PCB164. The interpretation is only
shown for a few example “sample points” for clarity. For further explanation see text.

Table 2. Overview of data sets analysed

Example Methods Species Samples Explanatory

Penguin PCA/RDA/CCA  PCB congeners samples period

Leces Partial RDA species samples Factory; date as covariable
Toxicity PCA toxicity and BCF chemicals characteristics
Carbendazim PRC species samples treatment

STP effluent PRC physico-chemical samples position

fitted concentration, sample B the next highest fitted concentration
and so on for thesamples C, D, E, F and G (Figure 2). Low fitted
concentrations occur at the opposite end of the line (samples X, Y
and Z), with the lowest concentration in sample Z. The distance
between the speciespoint and the origin of thediagramisaréative
mesasure for the magnitude of the differences in concentrations
between the samples, as indicated by the biplot. Thus, the further
away the species point isfrom the origin, thelarger the differences
in PCB concentrations between the samples, as indicated by the
biplat, are.

The diagram can be evaluated in terms of the percentage variance
displayed. The first principal component (latent variable, ie.
horizontal axis of the biplot) displays 55% of the total variancein
concentrations of PCB congeners between the samples, the second
one (vertical axis) 12% (Figure 1), so together the axes display
67% of the variance. The third axis explained only 8% of the total
variation, and is therefore left out of consideration. Hence by
applying PCA the “ species by sample” matrix isreduced from 30
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(species) dimensions into 2 dimensions, retaining three-quarters
of itsvariance. Most PCB congenersare placed on theright side of
theorigin of Figure 1, which showsthat the concentrations of most
congeners are somewhat collinear with each other. The
concentrations tend to be high in samples placed on the right side
of the origin and low in those placed on theleft side. Figure 1 also
shows differences between periods. Samplestakenin period 1 are
placed somewhat at the right side of the diagram, those taken in
period 2 to the left-down and those taken in period 3 left-upper part
of the diagram. This arrangement indicates that concentrations of
most PCB congenersweregenerally higher inthe samplestakenin
period 1 compared to those taken in periods 2 and 3. The
concentrationsof PCB congenersplacedin theright-upper quadrant
had especially low concentrations in samples taken in period 2,
whilethose placed in the right-down quadrant areindicated to have
the lowest concentrations in samples taken in period 3.
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Figure 3. A RDA biplot, with focus on samples (represented by periods), showing the absolute differences in concentrations of PCB congeners between
the different periods. The numbers refer to the different PCB congeners. Of all variation in concentrations of PCB congeners in the penguin blood
samples, 24% was explained by the nominal explanatory variables representing the periods. Of this explained variance, 84% is displayed on the first axis,
the remaining 14% on the second one. For clarity the explanatory variables representing period 1, 2 and 3 are represented by different symbols. Indicated
differences are significant between all periods (p < 0.05, Monte Carlo permutation tests).

Although Figure 1 indicates differencesin concentrations of PCB
congeners among the periods, these differences are not optimally
displayed. Thisdataset containsvariation dueto differencesbetween
periods, individual penguins and measurement error, although the
latter can not be distinguished from the second because no replicate
samples were taken. The PCA biplot focuses on the differencesin
concentrations of PCB congeners between samples. The
information on the period in which a sample was taken is added
post-hac, ie. after the analysis has been carried out. Thisiscaled
indirect or unconstrained ordination. The interpretation of the
indicated differences between samples takes place in an indirect
way, after the analysis has been performed. Redundancy Analysis
(RDA) is the direct form of PCA that enables the researcher to
focus the analysis on that particular part of the variance that is
explained by external explanatory variables (Table 1). In our
examplewe used three nomina (1/0) variables dencting the period
inwhich asamplewastaken asexplanatory variables. Theresulting
RDA biplot (Figure 3) focuseson the differencesin concentrations
of PCB congeners between periods. For clarity, the samples are
not displayed, their important feature, ie. the period in which they
were sampled, is represented by the placement of the three
explanatory variables denoting the periods. Asin the PCA biplat,
higher concentrations of most PCB congeners are indicated for
period 1, theegg-laying period, and lower onesfor periods2 and 3.
This can be explained by the atrophy of the pectoral muscleduring
period 1 (Vanden Brink et al. 1998). Thismuscleisasink of PCBs,
which are released into the blood during atrophy. In period 2 this
muscle recovers dueto the foraging in the sea so concentrations of
PCBs go down. In period 3 a part of fat-reserve is consumed but
Van den Brink et al. (1998) argue that thisis only asmall sink for
PCBs, compared to thelarge pectoral muscle, sothe concentrations
do not change that much during that period. Of the total variance

amost a quarter could be explained by the indicator variables
denoting period (Figure 3). Of thisvariancethemgjority isdisplayed
onthefirst axis (84%), the remaining part on the second one. RDA
can befollowed by Monte Carlo permutation teststo test 1) whether
PCB congener concentrationsdiffer significantly between periods;
2) whether the first axis of the RDA biplot displays a significant
part of the between period variation; and 3) whether differences
between the individual periods are significant. All periods were
tested against each other and all tests resulted in p-values < 0.01.
Theresultsof the PCA and RDA analyses of thisdataset show that
ordination can provide aclear summary of the underlying structure
of the dataset. It also enablesthe researcher to focuson that part of
the variance that is of interest, in this case the differences between
periods. When constrained ordination iscombined with Monte Carlo
permutation tests, one can also test the significance of indicated
differences. Theresultsof the multivariate analysesare comparable
to the univariate one, with the results of multivariate analysis
showing more details for individua congeners.

RDA VERSUS CCA: THE PENGUIN EXAMPLE (2)

As mentioned in the background section, PCA and its constrained
counterpart RDA focus on the absolute differences in ‘species
abundances (here PCB levels) between the samples, whereas CA
and its constrained counterpart CCA focus on relative differences.
This difference between the two classes of methods is illustrated
by Figures 3 and 4. Figure 4 shows the CCA hiplot of the same
dataset asFigure 3. Theinterpretation of thediagram isana ogous
to the RDA hiplot (since biplot scaling was used, see Ter Braak
and Verdonschot 1995 for details). Inthe CCA analysisthe nominal
variables denoting the periods explained 14% of thetotal variance,
of which approximately 50% is digplayed on the first, horizontal
axis and the remaining part on the second, vertica one. Again, we
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Figure 4. A CCA biplot, with focus on samples, showing the compositional differences of PCB congeners between the different periods. The numbers
refer to the different PCB congeners. Of all variation in levels of PCB congeners in the penguin blood samples, 14% was explained by the nominal
explanatory variables representing the periods. Of this explained variance, 59% is displayed on the first axis, and the remaining 41% on the second one.
For clarity the explanatory variables representing period 1, 2 and 3 are represented by different symbols. Indicated differences are significant between all

periods (p < 0.05, Monte Carlo permutation tests).

See a separation of the three periods; period 1 and 2 are placed at
the bottom of the diagram, period 3 at the top. We also seethat in
this diagram, in contrast to the RDA biplot, not all congeners are
placed on one side of the diagram, but scattered around the origin.
Thisisaresult of the fact that CCA displays proportional, relative
differences. The figure indicates that the relative levels of some
congenersare higher in period 1 and othersin period 3. Thiscould
bearesult of differencesin susceptibility to metabolisation between
the congeners. Compared to period 1, it may be that congeners
most susceptible to metabolisation increased during period 2 due
to feeding (foraging in the sea) and decreased during period 3 due
to metabolisation. The same Monte Carlo permutation tests were
performed as described in the RDA section and again al tests
yielded p-values < 0.05. It is nhotable that a RDA using centring by
samples and by species on the log-concentrations (ie. a log-ratio
analysis; Aitchison 1990; Ter Braak and Smilauer 2002) yielded
almost identical results asthe CCA analysis (results not shown).

The results of the RDA and CCA analyses show that ordination
successfully detected both absol ute and compositional (or rel ative)
differencesin levels of PCB congeners between the samplestaken
in the three periods.
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CONTINUOUS AND NOMINAL EXPLANATORY
VARIABLES AND COVARIABLES: THE LECES
EXAMPLE

The Leces data set consists of abundance of macro-invertebrate
species on fivelocations of the Leces River (East Java, Indonesia,
Table 2). The community was sampled from the riverside three
times between September and November 1991 at each location
using the*kicking method”, together with several physico-chemical
parameters. Sampling station 1 was the most upstream station,
sampling station 5 the most downstream one. Between sampling
station 2 and 3 is a paper mill factory, the effluent of which was
discharged into the river. The macro-invertebrate abundance data
wereln(2x+1) transformed prior to theanaysis(seeVan den Brink
et al. 2000 for rational€). Since the differences between sampling
dates were not of interest, three nominal variables denoting the
three sampling dateswereintroduced as covariables, ie. the part of
the variance captured by these variables was excluded from the
analysis. Sampling date explained 14% of the total variance in
abundance values of the macro-invertebrate community between
the samples. The remaining 86% can be attributed to differences
between sites. Figure 5 displaysthefirst two axes of aPCA of this
remaining variation. Figure5 showsclear differencesbetween sites
1 and 2 on the one side (placed on the | ft side of the diagram) and
3, 4 and 5 on the other side (right side), suggesting effects of the
effluent of the paper mill factory. For interpretation wea soincluded
nominal variables denoting the five sites, two indicating whether a
sample was taken upstream or downstream of the factory, and the
continuousvariablespH, current velocity, conductivity, temperature,
dissolved oxygen, hardness, chemical oxygen demand (COD) and
ammonium concentration. In theresulting biplot, nominal variables
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Figure 5. A PCA biplot, with focus on samples, of species composition showing the within-date differences in species composition between samples
taken upstream and downstream of the wastewater outlet in the Leces River. In this analysis, sampling date is defined as covariable and explained 14% of
the total variance in species composition. Of the remaining variance, 41% is displayed on the first axis, and another 15% on the second one. The third axis
(not shown) explained another 11% but was not related to the outlet. Also the relation with the supplementary variables sites and several physico-chemical
parameters is displayed. For clarity the explanatory variables representing upstream and downstream factory are depicted by different symbols than

those representing the different sites.

are represented by points, whereas continuous variables are
represented by arrows. These variables are supplementary as they
do not influencethe PCA itself. The biplot (Figure 5) suggeststhat
most taxa (especially those belonging to Trichoptera, ie.
Psychomyiidae, Hydropsychidae, Polycentropodidae,
Philopotamidae, Rhyacophilidae and Limnephilidae) are negatively
affected by the effluent and that thelevel s of indicators of pollution
(COD, ammonia, hardness, conductivity) are indicated to have
increased dueto the effluent. Carrying out apartial RDA by defining
the supplementary variables as true explanatory variables yielded
exactly the same result as the previous partial PCA. Thereasonis
that the number of explanatory variables, including covariables, is
larger than the number of samples so that the explanatory variables
donot really constrain the analysis (Ter Braak and Smilauer 2002).

Totest the tatistical significance of the effluent of the mill factory,
we carried out aRDA with factory astheonly explanatory variable,
and sampling date as nominal covariable. A Monte Carlo
permutation test using random permutation indicated that the place
relative to the factory has a significant influence on the macro-
invertebrate community (p < 0.05). Random permutation takesthe
samplesasindependent whereasin practicetheremay becorrelaion
of parameter valuesin space (along theriver) and time. When these
aretakeninto account (in asplit-plot design with cyclic permutation
of sitesand of times, (see Ter Bragk and Smilauer 2002) thetatistical
evidence of an effect evaporates (p > 0.40). Note that the lack of
statistica significanceis not solely due to the reduced number of
permutationsin thisadvanced permutational schemeasthe number
yielding different F-ratiosis till over 1500.

The example shows that partial ordination enables the researcher
to exclude apart of the variance that isnot of interest. It allowsthe
researcher to yield an optimal summary of structures in the
remaining variation and relate this structure to nominal and
measured explanatory variables smultaneoudly.

CORRELATION TRIPLOT, SUPPLEMENTARY
EXPLANATORY VARIABLES AND FORWARD
SELECTION: THE TOXICITY EXAMPLE

Deneer et al. (1987; 1989) performed toxicity tests with an alga
(Chlorella pyrenoidosa), crustacean (Daphnia magna), fish
(Poecilia reticulata) and a bacterium (Photobacterium
phosphoreum) with 13 mono-nitro compounds together with a
bioconcentration experiment with the fish (Table 2). The goal of
these experiments was to relate the toxicity of mono-nitro
compounds to two physico-chemical parameters of these
compounds, ie. to determine a Quantitative Structure — Activity
Relationship (QSAR). The two parameters were the log(K )
(octanol-water partitioning coefficient) and Hammett ¢ constants
(ameasurefor thereactivity of thecompound, for itstransformation
into the active n-hydroxy form). The toxicity was expressed by
eight variables (EC50-, LC50- and/or LOEC-values for the test
speciesand aBCF vauefor thefish). A PCA analysiswasperformed
in which the compounds play the role of samples, the toxicity
measures the role of species and the two physico-chemical
parameters the role of supplementary explanatory variables (see
background section). All toxicity and BCF values were In-
transformed and centred and standardised (giving mean = 0 and
SD =1 for each variable) within Canoco for Windows, and the
scaling isfocussed on variables, yielding acorrelation bi- or tripl ot.
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Figure 6. PCA correlation triplot showing the relation between different mono-nitro compounds and their laboratory toxicity to several aquatic organisms
and BCF for Guppy. Also the relation between two physical parameters and the toxicity is indicated. Of all variation in toxicity, 71% is explained by these
two parameters, of which 89% is displayed on the first axis, another 10% on the second one. Of all variance, 73% is displayed on the first axis, another 15%
on the second one. Both physical parameters explain a significant part of the variation in toxicity between the compounds (p < 0.05, Monte Carlo

permutation test).

Standardisation treats all variables equally important regardless of
their variability inthedata. InaPCA analysiswithout standardising
theendpoint with thelargest variability wouldinfluencetheandyssmog.

Thetriplot (Figure6) showsthat dl toxicity va ues, except the EC50
of Ph. phosphoreum, have a high positive correlation with each
other and, asexpected, anegative onewith the BCF of thefish. The
log(K,,) parameter has, as expected, a high positive correlation
with BCF and herewith a negative one with most toxicity values.
Also the Hammett o constants have a negative correlation with all
toxicity values except for Ph. phosphoreum; a high Hammett o
constant is associated with a low toxicity value (eg. alow EC50)
and therefore a high toxicity. The different placement of Ph.
phosphoreum might indicate that mono-nitro compounds do not
only have an anaesthetic mode of action to this bacterium. The
toxicity of mono-nitro compounds towards fish, D. magna and C.
pyrenoidosa is somewhat higher than expected for compounds
acting solely though an anaesthetic mode of action. This excess
toxicity isprobably caused by theformation of reactive N-hydroxy
metabolites. The rate of transformation of these metabolites is
probably related to the Hammett ¢ constant, which explains the
significance of thisvariable. For acomplete evaluation of thisdata
et (and more), the reader isreferred to Deneer et al. (1987; 1989).
Together the two parameters explain 71% of the total variancein
toxicity and BCF val ues between the compounds, of which99%is
displayed inthetriplot.

148

Within Canoco, forward selection can be used for the ranking of
theexplanatory variablesinimportancefor determining the species
data. In this way a large set of environmenta variables can be
reduced to a meaningful small one. When forward selection in
combination with Monte Carl o permutation testsisperformed under
the RDA option, first log(K ) is added to the mode!, explaining a
significant 61% of thetotda variance (p < 0.05). After theinclusion
of log(K,,), the Hammett o constant is added to the model
explaining another significant 10% of thetotal variance (p < 0.05).
Since the Hammett ¢ constant alone explains 31% of the total
variance, both parameters share 21% of the total variance. So for
this example both log(K ) and the Hammett o constant explain a
significant part of the toxicity and BCF values, although the two
parameters share a large part of explained variance. Forward
selection is an important technique to limit the number of
explanatory variablesto aset that best explainsthe variation in the
species community (here being toxicity and BCF values). One
should be aware of two problems (L egendre and Legendre 1998).
Firg, thetypel errorisfar greater thanthenominal 5%level, because
forward selection involves multipletesting, Bonferroni adjustment
of the significance level may be useful. Second, forward selection
may lead to other results than stepwise selection or backward
elimination of explanatory variables; there is thus no guarantee
that forward selection findsthe best modd . Despitethese problems,
forward selection of explanatory variables has great data-analytic
utility.
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PRC ON A DESIGNED EXPERIMENT: THE
FUNGICIDE EXAMPLE

Principal Response Curves is a relatively new technique that is
designed for the analysisof microcosm and mesocosm experiments
(Van den Brink and Ter Bragk 1999). It was first applied to the
results of ecotoxicological experiments evaluating the effects of
pesticideson freshwater ecosystems (eg. Van den Brink et al. 2000)
but applicationsto terrestrial ecosystems (eg. Smit et al. 2002) and
the analysis of ecological field experiments (eg. Frampton et al.
2001) followed rapidly. The Principa Response Curves method
was developed to overcome very cluttered biplots when the
information of many sampling dates and many treatments is
displayed in one diagram and time is not expressed as a single
direction in the biplot (see Kersting and Van den Brink 1997 asan
example). In this section the application of PRC and the
interpretation of first and second PRC diagrams will be discussed
using an experiment described in Cuppen et al. (2000) and Van den
Brink et al. (2000).

The semi-field experiment for the evaluation of chronic exposure
to carbendazim consisted of indoor microcosms (1 m®), which
represented macrophyte-dominated drainage ditches. The systems
weretreated chronically for four weekswith 0, 3.3, 33, 100, 330 or
1000 pg/L carbendazim, with two replicatesper concentration. The
species composition of the phytoplankton, periphyton and
invertebrate communities were monitored in time, together with
chlorophyll-a content, various physico-chemical parameters and
macrophyte biomass. For a more detailed presentation and
evaluation of the results, see Cuppen et al. (2000) and Van den
Brink et al. (2000). In this paper we use the macro-invertebrate
data set, consisting of 86 different taxa, as an example (Table 2).

No consistent NOECs lower than 3.3 ug/L were recorded on the
specieslevel. Direct effectson macro-invertebrates became manifest
following a treatment with 33 pg/L. Severa “worm-like” taxa
belonging to the groups of flatworms, leeches and oligochaete
worms showed altered abundance values, together with two
crustacean taxa. At thistreatment concentration, indirect effectsin
the form of increases of several snal taxa, were also observed,
indicating food-web changes due to increase of food resources of
these species.

The effects of the carbendazim treatment at the macroinvertebrate
community level were analysed by the Principal Response Curves
method (PRC). The PRC method is a multivariate technique
specidly designed for the analysis of data from microcosm and
mesocosm experiments and can be obtained using RDA (Van den
Brink and Ter Braak 1998; 1999). The mode for the first PRC is:

yd(j)tk = yOtk + bk C(n + Ed(i)tk,

wherey -~ isthelog-abundance of specieskin replicate microcosm
j of treatment d at timet, y,, isthe mean log-abundance of species
kinweek tinthecontrol (d = 0), ¢, isthe score of thed™ trestment
attimet, b _istheweight of thek™ species, and & etk isanerror term
with mean zero and variance ¢,2. Note that by definitionc, = 0 for
every t. The modd is fitted to data by an RDA, using hominal
variables denoting sampling date as covariables and the product of
sampling date and treatment levelsasnominal explanatory variables.
This RDA yields least-squares estimates of the treatment scores
{c,} and species weights {b}. See Van den Brink and Ter Brask
(1998) and Ter Braak and 8milauer (2002) for details.

PRC results in a diagram showing the sampling weeks on the
x-axisand thefirgt Principal Component of the variance explained
by treatment on the y-axis (see c, values in Figure 7A for an
example). This yields a diagram showing the deviations, in time,
of treatments compared to controls. For instance, Figure 7A
indicates that for the period after the start of the treatment, the
greatest deviations from the controls occurred at the two highest
treatment concentrations, while smaller deviations were found at
the intermediate treatment concentrations. It also indicates minor
differences relative to the controls at the lower treatment
concentrations. The species wei ghts shown on the right side of the
diagram can be interpreted as the weight of each species for the
responsegiveninthediagram. Thus, theflatworm Dugesiatigrina,
which has the highest weight in the diagram, is shown to have
decreased most at the higher trestment concentrations. Thenegative
weight of the snail Lymnaea juvenilein the diagram indicates that
its numbers increased at the higher treatment concentrations. In
quantitative terms, multiplying the weight b, of species k by the
regression coefficient ¢, of atreatment d at a particular sampling
datet yiddsthefitted change on alog-scale of this speciesrelative
to the controls. In terms of abundance, taking the exponential of
thisquotient yieldstherelative abundance compared to the controls.
For instance, the relative abundance of Dugesia tigrina indicated
by the first PRC (Figure 7A) for the microcosms with the highest
treatment concentration in week 3 is exp(4.14*-1.25) = 0.57% of
the abundance in the controls.

Figure7A showsthefirst PRC, expressing themost dominant effects
of carbendazim on the composition of the macro-invertebrate data
set. It shows clear deviations from the control for the four highest
treatments concentrations (33 pg/L and higher). Between the
treatment concentrations a clear dose-response was present, the
higher the treatment concentrations the larger the deviations from
the control. No indication of recovery was demonstrated. For all
post trestment sampling datesasignificant influence of thetreatment
regime as awholewasfound (p < 0.05). Thiswas tested by Monte
Carlo permutation performed for each sampling date using In-
transformed treatment levels. For the sampling dates 1, 5, 7 and 9
post start of thetreatmentaNOEC y of 3.3 ug/L wascalculated
(Williams ANOVA test applied on first principal component, see
Van den Brink et al. 1996 for more details). Monte Carlo
permutation tests permuting whole time series indicated that the
first PRC diagram displayed a significant part of the treatment
variance (p < 0.05, seeVan den Brink and Ter Braak 1999 for more
details). The second PRC aso displayed a significant part of the
treatment variance, the third did not. This means that no single
dose-responsetypeispresent inthedataset but several sub-dominant
ones. The mode for two PRC componentsis:

yd(j)tk = y01k + bkl Cd11 + bk2 Cd12 + Ed(i)tk,

where the scores { ¢, }[t = 1...T] represent the first principal
response curve (PRC) for treatment d, ie. course of treatment d in
time relative to the controls, the scores{c,} [t = 1...T] represent
the second principal response curvefor treatment d, b, istheweight

of speciesk on thefirst PRC, and b, is the weight of speciesk on
the second PRC.

The second PRC is shown in Figure 7B and displays the most
important deviations from the first PRC present in the data set. It
shows relatively large deviations from the control for the 33 and
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Figure 7. First (A) and second (B) Principal Response Curves indicating the effects of the fungicide carbendazim on the macro-invertebrate community. Of
all variance, 30% could be attributed to sampling date; this is displayed on the horizontal axis. Forty-nine percent of all variance could be attributed to
treatment, the remaining variance (21%) is between replicate variation. Of the treatment variance, 44% is displayed on the vertical axis of the first PRC (A),
and another 17% on the vertical axis of the second PRC (B). The lines represent the course of the treatment levels in time. The species weight (b,) can be
interpreted as the affinity of the taxon with the Principal Response Curves (c,,). Taxa with a species weight between 0.5 and -0.5 are not shown for clarity.
The treatment explained a significant part of the total variance, of which also a significant part is displayed in the first and second PRC (p < 0.05, Monte
Carlo permutation test with permuting whole time series only). The third PRC did not display a significant part of the treatment variance and is thus not
shown (p > 0.05).
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100 pg/L treatment concentrations. The second PRC thus
differentiates between taxa showing aresponse at the four highest
treatment concentrations and those showing a response a the two
highest treatment concentrationsonly. For instance, Dugesiatigrina
has a positive weight with both diagrams. When both diagrams are
consderedintheinterpretation, theindicated responsefor thistaxon
isasum of both diagrams, in which the diagrams are weighted by
the speciesscoresof D. tigrina (Van den Brink and Ter Braak 1998).
Thisindicates that this taxon suffered more severely from the 33
and 100 pg/L carbendazim treatment than was indicated by the
first PRC diagram aone (Figure 8, see Cuppen et al. 2000 for its
real response). On the other hand Stylaria lacustris has a positive
weight with thefirst and anegative weight with the second diagram.
To deduce the indicated response of this taxon from the two PRC
diagrams one has to subtract the second PRC from the first PRC
diagram. Theresult of thissubtraction indicatesthat thistaxon only
suffered from the carbendazim treatment in the two highest
treatment concentrations (Figure 8). By doing so al taxa can be
grouped on the basis of the shape of their response to the
carbendazim treatment (see Figure8for agraphical representation).
For ingtance, al taxawith a positive response with both diagrams
(eg. Dugesialugubris, Dugesiatigrina, Pisidiidae) areindicated to
have decreased in al but thelowest treatment levels; al taxawitha
positive weight with the first PRC and a small weight with the
second one (eg. Gammarus juvenile, Gammarus pulex and Dero
sp.) are indicated to have strongly decreased in the two higher
treatment concentrations and only moderately in the intermediate
ones,; and al taxa having a positive weight with the first and a
negative one with the second PRC (eg. Stylaria lacustris,
Potamopyrgus antipodarum, Bithynia tentaculata and Proasellus
meridianus) are only indicated to show effects for the two highest
treatment concentrations. This grouping can be done for all
combination of weights (Van den Brink and Ter Bragk 1998). This
example shows that PRC is able to show the response of awhole
community into an easy to read diagram (Figure 7A), its outcome
isrepresentative for the most s;ensitivespec:ies(NOECO(mumy =33
Mg/L), it can easily be combined with multivariate statistical testing
(eg. Monte Carlo permutation test), and it is able to summarise
very diverse response patterns when the second PRC is al so taken
into account.

PRC ON MONITORING DATA: THE SEWAGE
TREATMENT PLANT EXAMPLE

PRC has only been applied to experimental data except in astudy
by Leonard et al. (2000). Leonard et al. (2000) took samples at
several sampling dates a severa sites of ariver, some of which
were influenced by endosulfan exposure. The non-exposed sites
served as the undosed control, to which the endosulfan influenced
sampleswere contrasted. Inthisway theexperimenta design needed
for PRC (treatment and control) was imposed on the monitoring
data.

Often, however, no undosed control is present, but areference site
can be assigned within themonitoring scheme. In thissection, PRC
will be applied to a monitoring data set is which a reference is
assigned. Coad (2001) measured several physico-chemical
parameters weekly at five sites: 1) 300 m upstream of a sewage
treatment plant (STP) outlet, 2) 100 m upstream of the STP outl e,
3) inthe STP outlet 4) 100 m downstream of the STP outlet and 5)
1 km downstream of the STP outlet (Table 2). The upstream part of

the river (sites 1 and 2) was located in an urban area In total 795
samplingswere performed at thefive Sitesin the period 1994 through
2002 to evaluate the performance of the STP. All details are
described in Coad (2001). It is clear when this data set is analysed
with PCA or RDA and itsresults are displayed in a biplot, avery
cluttered and crowded diagram would be the result of the presence
of many samples. Figure 9 shows the results of the PRC analysis
using sampling month as covariable and the product of sampling
month and site as explanatory variables. Site 3 (the outlet of the
STP) was used as the reference because it has the most complete
time-series. Figure9indicatesthelargest differencesfromthe STP
outlet for the two upstream sites. For these sites, compared to the
outlet, lower levels of NOX, total nitrogen, conductivity, sdinity,
total phosphorusand temperature areindicated together with higher
levels of turbidity and faecal coliforms. For the two downstream
sites smaller differences are indicated, but in the same direction.
From the PRC andysisit isclear that the outlet of the STP lead to
an increase of concentrations of nitrogen and phosphorus,
temperature and associated measures as conductivity and sdinity
intheriver. After the outlet, values of these parametersdecreasein
the downstream sites, but not as low as in the upstream sites. The
STPseemsvery successful in reducing faecal coliforms, their level
is even lower in the outlet compared to the upstream sites which
are dightly contaminated due to urbanisation. No trend intimeis
apparent, indicated differences are rlatively stable in time with a
few outliers. Thisexample showsthat PRC can also be used for the
eva uation of (bio)monitoring data, even when no apparent control
ispresent. PRC resultsinan easy tointerpret overview of differences,
even when the sites are sampled very often, because it displays
timein asingle direction in the diagram.

DISCUSSION

Inthe ecotoxicological literature, Canonica VariateAnalysis(CVA
also called Discriminant Analysis, DA) is often used to eucidate
which combination of variablesdiscriminate best between different
treatment groups. Technically, CCA (Table 1) is a generalisation
of CVA. To obtain aCVA through CCA, variables denoting groups
areintroduced as“ species’ dataand characteristics of these groups
(eg. contaminant data) as “explanatory” variables (Ter Braak and
Smilauer 2002). Bernet et al. (2001) used CVA to ducidate which
fish-serum parameters explained the differences between control
and sewage impacted sites. Their ordination diagram shows the
size of group differences. The diagram could have been more
informativeif arrowsfor thefish-serum parameters had been added
to the diagram, asthe resulting biplot would alow oneto interpret
the group differencesin termsof thefish-serum parameters. Aptula
et al. (2002) used CVA in quite a different context. They tried to
explain the differences in a priori assigned mechanisms of toxic
mode of action on the basis of their molecular descriptors. This
analysis results in a Canonical Discriminant Function (CDF) in
which the explanatory variables are weighted on the basis of their
ability to predict the classification the best. It is interesting to
comparethese uses of CVA with the methods we discussed. In our
penguin and Leces examples (RDA and CCA) the characteritics
(biological or chemical “ species’) aretheresponsesto beexplained
by groups, anominal explanatory variable (eg. denoting period or
placerdativeto the factory). Asmentioned above, in CVA itisthe
other way round. Because characterigticsare explanatory variables
in CVA, CVA is hampered by multicollinearity among the
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Figure 9. Principal Response Curves indicating the effects of the outlet of a sewage treatment plant on some monthly averages of physico-chemical
characteristics of a river. Of all variance, 24% could be attributed to between month variation; this is displayed on the horizontal axis. Fifty-seven percent
of all variance could be allocated to between site differences, the remaining 19% to within month variation. Of the between site variation, 58% is displayed
on the vertical axis. The lines represent the course of the sites in time with respect to the outlet. The weight of the physico-chemical variables (b,) can be
interpreted as the affinity of the variables with the Principal Response Curves (c,,).

characterigtics, in particular when the number of characteristicsis
greater than or of the same order of magnitude as the number of
samples (Ter Braak 1995). For this reason, users of CVA apply
stepwi se sel ection methodsto reducethe number of characteristics.
Thiswas not needed in our examples.

Which method is the method of choice in aparticular application,
will naturally depends on the research question. In many QSAR
studies multivariate Partial Least Squares is used (PLS2; eg.
Eriksson et al. 2000; Drew et al. 1999). PLS2 is similar to RDA,
but differs in that PLS2 guards automatically against
multicollinearity among the explanatory variables whereas RDA
does not (see Ter Braak and De Jong 1998 where RDA is termed
reduced rank regression, and Ter Braak and Verdonschot 1995). In
RDA the problem of multicollinearity (when there are many
explanatory variables) would be tackled by forward selection of
variables(c.f. CVA above). No other applicationsof CA and related
methods could be found. The reason for the low use of CA and
related methods in ecotoxicology could be that the researcher is
interested inlogistic dose-response el ati onshi ps between astressor
and the absolute abundance of species, which is better modelled

by PCA and derived methods than CA (Van den Brink and Ter
Braak 1997). We notethat thelogistic version of RDA can befitted
to presence/absence (1/0) species data by the recent RR-VGLM
software of Yee and Hastie (2003).

In the ecotoxicological literature we found many applications of
PCA tolink biological data(eg. benthic communities) to chemical
composition of the habitat (eg. sediment). Some of them use
ordination diagrams for the presentations of the results of the
analyses (Vogt 1990; Berggrena et al. 1999; Carr et al. 2000,
DelValls et al. 1998, Pedersen et al. 1999), but sometimes only
tables with the site and species scores of the different principa
components are provided (Riba et al. 2002; DelValls et al. 2002;
Boludaet al. 2002). The reason for this could be that one wantsto
consider more than two principal components. It must be stated
that when using biplotsoften only thefirst two principa components
are taken into consideration without stating reasons why the third
is not. It is recommended to use biplots because (cor)relations
between species and sites stand out more in biplots than in tables.
Neverthe essaproper reasoning must be provided why asucceeding
axisis not taken into consideration.
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Wea so found many applicationsof Non-metric Multi-Dimensional
Scaling (NMDS) in the ecotoxicologica literature. The main
difference between PCA and NMDS isthat PCA usesthe original
“gpecies by sample’ matrix to extract principa components based
on Euclidean distance measure, whereassNM DS estimated distances
between samplesout of aderived “ sampleby sample’” matrix. This
“sampleby sample’ matrix isobtained by transforming the origina
“gpeciesby sample’ matrix using a(dis)similarity measure. NMDS
thushasthe advantage over PCA that itisnot restricted to Euclidean
distancemeasure but any (dis)similarity measure can be used, which
can also relax the requirement of normality of data. Another
advantageisthat NMDS can better deal with missing data because
the (dis)similarity between samples can be calculated from the
measured variables only, whereas PCA needs acomplete “ species
by sample” matrix. On the other hand, the fact that PCA usesthe
original “species by sample” matrix has some advantages.
Kraufvelin (1999) for instance uses NMDSto visualise variability
in mesocosms within and between years and compare them with
natural systems. He shows many NMDS diagrams, but because a
“sample by sampl€e’” matrix is used for the analysis, only samples
can be displayed in the diagram, adirect interpretation back to the
specieslevel isnot possible (but see the SIMPER procedure for an
indirect interpretation; Clarke 1999). Because NM DS does not use
the original matrix also an evaluation in terms of displayed
percentage variance (eigenvalues) is not possible. This becomes
particularly important if replicated, designed experiments are
evaluated. Kreutzweiser et al. (2002) evaluated a mesocosm
experiment studying the effects of aninsecticide on the zooplankton
community with the use of NMDS. Because NM DS does not have
aconstrained counterpart al data are averaged per treatment level
before analysis. This has the disadvantage that the experiment can
not be evaluated intermsof partitioning thetotal varianceinto parts
explained by sampling date, treatment and variation between
replicates, which is possible when using the constrained form of
PCA, RDA or even PRC (seefungicide example). Another obvious
difference between PRC and the Kreutzweiser et al. paper is that
whenusing PRC, timeisdisplayed asasingledirectioninthe PRC
diagram, whereasin Kreutzweiser et al (2002) the time trgjectory
is quite non-linear, which hampers an easy interpretation of
community effects. An example of the difficulty of linking species
with explanatory variables using NMDS is given by Pedersen et
al. (1999). They studied the effect of a copper gradient on a
microarthropod field community and analysed their data using
NMDS. In the NMDS they superimposed the copper and humus
concentrations on the sites like we did in the PCA of the penguin
example (Figure 1). Because the information of the explanatory
variables (in this example copper and humus) is superimposed
afterwards, their correlation and relation with the arthropod
community is not optimally displayed; a direct or constrained
analysis would overcome this problem.

Remarkably, all these papersuseavery indirect way to connect the
degree of contamination with the dataon communitiesonthe same
sites. Whereas most authors analyse the chemical and biological
data sets separately and only link them quditatively by combining
the results visualy (e.g. DelValls 1998) some authors use more
quantitative approaches. Vogt (1990) for instance reduced the
chemical data set to three principal components using PCA and
reduced the biological data set to one dimension using a diversity
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measure. After thisthe principal componentsare usedin Polynomial
Principal Component Regression (PPCR) analysis to construct a
moded that predictsthe species diversity the best. Carr et al. (2000)
uses asimilar approach. They reduced the biologicd, toxicity and
physico-chemical dataset gathered on the same sitesto two principal
components using PCA. After that they performed a regression
and correlation analysis on the principal components of the three
data sets to evaluate relations between the three. The approaches
discussed above have the disadvantagethat theindividual variables
may be partitioned over more than three principal components. If
thisisthe case, information of interest isleft out of the correlation
analysis following the PCA analyses. A more direct way of
combining thesedatasetsisusing the origina speciesby sitematrix
as species data and the contaminant by site matrix as explanatory
variables in a constrained analysis like is done in the “penguin”
and “Leces’ example. Inthisway oneis able to focus on that part
of the variance that is of interest, namely that part that is captured
by the explanatory variables. When combined with Forward
Sdlection ameaningful set of contaminant variables can beretained
and their relation with the biological data displayed in a triplot.
Also their significance can be obtained using Monte Carlo
permutation tests.

Wealso liketo mention recent progressto generalize RDA to other
than Euclidean distance measures. First, Legendre and Gallagher
(2001) provide severd transformations of the species datathat are
useful in ecological ordination. The transformations are chosen in
such a way that the Euclidean distance between samples after
transformationisidentical to (for example) their Hellinger distance
before transformation. Secondly, the lack of aconstrained form of
NMDS has led to distance-based redundancy analysis (db-RDA,;
Legendreand Anderson 1999). The essential ideaissimple: choose
an appropriate (dis)similarity measure, calculate a principal
coordinate analysis (metric multidimensional scaling) on the
sample-by-sample matrix of (dis)similarities and use the resulting
componentsasresponse variablesin an RDA instead of theoriginal
species data matrix. This approach, which alows Monte Carlo
permutation testing, is made available in Canoco 4.5 (Ter Braak
and Smilauer 2002). McArdle and Anderson (2001) and Anderson
(2001) show how to avoid theinitia principal coordinate analysis;
their gpproach to db-RDA worksdirectly onthedissimilarity matrix.

From the above it is clear that multivariate analysisin general and
ordination is particular, may be of great value for the field of
ecotoxicology. The methods are, however, not used routinely
athough the development of software (eg. Canoco for Windows,
PRIMER, ADE-4 and PC-ORD) facilitates their implementation
into ecotoxicology. The potential of multivariate techniquesis not
yet exploited to the full because of their relative complexity and
steeplearning curve. To obtain afull expl oitation we need education,
guidancefor use, and communication between ecotoxicologistsand
statiticians.
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