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INTRODUCTION
To study the influence of abiotic environmental variables on the
biotic composition of ecosystems, multivariate techniques have been
used for many years in ecology (Legendre and Legendre 1998).
Dissimilarities in community composition between sampled sites
are analysed and the differences detected are related to measured
or observed variables such as pH, habitat quality and dissolved
oxygen. In particular ordination has proved to be a very useful
technique for this purpose because it results in a diagram (biplot or
triplot) displaying both the sites and the species and, if measured,
the environmental variables in a reduced space (Ter Braak 1995).
It therefore enables the researcher to evaluate differences in species
composition between sites and to identify the environmental
variables responsible for these differences in a single analysis. This
property of ordination is the main advantage over other multivariate
techniques such as, for instance, clustering and similarity analysis.

In ecotoxicology, multivariate analyses have been used in recent
years to display differences in community composition among
treatments or sites and to relate these differences to imposed
chemical treatment or measured chemical stress (see for instance,
Van Wijngaarden et al. 1995; Shaw and Manning 1996; Sparks et
al. 1999; Kedwards et al. 1999a, b). The multivariate analysis of
designed experiments with artificial ecosystems (microcosms and
mesocosms) became more informative by the new ordination
technique Principal Response Curves (Van den Brink and Ter Braak
1999). The use of multivariate analysis, however, is not widely
accepted yet in ecotoxicology (Maund et al. 1999). In this paper
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we try to demonstrate that multivariate techniques can be valuable
in the analysis of a variety of ecotoxicological data. In this paper
we will restrict ourselves to ordination techniques that operate on
the original data set for its analysis and thus allow a direct
interpretation in terms of the original variables, in most cases species
(Ter Braak 1994 1995). These techniques are more direct than
techniques that operate on (dis)similarity indices (eg. similarity
analysis, clustering and multidimensional scaling). The techniques
used in this paper and those based on (dis)similarity indices will be
compared in the discussion section. Ordination techniques are
capable of summarising very complex responses because they are
not restricted to a single dimension (as for instance (dis)similarity
analysis). When combined with Monte Carlo permutation testing
not only is a graphical summary of the structure present in the data
set obtained, but also the statistical significance of hypothesised
differences (Ter Braak and smilauer 2002). This paper will present
the analysis of five example data sets to illustrate the value of
multivariate methods for the analysis of ecotoxicological data. We
go beyond the traditional example in which a sample by species
matrix is compared with a sample by environmental/explanatory
variables matrix. In our examples, toxicity values, contaminant
concentrations and physico-chemical parameters play the part of
the species; and time, geographical position, chemical treatment
and molecule characteristics play the part of explanatory variables.
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BACKGROUND OF ORDINATION
Scientific investigation does not always allow the collection of
species and environmental data simultaneously, often only species
data is gathered to monitor changes in time. The data gathered can
be comprised of samples containing either chemical or biological
species or both. Ordination is able to express differences in species
composition between samples without the use of measured
environmental or explanatory variables. In such an analysis,
ordination constructs imaginary, latent explanatory variables which
maximise the variation in species composition between sites, ie.
which best represent the underlying structure in the data set (Ter
Braak 1995). The first latent variable is constructed in such a way
that it explains the largest part of the total variance, the second one
the largest part of the remaining variance etc. The first two latent
variables are normally used to construct an ordination diagram of
which they form the axes. Samples and species are represented in
the diagram by points (or arrows) plotted at the scores (values)
they have on the latent variables (see for instance Figure 1). Samples
with nearly identical species composition lie close together in the
diagram, while samples that lie far apart have very different species
composition. In biplots, arrows (for species or environmental
variables) point in the direction of higher values. In the example
section a precise interpretation of ordination diagrams will be given.

When explanatory variables are measured, they can be included in
the analysis in two ways. First, the explanatory variables can be
laid over the ordination diagram using their values at the different

sites. After the ordination analysis of the species by sample matrix
they are simply regressed upon the latent variables. This analysis is
called an indirect or unconstrained analysis with supplementary
explanatory variables, ie. the explanatory variables do not play an
active role within the analysis. The analysis can also be constrained
to the part of the variance that is captured by the explanatory
variables. The analysis is performed using this explained variance
only, and the latent variables constructed are a linear combination
of the measured explanatory variables. This analysis is called a
direct or constrained analysis. The row entries of Table 1 summarise
the distinction between unconstrained and constrained analysis.

Sometimes the effects of some explanatory variables can a priori
be expected but one is not interested in the effects of these variables.
On the one hand, these variables are important leading factors
influencing the data set, on the other hand one does not want these
variables to dominate the analysis. The variance explained by such
variables can be excluded from the analysis. The resulting analysis
is called a partial ordination or an ordination with covariables.
Covariables can be used in both unconstrained and constrained
ordination.

We discuss two groups of methods: methods based on Principal
Component Analysis (PCA) and methods based on Correspondence
Analysis (CA). PCA is based on a linear response model relating
species and environmental variables, whereas CA can be derived
from a unimodal response model (column entries of Table 1). In
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Figure 1. PCA biplot, with focus on samples, showing the absolute differences in concentrations of PCB congeners in the different penguin blood
samples. The different numbers refer to the different PCB congeners, eg. the number 177 refers to the PCB177 congener. Of all the variation in concentration
of PCB congeners, 55% is displayed on the first axis, and another 12% on the second one. For clarity samples taken at period 1, 2 and 3 are represented
by different symbols.



143

AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY

ecology mainly CA is used because it fits the concept of niche-
space partitioning with species rising and falling along an ecological
gradient (Ter Braak 1995). In this model each species can be
characterised by its position (optimum or centre) along the gradient.
This position is estimated in CA by weighted averaging, whereas
the score of a species in PCA is estimated by linear regression,
which in the case of PCA simplifies to a weighted summation (Table
1; Ter Braak 1995; Legendre and Legendre 1998). The linearity of
PCA must not be misinterpreted, as PCA is well able to show non-
linear patterns (eg. Figure 1). Sometimes the sampled sites represent
only a small part of this ecological gradient, eg. when only sites
with a pH value between 7.0 and 7.5 are sampled. In these cases a
linear model is used because it describes the rise (or fall) along a
short gradient better than a unimodal one. In ecotoxicology it may
be expected that a species normally does not have an optimum
along the gradient of a stressor. Therefore attempts to use
multivariate techniques in ecotoxicology mainly focussed on linear
methods (Van Wijngaarden et al. 1995; Kedwards et al. 1999a and b).

The choice to either use PCA or CA can be based on two
characteristics, the length of gradient present in the data set and the
type of data gathered. The length of gradient is a measure for the
degree of unimodality of a latent variable (ordination axis). If a
length of gradient of the latent variable is short, PCA is the model
to choose, and when it is long CA is best (Table 1). This length of
gradient can be calculated using Detrended Correspondence
Analysis (DCA), a method we will not discuss in this paper because
of its limited use for ecotoxicology. For a description and the
background of the DCA method is referred to Ter Braak (1995). A
general rule of thumb is that when the length of gradient is longer
than 4 Standard Deviations (SD), the species data clearly show a
unimodal response along the latent variable and CA is preferred.
Another difference between CA and PCA is that CA models relative
abundance instead of the absolute abundance, which is modelled
using PCA (Ter Braak and smilauer 2002). The methods we discuss
are cross-classified in Table 1.

INDIRECT AND DIRECT ORDINATION: THE PENGUIN
EXAMPLE (1)
The dynamics of the concentrations of PCB congeners in the blood
of Adélie penguins were studied during the breeding season
(Table 2). From 15 birds, blood samples were collected during three
periods: 1) egg laying period, a period prior to breeding in which
the birds starve for a prolonged period on the nest; 2) egg-hatching
period in which parental birds takes shifts on the nest while the
other goes out to sea foraging and 3) the crèche-stage when chicks
are left by the parents, although each parent returns regularly to
feed the chicks (Van den Brink et al. 1998). This resulted in 45
blood samples (15 individuals times 3 periods) which were analysed
for concentrations of 30 different PCB congeners by GC-electron
capture detection (ECD). All procedures and the univariate
evaluation of the data are described in detail by Van den Brink et
al. (1998). The concentrations were ln-transformed before analysis.
All multivariate analyses in this paper were carried out using the
Canoco for Windows package, version 4.5 (Ter Braak and smilauer
2002). In Canoco, one can choose between predominantly
interpreting relationships among samples or among species from
the ordination diagram. In our case scaling was focussed on inter-
sample distances because differences between periods were of
interest, for all other questions the default options were chosen.

Since the length of gradient of the data set was very short (0.6 SD),
the data are analysed by PCA. Figure 1 shows the ordination diagram
resulting from the PCA analysis of the 45 samples by 30 PCB
species matrix. In this diagram, the blood samples are represented
by squares and species (different PCB congeners) by circles. (In a
linear biplot, species could be represented by arrows by connecting
the points with the origin, but because many species are analysed
simultaneously this would have resulted in a cluttered biplot.) Figure
2 gives an example of the interpretation of linear biplots. In Figure
2 the circle denoting the species point for the grouped congener
species 138/163/164 is enlarged a bit and not filled for clarity. For
the interpretation a help line is drawn through this species point
and the origin of the plot. When all sample points are projected
perpendicularly onto this line, as is shown for a few samples as an
example in Figure 2, the fitted concentration of the PCB congener
can easily be ordered from high to low. Sample A has the highest
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fitted concentration, sample B the next highest fitted concentration
and so on for the samples C, D, E, F and G (Figure 2). Low fitted
concentrations occur at the opposite end of the line (samples X, Y
and Z), with the lowest concentration in sample Z. The distance
between the species point and the origin of the diagram is a relative
measure for the magnitude of the differences in concentrations
between the samples, as indicated by the biplot. Thus, the further
away the species point is from the origin, the larger the differences
in PCB concentrations between the samples, as indicated by the
biplot, are.

The diagram can be evaluated in terms of the percentage variance
displayed. The first principal component (latent variable, ie.
horizontal axis of the biplot) displays 55% of the total variance in
concentrations of PCB congeners between the samples, the second
one (vertical axis) 12% (Figure 1), so together the axes display
67% of the variance. The third axis explained only 8% of the total
variation, and is therefore left out of consideration. Hence by
applying PCA the “species by sample” matrix is reduced from 30

(species) dimensions into 2 dimensions, retaining three-quarters
of its variance. Most PCB congeners are placed on the right side of
the origin of Figure 1, which shows that the concentrations of most
congeners are somewhat collinear with each other. The
concentrations tend to be high in samples placed on the right side
of the origin and low in those placed on the left side. Figure 1 also
shows differences between periods. Samples taken in period 1 are
placed somewhat at the right side of the diagram, those taken in
period 2 to the left-down and those taken in period 3 left-upper part
of the diagram. This arrangement indicates that concentrations of
most PCB congeners were generally higher in the samples taken in
period 1 compared to those taken in periods 2 and 3. The
concentrations of PCB congeners placed in the right-upper quadrant
had especially low concentrations in samples taken in period 2,
while those placed in the right-down quadrant are indicated to have
the lowest concentrations in samples taken in period 3.
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Figure 2. PCA biplot, with focus on samples, that shows an example on how to interpret biplot ordination diagrams. The numbers refer to the different
PCB congeners, ie. the 138/163/164 point represents the summated levels of the congeners PCB138, PCB163 and PCB164. The interpretation is only
shown for a few example “sample points” for clarity. For further explanation see text.
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Although Figure 1 indicates differences in concentrations of PCB
congeners among the periods, these differences are not optimally
displayed. This data set contains variation due to differences between
periods, individual penguins and measurement error, although the
latter can not be distinguished from the second because no replicate
samples were taken. The PCA biplot focuses on the differences in
concentrations of PCB congeners between samples. The
information on the period in which a sample was taken is added
post-hoc, ie. after the analysis has been carried out. This is called
indirect or unconstrained ordination. The interpretation of the
indicated differences between samples takes place in an indirect
way, after the analysis has been performed. Redundancy Analysis
(RDA) is the direct form of PCA that enables the researcher to
focus the analysis on that particular part of the variance that is
explained by external explanatory variables (Table 1). In our
example we used three nominal (1/0) variables denoting the period
in which a sample was taken as explanatory variables. The resulting
RDA biplot (Figure 3) focuses on the differences in concentrations
of PCB congeners between periods. For clarity, the samples are
not displayed, their important feature, ie. the period in which they
were sampled, is represented by the placement of the three
explanatory variables denoting the periods. As in the PCA biplot,
higher concentrations of most PCB congeners are indicated for
period 1, the egg-laying period, and lower ones for periods 2 and 3.
This can be explained by the atrophy of the pectoral muscle during
period 1 (Van den Brink et al. 1998). This muscle is a sink of PCBs,
which are released into the blood during atrophy. In period 2 this
muscle recovers due to the foraging in the sea so concentrations of
PCBs go down. In period 3 a part of fat-reserve is consumed but
Van den Brink et al. (1998) argue that this is only a small sink for
PCBs, compared to the large pectoral muscle, so the concentrations
do not change that much during that period. Of the total variance

almost a quarter could be explained by the indicator variables
denoting period (Figure 3). Of this variance the majority is displayed
on the first axis (84%), the remaining part on the second one. RDA
can be followed by Monte Carlo permutation tests to test 1) whether
PCB congener concentrations differ significantly between periods;
2) whether the first axis of the RDA biplot displays a significant
part of the between period variation; and 3) whether differences
between the individual periods are significant. All periods were
tested against each other and all tests resulted in p-values < 0.01.
The results of the PCA and RDA analyses of this data set show that
ordination can provide a clear summary of the underlying structure
of the data set. It also enables the researcher to focus on that part of
the variance that is of interest, in this case the differences between
periods. When constrained ordination is combined with Monte Carlo
permutation tests, one can also test the significance of indicated
differences. The results of the multivariate analyses are comparable
to the univariate one, with the results of multivariate analysis
showing more details for individual congeners.

RDA VERSUS CCA: THE PENGUIN EXAMPLE (2)
As mentioned in the background section, PCA and its constrained
counterpart RDA focus on the absolute differences in ‘species’
abundances (here PCB levels) between the samples, whereas CA
and its constrained counterpart CCA focus on relative differences.
This difference between the two classes of methods is illustrated
by Figures 3 and 4. Figure 4 shows the CCA biplot of the same
data set as Figure 3. The interpretation of the diagram is analogous
to the RDA biplot (since biplot scaling was used, see Ter Braak
and Verdonschot 1995 for details). In the CCA analysis the nominal
variables denoting the periods explained 14% of the total variance,
of which approximately 50% is displayed on the first, horizontal
axis and the remaining part on the second, vertical one. Again, we
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Figure 3. A RDA biplot, with focus on samples (represented by periods), showing the absolute differences in concentrations of PCB congeners between
the different periods. The numbers refer to the different PCB congeners. Of all variation in concentrations of PCB congeners in the penguin blood
samples, 24% was explained by the nominal explanatory variables representing the periods. Of this explained variance, 84% is displayed on the first axis,
the remaining 14% on the second one. For clarity the explanatory variables representing period 1, 2 and 3 are represented by different symbols. Indicated
differences are significant between all periods (p < 0.05, Monte Carlo permutation tests).
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see a separation of the three periods; period 1 and 2 are placed at
the bottom of the diagram, period 3 at the top. We also see that in
this diagram, in contrast to the RDA biplot, not all congeners are
placed on one side of the diagram, but scattered around the origin.
This is a result of the fact that CCA displays proportional, relative
differences. The figure indicates that the relative levels of some
congeners are higher in period 1 and others in period 3. This could
be a result of differences in susceptibility to metabolisation between
the congeners. Compared to period 1, it may be that congeners
most susceptible to metabolisation increased during period 2 due
to feeding (foraging in the sea) and decreased during period 3 due
to metabolisation. The same Monte Carlo permutation tests were
performed as described in the RDA section and again all tests
yielded p-values < 0.05. It is notable that a RDA using centring by
samples and by species on the log-concentrations (ie. a log-ratio
analysis; Aitchison 1990; Ter Braak and smilauer 2002) yielded
almost identical results as the CCA analysis (results not shown).

The results of the RDA and CCA analyses show that ordination
successfully detected both absolute and compositional (or relative)
differences in levels of PCB congeners between the samples taken
in the three periods.

CONTINUOUS AND NOMINAL EXPLANATORY
VARIABLES AND COVARIABLES: THE LECES
EXAMPLE
The Leces data set consists of abundance of macro-invertebrate
species on five locations of the Leces River (East Java, Indonesia,
Table 2). The community was sampled from the riverside three
times between September and November 1991 at each location
using the “kicking method”, together with several physico-chemical
parameters. Sampling station 1 was the most upstream station,
sampling station 5 the most downstream one. Between sampling
station 2 and 3 is a paper mill factory, the effluent of which was
discharged into the river. The macro-invertebrate abundance data
were ln(2x+1) transformed prior to the analysis (see Van den Brink
et al. 2000 for rationale). Since the differences between sampling
dates were not of interest, three nominal variables denoting the
three sampling dates were introduced as covariables, ie. the part of
the variance captured by these variables was excluded from the
analysis. Sampling date explained 14% of the total variance in
abundance values of the macro-invertebrate community between
the samples. The remaining 86% can be attributed to differences
between sites. Figure 5 displays the first two axes of a PCA of this
remaining variation. Figure 5 shows clear differences between sites
1 and 2 on the one side (placed on the left side of the diagram) and
3, 4 and 5 on the other side (right side), suggesting effects of the
effluent of the paper mill factory. For interpretation we also included
nominal variables denoting the five sites, two indicating whether a
sample was taken upstream or downstream of the factory, and the
continuous variables pH, current velocity, conductivity, temperature,
dissolved oxygen, hardness, chemical oxygen demand (COD) and
ammonium concentration. In the resulting biplot, nominal variables
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Figure 4. A CCA biplot, with focus on samples, showing the compositional differences of PCB congeners between the different periods. The numbers
refer to the different PCB congeners. Of all variation in levels of PCB congeners in the penguin blood samples, 14% was explained by the nominal
explanatory variables representing the periods. Of this explained variance, 59% is displayed on the first axis, and the remaining 41% on the second one.
For clarity the explanatory variables representing period 1, 2 and 3 are represented by different symbols. Indicated differences are significant between all
periods (p < 0.05, Monte Carlo permutation tests).
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are represented by points, whereas continuous variables are
represented by arrows. These variables are supplementary as they
do not influence the PCA itself. The biplot (Figure 5) suggests that
most taxa (especially those belonging to Trichoptera, ie.
Psychomyiidae, Hydropsychidae, Polycentropodidae,
Philopotamidae, Rhyacophilidae and Limnephilidae) are negatively
affected by the effluent and that the levels of indicators of pollution
(COD, ammonia, hardness, conductivity) are indicated to have
increased due to the effluent. Carrying out a partial RDA by defining
the supplementary variables as true explanatory variables yielded
exactly the same result as the previous partial PCA. The reason is
that the number of explanatory variables, including covariables, is
larger than the number of samples so that the explanatory variables
do not really constrain the analysis (Ter Braak and smilauer 2002).

To test the statistical significance of the effluent of the mill factory,
we carried out a RDA with factory as the only explanatory variable,
and sampling date as nominal covariable. A Monte Carlo
permutation test using random permutation indicated that the place
relative to the factory has a significant influence on the macro-
invertebrate community (p < 0.05). Random permutation takes the
samples as independent whereas in practice there may be correlation
of parameter values in space (along the river) and time. When these
are taken into account (in a split-plot design with cyclic permutation
of sites and of times, (see Ter Braak and smilauer 2002) the statistical
evidence of an effect evaporates (p > 0.40). Note that the lack of
statistical significance is not solely due to the reduced number of
permutations in this advanced permutational scheme as the number
yielding different F-ratios is still over 1500.

Figure 5. A PCA biplot, with focus on samples, of species composition showing the within-date differences in species composition between samples
taken upstream and downstream of the wastewater outlet in the Leces River. In this analysis, sampling date is defined as covariable and explained 14% of
the total variance in species composition. Of the remaining variance, 41% is displayed on the first axis, and another 15% on the second one. The third axis
(not shown) explained another 11% but was not related to the outlet. Also the relation with the supplementary variables sites and several physico-chemical
parameters is displayed. For clarity the explanatory variables representing upstream and downstream factory are depicted by different symbols than
those representing the different sites.

The example shows that partial ordination enables the researcher
to exclude a part of the variance that is not of interest. It allows the
researcher to yield an optimal summary of structures in the
remaining variation and relate this structure to nominal and
measured explanatory variables simultaneously.

CORRELATION TRIPLOT, SUPPLEMENTARY
EXPLANATORY VARIABLES AND FORWARD
SELECTION: THE TOXICITY EXAMPLE
Deneer et al. (1987; 1989) performed toxicity tests with an alga
(Chlorella pyrenoidosa), crustacean (Daphnia magna), fish
(Poecilia reticulata) and a bacterium (Photobacterium
phosphoreum) with 13 mono-nitro compounds together with a
bioconcentration experiment with the fish (Table 2). The goal of
these experiments was to relate the toxicity of mono-nitro
compounds to two physico-chemical parameters of these
compounds, ie. to determine a Quantitative Structure – Activity
Relationship (QSAR). The two parameters were the log(K

ow
)

(octanol-water partitioning coefficient) and Hammett σ constants
(a measure for the reactivity of the compound, for its transformation
into the active n-hydroxy form). The toxicity was expressed by
eight variables (EC50-, LC50- and/or LOEC-values for the test
species and a BCF value for the fish). A PCA analysis was performed
in which the compounds play the role of samples, the toxicity
measures the role of species and the two physico-chemical
parameters the role of supplementary explanatory variables (see
background section). All toxicity and BCF values were ln-
transformed and centred and standardised (giving mean = 0 and
SD = 1 for each variable) within Canoco for Windows, and the
scaling is focussed on variables, yielding a correlation bi- or triplot.
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Standardisation treats all variables equally important regardless of
their variability in the data. In a PCA analysis without standardising
the endpoint with the largest variability would influence the analysis most.

The triplot (Figure 6) shows that all toxicity values, except the EC50
of Ph. phosphoreum, have a high positive correlation with each
other and, as expected, a negative one with the BCF of the fish. The
log(K

ow
) parameter has, as expected, a high positive correlation

with BCF and herewith a negative one with most toxicity values.
Also the Hammett σ constants have a negative correlation with all
toxicity values except for Ph. phosphoreum; a high Hammett σ
constant is associated with a low toxicity value (eg. a low EC50)
and therefore a high toxicity. The different placement of Ph.
phosphoreum might indicate that mono-nitro compounds do not
only have an anaesthetic mode of action to this bacterium. The
toxicity of mono-nitro compounds towards fish, D. magna and C.
pyrenoidosa is somewhat higher than expected for compounds
acting solely though an anaesthetic mode of action. This excess
toxicity is probably caused by the formation of reactive N-hydroxy
metabolites. The rate of transformation of these metabolites is
probably related to the Hammett σ constant, which explains the
significance of this variable. For a complete evaluation of this data
set (and more), the reader is referred to Deneer et al. (1987; 1989).
Together the two parameters explain 71% of the total variance in
toxicity and BCF values between the compounds, of which 99% is
displayed in the triplot.

Within Canoco, forward selection can be used for the ranking of
the explanatory variables in importance for determining the species
data. In this way a large set of environmental variables can be
reduced to a meaningful small one. When forward selection in
combination with Monte Carlo permutation tests is performed under
the RDA option, first log(K

ow
) is added to the model, explaining a

significant 61% of the total variance (p < 0.05). After the inclusion
of log(K

ow
), the Hammett σ constant is added to the model

explaining another significant 10% of the total variance (p < 0.05).
Since the Hammett σ constant alone explains 31% of the total
variance, both parameters share 21% of the total variance. So for
this example both log(K

ow
) and the Hammett σ constant explain a

significant part of the toxicity and BCF values, although the two
parameters share a large part of explained variance. Forward
selection is an important technique to limit the number of
explanatory variables to a set that best explains the variation in the
species community (here being toxicity and BCF values). One
should be aware of two problems (Legendre and Legendre 1998).
First, the type I error is far greater than the nominal 5% level, because
forward selection involves multiple testing, Bonferroni adjustment
of the significance level may be useful. Second, forward selection
may lead to other results than stepwise selection or backward
elimination of explanatory variables; there is thus no guarantee
that forward selection finds the best model. Despite these problems,
forward selection of explanatory variables has great data-analytic
utility.

Figure 6. PCA correlation triplot showing the relation between different mono-nitro compounds and their laboratory toxicity to several aquatic organisms
and BCF for Guppy. Also the relation between two physical parameters and the toxicity is indicated. Of all variation in toxicity, 71% is explained by these
two parameters, of which 89% is displayed on the first axis, another 10% on the second one. Of all variance, 73% is displayed on the first axis, another 15%
on the second one. Both physical parameters explain a significant part of the variation in toxicity between the compounds (p < 0.05, Monte Carlo
permutation test).
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PRC ON A DESIGNED EXPERIMENT: THE
FUNGICIDE EXAMPLE
Principal Response Curves is a relatively new technique that is
designed for the analysis of microcosm and mesocosm experiments
(Van den Brink and Ter Braak 1999). It was first applied to the
results of ecotoxicological experiments evaluating the effects of
pesticides on freshwater ecosystems (eg. Van den Brink et al. 2000)
but applications to terrestrial ecosystems (eg. Smit et al. 2002) and
the analysis of ecological field experiments (eg. Frampton et al.
2001) followed rapidly. The Principal Response Curves method
was developed to overcome very cluttered biplots when the
information of many sampling dates and many treatments is
displayed in one diagram and time is not expressed as a single
direction in the biplot (see Kersting and Van den Brink 1997 as an
example). In this section the application of PRC and the
interpretation of first and second PRC diagrams will be discussed
using an experiment described in Cuppen et al. (2000) and Van den
Brink et al. (2000).

The semi-field experiment for the evaluation of chronic exposure
to carbendazim consisted of indoor microcosms (1 m3), which
represented macrophyte-dominated drainage ditches. The systems
were treated chronically for four weeks with 0, 3.3, 33, 100, 330 or
1000 µg/L carbendazim, with two replicates per concentration. The
species composition of the phytoplankton, periphyton and
invertebrate communities were monitored in time, together with
chlorophyll-a content, various physico-chemical parameters and
macrophyte biomass. For a more detailed presentation and
evaluation of the results, see Cuppen et al. (2000) and Van den
Brink et al. (2000). In this paper we use the macro-invertebrate
data set, consisting of 86 different taxa, as an example (Table 2).

No consistent NOECs lower than 3.3 µg/L were recorded on the
species level. Direct effects on macro-invertebrates became manifest
following a treatment with 33 µg/L. Several “worm-like” taxa
belonging to the groups of flatworms, leeches and oligochaete
worms showed altered abundance values, together with two
crustacean taxa. At this treatment concentration, indirect effects in
the form of increases of several snail taxa, were also observed,
indicating food-web changes due to increase of food resources of
these species.

The effects of the carbendazim treatment at the macroinvertebrate
community level were analysed by the Principal Response Curves
method (PRC). The PRC method is a multivariate technique
specially designed for the analysis of data from microcosm and
mesocosm experiments and can be obtained using RDA (Van den
Brink and Ter Braak 1998; 1999). The model for the first PRC is:

y
d(j)tk

 = y
0tk

 + b
k
 c

dt
 + ξ

d(j)tk,

where y
d(j)tk

 is the log-abundance of species k in replicate microcosm
j of treatment d at time t, y

0tk
 is the mean log-abundance of species

k in week t in the control (d = 0), c
dt
 is the score of the dth treatment

at time t, b
k
 is the weight of the kth species, and ξ

d(j)tk
 is an error term

with mean zero and variance σ
k
2. Note that by definition c

0t
 = 0 for

every t. The model is fitted to data by an RDA, using nominal
variables denoting sampling date as covariables and the product of
sampling date and treatment levels as nominal explanatory variables.
This RDA yields least-squares estimates of the treatment scores
{c

dt
} and species weights {b

k
}. See Van den Brink and Ter Braak

(1998) and Ter Braak and smilauer (2002) for details.

PRC results in a diagram showing the sampling weeks on the
x-axis and the first Principal Component of the variance explained
by treatment on the y-axis (see c

dt
 values in Figure 7A for an

example). This yields a diagram showing the deviations, in time,
of treatments compared to controls. For instance, Figure 7A
indicates that for the period after the start of the treatment, the
greatest deviations from the controls occurred at the two highest
treatment concentrations, while smaller deviations were found at
the intermediate treatment concentrations. It also indicates minor
differences relative to the controls at the lower treatment
concentrations. The species weights shown on the right side of the
diagram can be interpreted as the weight of each species for the
response given in the diagram. Thus, the flatworm Dugesia tigrina,
which has the highest weight in the diagram, is shown to have
decreased most at the higher treatment concentrations. The negative
weight of the snail Lymnaea juvenile in the diagram indicates that
its numbers increased at the higher treatment concentrations. In
quantitative terms, multiplying the weight b

k
 of species k by the

regression coefficient c
dt
 of a treatment d at a particular sampling

date t yields the fitted change on a log-scale of this species relative
to the controls. In terms of abundance, taking the exponential of
this quotient yields the relative abundance compared to the controls.
For instance, the relative abundance of Dugesia tigrina indicated
by the first PRC (Figure 7A) for the microcosms with the highest
treatment concentration in week 3 is exp(4.14*-1.25) = 0.57% of
the abundance in the controls.

Figure 7A shows the first PRC, expressing the most dominant effects
of carbendazim on the composition of the macro-invertebrate data
set. It shows clear deviations from the control for the four highest
treatments concentrations (33 µg/L and higher). Between the
treatment concentrations a clear dose-response was present, the
higher the treatment concentrations the larger the deviations from
the control. No indication of recovery was demonstrated. For all
post treatment sampling dates a significant influence of the treatment
regime as a whole was found (p < 0.05). This was tested by Monte
Carlo permutation performed for each sampling date using ln-
transformed treatment levels. For the sampling dates 1, 5, 7 and 9
post start of the treatment a NOEC

community
 of 3.3 µg/L was calculated

(Williams ANOVA test applied on first principal component, see
Van den Brink et al. 1996 for more details). Monte Carlo
permutation tests permuting whole time series indicated that the
first PRC diagram displayed a significant part of the treatment
variance (p < 0.05, see Van den Brink and Ter Braak 1999 for more
details). The second PRC also displayed a significant part of the
treatment variance, the third did not. This means that no single
dose-response type is present in the data set but several sub-dominant
ones. The model for two PRC components is:

y
d(j)tk

 = y
0tk

 + b
k1

 c
dt1

 + b
k2

 c
dt2

 + ξ
d(j)tk,

where the scores { c
dt1

}[t = 1…T] represent the first principal
response curve (PRC) for treatment d, ie. course of treatment d in
time relative to the controls, the scores {c

dt2
}[t = 1…T] represent

the second principal response curve for treatment d, b
k1

 is the weight
of species k on the first PRC, and b

k2
 is the weight of species k on

the second PRC.

The second PRC is shown in Figure 7B and displays the most
important deviations from the first PRC present in the data set. It
shows relatively large deviations from the control for the 33 and
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Figure 7. First (A) and second (B) Principal Response Curves indicating the effects of the fungicide carbendazim on the macro-invertebrate community. Of
all variance, 30% could be attributed to sampling date; this is displayed on the horizontal axis. Forty-nine percent of all variance could be attributed to
treatment, the remaining variance (21%) is between replicate variation. Of the treatment variance, 44% is displayed on the vertical axis of the first PRC (A),
and another 17% on the vertical axis of the second PRC (B). The lines represent the course of the treatment levels in time. The species weight (bk) can be
interpreted as the affinity of the taxon with the Principal Response Curves (cdt). Taxa with a species weight between 0.5 and -0.5 are not shown for clarity.
The treatment explained a significant part of the total variance, of which also a significant part is displayed in the first and second PRC (p < 0.05, Monte
Carlo permutation test with permuting whole time series only). The third PRC did not display a significant part of the treatment variance and is thus not
shown (p > 0.05).
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100 µg/L treatment concentrations. The second PRC thus
differentiates between taxa showing a response at the four highest
treatment concentrations and those showing a response at the two
highest treatment concentrations only. For instance, Dugesia tigrina
has a positive weight with both diagrams. When both diagrams are
considered in the interpretation, the indicated response for this taxon
is a sum of both diagrams, in which the diagrams are weighted by
the species scores of D. tigrina (Van den Brink and Ter Braak 1998).
This indicates that this taxon suffered more severely from the 33
and 100 µg/L carbendazim treatment than was indicated by the
first PRC diagram alone (Figure 8, see Cuppen et al. 2000 for its
real response). On the other hand Stylaria lacustris has a positive
weight with the first and a negative weight with the second diagram.
To deduce the indicated response of this taxon from the two PRC
diagrams one has to subtract the second PRC from the first PRC
diagram. The result of this subtraction indicates that this taxon only
suffered from the carbendazim treatment in the two highest
treatment concentrations (Figure 8). By doing so all taxa can be
grouped on the basis of the shape of their response to the
carbendazim treatment (see Figure 8 for a graphical representation).
For instance, all taxa with a positive response with both diagrams
(eg. Dugesia lugubris, Dugesia tigrina, Pisidiidae) are indicated to
have decreased in all but the lowest treatment levels; all taxa with a
positive weight with the first PRC and a small weight with the
second one (eg. Gammarus juvenile, Gammarus pulex and Dero
sp.) are indicated to have strongly decreased in the two higher
treatment concentrations and only moderately in the intermediate
ones; and all taxa having a positive weight with the first and a
negative one with the second PRC (eg. Stylaria lacustris,
Potamopyrgus antipodarum, Bithynia tentaculata and Proasellus
meridianus) are only indicated to show effects for the two highest
treatment concentrations. This grouping can be done for all
combination of weights (Van den Brink and Ter Braak 1998). This
example shows that PRC is able to show the response of a whole
community into an easy to read diagram (Figure 7A), its outcome
is representative for the most sensitive species (NOEC

community
 = 3.3

µg/L), it can easily be combined with multivariate statistical testing
(eg. Monte Carlo permutation test), and it is able to summarise
very diverse response patterns when the second PRC is also taken
into account.

PRC ON MONITORING DATA: THE SEWAGE
TREATMENT PLANT EXAMPLE
PRC has only been applied to experimental data except in a study
by Leonard et al. (2000). Leonard et al. (2000) took samples at
several sampling dates at several sites of a river, some of which
were influenced by endosulfan exposure. The non-exposed sites
served as the undosed control, to which the endosulfan influenced
samples were contrasted. In this way the experimental design needed
for PRC (treatment and control) was imposed on the monitoring
data.

Often, however, no undosed control is present, but a reference site
can be assigned within the monitoring scheme. In this section, PRC
will be applied to a monitoring data set is which a reference is
assigned. Coad (2001) measured several physico-chemical
parameters weekly at five sites: 1) 300 m upstream of a sewage
treatment plant (STP) outlet, 2) 100 m upstream of the STP outlet,
3) in the STP outlet 4) 100 m downstream of the STP outlet and 5)
1 km downstream of the STP outlet (Table 2). The upstream part of

the river (sites 1 and 2) was located in an urban area. In total 795
samplings were performed at the five sites in the period 1994 through
2002 to evaluate the performance of the STP. All details are
described in Coad (2001). It is clear when this data set is analysed
with PCA or RDA and its results are displayed in a biplot, a very
cluttered and crowded diagram would be the result of the presence
of many samples. Figure 9 shows the results of the PRC analysis
using sampling month as covariable and the product of sampling
month and site as explanatory variables. Site 3 (the outlet of the
STP) was used as the reference because it has the most complete
time-series. Figure 9 indicates the largest differences from the STP
outlet for the two upstream sites. For these sites, compared to the
outlet, lower levels of NOx, total nitrogen, conductivity, salinity,
total phosphorus and temperature are indicated together with higher
levels of turbidity and faecal coliforms. For the two downstream
sites smaller differences are indicated, but in the same direction.
From the PRC analysis it is clear that the outlet of the STP lead to
an increase of concentrations of nitrogen and phosphorus,
temperature and associated measures as conductivity and salinity
in the river. After the outlet, values of these parameters decrease in
the downstream sites, but not as low as in the upstream sites. The
STP seems very successful in reducing faecal coliforms, their level
is even lower in the outlet compared to the upstream sites which
are slightly contaminated due to urbanisation. No trend in time is
apparent, indicated differences are relatively stable in time with a
few outliers. This example shows that PRC can also be used for the
evaluation of (bio)monitoring data, even when no apparent control
is present. PRC results in an easy to interpret overview of differences,
even when the sites are sampled very often, because it displays
time in a single direction in the diagram.

DISCUSSION
In the ecotoxicological literature, Canonical Variate Analysis (CVA
also called Discriminant Analysis, DA) is often used to elucidate
which combination of variables discriminate best between different
treatment groups. Technically, CCA (Table 1) is a generalisation
of CVA. To obtain a CVA through CCA, variables denoting groups
are introduced as “species” data and characteristics of these groups
(eg. contaminant data) as “explanatory” variables (Ter Braak and
smilauer 2002). Bernet et al. (2001) used CVA to elucidate which
fish-serum parameters explained the differences between control
and sewage impacted sites. Their ordination diagram shows the
size of group differences. The diagram could have been more
informative if arrows for the fish-serum parameters had been added
to the diagram, as the resulting biplot would allow one to interpret
the group differences in terms of the fish-serum parameters. Aptula
et al. (2002) used CVA in quite a different context. They tried to
explain the differences in a priori assigned mechanisms of toxic
mode of action on the basis of their molecular descriptors. This
analysis results in a Canonical Discriminant Function (CDF) in
which the explanatory variables are weighted on the basis of their
ability to predict the classification the best. It is interesting to
compare these uses of CVA with the methods we discussed. In our
penguin and Leces examples (RDA and CCA) the characteristics
(biological or chemical “species’) are the responses to be explained
by groups, a nominal explanatory variable (eg. denoting period or
place relative to the factory). As mentioned above, in CVA it is the
other way round. Because characteristics are explanatory variables
in CVA, CVA is hampered by multicollinearity among the
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characteristics, in particular when the number of characteristics is
greater than or of the same order of magnitude as the number of
samples (Ter Braak 1995). For this reason, users of CVA apply
stepwise selection methods to reduce the number of characteristics.
This was not needed in our examples.

Which method is the method of choice in a particular application,
will naturally depends on the research question. In many QSAR
studies multivariate Partial Least Squares is used (PLS2; eg.
Eriksson et al. 2000; Drew et al. 1999). PLS2 is similar to RDA,
but differs in that PLS2 guards automatically against
multicollinearity among the explanatory variables whereas RDA
does not (see Ter Braak and De Jong 1998 where RDA is termed
reduced rank regression, and Ter Braak and Verdonschot 1995). In
RDA the problem of multicollinearity (when there are many
explanatory variables) would be tackled by forward selection of
variables (c.f. CVA above). No other applications of CA and related
methods could be found. The reason for the low use of CA and
related methods in ecotoxicology could be that the researcher is
interested in logistic dose-response relationships between a stressor
and the absolute abundance of species, which is better modelled

Figure 9. Principal Response Curves indicating the effects of the outlet of a sewage treatment plant on some monthly averages of physico-chemical
characteristics of a river. Of all variance, 24% could be attributed to between month variation; this is displayed on the horizontal axis. Fifty-seven percent
of all variance could be allocated to between site differences, the remaining 19% to within month variation. Of the between site variation, 58% is displayed
on the vertical axis. The lines represent the course of the sites in time with respect to the outlet. The weight of the physico-chemical variables (bk) can be
interpreted as the affinity of the variables with the Principal Response Curves (cdt).

by PCA and derived methods than CA (Van den Brink and Ter
Braak 1997). We note that the logistic version of RDA can be fitted
to presence/absence (1/0) species data by the recent RR-VGLM
software of Yee and Hastie (2003).

In the ecotoxicological literature we found many applications of
PCA to link biological data (eg. benthic communities) to chemical
composition of the habitat (eg. sediment). Some of them use
ordination diagrams for the presentations of the results of the
analyses (Vogt 1990; Berggrena et al. 1999; Carr et al. 2000,
DelValls et al. 1998, Pedersen et al. 1999), but sometimes only
tables with the site and species scores of the different principal
components are provided (Riba et al. 2002; DelValls et al. 2002;
Boluda et al. 2002). The reason for this could be that one wants to
consider more than two principal components. It must be stated
that when using biplots often only the first two principal components
are taken into consideration without stating reasons why the third
is not. It is recommended to use biplots because (cor)relations
between species and sites stand out more in biplots than in tables.
Nevertheless a proper reasoning must be provided why a succeeding
axis is not taken into consideration.
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We also found many applications of Non-metric Multi-Dimensional
Scaling (NMDS) in the ecotoxicological literature. The main
difference between PCA and NMDS is that PCA uses the original
“species by sample” matrix to extract principal components based
on Euclidean distance measure, whereas NMDS estimated distances
between samples out of a derived “sample by sample” matrix. This
“sample by sample” matrix is obtained by transforming the original
“species by sample” matrix using a (dis)similarity measure. NMDS
thus has the advantage over PCA that it is not restricted to Euclidean
distance measure but any (dis)similarity measure can be used, which
can also relax the requirement of normality of data. Another
advantage is that NMDS can better deal with missing data because
the (dis)similarity between samples can be calculated from the
measured variables only, whereas PCA needs a complete “species
by sample” matrix. On the other hand, the fact that PCA uses the
original “species by sample” matrix has some advantages.
Kraufvelin (1999) for instance uses NMDS to visualise variability
in mesocosms within and between years and compare them with
natural systems. He shows many NMDS diagrams, but because a
“sample by sample” matrix is used for the analysis, only samples
can be displayed in the diagram, a direct interpretation back to the
species level is not possible (but see the SIMPER procedure for an
indirect interpretation; Clarke 1999). Because NMDS does not use
the original matrix also an evaluation in terms of displayed
percentage variance (eigenvalues) is not possible. This becomes
particularly important if replicated, designed experiments are
evaluated. Kreutzweiser et al. (2002) evaluated a mesocosm
experiment studying the effects of an insecticide on the zooplankton
community with the use of NMDS. Because NMDS does not have
a constrained counterpart all data are averaged per treatment level
before analysis. This has the disadvantage that the experiment can
not be evaluated in terms of partitioning the total variance into parts
explained by sampling date, treatment and variation between
replicates, which is possible when using the constrained form of
PCA, RDA or even PRC (see fungicide example). Another obvious
difference between PRC and the Kreutzweiser et al. paper is that
when using PRC, time is displayed as a single direction in the PRC
diagram, whereas in Kreutzweiser et al (2002) the time trajectory
is quite non-linear, which hampers an easy interpretation of
community effects. An example of the difficulty of linking species
with explanatory variables using NMDS is given by Pedersen et
al. (1999). They studied the effect of a copper gradient on a
microarthropod field community and analysed their data using
NMDS. In the NMDS they superimposed the copper and humus
concentrations on the sites like we did in the PCA of the penguin
example (Figure 1). Because the information of the explanatory
variables (in this example copper and humus) is superimposed
afterwards, their correlation and relation with the arthropod
community is not optimally displayed; a direct or constrained
analysis would overcome this problem.

Remarkably, all these papers use a very indirect way to connect the
degree of contamination with the data on communities on the same
sites. Whereas most authors analyse the chemical and biological
data sets separately and only link them qualitatively by combining
the results visually (e.g. DelValls 1998) some authors use more
quantitative approaches. Vogt (1990) for instance reduced the
chemical data set to three principal components using PCA and
reduced the biological data set to one dimension using a diversity

measure. After this the principal components are used in Polynomial
Principal Component Regression (PPCR) analysis to construct a
model that predicts the species diversity the best. Carr et al. (2000)
uses a similar approach. They reduced the biological, toxicity and
physico-chemical data set gathered on the same sites to two principal
components using PCA. After that they performed a regression
and correlation analysis on the principal components of the three
data sets to evaluate relations between the three. The approaches
discussed above have the disadvantage that the individual variables
may be partitioned over more than three principal components. If
this is the case, information of interest is left out of the correlation
analysis following the PCA analyses. A more direct way of
combining these data sets is using the original species by site matrix
as species data and the contaminant by site matrix as explanatory
variables in a constrained analysis like is done in the “penguin”
and “Leces” example. In this way one is able to focus on that part
of the variance that is of interest, namely that part that is captured
by the explanatory variables. When combined with Forward
Selection a meaningful set of contaminant variables can be retained
and their relation with the biological data displayed in a triplot.
Also their significance can be obtained using Monte Carlo
permutation tests.

We also like to mention recent progress to generalize RDA to other
than Euclidean distance measures. First, Legendre and Gallagher
(2001) provide several transformations of the species data that are
useful in ecological ordination. The transformations are chosen in
such a way that the Euclidean distance between samples after
transformation is identical to (for example) their Hellinger distance
before transformation. Secondly, the lack of a constrained form of
NMDS has led to distance-based redundancy analysis (db-RDA;
Legendre and Anderson 1999). The essential idea is simple: choose
an appropriate (dis)similarity measure, calculate a principal
coordinate analysis (metric multidimensional scaling) on the
sample-by-sample matrix of (dis)similarities and use the resulting
components as response variables in an RDA instead of the original
species data matrix. This approach, which allows Monte Carlo
permutation testing, is made available in Canoco 4.5 (Ter Braak
and smilauer 2002). McArdle and Anderson (2001) and Anderson
(2001) show how to avoid the initial principal coordinate analysis;
their approach to db-RDA works directly on the dissimilarity matrix.

From the above it is clear that multivariate analysis in general and
ordination is particular, may be of great value for the field of
ecotoxicology. The methods are, however, not used routinely
although the development of software (eg. Canoco for Windows,
PRIMER, ADE-4 and PC-ORD) facilitates their implementation
into ecotoxicology. The potential of multivariate techniques is not
yet exploited to the full because of their relative complexity and
steep learning curve. To obtain a full exploitation we need education,
guidance for use, and communication between ecotoxicologists and
statisticians.
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