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1.1 Background 

Arid, semiarid and subhumid regions occupy approximately 50% of the global land surface 

(Parsons and Abrahams, 1994). These regions and their environments are considered to be 

water limited because annual precipitation is typically less than the annual potential 

evapotranspiration (Guswa et al., 2004). Although variable with respect to physiography, 

geology and soils, these environments are often sensitive and vulnerable because of low and 

highly variable precipitation, limited water resources and sparse vegetation. The 

environmental changes occurring over vast areas in these arid regions include land 

desertification, groundwater depletion, salinization, and soil erosion (De Fries et al., 2004), 

amongst others. These environmental changes increasingly affect human societies and have a 

growing influence on global biogeochemical cycles (Schlesinger et al., 1990; Bonan, 2002). 

    Vegetation, both native and cultivated, strongly influences the environment and is 

influenced itself by the environment (Sabins, 1996). The vegetation is an environmental 

indicator in water-limited ecosystems and is often linked to both the causes and consequences 

of arid land degradation. The role of vegetation in the dynamics of soil moisture, runoff, and 

streamflow has been acknowledged to be very important (Wilcox et al., 1997, 2003b; 

Newman et al., 1998, 2004; Neave and Abrahams, 2002; Porporato et al., 2002; Ridolfi et al., 

2003; Fernandez-Illescas and Rodriguez-Iturbe, 2004; Cayrol et al., 2000; Kerkhoff et al., 

2004b). Understanding the influence of vegetation on hydrological changes is part of the 

foundational basis of ecohydrology (Newman et al., 2006). Therefore, studies on quantifying 

the relationship between the vegetation and water resources represent a critical step in 

developing advanced ecohydrological approaches, supporting resource management and 

environmental change. 

    The above-mentioned arid regions occupy a vast area in north-western China, covering 

about 2.5 million km² or one-quarter of the Chinese territory. In these regions, mean annual 

rainfall is less than 250 mm, and even decreasing towards the western plains (50-150 mm) 

and the Ejina area (less than 40 mm). The annual potential evaporation is in general more than 

1,400 mm, and can exceed 2,000-3,000 mm in the desert areas. Because of the arid climate, 

about 70% of the total arid regions are unusable for human activities, such as sandy deserts, 

gravel deserts, and other sorts of xeric shrublands. During recent years, the recession of the 

vegetated parts of the ecosystems appeared to be extensive in Northwest China. They caused a 

series of environmental problems, like the shrinking of the oasis area and land desertification 

resulting in increasing sources of sandstorms. Water resources are the essential factor 

influencing the vegetation variability (Dawson, 1993; Burgess et al., 1998; Caldwell et al., 

1998; Brooks et al., 2002; Zou et al., 2005; Santanello et al., 2007). In the northwestern arid 

area of China, all the oases are fed by surface rivers and their extent has a close relationship 

with runoff of the river and the groundwater depth. However, due to little population density, 

inconvenient transportation and shortage of available long-term monitoring data, traditional 
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methods performing qualitative ecohydrological analysis that usually employ point 

observations and are only representative for local scales, cannot be extended to large areas. 

The use of remote sensing can provide continuous and representative measurements of several 

relevant physical parameters at scales from point to continent. These methods are still used in 

a limited fashion in hydrology for a quantitative assessment of the eco-environmental changes 

in China (Li et al., 2001; Lu et al., 2003; Guo and Cheng, 2004; Kang, et al., 2007). The 

purpose of this study is to develop a method to quantitatively assess the eco-environmental 

changes using remote sensing methods and applying it to ecohydrological applications in 

China. 

    The Heihe River basin, located in the middle of the Hexi Corridor of the Gansu Province, is 

one of the two largest inland river basins in China. Its watershed covers an area of 14.3×104 

m2 and the upper, middle and lower reaches of the Heihe River stretch from the middle of the 

Hexi corridor to the western Inner Mongolia Municipality. In the southern part of the Heihe 

River basin the Qilian Mountains are located representing the upstream area, which are steep 

mountains with an altitude ranging from 3000 m to 5000 m above sea level. Due to the cold 

climate and the sufficient precipitation, the runoff generated from this area is the main source 

of the surface water and groundwater for the Heihe River basin, and finally ends in two 

terminal lakes of the Ejina Oasis (the downstream area), namely, West Juyan Lake and East 

Juyan Lake. The middle stream area, called the Zhangye basin, is a very important 

agricultural area in northwest China. With growing population and farmland expansion in the 

middle stream area, the water consumption has increased gradually and most water is 

nowadays used for irrigation. This is causing a decrease of incoming water in the downstream 

area resulting in a serious recession of the eco-environment in that region. The Chinese 

government puts significant importance on improving the eco-environment of the downstream 

area by balancing the water consumption and has therefore implemented a new policy for the 

allocation of available water resources. An applicable method for a quantitative analysis of 

the eco-environmental changes as well as providing scientific evidence for protecting and 

improving the eco-environment in these Chinese Northwestern arid regions is the final goal of 

this study.  

1.2 Remote sensing in ecohydrology 

Remote sensing has long been suggested as being a time- and cost-efficient method for 

monitoring changes in arid environments. It can detect and monitor landscape change and 

degradation in arid and semiarid regions. The use of remote sensing for deriving process-

relevant environmental information from optical remote sensing data in arid areas is 

highlighted in several environmental degradation studies (Okin and Roberts, 2004; Bai et al., 
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2008). Therefore, using remote sensing methods to understand eco-environmental changes 

has emerged to be a current research topic of wide interest. 

    The complexity and heterogeneity of hydrological processes exist over a wide range of 

scales in space and time. Traditional techniques measuring hydrological variables rely on 

point sensors collecting information which is assumed to be representative for large areas. 

However, this approach is not particularly helpful in complex or heterogeneous environments 

where the point measurements cannot be assumed to represent large areas. The surface-

atmosphere interface is an example of a system that is highly variable in both space and time 

(Cooper et al., 1992, 2000; Eichinger et al., 2000). Remote sensing, broadly defined as a 

collection of noncontact observational methods, offers the potential to capture information on 

some of the spatial and temporal ecohydrological processes. We propose to establish an 

integrated remote sensing method where research across the spectrum of hydrologic remote 

sensing can be integrated with hydrological processes occurring at large scales. Historically, 

remote sensing products have been used to evaluate short-term processes focusing on the 

retrieval of a singular geophysical variable. To improve this approach, we suggest the use of 

remote sensing for the estimation of water-energy-ecosystem variables be performed as an 

integrated method. This method can be used to address fundamental hydrological research 

questions at local to global scales. It is clear that satellites have proven their capability to 

monitor many aspects of the total Earth system on a global scale. Aircraft- and ground-based 

systems play a vital role in improving our understanding of hydrological processes and their 

interactions.  

    For over 20 years, research on spatial hydrological processes has been developed through 

modeling or scaling studies (Wood et al., 1988; Gupta and Waymire, 1990; Famiglietti and 

Wood, 1995; Blöschl and Sivapalan, 1995; Gupta et al., 1996; Rodriguez-Iturbe and Rinaldo, 

1997; Crow et al., 2000; Brown et al., 2002; Miline et al., 2002; Rietkerk et al., 2004). Many 

of these developments have been related to the space-time organization of ecosystem fields 

and their influence on hydrological processes. The theories can be further developed and 

tested by adding multiscale views of the landscape. It appears that remote sensing is the only 

approach that has the potential to translate measurements from one scale to another scale. The 

integration of remote sensing and hydrological data at various spatial scales will further 

produce the hydrological predictions that our society needs.  

    The main hydrological variables of interest include precipitation, evapotranspiration, extent 

of surface water reservoirs and river discharge, soil moisture, groundwater storage capacity, 

and ecosystem variables like vegetation cover. A lot of research suggests that hydrologic 

forecasts can be improved if hydrological variables, like precipitation, soil moisture, river 

runoff and snow cover, along with ground observations, can be assimilated in hydrological 

models (Houser et al., 1998; Reichle et al., 2002; Crow and Wood, 2003; Margulis and 

Entekhabi, 2003; Drusch et al., 2005; Duune and Entekhabi, 2005; Walker and Houser, 2005). 
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Therefore, it should be investigated how remote sensing data can be combined with 

hydrological data to improve hydrological predictions, and how these can be quantified. To 

illustrate how to approach this question, we use the example of predicting evapotranspiration. 

Accurate measurement of evapotranspiration at the watershed scale is a major challenge in 

hydrology. Evapotranspiration is one of the largest components of the surface water balance 

and remains a major source of uncertainty in the estimation of groundwater recharge. Because 

of the spatial variability of evapotranspiration and its influence on soil water storage, it also 

strongly influences the estimation of runoff. Ideally, remote sensing can estimate 

evapotranspiration at a large scale because it is able to map the spatial distribution of 

vegetation cover and surface temperature, which are two quantities closely related to 

evapotranspiration. Based on the surface energy balance, regional scale land surface models 

use input variables such as surface meteorological parameters and detailed soil and vegetation 

information to estimate the heat flux and the evapotranspiration of the surface. Although 

models have been proposed to estimate regional evapotranspiration, the reliability of the 

results still requires validation before they can be used for water resources assessment in a 

specific region. In most of the studies, the accuracy of the evapotranspiration estimation is 

validated by monitoring data at local scale (Wilson et al., 2002; Sun et al., 2004; Salazar and 

Poveda, 2006; Zwart and Bastiaanssen, 2007). Therefore, the proper validation of the 

reliability of the evapotranspiration estimates at regional scales is a critical issue in properly 

integrating remote sensing and hydrological data. 

    The main goal of ecohydrology is to explain (1) how hydrological processes influence the 

distribution, structure, function, and dynamics of biological systems and (2) how feedbacks 

from biological systems affect the water cycle (Baird and Wilby, 1999; Rodriguez-Iturbe, 

2000; Bonell, 2002; Eagleson, 2002; Kundzewicz, 2002; Nuttle, 2002; Zalewski, 2002; Bond, 

2003; Hunt and Wilcox, 2003; Newman et al., 2003; Van Dijk, 2004; Hannach et al., 2004; 

Breshears, 2005). Consequently, ecohydrology is a discipline linking hydrology and ecology. 

Vegetation is the most important factor to characterize the variability of an ecosystem and 

understanding and quantifying the relationship between the vegetation and water resources is 

an important step in developing an ecohydrological approach for water resources management. 

Much of the early and classic work in watershed management of arid regions focused on this 

topic (Hibbert, 1983) and it remains a topic of importance today, especially as water supplies 

become increasingly limited. If specific correlations among groundwater recharge, runoff, 

hydraulic factors, and variation of vegetation could be defined through coordinated 

measurement and monitoring activities, the vegetation could be used as a proxy for recharge 

and water demand (Walvoord and Phillips, 2004; Kwicklis et al., 2005). The important role of 

vegetation in the dynamics of groundwater recharge and runoff in arid environments has been 

studied using remote sensing methods (Cayrol et al., 2000; Kerkhoff et al., 2004b). 

Vegetation mapping, based on ground, aerial, or satellite approaches, can be used to predict 

surface flow and groundwater recharge in stead of surface and subsurface sampling and 
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analysis. Therefore, incorporating remote sensing methods in ecohydrological approaches or 

models will be useful for predicting both the response of vegetation to changes in water input 

and the effects of vegetation on water fluxes and storage. Enhanced satellite remote sensing 

capabilities can improve our ability to quantify vegetation responses to changes in 

hydrological processes. Combining remote sensing methods with hydrology will yield new 

insights in ecohydrological processes. 

1.3 Objectives 

The main objective of this thesis is to develop a methodology for the quantitative assessment 

of eco-environmental changes at a large scale in arid regions by integrating remote sensing 

methods in ecohydrological approaches. The Heihe River basin, which is located in northwest 

China, is selected as the study area because of its obvious changes in water resources 

management that are typical for a water-limited region: assessing the vegetation distribution 

and the close correlation between vegetation change and precipitation in the upstream area, 

further understanding of the water resources variation in the whole river basin, resolving the 

conflict of water consumption between the middle stream area and the downstream area, 

balancing the water allocation, improving and protecting the eco-environment of the river 

basin. To achieve this objective, the following specific research questions are formulated: 

A. Can we use remote sensing methods for quantitatively assessing both the vertical and  

horizontal distribution  of vegetation in a mountainous area and assess the main impact 

factors on vegetation growth? 

B.  Can regional evapotranspiration be precisely estimated by using a model based on the 

surface energy balance including remotely sensed data input and how can we validate 

the reliability of the evapotranspiration results at larger scales? 

C. Can we use remote sensing methods for understanding the quantitative relationship 

between the runoff of a river towards an oasis landscape and the vegetation growth in 

the oasis, and can these relationships be used for estimating the water demand of the 

oasis? 

D.  Can we integrate remote sensing methods into ecohydrological approaches to study the 

effect of groundwater depth on vegetation growth in the oasis area, and use this to 

determine the range of groundwater depth for vegetation growth? 

1.4 Outline 

The main chapters of this thesis (chapter 2 to 5) are assigned to answering the research 

questions as mentioned in the previous section and have been prepared as peer reviewed 

publications. The study area of the Heihe River basin is divided into three parts in response to 
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the upstream, middle stream and downstream area, respectively. Every chapter includes an 

introduction related to one of the specific research questions, a detailed description of the 

corresponding study area and the datasets used, a discussion of the obtained results and the 

conclusions.  

In Chapter 2, both the vertical and horizontal distribution of vegetation in the Qilian 

Mountain area, representing the upstream area of the Heihe River basin, is quantified based 

on MODIS NDVI images from the years 2000 to 2006. The main impact factors, such as 

elevation, aspect, precipitation and land surface temperature are analyzed in detail in this 

chapter (Question A). 

Chapter 3 presents a practical method to estimate the annual evapotranspiration in the 

Zhangye basin (representing the middle stream area) based on the Surface Energy Balance 

System (SEBS) algorithm and the accuracy of the evapotranspiration result has been validated 

using the water budget. NOAA/AVHRR measurements ranging from 1990 to 2004 are used 

for the evapotranspiration estimation (Question B). 

In Chapter 4, the long-term vegetation change of the downstream area (the Ejina Oasis) is 

analyzed in two periods, one before and one after the implementation of a new government 

policy for water allocation. The GIMMS NDVI and MODIS NDVI datasets are used to 

evaluate the long-term vegetation change. A one year hysteresis effect of the runoff of the 

river on the oasis vegetation is also discussed and the water demand for sustaining the eco-

environment of the downstream area is estimated (Question C).  

Chapter 5 continues on the research of chapter 4 and focuses on quantifying the 

relationship between the groundwater depth and vegetation growth in the Ejina Oasis by 

combining MODIS NDVI measurements and groundwater observation data. The threshold for 

the groundwater depth affecting the vegetation growth is defined and the range of 

groundwater depths suitable for vegetation growth is discussed in the Ejina area (Question D). 

Chapter 6 concludes this thesis with the results and main findings of all previous chapters 

and offers suggestions for the future work. 

Finally, the thesis closes with an overview of all references used and summaries in English, 

Dutch and Chinese. 
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CHAPTER 2 
 

Quantification of spatial distribution of vegetation in the 

Qilian Mountain area with MODIS NDVI* 

 
 
 
 
 

*  Based on: Jin, X.M., Wan, L., Zhang, Y-K., Hu, G.C., Schaepman, M.E., Clevers, 
J.G.P.W., Su, Z., 2008. Quantification of spatial distribution of vegetation in the Qilian 
Mountain area with MODIS NDVI. International Journal of Remote Sensing (in press). 
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Quantification of spatial distribution of vegetation in the Qilian Mountain area with 
MODIS NDVI 

 

 
Abstract 

The spatial distribution of vegetation in the Qilian Mountain area was quantified with remote 

sensing data. The MODIS NDVI values for June, July, August, and September are the best 

indicators for the vegetation growth during a year in this area and thus were used in this study. 

The results obtained by analyzing the NDVI data for seven years from 2000 to 2006 clearly 

indicated that elevation and aspect, as a proxy for precipitation and temperature, are two very 

important factors for the vertical distribution of vegetation in Qilian Mountain area. In the 

Qilian Mountain area: the vegetation growth is optimal between the elevations of 3200 m and 

3600 m with the NDVI values larger than 0.50 and a peak value of > 0.56 around 3400 m. It 

is the combination of plentiful precipitation and suitable land surface temperature that 

provides less soil moisture stress and thus suitable conditions for vegetation growth in this 

range of elevations. The optimal vegetation growth is found in the shady slope between NW 

(340º)  to NE (70º) with the largest NDVI value (> 0.56) within the elevation range of 3200 m 

and 3600 m. The methodology developed in this study should be useful for similar ecological 

studies on vegetation distribution. 

 
Keywords:  MODIS NDVI, Elevation, Aspect, Precipitation, Ground surface temperature, 

Qilian Mountain area 
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2.1 Introduction 

The importance of vegetation cover, especially forests, in mountain areas can not be 

overstated. Forests and other plants provide an environment for many species living in these 

areas. Vegetation cover affects local and regional climate and reduce erosion. Economy of 

local communities and millions of people in mountain areas depend on forests and plants. 

Vegetation cover also effectively protects people against natural hazards such as rockfall, 

landslides, debris flows, and floods (Brang et al., 2001). For example, the vegetation cover in 

alpine regions protects the settlement and transportation corridors, providing wind sheltering 

and landslide prevention (Agliardi and Crosta, 2003). Therefore, understanding of distribution 

and patterns of vegetation growth along with their affecting factors in those areas are 

important and have been studied by many researchers (e.g., Oliver and Webster 1986; Weiser 

et al. 1986; Stephenson 1990; Turner et al. 1992; Henebry 1993; Endress and Chinea 2001; 

Bai et al. 2004). 

    Elevation, aspect, and slope are the three main topographic factors that affect the 

distribution and patterns of vegetation in mountain areas indirectly (Huang 2002). Among 

these three factors, elevation is important (Leak and Graber 1974; Busing et al. 1993) because 

it serves as a proxy for precipitation and temperature. Elevation along with aspect and slope in 

many respects determines the microclimate and the microclimate affects the spatial 

distribution and patterns of vegetation (Geiger 1966; Day and Monk 1974; Johnson 1981; 

Marks and Harcombe 1981; Allen and Peet 1990; Busing et al. 1992).  

    One of the powerful tools to study the spatial distribution of vegetation is remote sensing. 

Remote sensing has traditionally been used in large-scale global assessments of vegetation 

distribution and land cover with the Normalized Difference Vegetation Index (NDVI) data 

from Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution 

Imaging Spectroradiometer (MODIS) (Chen and Brutsaert 1997; Defries and Townshend 

1994; Defries et al. 1995; Friedl et al. 2002; Loveland et al. 1999, 2000). The NDVI is an 

index derived from reflectance measurements in the red and infrared portions of the 

electromagnetic spectrum to describe the relative amount of green biomass from one area to 

the next (Deering 1978). This index is an indicator of photosynthetic activity of plants and has 

been widely used for assessing vegetation phenology and estimating landscape patterns of 

primary productivity (Sellers, 1985; Tucker and Sellers, 1986). The NDVI was designed to 

quantitatively evaluate vegetation growth: higher NDVI values imply more vegetation 

coverage, lower NDVI values imply less or non-vegetated coverage, and zero NDVI indicates 

rock or bare land.  

    Most studies with remote sensing data were concentrated on two-dimensional horizontal 

patterns although some were focused on the effect of elevation on the vertical distribution of 

vegetation in mountain areas (Franklin 1995; Edwards 1996; Guisan and Zimmermann 2000; 
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Hansen 2000; Miller et al. 2004; Lookingbill et al. 2005). Zhao et al. (2006) predicted 

Qinghai spruce (Picea crassifolia) distribution in the Qilian Mountains based on 

meteorological data and the GIS-modeling. The result indicated that the suitable niche of 

Qinghai spruce ranged from 2650 m to 3100 m. The objectives of this study are two-fold: 1) 

to quantitatively assess both vertical and horizontal distribution of vegetation in the Qilian 

Mountain area and its main controlling factors, i.e., elevation and aspect or precipitation and 

land surface temperature, and 2) to demonstrate the usefulness of the methodology which may 

be used for other environmental and ecological studies. The study area is described first and 

followed by the dataset description and results presentation and discussion. The conclusions 

are provided at the end. 

 

2.2 Study area  

Located in the upstream of the Heihe River basin, the Qilian Mountain area has a steep 

topography with an elevation range from 1680 m to 5100 m (Figure 2.1). Geomorphologically,  

 

 

 

 

 

Figure 2.1 The DEM (digital elevation model) map of the Qilian Mountain area with the spatial 

resolution of 100 m. The area surrounded by watershed of Heihe tributaries in east and west boundary 

(outlined with bold black line) was selected as the study area. 
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the intermountain basin and longitudinal valley are widely developed in the area. The 

northern part of the Qilian Mountains, surrounded by tributaries of Heihe River to the east and 

west, was selected to be the study area which was outlined with the bold black line in Figure 

2.1 because this area represents a typical mountain range and reflects the typical vegetation 

change with elevation in this region. With a total area of 2,968 km2, the study area is 

characterized by typical high plateau continental climate. The average annual temperature is 

0.6 °C and the amount of precipitation increases with the elevation. Due to complex 

topography, the climate is diverse and has distinct vertical characteristics: from the lower 

elevation area to the higher elevation area, the temperature decreases and the precipitation 

increases. The climate in higher mountain areas is cold and humid while the climate in lower 

mountain areas is warm and arid. These vertical climate characteristics have important 

impacts on the soil development and vegetation growth in the areas as they do in many other 

mountains.   

The vegetation distribution in this area exhibits an obvious vertical gradient due to the 

climatic changes with elevation. From the low altitude to high altitude the vegetation types are: 

desert-grassland vegetation (1800 – 2100 m), dry shrub-grassland vegetation (2100 – 2400 m), 

mountain forest-grassland vegetation (2400 – 3400 m), sub-alpine shrub-grassland vegetation 

(3400 – 3900 m), and cold-desert alpine meadow vegetation (> 3900 m). The mountain forest-

grassland vegetation is the main vegetation type and the main component of the Qilian 

Mountains ecosystem. The range of elevations (1800 – 5100 m) in study area was divided into 

a total of 31 intervals with 100m in each of the interval and the aspect angle was divided into 

a total of 72 intervals with 5° in each of the interval. The changes in the number of pixels with 

elevation and aspect are shown in Figure 2.2 and 2.3, respectively. These two figures should 

show that there are enough data points in the elevation range between 2100 m and 4700 m and 

in the aspect angles between 0º and 360º to draw statistically significant conclusions 

regarding the spatial distribution of the vegetation. 

    The vegetation in the Qilian Mountain area plays an important role in the local water cycle 

by affecting hydrological processes, e.g., evapotranspiration (ET) and runoff, and is an 

important ecological storage for water resources. Qilian Mountains supplies water for the 

Hexi Corridor which is the most important agricultural region and settlement in northwest 

China. The vegetation in the Qilian Mountain area significantly affects the oases in the region 

and protects the middle and downstream area of Heihe River against desertification.  
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Figure 2.2 The distribution of the pixel number over the elevation intervals of 100 m in the study area. 

It shows that the most elevations are between 1800 m and 4800 m and that there are enough data 

points (at least a few thousands) for each interval between 2100 m and 4700 m to warrant statistical 

significance in the results. 

 

 

 

Figure 2.3 The distribution of the pixel number over the aspect intervals of 5° in the study area. It 

shows that there are enough data points (more than 10,000) for each interval to warrant statistical 

significance in the results. 
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2.3 Dataset 

The MODIS NDVI data, the vegetation index maps depicting spatial and temporal variations 

in vegetation activities, was derived by monitoring the Earth’s vegetation. These vegetation 

index maps have been corrected for molecular scattering, ozone absorption, and aerosols. The 

MODIS NDVI data is based on 16-day composites and its spatial resolution is 250 m. 

Currently, the MODIS NDVI products have been used throughout a wide range of disciplines, 

such as inter- and intra-annual global vegetation monitoring, climate and hydrologic modeling, 

and agricultural activities and drought studies (Zhan et al. 2000; Jin and Sader 2005; 

Sakamoto et al. 2005; Knight et al. 2006; Lunetta et al. 2006). In this study the NDVI values 

from 28 MODIS NDVI images of the 16-day composites of June, July, August, and 

September in seven years from 2000 to 2006 were used because these four months consist of 

the most productive season for vegetation growth during a year and thus the NDVI values of 

these four months can best reflect the pattern of the vegetation cover in the region. 

The MODIS LST (land surface temperature) data for the same four months, i.e., June, July, 

August, and September from 2000 to 2006 were used in this study to be consistent with the 

NDVI data. The MODIS LST data are 8-day composites and its spatial resolution is 1 km. 

The mean gridded rainfall data from June to September is given monthly and its spatial 

resolution is 1 km. The monthly rainfall data was published by the Institute of Geographic 

Sciences and Natural Resources Research, CAS (http://www.naturalresources.csdb.cn). This 

database contains the monthly rainfall data from year 1971 to 2001 of 700 land 

meteorological stations in China. The interpolation algorithm in the ANUSPLIN4.3 software 

was used which was published by Centre for Resources and Environmental Studies, the 

Australian National University (http://cres.anu.edu.au/). This method considers the impact of 

climate and topography. In order to be consistent with the NDVI data, the rainfall data of June, 

July, August, and September from 2000 to 2001 were used in this study and the precipitation 

of these four months are at maximum. A monthly mean precipitation chart from 2000 to 2001 

illustrates that these four months are the wet periods in a year and are sensitive for the 

vegetation growth (Figure 2.4). The Digital Elevation Model (DEM) data was downloaded 

from the Digital River Basin website (http://heihe.westgis.ac.cn) and its spatial resolution is 

100 m. The MODIS NDVI, land surface temperature, and rainfall data were resampled and 

interpolated to have the same spatial resolution as the DEM data in this study. 
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Figure 2.4 The monthly mean precipitation chart from 2000 to 2001. It shows June, July, August and 

September are the wet seasons in study area. 

 

2.4 Results and Discussion 

It is well known that elevation serves as a proxy for precipitation and temperature, and affects 

the spatial distribution of vegetation cover indirectly. Most of the vegetation in the northern 

Qilian Mountain area is distributed between the elevations of 1800 m and 4500 m. To the best 

of our knowledge, however, the obvious spatial distribution and patterns have not been 

studied quantitatively. We show in this study that the readily available NDVI data can be used 

to quantify the spatial distribution of vegetation. The range of elevations from 1800 m and 

4500 m was divided into a total of 270 intervals with 10m in each of the interval. The aspect 

angle of 360º were divided into a total of 72 intervals with 5º in each of the interval. These 

divisions result a total of 19360 cells among which 19060 cells with the NDVI values larger 

than zero. In each cell the NDVI values from year 2000 to 2006 were averaged. The mean 

values represent the general conditions of the vegetation growth in different elevations and 

aspects. A contour map of the mean NDVI values with elevation and aspect in the northern 

part of Qilian Mountains was plotted in Figure 2.5. A Gaussian smooth filter was used and a 

low pass convolution was performed on the gridded data to obtain the more consistent and 

smooth map in Figure 2.5.  

    Several observations can be made in Figure 2.5 regarding the effects of elevation and 

aspect on the vegetation growth in the mountain area. First of all, it is clearly seen that the 

elevation is very important for the vegetation growth through its control on precipitation and 

temperature discussed later. The NDVI value increases with the elevation and reaches its 

maximum value around 3400 m and then decreases as the elevation increases beyond 3400 m. 

The NDVI values are mostly larger than 0.50 (the dark green region in Figure 2.5) when the 

elevation is between 3200 m and 3600 m which is the optimal vertical zone in terms of 

vegetation growth. The NDVI values are less than 0.50 when the elevation is lower than 3200 
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m and higher than 3600 m or the vegetation growth is poorer in these elevations than in the 

zone between 3200 m and 3600 m. 

 

 
Figure 2.5 The change of the mean NDVI values with elevation and aspect in the northern part of 

Qilian Mountains. A Gaussian smooth filter was used and a low pass convolution was performed on 

the grid data to present a more consistent and smooth map. Note: a refiner scale (0.02) was used when 

the NDVI value is larger than 0.5. 

 

    Secondly, the vegetation growth in the Qilian Mountain area is significantly affected by 

aspect. The impact of aspect on the vegetation growth is most significant in the vertical zone 

of 3200 m and 3600 m. The optimal vegetation in this zone is distributed between NW 340º 

and NE 70º (the darkest green area in Figure 2.5 with the NDVI value larger than 0.56). In 

other words, the optimal vegetation growth is on the shady side of the mountain. This is 

because of less evapotranspiration (ET) due to less radiation on the shady side which results 

less soil moisture stress. The less soil moisture condition can also be produced by less snow 

sublimation during the winter, lower temperatures and higher relative humidity. The less soil 

moisture stress on the shaded side is important for the vegetation growth in the Qilian 

Mountain area since it is located in a semi-arid region. It is also observed in Figure 2.5 that a 

better vegetation growth occurs over a larger elevation range on the side facing north and 

northeast. At the aspect of N 0º, for example, the NDVI value of 0.50 or larger are observed 

over the vertical zone from 3100 m to 3700 m while at the aspect of S 180° the same NDVI 

values are observed in a smaller zone from 3200 m and 3600 m. The much wider vertical 
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zone with better vegetation growth on the shady side of Qilian Mountains may significantly 

affect the local water cycle and climate. 

    Third observation made in Figure 2.5 is the rate of change in the NDVI values with 

elevation. This rate varies more gently at lower elevations from 2000 m to 3400 m and more 

quickly when elevation is higher than 3400 m, implying that the vegetation growth is more 

sensitive in high altitude area. On the average, for example, it takes about 300 m (roughly 

from 2600 m to 2900 m) for the NDVI value to change from 0.3 to 0.4 at the lower altitude 

zone and only about 200 m at the higher altitude zone. 

    The relationship between NDVI values and the corresponding elevation is clearly shown in 

Figure 2.6a although the points scatter around. Nevertheless, the NDVI values corresponding 

to the same elevation were averaged to better show the relationship between the vegetation 

growth and elevation. A total of 221142 pairs of NDVI and elevation were obtained based on 

the 28 MODIS NDVI images of the 16-day composites of June, July, August, and September 

from 2000 to 2006. It is clearly shown in Figure 2.6b: the averaged NDVI increases with 

elevation and reaches its maximum value of about 0.56 at 3400 m and then decreases as the 

elevation increases beyond 3400 m, an clear indication that the vegetation growth is at its best 

at the elevation of 3400 m. 

The effect of aspect on the vegetation growth is more clearly demonstrated in Figure 2.7 

where the change of the NDVI values with aspect between the elevations of 3200 m and 3600 

m was plotted. It is seen in Figure 2.7 that the NDVI value is larger than 0.55 or the 

vegetation growth is optimal in the aspect range of NW 340º to NE 70º. The NDVI value is 

less than 0.54 or the vegetation is worse between E 90º to W 270º. As we discussed above, 

this shows that the aspect of the mountain slopes significantly affects the vegetation growth in 

the study area. In general, the vegetation coverage on the sunny side in the semi-arid Qilian 

mountain area is less developed than that on the shady side because of more ET and thus 

higher soil moisture stress in the sunny side than in the shady side due to the differences in 

their solar radiation and higher land surface temperature.  

Temperature and precipitation are probably the two most important primary climatic factors 

that control differences in the Earth’s vegetation cover by affecting growth rate and plant 

reproduction (Wang et al., 2001). The relationships between eco-climatic conditions and 

vegetation growth are often complex and indirect. A better understanding of this relationship 

is needed for modeling regional atmosphere-biosphere processes (Martin, 1993). The 

difference in the vegetation growth of the two sides of Qilian Mountains can be explained by 

the difference in the solar radiation they receive or the difference in the land surface 

temperature (T). Similar to Figure 2.7, Figure 2.8 shows the change of land surface 

temperature with aspect for the vertical zone between 3200 m and 3600 m. It is seen in the 

figure that T on the sunny side between SE 155º and SW 235º is larger than 21.6 °C while T 



                                                                                                                               Vegetation distribution 

 19 

 

 

           (a) 

 

 

 
        (b) 

 

Figure 2.6 (a) The change of the NDVI values with elevation in the northern part of the Qilian 

Mountain area before NDVI averaging in the same elevation; (b) The change of the NDVI values with 

elevation in the study area after NDVI averaging in the same elevation. 

 



Chapter 2 

 20 

 

 

 

Figure 2.7 The change of the NDVI value with aspect for the elevation range of 3200 m to 3600 m in 

northern part of Qilian Mountain area. 

 

 

 

 

Figure 2.8 The change of the NDVI value with the land surface temperature for the elevation range of 

3200 m to 3600 m in northern part of Qilian Mountain area. 
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on the shady slope between NE 55º and NW 310º is below 20.4 °C.  A negative correlation 

exists between the NDVI values and the land surface temperature when the elevation is 

between 3200 m and 3600 m, as shown in Figure 2.9 where a straight line fits well to the data 

points. The aspect angle of 360º were divided into a total of 360 intervals with 1º in each 

interval and in each cell the land surface temperature from 2000 to 2006 were averaged in 

Figure 2.9. It is thus concluded that the vegetation growth in the Qilian area is significantly 

affected by the hillslope aspect with different solar radiation and land surface temperature. 

 

 

 

 

Figure 2.9 The relationship between the NDVI and the land surface temperature. The solid line is the 

best fit to the data with the linear regression line (R2 = 0.77). 

 

    The precipitation values corresponding to the elevation interval of 10 m were averaged and 

the relationship between the mean precipitation and elevation was plotted in Figure 2.10 (the 

diamonds). The measured precipitation is positively correlated with the elevation and can be 

well fitted with the linear equation (the solid straight line in Figure 2.10): 

 P = 0.0058H + 26.4                                                                                                             (2.1) 

where P is the monthly mean precipitation of June, July, August, and September in mm from 

2000 to 2001 and H is the elevation in m. It can be easily calculated based on Equation (2.1) 

that the monthly P increases 0.58 mm for every 100 m increase in elevation from June to 

September. The change of the land surface temperature with elevation was also obtained and 

plotted on the same graph (the triangles in Figure 2.10). The land surface temperature is 
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negatively correlated with the elevation and is fitted well with a straight line (the dashed line 

in Figure 2.10). The relationship between land surface temperature and elevation is given by: 

 T = – 0.0063H + 42.9                                                                                                           (2.2)  

where T is the mean land surface temperature of June, July, August, and September in °C 

from 2000 to 2006. Equation (2.2) indicates that the mean land surface temperature decreases 

0.63 °C for every 100 m increase in elevation. A straight line at the elevation 3400 m is drawn 

in Figure 2.10 which intersects with the value of T around 21 °C and the value of P around 46 

mm per month, indicating the optimal temperature and precipitation for the vegetation growth 

at the elevation of 3400 m in the northern part of the Qilian Mountain area. 

 

 

 

Figure 2.10 The change of precipitation (diamonds) and land surface temperature (triangles) with 

elevation. The solid line is the best fit with regression (R2 = 0.99) to the precipitation and the dashed 

line is the best fit with regression (R2 = 0.98) to the land surface temperature. 

 

The change of the mean NDVI with the monthly P was plotted in Figure 2.11 which shows 

that the NDVI increases with P and reaches its peak value around 0.56 at P = 46mm per 

month and then decreases even though P increases. The relationship between the NDVI and P 

in Figure 2.11 can be well fitted with two straight lines, one for P < 46 mm with R2 = 0.96 and  
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Figure 2.11 The change of the NDVI with the monthly precipitation. Two straight lines are fitted to 

the data, one for P < 46 mm (R2 = 0.96) and the other for P > 46 mm (R2 = 0.99). 

 

 

 
 

Figure 2.12 The change of the NDVI with the land surface temperature. Two straight lines are fitted to 

the data, one for T < 21 °C (R2 = 0.98) and the other for T > 21 °C (R2 = 0.95). 
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the other for P > 46 mm with R2 = 0.99. A similar plot to Figure 2.11 is provided in Figure 

2.12 for the change of the mean NDVI with the land surface temperature. It is seen that the 

NDVI increases with T and reaches its peak value at T = 21 °C and then decreases even 

though T increases. The relationship between the NDVI and T in Figure 2.12 can also be well 

fitted with two straight lines, one for T < 21 °C with R2 = 0.98 and the other for T > 21 °C 

with R2 = 0.95. Figure 2.11 and 2.12 clearly show that the largest NDVI values or the optimal 

conditions for the vegetation growth in the Qilian Mountain area are given by a monthly P 

around 46 mm and T around 21 °C. This best combination of precipitation and temperature 

exists at the elevation of 3400 m in the Qilian Mountain area. The vegetation at lower 

elevation (< 3200 m) does not grow well due to less precipitation and higher temperature 

while the vegetation cover at higher elevation (> 3600 m) is poor due to lower temperature. In 

fact, the land surface is covered by snow for two-thirds of a year when the elevation is higher 

than 3900 m which is certainly not suitable for vegetation growth even though there is plenty 

precipitation.  

 

2.5 Conclusions 

The spatial distribution of vegetation in the Qilian Mountain area was quantified with remote 

sensing data. The MODIS NDVI values for June, July, August, and September are the optimal 

indicators for the vegetation growth during a year in this area and thus were used in this study. 

Based on the results obtained by analyzing the NDVI data for seven years from 2000 to 2006, 

the following important conclusions can be drawn. 

    1) Elevation and aspect are two very important factors for the vertical distribution of 

vegetation in Qilian Mountain area because of their control on precipitation and temperature; 

    2) In the Qilian Mountain area the vegetation was at a maximum between the elevations of 

3200 m and 3600 m with the NDVI values larger than 0.50 and a peak value of larger than 

0.56 around 3400 m. The optimal vegetation growth with the largest NDVI value (> 0.56) is 

found in the shady side between NW (340º) to NE (70º) within the elevation range of 3200 m 

and 3600 m; 

    3) Better vegetation growth occurs over a larger elevation range on the shady side than the 

sunny side in this area because of the reduced ET and less soil moisture stress on the shady 

side; 

    4) The vegetation growth is more sensitive in high altitude area since the rate of change in 

the NDVI values with elevation varies gently at lower elevations from 2000 m to 3400 m and 

more quickly at higher elevations than 3400 m; 
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    5) The monthly mean precipitation of 46 mm (552 mm/year) and the land surface 

temperature of around 21 °C provide the optimal conditions for the vegetation growth 

between 3200 m and 3600 m in the northern part of the Qilian Mountain area. 

 





                                                                                                                                                  ET changes 

 27 

 
 
 
 
 
 
 
 

CHAPTER 3 
 

Impact and consequences of evapotranspiration changes 

on water resources availability in the arid Zhangye basin 

(China)* 

 

* Based on: Jin, X.M., Wan, L., Schaepman, M.E., Clevers, J.G.P.W., Su, Z., 2008. 
Impact and consequences of evapotranspiration changes on water resources availability in 
the arid Zhangye basin (China). International Journal of Remote Sensing (in press). 



Chapter 3 

 28 

Impact and consequences of evapotranspiration changes on water resources availability 
in the arid Zhangye basin (China) 

 
 
Abstract 

Evapotranspiration (ET) plays an important role in the hydrological cycle and it is essential to 

estimate ET accurately for the evaluation of available water resources. This is most critical in 

(semi-)arid regions. In this paper, the long-term change of daily ET in the semi-arid Zhangye 

basin in northwest China and its impact factors were studied. The spatial distribution of ET 

was assessed by using the energy balance approach SEBS (Surface Energy Balance System). 

Cloud free NOAA-AVHRR September images over the Zhangye basin from the year 1990 to 

2004 were used in combination with SEBS to estimate ET at a spatial resolution of 1.1 km. 

This daily ET was converted to a monthly ET (for September) using daily pan evaporation 

values from a meteorological station in the study area. Spatial aggregation of all pixels 

yielded the total monthly ET for the whole study area. Subsequently, the monthly ET was 

extrapolated to annual ET values using the pan evaporation data. Results were validated with 

ground-based measurements on the water balance for the whole Zhangye basin. The annual 

ET increased gradually from 23.7×108 m3 in 1990 to 26.9×108 m3 in 2004 for the Zhangye 

basin. The main cause appeared to be vegetation change. 

 
Keywords:  Evapotranspiration, Surface Energy Balance System (SEBS), Water resources, 

NOAA-AVHRR data, Zhangye basin 
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3.1 Introduction 

Sustainable development of arid and semi-arid areas, like the arid inland basins in Northwest 

China, will largely depend on the availability of water resources. For the assessment of water 

resources in a large arid inland basin one usually needs to quantify the inflows from high 

mountains to the basin and the evapotranspiration (ET) loss in the basin. Both quantities are 

highly variable in time and space. River gauging stations can be established in large rivers to 

measure river discharges, but the discharges in smaller tributaries discharging directly in the 

river basin are usually difficult to quantify. In an inland basin, ET is the only major loss term 

occurring that is relevant for the water balance. ET plays an important role in the hydrological 

cycle. It is site specific and varies with local meteorological conditions (radiation, wind, 

temperature, humidity of the air) and surface conditions (surface type, soil wetness, vegetation 

development stage, etc.) (Hare, 1980; Willmott et al., 1985; Mintz and Walker, 1993; Potter et 

al., 1993; Sun et al., 2004).  

    The Heihe river basin is the second largest inland river basin in China, covering an area of 

128,283 km2. With the increase of population and farmland in the Zhangye basin, which is the 

middle stream area of the Heihe river basin, the water consumption has increased gradually 

during recent years. Most water is used for agriculture in the Zhangye basin and the irrigation 

rate is more than 90% of the agricultural water consumption. The water consumption 

increases continuously and part of the water resources cannot be used effectively because of 

net ET loss.  It is causing a decrease of incoming water in the downstream area resulting in a 

shrinking of the Ejina oasis area that is located downstream. The eco-environment of the 

downstream area is degrading and it is causing a series of environmental problems, like land 

desertification. In order to properly estimate the decrease in water consumption and the net 

ET loss in the Zhangye basin, the amount of water going into the atmosphere should be 

estimated first. Subsequently, the incoming water in the downstream area should be estimated 

as well. Concerning the water balance, precipitation is the only recharge resource and the ET 

is the only loss term in the inland river basin. Therefore, quantitative estimation of ET for the 

Zhangye basin and finding the impact factors on it can significantly contribute to improving 

the eco-environment, balancing the water consumption and properly allocating available 

water resources.  

    To date, there are a series of methods available for ET estimation, such as the energy 

balance method, the aerodynamic resistance method and the eddy correlation method (Ke et 

al., 1995; Mo and Liu, 1997; Kim, 1998; Mo, 1998; Liu and Sun, 1999). These approaches 

generally rely on ground meteorological observations on a point basis. In order to estimate the 

spatial distribution of ET, a network of ‘point’ data have to be interpolated to a regional scale. 

As an alternative, methods using remote sensing information to estimate ET have been 

proposed. Because remotely sensed data have the advantage of a large area coverage, frequent 

update and consistent quality, remote sensing based ET estimation has been a subject of many 
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studies (Rango, 1989; Kuittinen, 1992; Kite and Pietroniro, 1996; Stewart et al., 1996; 

Sorooshian et al., 1997; Rango and Shalaby, 1999; Mu et al., 2007; Liu et al., 2007; Sobrino 

et al., 2007; Santanello et al., 2007; Wang et al., 2007). As ET cannot be directly measured by 

remote sensing methods, indirect estimation of ET using remotely sensed data has been 

explored with several approaches, such as the energy balance approach (Choudhury, 1997; 

Seguin, 1997) and the Priestley-Taylor or modified Priestley-Taylor approach (Jiang and 

Islam, 2001).  

    In recent years, methods for deriving surface fluxes using remote sensing data have been 

developed, such as the model SEBAL (Surface Energy Balances Algorithm for Land) 

(Bastiaanssen et al., 1998; Bastiaanssen, 2000; Bastiaanssen et al., 2002, 2005), SEBS 

(Surface Energy Balance System) (Su, 2002), TSEB (Two-Source Energy Balances) (Norman, 

et al., 1995) and S-SEBI (Simplified Surface Energy Balances Index) (Roerink et al., 2000). 

SEBAL is a robust remote sensing model that can be applied to estimate the different 

components of the energy balance of the earth surface and thus also actual evapotranspiration 

(ET). TSEB modeling scheme has been developed to use either microwave-derived near-

surface soil moisture or radiometric surface temperature as the key remotely sensed surface 

boundary condition for computing spatially distributed heat fluxes. The SEBS system was 

developed by Su (2002) in order to estimate land surface fluxes using remotely sensed data 

and available meteorological observations. Being applied to many case studies in Europe and 

Asia (Oku et al., 2007; Ma et al., 2007; Jia et al., 2007; Su, 2002), SEBS was selected to be 

the methods of ET estimation in this study. 

    Although these models have been proposed to estimate regional ET, the accuracy of the 

results still requires validation before they can be used for water resources assessment in a 

certain region. In most of the researches, the results of ET estimation are validated by 

monitoring data at local scale (Wilson et al., 2002; Sun et al., 2004; Salazar and Poveda, 2006; 

Zwart and Bastiaanssen, 2007). The purpose of this study is to estimate the ET of the Zhangye 

basin in Northwest China and to validate the ET result by using the water balance of the basin. 

The specific objectives are: (1) to estimate the ET of the Zhangye basin using the SEBS 

model, (2) to validate the accuracy of the ET result using the water balance, and (3) to analyze 

the long-term change of ET and the major impact factors on this ET. 

 

3.2 Material and Methods 

3.2.1 Study area 

The study area is the Zhangye basin, which is located in the middle stream area of the Heihe 

river in Northwestern China, roughly ranging between 97°12’-102°20’E and 37°28’-39°57’ N. 

The total area is 24,060 km2 and it is lying between the Yingluo gorge and the Zhengyi gorge 

(Figure 3.1). With a typical continental arid climate, the precipitation in the study area is 
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small and concentrated from June to September. The mean annual precipitation is spatially 

varying between 54.9 and 436.2 mm.  

The Heihe river is the longest river in the study area. It flows along the south slope of the 

Qilian mountains and flows out of the mountains from the Yingluo gorge and enters into the 

Zhangye basin. After that, the Heihe river flows through the Zhengyi gorge into the Ejina 

oasis in Inner-Mongolia, and finally discharges into the east and west Juyan lakes (Figure 3.1). 

The length of the stream is 821 km. The Zhangye basin is located in the Heixi Corridor 

between the Yingluo gorge and the Zhengyi gorge. 

 

 

Figure 3.1 The location of the study area. The Zhangye basin is between the Yingluo gorge and the 

Zhengyi gorge. The Yingluo gorge is in the hill-side of the Qilian Mountains which is upstream of the 

Heihe River. The Zhengyi gorge is in the middle stream of the Heihe River. 

 

 

3.2.2 Methodology 

The surface energy balance is commonly written as 

EHGRn λ++=                                                                                                                   (3.1) 
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where Rn is the net radiation, G0 is the soil heat flux, H is the turbulent sensible heat flux, and 

λE is the turbulent latent heat flux (λ is the latent heat of vaporization and E is the actual 

evapotranspiration).  

    The equation to calculate the net radiation is given by 

4
0)1( TRRR lwdswdn ⋅⋅−⋅+⋅−= σεεα                                                                                  (3.2) 

where α is the surface albedo, ε is the emissivity of the surface, Rswd, Rlwd are incoming 

shortwave and longwave radiation respectively, σ is the Stefan-Bolzmann constant, and T0 is 

the surface temperature. α, ε and T0 are physical parameters and can be derived from satellite 

data. The same estimation procedure as described by Su et al. (1999) was used in this study. 

Rswd and Rlwd are measured by a meteorological measurement system. 

    The equation to calculate the soil heat flux is parameterized as follows 

)]()1([0 csccn fRG Γ−Γ⋅−+Γ⋅=                                                                                         (3.3) 

where cΓ and sΓ  are empirical coefficients. For most bare soil conditions a sΓ  value of 0.315 

is valid (Kustas and Daughtry, 1989), and for full vegetation often sΓ  is assumed to be 0.05 

(Monteith, 1973). An interpolation is then performed between these cases using the fractional 

canopy coverage fc. fc can be derived by following equation: 

minmax

min

NDVINDVI

NDVINDVI
f c −

−
=                                                                                                     (3.4) 

The surface energy balance computation with the SEBS algorithm is based on the 

determination of the relative evaporative fraction. To determine the relative evaporative 

fraction, the energy balance solution at limiting cases is used. At the dry-limit, the latent heat 

(or the evaporation) becomes zero due to the limitation of soil moisture, and the sensible heat 

flux is at its maximum value. It follows from Eq. (3.1) that 

,00 ≡−−= dryndry HGREλ   or 

0GRH ndry −=                                                                                                                       (3.5) 

At the wet-limit, where the evapotranspiration takes place at potential rate, λEwet (i.e. the 

evapotranspiration is only limited by the available energy under the given surface and 

atmospheric conditions), the sensible heat flux takes its minimum value, Hwet i.e. 

,0 wetnwet HGRE −−=λ   or 
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wetnwet EGRH λ−−= 0                                                                                                          (3.6) 

The relative evaporation then can be estimated as  

wetdry

wet
r HH

HH

−
−

−=Λ 1                                                                                                              (3.7) 

The evaporative fraction is finally given by: 
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                                                                                     (3.8) 

    Eqs. (3.1) – (3.8) constitute the basic formulation of SEBS. The actual sensible heat flux H 

in SEBS is obtained by solving a set of non-linear equations and is constrained in the range 

set by the sensible heat flux at the wet limit Hwet, and the sensible heat flux at the dry limit 

Hdry. 

    It is assumed that the daily evaporative fraction is approximately equal to the instantaneous 

value. The daily evaporation can be determined as (Su, 2002) 

w

n
daily

R
E

λρ
⋅Λ

××= 71064.8                                                                                                     (3.9) 

where Edaily is the actual evaporation on a daily basis (mm.d-1), λ is the latent heat of 

vaporization (JKg-1), ρω is the density of water (Kgm-3) and nR  is the daily net radiation flux. 

 

3.2.3 Dataset 

The Advanced Very High Resolution Radiometer (AVHRR), onboard the National Oceanic 

and Atmospheric Administration's (NOAA) Polar Orbiting Environmental Satellites (POES), 

has unique characteristics in terms of spectral response, image geometry, frequency of 

coverage, and accessibility that make it useful for applications in oceanography, terrestrial 

sciences, and meteorology. AVHRR is a broad-band, four or five channel (depending on the 

model) scanner, sensing in the visible, near-infrared, and thermal infrared portions of the 

electromagnetic spectrum. NOAA/AVHRR remote sensing data were used for 

evapotranspiration estimation in this study. The data were retrieved from NOAA's Satellite 

Active Archive (SAA). SAA is a digital library of real-time and historical satellite data and 

the data can be downloaded free. 11 Sets of cloud free NOAA satellite images over the 

Zhangye basin from the year 1990 to 2004 were used to estimate the daily ET at a spatial 

resolution of 1.1 km. For each of the years a September image was used. Due to cloud cover, 
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there was no image available in 1992, 1994, 1999 and 2000. In order to relate results to 

meteorological and runoff data, four sets of cloud free NOAA satellite images from 

September in the year 1995 to 1998 were used for the validation of ET in the Zhangye basin.  

    The meteorological dataset used in this study includes the altitude of the Zhangye station, 

sea level pressure, air temperature, wind speed, wind direction, relative humidity and pan 

evaporation (open water surface evaporation). Pre-processing of the data was done to derive 

the variables at satellite passing time needed as inputs for SEBS.  

    The mean gridded rainfall data from 1995 to 1998 are given on a monthly basis and its 

spatial resolution is 1 km. The monthly rainfall data was published by the Institute of 

Geographic Sciences and Natural Resources Research, CAS 

(http://www.naturalresources.csdb.cn). This database contained the monthly rainfall data from 

1971 to 2001 from 700 meteorological stations in China. The interpolation algorithm in the 

software was used which was published by the Centre for Resources and Environmental 

Studies, the Australian National University (http://cres.anu.edu.au/). The software package 

provides a facility for transparent analysis and interpolation of noisy multi-variate data using 

thin plate smoothing splines. The package provides comprehensive statistical analyses, data 

diagnostics and spatially distributed standard errors. It also supports flexible data input and 

surface interrogation procedures. Thin plate smoothing splines can in fact be viewed as a 

generalization of standard multi-variate linear regression, in which the parametric model is 

replaced by a suitably smooth non-parametric function. The degree of smoothness, or 

inversely the degree of complexity, of the fitted function is usually determined automatically 

from the data by minimizing a measure of the prediction error of the fitted surface given by 

the generalized cross validation (GCV). Recent applications of thin plate smoothing splines to 

annual and daily precipitation data have been described by Hutchinson (1995, 1998ab). This 

method considers the impact of climate and topography.  

 

3.3 Result and discussion 

3.3.1 Spatial distribution of daily ET in the Zhangye basin 

The spatial distribution patterns of daily ET as estimated using SEBS over the Zhangye basin 

can be observed in Figure 3.2. Figure 3.2a shows the spatial distribution of daily ET on 28 

September 1995, having a mean value of 1.37 mm day-1. The daily ET is between 0 and 1 mm 

day-1 in the mountainous areas and this area is 42.39% of the total study area. The value is 

between 1 and 3 mm day-1 in the corridor area with better vegetation and this area is 48.66% 

of the Zhangye basin. The highest daily ET is between 3 and 4 mm day-1 and it is distributed 

in the hillside area of the Qilian mountains.  

The distribution patterns of the other three years are similar to the year 1995. The daily ET 

is relatively higher on 15 September 1996. The range of values in the corridor area is between 
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3 and 4 mm day-1 and this area is 10.05% of the total study area. The daily ET is very high on 

4 September 1998. Most of the ET in the corridor is higher than 4 mm day-1 and this area is 

23.88% of the Zhangye basin. The mean daily ET values on 15 September 1996, 3 September 

1997 and 4 September 1998 are 1.31, 1.18, and 2.00 mm day-1, respectively. The statistics of 

daily ET for 1995, 1996, 1997 and 1998 are given in Table 3.1.  

 

 

            

         (a)                                                                 (b) 

      

                                    (c)                                                                (d) 

Figure 3.2 The spatial distribution pattern of daily ET in the Zhangye basin on 28 September 1995 (a), 

15 September 1996 (b), 3 September 1997 (c), and 4 September 1998 (d). The legend provides the ET 

in mm day-1. 

 

 

Table 3.1  Statistics of daily ET for the study area 

  09-28-1995                     09-15-1996                    09-03-1997                     09-04-1998 
Daily ET        Percentage    Mean         Percentage   Mean          Percentage   Mean          Percentage  Mean 
(mm/d)            of area       value             of area      value             of area       value            of area       value 

0-1                 42.39         0.35              57.50         0.14                52.44        0.23               51.83        0.12 
1-2                 30.02         1.47              12.82         1.48                20.12        1.50               11.01        1.51 
2-3                 18.64         2.46              11.93         2.50                19.54        2.44                7.90         2.46 
3-4                 7.70           3.41              10.05         3.45                 6.40         3.40                5.39         3.48 
> 4                 1.25           4.29               7.70          5.13                 1.51         4.29               23.88        5.84 
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3.3.2 Annual ET estimation 

Monthly ET estimation based on daily ET 

The daily ET values of the SEBS results were averaged for all pixels of the study area in each 

image and this mean value was considered to be the daily ET of the whole Zhangye basin. 

There are in total 6221 pixels in the study area. Due to cloud cover, there are only very few 

NOAA satellite images available in one month and the daily ET for each day could not be 

obtained. The extension of daily ET to monthly ET, and further to annual ET is very 

important. In this study, the monthly ET was estimated by combination of the SEBS results 

and the daily data of meteorological stations. Take the year 1995 as example. The SEBS result 

of mean daily ET is 1.37 mm on 28 September 1995, and the pan evaporation value from the 

meteorological station is 6.9 mm for the same day. The daily ET of other days in September 

can be obtained by Equation (3.10) and the summation is the monthly ET of September. 

iM
dM

dS
iS ET

ET

ET
ET .

.

.
. ×=                                                                                               (3.10) 

where i is the number of days from 1 to 30 in September; ETS.i is the predicted SEBS daily ET 

for day i in September after calculation; ETS.d is the mean daily ET from the SEBS result and 

this value is 1.37 mm on 28 September 1995; ETM.d is the observed pan evaporation of the 

meteorological station on the same day, and it is 6.9 mm on 28 September 1995; ETM.i is the 

observed daily pan evaporation of the meteorological station for day i in September. 

    The Zhangye basin is in arid area and the vegetation, wind speed and temperature in 

September is in the average values among a year. The variation of the vegetation, wind speed 

and temperature in September is relatively small. Therefore, the quotient of ETS.d/ETM.d was 

assumed not change in a month in this study. The predicted daily ET of SEBS for each day in 

September can be calculated by Equation (3.10) and the summation yields the monthly SEBS 

ET of September. The amount of monthly ET of the total basin was estimated by multiplying 

the area of the Zhangye basin. The area can be obtained based on the total number of pixels of 

the study area (6221 pixels) multiplying the resolution of the NOAA data (1100×1100 km2).  

 

Annual ET estimation 

Based on the observed daily pan evaporation at the Zhangye meteorological station, the 

monthly evaporation of every September and the annual evaporation of each year from 1995 

to 1998 were calculated. The monthly evaporation of September from 1995 to 1998 are 9.4%, 

9.6%, 9.5% and 9.6% of the annual value, respectively. Therefore, the predicted annual ET 

based on SEBS can be obtained using Equation (3.11). 
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KETET my /=                                                                                                                     (3.11) 

where ETy is the predicted annual ET from SEBS; ETm is the predicted monthly ET from 

SEBS in September obtained by Equation (3.10); K is the rate of monthly evaporation of 

September to the annual value. 

The predicted annual ET from the SEBS result based on Equation (3.11) is shown in Table 

3.2. We see the lowest annual ET values for 1995 and 1997 and a relatively high value in 

1998. 

 

Table 3.2 Predicted annual ET by SEBS in the Zhangye basin from 1995 to 1998. 

  Year                      Monthly ET of September (108 m3)                   Annual ET(108 m3) 

  1995                                            2.30                                                      24.47 
  1996                                            2.74                                                      28.54 
  1997                                            2.37                                                      24.98 
  1998                                            3.35                                                      34.90 

 

 

3.3.3 Validation of ET  

The Zhangye basin is considered as an isolated hydrological unit where recharge, runoff and 

discharge occur. Impermeable and weakly permeable layers are distributed around the base 

and boundary of the basin. The precipitation in the Qilian mountain area recharges the 

groundwater in the drainage area, and it discharges by the ET and the spring in the discharge 

area. The Zhangye basin is a downfaulted basin and there are water-resisting faults around it. 

The main recharge of the groundwater is from the leakage of the surface water of the rivers 

and the precipitation. Therefore, the total amount of water resources in the Zhangye basin is 

consists of the outflow of the mountain-gap (Yingluo gorge), the precipitation and the lateral 

runoff outside the basin. In this hydrological unit, a water resources system of river-

groundwater-spring-river is constituted by the mutual change between the surface water and 

the ground water (Figure 3.3). In this closed basin of Zhangye, the inflow and outflow are 

equal in a hydrological budget. Considering the water balance for a large watershed, the 

hydrological balance equation can be given as (Gupta, 1989) 

WRPE ∆±+=                                                                                                                  (3.12) 

where E is the land ET, P is the precipitation, R is the water consumption and ∆W is the 

change of water storage in the Zhangye basin. 
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Figure 3.3 Cross section of the water resources system for the Zhangye basin in the middle stream of 

the Heihe River basin. The Zhangye basin is located between two faults. The recharge of the system is 

the precipitation of Qilian Mountains, the runoff of the Heihe River and groundwater. The discharge 

path is evapotranspiration and a spring. The Yingluo gorge is the upstream of the Heihe River and the 

Zhengyi gorge is in the middle stream. The difference between the runoff at the two gorges is the 

water consumption of the Zhangye basin. 

 

    Over a long period of time (≥1 year), water storage stays more or less the same (∆W ≈ 0) 

and thus ET = P + R. The inflow of the Zhangye basin is mainly from the Yingluo gorge 

upstream of the Heihe river basin, and the outflow of the Zhangye basin is equal to the runoff 

at the Zhengyi Gorge in the middle stream of the Heihe river basin. Equation (3.12) can now 

be rewritten as 

zy RRPE −+=                                                                                                                   (3.13) 

where Ry is the runoff at the Yingluo gorge and Rz is the runoff at the Zhengyi gorge. 

    The annual mean runoff at the Yingluo gorge is 15.98×108 m3/a, the mean runoff of other 

small rivers was 6.277×108 m3/a in total, so the summation of the inflow in the Zhangye basin 

was 22.257×108 m3/a. Based on the statistics, the rate of the annual mean runoff at the 

Yingluo gorge to the total inflow of the Zhangye basin is 0.718 (15.98/22.257). Therefore, the 

annual inflow of the Zhangye basin can be estimated by the following equation 

Ri = Ry / 0.718                                                                                                                     (3.14) 
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where Ri is the total annual inflow of the Zhangye basin and Ry is the annual runoff at the 

Yingluo gorge. 

The annual ET of the Zhangye basin from 1995 to 1998 based on the water balance 

equation is given in Table 3.3. This ET was determined by the inflow plus the precipitation 

minus the outflow (Table 3.3). As can be seen, the annual ET based on the water balance 

compared well with the SEBS result (Table 3.2 and 3.3). Thus, the SEBS algorithm can be 

used to effectively estimate annual ET in the Zhangye basin. 

 

Table 3.3  The annual ET (108 m3/a) of the Zhangye basin from 1995 to 1998 based on the water 

balance 

        Year                  Inflow                     Outflow                   Precipitation                   ET 

        1995                  18.25                         7.54                            12.44                       23.15 
        1996                  25.18                         9.55                            11.91                       27.55 
      1997                  19.28                         5.13                             8.84                        22.98 
      1998                  30.06                         9.46                            12.84                       33.43 

 

 

3.4 Annual ET change and the impact factor 

3.4.1 Annual ET change 

The daily ET values of September from 1990 to 2004 in the Zhangye basin were calculated 

using the SEBS model, and extrapolated to estimate monthly ET and annual ET based on 

observation data from the meteorological stations. Due to cloud cover, there was no NOAA 

satellite image available in 1992, 1994, 1999 and 2000. Figure 3.4 illustrates the annual ET 
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Figure 3.4 The annual ET change in the Zhangye basin from the year 1990 to 2004. The solid line is 

the fitted line. 
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change in the Zhangye basin from the year 1990 to 2004. The result indicates that the annual 

ET increased gradually from 1990 to 2004. The annual ET increased from 23.7×108 m3 in 

1990 to 26.9×108 m3 in 2004 and the increase rate is 0.21×108 m3 per year in the Zhangye 

basin. 

3.4.2 Impact factor 

Vegetation is one of the important impact factors on evapotranspiration. The NDVI is an 

index derived from reflectance measurements in the red and infrared part of the 

electromagnetic spectrum to describe the relative amount of green biomass per pixel (Deering, 

1978). This index is an indicator of photosynthetic activity of plants and has been widely used 

for assessing vegetation phenology and for estimating landscape patterns in terms of primary 

productivity (Sellers, 1985; Tucker and Sellers, 1986). The NDVI was designed to 

quantitatively evaluate vegetation growth: higher NDVI values imply more vegetation 

coverage, lower NDVI values imply less or non-vegetated coverage and zero NDVI indicates 

rock or bare land. 

Due to the arid and semi-arid climate in the Zhangye basin, most of the vegetated areas 

concern agricultural land. In general, this means vegetation growth occurs if NDVI is larger 

than 0.1 and an NDVI value greater than 0.3 represents agricultural land. In this study, the 

NDVI values of each September from 1990 to 2004 were calculated based on NOAA satellite 

data. The number of pixels with an NDVI greater than 0.1, 0.2 and 0.3 were counted for each 

image (Figure 3.5). The frequency can represent the area of vegetation coverage. 
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Figure 3.5 The variation of pixel numbers from 1990 to 2004 with NDVI greater than 0.1, 0.2 and 0.3, 

respectively. 
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    Figure 3.5 illustrates that the areas of NDVI greater than 0.1, 0.2 and 0.3 increased 

gradually with time and this result indicated that the vegetation growth of the Zhangye basin 

in September has become better with time. The increase in NDVI greater than 0.3 showed that 

the agricultural land has increased gradually from 1990 to 2004. The Zhangye basin is one of 

the most important agricultural areas in the Hexi Corridor. The increase of agricultural area 

caused an increase of the water demand and resulted in an increase of evapotranspiration. 

Therefore, the vegetation change, especially the increase of agricultural area, is the main 

factor explaining the increase of ET in the Zhangye basin. 

In order to further explain the impact of vegetation on the ET, the spatial correlation 

between the SEBS daily ET and the corresponding NDVI is shown in Figure 3.6. Figure 3.6a 

illustrates the correlation between the SEBS daily ET and the NDVI on 28 September 1995 in 

the Zhangye basin. The result indicates that the area with a large ET value was in the area 

with good vegetation growth (large NDVI values) and it was mainly occurring in the corridor 

area. The daily ET value is between 1 and 3 mm day-1 and the NDVI is larger than 0.2 in the 

corridor area. The ET in the southern area (close to Qilian mountains) is very large and the 

daily ET is between 3 and 4 mm day-1. Figure 3.6b shows the correlation between the daily 

ET and the NDVI on 15 September 1996 and it has a similar result as Figure 3.6a. Figure 3.6c 

compares the daily ET and the NDVI on 3 September 1997. As can be seen, the NDVI of 

1997 is larger than that of 1995 and 1996. The vegetation in the Zhangye basin is mainly 

agricultural land, the crop has matured and changed into the ripening phase at the end of 

September. The NDVI results of 1995 and 1996 were in the middle and the end of the 

September, respectively. The one of 1997 was still at a full green crop. Therefore, the NDVI 

of 1997 has a relatively large value. Figure 3.6d shows that the vegetation is better in 1998 

and the daily ET is higher than in the other three years. In 1998, the precipitation was very 

large and this made the inflow of the Yingluo gorge higher, which resulted in a good 

vegetation growth and high ET in the Zhangye basin. The SEBS daily ET was larger than 4 

mm day-1 in the corridor area. Based on the above analysis, the area with a large daily ET is 

corresponding to the large NDVI area and this result validated spatially that vegetation is a 

very important impact factor for the ET. 
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(a) 

      

(b) 

    

(c) 

      

(d) 

Figure 3.6 The spatial correlation between the SEBS daily ET and the NDVI in the Zhangye basin on 

28 September 1995 (a), 15 September 1996 (b), 3 September 1997 (c), and 4 September 1998 (d). 
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The relation between the annual ET result obtained by using SEBS and the mean NDVI 

based on NOAA satellite data from 1990 to 2004 is shown in Figure 3.7. The annual ET 

increased with an increase of the mean NDVI. The increase rate of the annual ET is 0.21×108 

m3 and the increase of the mean NDVI is 0.01 per year. This result proved temporally that 

vegetation is a very important impact factor for the ET. 
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Figure 3.7  The relation between the annual ET based on SEBS and the mean NDVI based on NOAA 

satellite data from 1990 to 2004 in the Zhangye basin (Y=28.5X + 16.93, R2=0.10). 

 

 

3.5 Conclusions 

As a key component in the water and energy budget, the long-term change of ET in the semi-

arid Zhangye basin in China and its impact factors were analyzed in this paper. The following 

conclusions can be drawn based on the results obtained. 

    1) The annual ET was estimated based on the SEBS algorithm (Surface Energy Balance 

System) and increased gradually from 1990 to 2004. The annual ET increased from 23.7×108 

m3 in 1990 to 26.9×108 m3 in 2004 and the increase rate is 0.21×108 m3 per year in the 

Zhangye basin; 

    2) The accuracy of annual ET results based on the SEBS model was validated using a water 

balance for the whole Zhangye basin from 1995 to 1998. Results show that the SEBS 

algorithm can be used to effectively estimate annual ET in the Zhangye basin; 
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    3) The main impact factor of the long-term increase of annual ET was the vegetation 

change. The annual ET increased with the mean NDVI and the area with a large daily ET is 

corresponding to the area with large NDVI values in the Zhangye basin; 

    4) The result of this study can provide reference for the government to decide on a new 

policy of water resources allocation in the Heihe River basin. 
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CHAPTER 4 

 
Runoff hysteresis effects of the Heihe River on the 

vegetation cover in the Ejina Oasis (China)* 

 
 
 

* Based on: Jin, X.M., Wan, L., Schaepman, M.E., Clevers, J.G.P.W., Su, Z., 2008. 
Runoff hysteresis effects of the Heihe River on the vegetation cover in the Ejina Oasis 
(China). Journal of Hydrology (in review).   

Using the method as defined in: Jin, X.M., Hu, G.C., Li, W.M., 2008. Hysteresis effect of 
runoff of the Heihe River on vegetation cover in the Ejina Oasis in Northwestern China. 
Earth Science Frontiers, 15(4), 198-203. 
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Runoff hysteresis effects of the Heihe River on the vegetation cover in the Ejina Oasis 
(China) 

 

 
Abstract 

In arid regions an oasis plays an important role. It is nearly the only support of living and 

economic development for the local people. In recent years, the recession of the oasis areas 

appeared to be significant in Northwest China. It caused a series of environmental problems 

and part of the area even became the cradleland of sandstorms. In this paper, the long-term 

vegetation change of the Ejina Oasis, which is located in the downstream area of the Heihe 

River basin, was analyzed based on remote sensing data. The quantitative relation between the 

runoff of the Heihe River and the vegetation change of the Ejina Oasis from 1989 to 2006 was 

established using AVHRR and MODIS time series. The vegetation growth of the Ejina Oasis 

depends on the runoff of the Heihe River. The time lag of the impact of the runoff on the 

vegetation of the Ejina Oasis is one year. The smallest water amount which can sustain the 

demand of the eco-environment of the Ejina area was estimated. The result can serve as a 

reference for decision making processes at governmental level, finally allowing a better 

allocation of water resources in the Heihe River basin. 

 

 
Keywords:  Runoff, Vegetation change, Hysteresis effect, GIMMS NDVI, MODIS NDVI, 

Ejina Oasis 
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4.1 Introduction 

In a desert area with an arid climate, like in the arid inland areas in Northwest China, 

sustainable social development will largely depend on the availability and sustainability of an 

oasis ecosystem. An oasis is nearly the only support of living and of economic development 

for the local people. Although they occupy only 4%-5% of the total area of the region, over 

90% of the population and over 95% of social wealth are concentrated within the oases. The 

oasis is not only the most concentrated area of human activities in arid regions but also the 

largest area where disturbances are happening at the regional scale. Thus the oases, which are 

fragile ecosystems, play an important role in arid regions. During recent years, the recession 

of oases areas appeared to be extensive in Northwest China.  

    The Heihe River basin is the second largest inland river basin in China, covering an area of 

128,283 km2. With the continuous increase of economic activities in the Zhangye area, which 

is the middle stream area of the Heihe River basin, the water consumption increased gradually. 

It caused a decrease of incoming water in the downstream area resulting in a shrinking of the 

Ejina oasis area downstream. As a result, in that region the eco-environment is degrading and 

it causes a series of environmental problems like land desertification and part of the area even 

became the cradleland of sandstorms. Therefore, research on the spatial and temporal 

regulations and the control factors of the oasis areas has great significance for protecting and 

optimal use of the oasis resources, sustainable development of regional economy and social 

stability of the inland area. 

    However, due to little population, inconvenient transportation and shortage of long-term 

monitoring data, no quantitative analysis could be carried out using traditional methods by 

employing point measurements. Newly developed methods based on remote sensing data 

provide representative measurements of several relevant physical parameters at scales from 

point to continent. Currently, remote sensing is extensively used in crop assessment, natural 

disaster monitoring and land use mapping (Quarmby et al., 1993; Hayes & Decker, 1996; 

Unganai and Kogan, 1998; Mendoza and Etter, 2002; Berardino et al., 2003; Crowley et al., 

2003; Kogan et al., 2003; Pinter et al., 2003; Canuti et al., 2004; Shalaby et al., 2004; 

Metternicht et al., 2005; Giri et al., 2005; Prasad et al., 2006; Shalaby and Tateishi, 2007), but 

it is ample used in research towards regulations of oasis variability in arid areas.  

    An oasis is the most important landscape in arid areas. The vegetation cover and the vitality 

of the oasis can be used as indices to characterize the regional ecological environment. Some 

approaches have been proposed since the 1980s. For example, Faragalla et al. (1988) 

discussed the relationship between agricultural development and oasis evolution. With the 

development of remote sensing techniques, the dynamic monitoring of the variability of the 

oasis has become possible. Some Chinese studies used Landsat Thematic Mapper satellite 

data for analysing the variability of the Ejina oasis. Some other studies used meteorological 
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satellite data to monitor the variability of Hexi oasis. Tucker et al. (1991, 1994) studied the 

long-term variation of the oasis vegetation in the Sahara Desert using daily AVHRR data 

from the year 1980 to 1992. Several studies have shown vegetation cover change in arid areas 

using remote sensing (Elmore et al., 2000; McGwire et al., 2000; Dube, 2001; Okin et al., 

2001; Diouf and Lambin, 2001; Larsson, 2002; Bruelheide et al., 2003). In addition, 

protection of the natural oasis also attracts more attention (Bornkamm, 1986). However, most 

of the studies are based on only small scale, qualitative analysis or only use short time series 

of satellite data. There is little focus on large scale studies towards oasis variation or studies 

using long time series.  

    Water is the essential factor that influences the oasis variability (Devitt et al., 1997; 

Bruelheide et al., 2003; Gries et al., 2003; Kang et al., 2007; Thomas et al., 2006). In the 

northwest arid area of China, all the oases depend on surface rivers and have a close 

relationship with the runoff of the river. With the increase of population and economic 

development, more and more human activities, like hydraulic structures and irrigation of 

cropland, cause a large area of useless evaporation and result in shortage of oasis water 

availability. The purpose of this study is to establish the quantitative relationship between the 

runoff of the Heihe River and the vegetation change of the Ejina Oasis, and furthermore, to 

estimate the water demand of the Ejina area. The specific objectives are: (1) to study the long-

term change of the Ejina Oasis based on large scale remote sensing data; (2) to establish the 

quantitative relation between the runoff of the Heihe River and the vegetation change of the 

Ejina Oasis; and (3) to estimate the yearly water demand of the Ejina Oasis. 

4.2 Study area 

The Heihe River Basin, located in the north of the Qilian Mountains and the middle part of 

the Hexi Corridor, is one of the biggest inland river basins in arid northwest China. Being the 

oases of the Hexi Corridor and the desert plain, the middle stream area of the Heihe River is 

the most important developing area for agriculture and the base for commodity grain in Gansu 

province (Figure 4.1). The downstream area north of the Langxinshan gorge forms the oasis 

area of Ejina in Inner Mongolia. In recent years, development of industry and agriculture and 

the consumption of water in the middle stream area largely increased. According to the runoff 

data of the Langxinshan hydrological station, the discharge of the Heihe River has decreased 

since 1950 (Table 4.1), and the shortage of water caused the Ejina oasis to shrink considerably. 

Table 4.1  The annual runoff at Langxinshan station in different decades 

Time 1950-1959 1960-1969 1970-1979 1980-1989 1990-1999 

Runoff (108m3) 8.66 7.4 6.53 6.64 3.47 
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    Ejina oasis is chosen as a pilot area in this research. Ejina, covering an area of 114,000 km2, 

is located at the end of the Heihe River and in the west of Inner Mongolia of China. The Gobi 

desert occupies over 90% of the Ejina area. Around the downstream area of the Heihe River 

and near the lakes of West and East Juyanhai, it forms the only oasis with a long history. The 

territory of the oasis stretches from 100.90º to 101.42° east longitude and from 41.85° to 

42.50° north latitude, forming an important ecological line of defense in the foreland of West 

China. With extremely arid conditions, the study area belongs to the north temperate zone. 

The mean annual precipitation in Ejina is around 40.8 mm; whereas the pan evaporation 

ranges between 3700 and 4000 mm. The main vegetation in this area is poplar. 

    From 1960 onwards, with the decrease of discharge downstream of the Heihe River, the 

oasis of Ejina began to shrink and caused a series of environmental problems. The areas of the 

lake of West and East Juyanhai were 267 km2 and 35 km2, respectively, and became dry in 

1961 and 1992 one after the other. The oasis area drastically reduced from 6,440 km2 to 3,200 

km2 and the area of the Gobi desert increased over 460 km2.  

As people’s life depends on it, the oasis not only supports the social-economic development, 

but also characterizes the eco-environmental condition of the northwest area of China. The 

Chinese government pays great importance to the eco-environmental aspect of the northwest 

area and has implemented a long-term development program. In order to suppress the 

recession trend of the eco-environment of the downstream area of the Heihe River Basin, the 

State Council of the People’s Republic of China started to perform a system for distribution 

and management of the water resources for the Heihe River from the year 2000 onwards and 

implemented an allocation scheme of the limited water resources.  

 

4.3 Material and methods 

The Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference 

vegetation index (NDVI) data sets (Tucker et al., 2005) were generated to provide a 23-year 

satellite record of monthly changes in terrestrial vegetation. The NDVI is an index derived 

from reflectance measurements in the red and infrared portions of the electromagnetic 

spectrum to describe the relative amount of green biomass present (Deering, 1978). The 

NDVI was designed to quantitatively evaluate vegetation growth: higher NDVI values imply 

more vegetation coverage, lower NDVI values imply less or non-vegetated coverage and zero 

NDVI indicates rock or bare land. The GIMMS-NDVI dataset includes corrections for 

variation in NDVI caused by solar zenith angle changes due to orbital drift (Pinzon et al., 

2004; Piao et al., 2003; Pinzon, 2002). It also has been corrected for distortions caused by 

cloud cover (Vermote et al., 1997), sensor inter-calibration differences (Vermote and 

Kaufman, 1995), solar zenith angle and viewing angle effects, volcanic aerosols and 

interpolation for missing data in the Northern Hemisphere during winter. The GIMMS dataset 
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Figure 4.1 The location of the study area. The Ejina Oasis is in the downstream area of the Heihe 

River and it is close to the East Juyanhai lake. 
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 is based on 15-day composites and its spatial resolution is 8 km. The data set used for this 

research consisted of 336 15-day GIMMS-NDVI composites for the Ejina Oasis from 1989 to 

2002. 

    Vegetation changes seasonally and is affected by climatic conditions. According to the 

seasonal variations, the vegetation in China is best developed in most areas from June to 

September. The vegetation variation is usually small from October to next May, especially in 

northern China, and thus may not reflect the possible trend of long-term vegetation 

development. June, July, August and September are the most productive periods of vegetation 

growth during a year and thus the NDVI values of these four months may best reflect the 

long-term pattern of vegetation cover. Therefore, the NDVI from June to September of each 

year was averaged and this mean value was used as indicator for the annual vegetation growth 

of the study area. 

    Since the GIMMS-NDVI dataset only runs until 2003, the NDVI product from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) of NASA’s Earth Observing 

System was used to complement this former time series. The MODIS NDVI dataset (MOD13 

product) is based on 16-day composites and its spatial resolution is 250 m. These vegetation 

index maps have been corrected for molecular scattering, ozone and aerosol absorption. 

Currently, the MODIS NDVI product has been used throughout a wide range of disciplines, 

such as inter- and intra-annual global vegetation monitoring, climate and hydrologic modeling, 

agricultural activities and drought studies (Zhan et al., 2000; Jin and Sader, 2005; Sakamoto 

et al., 2005; Knight et al., 2006; Lunetta et al., 2006). In this study the NDVI values from 28 

MODIS NDVI 16-day composites of June, July, August, and September in seven years from 

2000 to 2006 were used to study the spatial distribution of vegetation in the Ejina Oasis. 

    The pan evaporation (open water surface evaporation) of the Ejina meteorological station 

and the runoff at the Langxinshan hydrological station were used in this research to study the 

quantitative relation between the runoff and the vegetation change. 

 

4.4 Result and discussion 

4.4.1 The long-term vegetation change of the Ejina Oasis in the period 1982-2002 

Figure 4.2 illustrates the long-term change of the mean annual GIMMS NDVI of the Ejina 

Oasis in the period 1989-2002. The result indicates the recession trend of the vegetation 

growth during the 14 years period.  

The impact of water resources on the vegetation is very important in the downstream plain 

in an arid area. Most of the incoming water recharges the groundwater in the downstream area 

of the Heihe River Basin. In recent years, the vegetation growth has become worse and the 

vegetation area has decreased in the downstream area because of decreased incoming water 
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and the increasing depth of the groundwater. It caused land desertification and some salt-

enduring vegetation species have been replaced by halophytic vegetation. The oasis landscape 

has changed into a desert landscape. 
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Figure 4.2 The long-term vegetation change of the Ejina Oasis in the period 1989-2002 based on 

GIMMS NDVI. 

 

 

4.4.2 The relation between the runoff of the Heihe River and the vegetation change in the 

period 1989-2002 

A regression analysis was performed whereby the mean annual GIMMS NDVI from the year 

1989 to 2002 was the dependent variable (y) and the runoff of the current year (x0), the runoff 

of the previous year (x1) and the runoff of two years ago (x2) at the Langxinshan station were 

the independent variables. Stepwise regression showed that the runoff of the previous year (x1) 

was the only relevant independent variable in the regression equation. The result indicates that 

the mean NDVI and the runoff of the previous year at the Langxinshan station are linearly 

correlated (Figure 4.3) with a correlation coefficient of 0.835. The equation can be written as  

1525.0004.0 += xy                                                                                                              (4.1) 

Where y is the mean annual GIMMS NDVI between the year 1989 and 2002 and the x is the 

yearly runoff at the Langxinshan station between the year 1988 and 2001. The relationship is 

significant at 5% significance level, so the vegetation growth of the oasis is related to the 

runoff of the Heihe River. The time lag of the impact of the runoff on the vegetation of the 

Ejina Oasis is one year. 
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According to the hydrological characteristics of the downstream area of the Heihe River, 

the incoming water of the Ejina Oasis in the winter was the result of recharge by agricultural 

irrigation in the middle stream area in the previous year. In the summer, the recharge from the 

middle stream area can arrive in the downstream area and the groundwater was recharged 

efficiently. The groundwater table shows a big increase along the two sides of the river. 

However, the peak in growth of the vegetation has finished at that time and the increased 

groundwater table produces a good condition for the oasis vegetation in the next year. 
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Figure 4.3  The correlation between the mean NDVI of the Ejina Oasis and the runoff of the previous 

year at the Langxinshan station between the year 1989 and 2002. 

 

4.4.3 The vegetation change of the Ejina Oasis in the period 2000-2006 

In order to suppress the recession trend of the eco-environment of the downstream area of the 

Heihe River Basin, the State Council of the People’s Republic of China started to perform a 

distribution and management plan of the water resources for the Heihe River and 

implemented an allocation scheme of the limited water resources after the year 2000. The 

water again flowed into the East Juyanhai in 2002, the flow length of the channel increased 

and the water entered into more regions along the two sides of the Heihe River. The oasis 

vegetation was irrigated and the groundwater of the Ejina Oasis recharged and recovered 

efficiently. The eco-environment along the downstream of the Heihe River improved and the 

recession trend of the eco-environment was suppressed. 

    The MODIS NDVI was used to analyze the vegetation change after the year 2000. Figure 

4.4 shows the temporal change of the annual mean NDVI of the Ejina Oasis from 2000 until 

2006. The result indicates a positive trend of growth of the Ejina Oasis vegetation. Figure 4.5 

illustrate the spatial change of the annual mean NDVI of the oasis from 2000 to 2006. It can 
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be seen from the result that the oasis area increased with time and the vegetation growth was 

best in 2004. There was no water in the East Juyanhai lake (the red color area in Figure 4.5) 

before 2002 and there was permanent water after 2003. The area of the East Juyanhai lake 

increased with time. 

The runoff (incoming water) of the Langxinshan station in 1999 was relatively large 

(3.74×108 m3). Due to the hysteresis effect of the runoff, the vegetation growth of the Ejina 

Oasis was better in 2000 (Figure 4.4). The runoff in 2000 and 2001 was smaller than 3×108 

m3 and the mean NDVI of 2001 and 2002 was lower than that of 2000. The runoff of the 

Langxinshan station was highest in 2003 (7.12×108 m3), which resulted in the highest NDVI 

in 2004. The runoff of 2004 and 2005 was smaller than that of 2003, the vegetation growth of 

these two years was worse than that of 2004. Therefore, there is close relationship between 

the runoff and the vegetation change in the Ejina area. 
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Figure 4.4  The vegetation change of the Ejina Oasis in the period 2000-2006 based on MODIS NDVI. 

 

 

4.4.4 The relation between the runoff of the Heihe River and the vegetation change in the 

period 2000-2006 

Also for the MODIS dataset a regression analysis was performed for NDVI with the runoff 

data. The mean annual MODIS NDVI from the year 2000 to 2006 was the dependent variable 

(y) and the runoff of the current year (x0), the runoff of the previous year (x1) and the runoff 

of two years ago (x2) were the independent variables. The runoff of the previous year and the 

runoff of two years ago exceeded the significance level and entered into the regression 
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equation after stepwise regression. The regression coefficient of the runoff of the previous 

year (x1) is the largest and most significant and this result further proved that the runoff of the 

previous year has most impact on the vegetation growth of the current year. Figure 4.6 

illustrates the correlation between the runoff of the previous year and the mean NDVI of the 

current year. The correlation coefficient is 0.906. The equation can be written as  

1691.00106.0 += xy                                                                                                            (4.2) 

Where y is the mean annual MODIS NDVI between the year 2000 and 2006 and the x is the 

yearly runoff of the Langxinshan station between the year 1999 and 2005. 

 

 

                

                a) 2000                           b) 2001                            c) 2002                           d) 2003 

 

                    

                e) 2004                            f) 2005                            g) 2006 

Figure 4.5  The spatial pattern and change of the Ejina area between 2000 and 2006. The red area 

represents the water in the Juyanhai lake and the orange area is gobi and desert area. The green and 

dark green area represents the vegetation of the Ejina Oasis. 
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Figure 4.6  The correlation between the mean NDVI of the Ejina Oasis and the runoff at the 

Langxinshan station in the previous year between the year 2000 and 2006. 

 

 

4.4.5 The water demand of the Ejina area 

The government started to organize distribution and management of the water resources for 

the Heihe River in 2000. The water discharges from the middle stream and has entered into 

the East Juyanhai lake since 2002. Before 2002 all the water was consumed on its way and 

couldn’t arrive at the lake. Due to water shortage for many years, the water evaporated before 

it entered into the lake and the East Juyanhai lake was dry until the year 2002. Due to the 

increase of discharge from the middle stream area, the East Juyanhai lake has water 

permanently since 2003. The water was dispatched into the East Juyanhai lake twice a year 

based on the bulletins published by the Ministry of Water Resources of the People’s Republic 

of China. In 2002, the first time was from 17 July to 29 July and the second time was from 22 

September to 20 October. Based on the MODIS images from July to September, the lake 

became dry around 16 September after the first time of dispatching in 2002. In other words, 

the evaporation time was about 45 days from 30 July to 16 September after the first time of 

dispatching water. The amount of water that entered into the lake was 0.23×108 m3 for the 

first time of dispatching in 2002 and most of the water was evaporated in about 45 days 

because of the shallow depth of the groundwater. Therefore, the mean monthly evaporation 

was about 0.15×108 m3 and most of the evaporation happened in August. Based on the pan 

evaporation measurements at the Ejina meteorological station from 1986 to 2004, the mean 

monthly evaporation of August is 14% of the total year. So, the predicted annual evaporation 

of the East Juyanhai lake is about 1.1×108 m3. On the basis of these result, the smallest water 
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demand of the East Juyanhai lake, which can sustain the demand of the eco-environment, is 

1.1×108 m3. 

    There was permanent water in the East Juyanhai lake after 2003. Based on the vegetation 

change of the Ejina Oasis in the period 2000-2006, the mean MODIS NDVI was 0.2 in 2003 

and we assume that this value is the smallest value which can sustain normal growth of the 

oasis vegetation. According to Equation (4.2), the smallest runoff corresponding to this NDVI 

is 2.9×108 m3 and this water amount is considered to be the smallest water demand of the 

Ejina Oasis. Therefore, the smallest water amount which can sustain the demand of the eco-

environment of the Ejina area is 4×108 m3. The eco-environment will show a recession trend 

if the water amount from the middle stream is smaller than 4×108 m3 per year in the Ejina area. 

 

4.5 Conclusions 

The long-term change of the Ejina Oasis vegetation and the relation between the vegetation 

and the runoff of the Heihe River were analyzed in this paper. The following conclusions can 

be drawn based on the results obtained. 

    1) The vegetation growth decreased from 1989 to 2002 and increased from 2002 to 2006 in 

the Ejina Oasis. The most important impact factor causing the vegetation change is the 

discharge from the middle stream area; 

2) The relation between the oasis vegetation and the runoff of the Heihe River was 

established. The time lag of the impact of the runoff of the Heihe River on the Ejina Oasis 

was one year; 

3) The smallest water amount which can sustain the demand of the eco-environment of the 

Ejina area is 4×108 m3 per year. 
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CHAPTER 5 
 

Effects of groundwater depth on vegetation growth in the 

Ejina area (China)* 

 
 
 

* Based on: Jin, X.M., Schaepman, M.E., Clevers, J.G.P.W., Wan, L., Su, Z., Hu, G.C., 
2008. Effects of groundwater depth on vegetation growth in the Ejina area (China). 
International Journal of Applied Earth Observation and Geo-Information (submitted).  

Using the method as defined in: Jin, X.M., Wan, L., Zhang, Y-K., Xue, Z.Q., Yin, Y., 
2007. A study of the relationship between vegetation growth and groundwater in the 
Yinchuan Plain. Earth Science Frontiers, 14(3), 197-203. 
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Effects of groundwater depth on vegetation growth in the Ejina area (China) 

 

 

Abstract 

The relationship between vegetation growth and groundwater depth in arid areas is one of the 

most active research topics in ecohydrology. Due to little precipitation, vegetation growth is 

closely related to groundwater depth in the arid inland areas of northwest China. Research on 

the ecological effects of groundwater depth at larger scales has great significance for policy 

decisions on eco-environmental recovery and protection of the occurring vegetation. In this 

study we investigate the relationship between vegetation growth and depth of the groundwater 

table in June 2000 in the Ejina area, located in the northwest arid region of China, by 

combining remote sensing with in-situ groundwater observations. We demonstrate with our 

results that the groundwater depth suitable for vegetation growth in this region ranges from 

2.8 to 5 m, depending on species composition. Hardly any vegetation growth occurs when the 

groundwater depth is below 5 m because the rooting depth of the present species is limited 

and therefore cannot maintain adequate water supplies to their canopies. On the other hand, a 

groundwater depth less than 2.8 m causes excessive salt accumulation in the rooting zone. 

Field excavation experiments confirm that present species develop a maximum rooting depth 

between 2 and 5 m in the Ejina area. The vegetation change after implementation of a new 

water allocation scheme since 2000 was also analyzed in this study. The result indicates that 

the mean NDVI increased and the annual conversion of bare land into vegetated land is about 

38 km2 per year during the period 2000 – 2008. It explains a potential recovery of the eco-

environment of the Ejina area. 

 

Keywords: Groundwater depth, Vegetation growth, MODIS NDVI, Salt concentration, Ejina 

area
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5.1  Introduction 

About 47% of the total area of China consists of arid and semi-arid regions. The environment 

in these regions is vulnerable because of little precipitation, limited water resources and 

sparse vegetation. There, an oasis is the only place to sustain life and social development for 

local people. The area occupied with the land cover type ‘oasis’ represents only 5% of the 

total area of northwestern China, but supports over 95% of the population with natural 

supplies in that area. Among many influencing factors, groundwater is the most important one 

in sustaining the ecological environment of an oasis. Vegetation succession and cover patterns 

are primarily controlled by the groundwater table (Stromberg et al., 1996). However, patterns 

of vegetation cover also exhibit an important feedback on the water quantity.  

    The main factors controlling vegetation growth are solar irradiation, temperature, water and 

soil condition (Wang et al., 2001). Vegetation growth varies with space and time due to the 

spatial and temporal variations of these factors. The seasonal changes of vegetation growth 

are the results of differences in temperature and solar irradiation. The spatial variations of 

vegetation growth are mainly determined by the soil characteristics and the landform, among 

which the soil moisture is the most influential factor. Due to little precipitation in arid areas, 

the soil moisture maintaining a vegetation root system is largely supplied by groundwater 

through capillarity. The shallower the groundwater depth, which is defined as the distance 

from the soil surface to the groundwater table, the more soil moisture is available, and vice 

versa (Rodriguez-Iturbe, 2000; Farmer et al., 2003; Pan et al., 2008). On the other hand, 

salinization may happen at the soil surface and thus hinder vegetation growth if the 

groundwater depth is too shallow (Mirlas et al., 2003; Benyamini et al., 2005; Jalali 2007). 

    The groundwater depth influences the abundance, age structure and species composition of 

vegetation, particularly in semi-arid and arid regions (Stromberg et al., 1992; Busch and 

Smith, 1995; Stromberg, et al., 1996; Mahoney and Rood, 1998; Scott et al., 1999; Castelli et 

al., 2000; Scott et al., 2000; Horton et al., 2001a, b; Muñoz-Reinoso, 2001; Amlin and Rood, 

2002, 2003; Cooper et al., 2003; Elmore et al., 2003; Naumburg et al., 2005; Stromberg et al., 

2007). It has been recognized that groundwater depth is a critical parameter determining the 

species composition in arid areas (Allen-Diaz, 1991; Ridolfi et al., 2006). Impacts on these 

species by a gradual groundwater decline initially will be expressed through loss of young age 

classes, and ultimately through death of older trees. Although a small groundwater decline is 

not expected to cause large changes in abundance of these species, it might affect factors such 

as structure and productivity. Relationships between groundwater depth and riparian plants 

have been studied frequently (Stromberg et al., 1996; Baker et al., 2004; Baird et al., 2005; 

Loheide and Gorelick, 2007). However, certain aspects still remain underexplored, in 

particular the effect of groundwater depth on riparian vegetation change at regional scales. 

    Hydrological processes vary over a wide range of scales in space and time. It is widely 

accepted that remote sensing, broadly defined as a collection of non-intrusive observational 
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methods, offers the potential to capture some of the characteristics of these spatial and 

temporal processes. Traditionally, techniques of measuring hydrologic variables rely on point 

measurements for collecting information, which is then assumed to be representative for 

larger areas. In some cases, a point measurement does represent a ‘hydrologically integrated’ 

catchment area if it is a homogeneous one. Point measurements are not particularly useful in 

complex or heterogeneous environments where the point data cannot be assumed to represent 

a larger area. Part of the problem is that the Earth’s surface is usually not homogeneous in 

terms of topography, geology, soil moisture availability, soil type, or canopy cover. Remote 

sensing may play a critical role towards addressing this problem. These methods have the 

ability to produce high resolution spatial measurements over large areas. Moreover, remote 

sensing data often allow us to visualize complex dynamic processes because the spatial data 

can be captured at regular time intervals (Tenhunen and Kabat, 1999; Krajewski et al., 2006).  

    Vegetation in arid and semi-arid environments has received a lot of attention because of its 

sensitivity to changes in groundwater depth, need for management, and potential for 

restoration (Chambers and Miller, 2004; Baker et al., 2004; McKinstry et al., 2004). 

Vegetation is particularly important because it is an important part of the eco-environment, 

playing a critical role in the hydrological cycle. The vegetation-groundwater relationship and 

long-term shifts in the vegetation species community composition resulting from changes in 

the groundwater table are discussed in Elmore et al. (2003). Baird et al. (2005) demonstrated 

advanced groundwater modeling techniques for estimating groundwater use by vegetation. 

Initial efforts of linking groundwater flow and vegetation response models for predicting 

riparian vegetation patterns are discussed by Rains et al. (2004) and Stromberg et al. (2007). 

These recent advances can help us to understand the relationship between vegetation cover 

and groundwater conditions. The growing interest in interactions between groundwater and 

vegetation, particularly in arid and semi-arid areas, reflects a current trend towards integrated 

management of natural resources (Le Maitre et al., 1999; Walvoord et al., 2002; Newman et 

al., 2006). 

    In water-limited environments, temporal variability of meteorological conditions, spatial 

variability of geologic and topographic settings, and different ways that plants use water 

present particular challenges when local field data need to be scaled to regional scales. The 

purpose of this study is to understand the hydrologic link between the groundwater depth and 

vegetation by analyzing both hydrological data gathered in the field and remote sensing data. 

The study area is the Ejina oasis in northwest China, representing an arid to semiarid 

environment, including an oasis. The specific objectives of this paper are two-fold: (1) to 

study the effect of groundwater depth on vegetation growth in the Ejina area in order to 

determine the range of groundwater depth suitable for vegetation growth, and (2) to 

investigate the relationship between different vegetation types and groundwater depth. The 
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outcome of this study should be input to the water resources management in order to maintain 

a certain groundwater table enabling sustainable vegetation growth in the oasis. 

 

5.2  Material and Methods 

5.2.1 Study Area 

Ejina, covering an area of 114,000 km2, is located at the end of the Heihe River in the west of 

Inner Mongolia of China (Figure 5.1). The Gobi desert occupies over 90% of the Ejina area. 

In the downstream area of the Heihe River, just before the East Juyan lake the Ejina oasis is 

located. North-east of the oasis, a second lake is present, the West Juyan lake. The Ejina oasis 

has been existing for a long time already. The territory of the oasis extends from 100.90º to 

101.42° east longitude and from 41.85° to 42.50° north latitude, forming an important 

ecological buffer in the foreland of west China. With extremely arid conditions, the mean 

annual precipitation in Ejina is around 40.8 mm, whereas the pan evaporation ranges between 

3700 and 4000 mm (Zhang et al., 2002).  

 

 
Figure 5.1  Location map showing the Heihe River basin and the Ejina area, China. 
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The main vegetation of the oasis is dominated by xerophytic plants, such as Populus 

euphratica Oliv., Elaeagnus angustifolia L., Haloxylon ammodendron (C.A.Mey.) Bunge, 

and Tamarix ramosissima Ledeb. The development of this xeric, salt-enduring vegetation 

depends on the groundwater depth. During recent years, the development of industry, 

agriculture and the consumption of water in the middle stream area of the Heihe River has 

increased a lot and resulted in a decrease of incoming water into the oasis in the downstream 

area. According to the runoff data of the hydrological station at the river, the discharge of the 

Heihe River has decreased since 1950. The annual incoming water into the Ejina area was 

8.66×108 m3 and 6.53×108 m3 during the period 1950-1959 and 1970-1979, respectively 

(Zhang et al., 2002). Finally, the amount of runoff decreased to 3.47×108 m3 in the 1990s 

(Figure 5.2) and the shortage of water caused shrinking of the oasis and land desertification 

resulting in increasing numbers of sandstorms. In 1950 the area of the West and East Juyan 

lakes still covered 267 km2 and 35 km2, respectively. They fell dry in 1961 and 1992 one after 

the other. The oasis area drastically reduced from 6,440 km2 to 3,200 km2, the area of the 

Gobi desert increased over 460 km2 and some of the hygric, mesophytic and light salt-

enduring plants were replaced by xeric and halophile plants. During the 1982 – 1995 period 

the decrease in vegetation cover was severe, the areas of Populus euphratica and Elaeagnus 

angustifolia decreased with 3.1% and 57.45%, respectively, while the areas of Haloxylon 

ammodendron and Tamarix ramosissima decreased with 39.17% and 7.28%, respectively. 

78% of the Populus euphratica is over-aged, covered with blight and dehydrated. Most of the 

herbaceous communities and 180 wildlife species have disappeared in the Ejina area (Wang, 

2007).  
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Figure 5.2  Decreasing runoff of the Heihe River in the Ejina area (1989-2000). 
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    The Ejina area is fully dependent on incoming water from the Heihe river. The water 

quantity and water quality not only affect the groundwater, but also change the eco-

environment. Decrease of incoming water resulted in a drop of the groundwater table, falling 

below 3 - 4 m in the 1990s. Meanwhile, it was observed that decrease of the water quantity 

combined with a strong evapotranspiration caused accumulation of salt at the surface and in 

the root zone (Wang, 2007). The deterioration of the root zone influenced the vegetation 

development and further altered the hydrological environment of the Ejina area. 

 

5.2.2 Satellite data 

One of the primary interests of the Earth Observing System (EOS) programme of the National 

Aeronautics and Space Administration (NASA) is to study the role of terrestrial vegetation in 

large-scale global processes in order to understand how the Earth functions as a system. One 

of the EOS products is the Normalized Difference Vegetation Index (NDVI) of the Moderate 

Resolution Imaging Spectroradiometer (MODIS), which is referred to as the “continuity 

index” to the NDVI derived from the existing National Oceanic and Atmospheric 

Administration’s (NOAA) Advanced Very High Resolution Radiometer (AVHRR). The 

NDVI is an index derived from reflectance measurements in the red and near-infrared 

portions of the electromagnetic spectrum to describe the relative amount of green biomass 

(Deering, 1978). This index is an indicator of photosynthetic activity of plants and has been 

widely used for assessing vegetation phenology and estimating landscape patterns of primary 

productivity (Sellers, 1985; Tucker and Sellers, 1986). The NDVI was designed to 

quantitatively evaluate vegetation growth: higher NDVI values imply more vegetation 

coverage, lower NDVI values imply less or non-vegetated coverage, and zero NDVI indicates 

rock and bare land.  

    In this paper, we use the MODIS Vegetation Index product (MOD13) that is based on the 

MODIS surface reflectance product (MOD09). This product is corrected for molecular 

scattering, ozone absorption, and aerosols, and adjusted to nadir with use of a Bidirectional 

Reflectance Distribution Function (BRDF) model. The MODIS NDVI data are based on 16-

day composites (MOD13Q1 product) and the spatial resolution is 250 m. The gridded 

vegetation indices include quality assurance (QA) flags with statistical data that indicate the 

quality of the NDVI product and input data (Huete et al., 1996). Currently, the MODIS NDVI 

product is used throughout a wide range of disciplines, such as inter- and intra-annual global 

vegetation monitoring on a periodic basis, global biogeochemical, climate, and hydrologic 

modeling, agricultural activities and drought studies (Zhan et al., 2000; Jin and Sader, 2005; 

Sakamoto et al., 2005; Knight et al., 2006; Lunetta et al., 2006). A case study with mean 

NDVI data of June 2000 (Figure 5.3) was used to analyze the relationship between 

groundwater depth and vegetation growth in this study. Monthly MODIS NDVI data was 



Chapter 5 

 66 

obtained by averaging two 16-day composites. Vegetation changes were monitored by using 

MODIS NDVI data from June 2000 until 2008. 

 

5.2.3 Ground observations 

Most of the groundwater table in the Ejina area remained relatively stable in 2000 and the 

main flow direction of the regional groundwater was from south to north. Groundwater finally 

discharged into the East and West Juyan lakes. A total of 13 groundwater observation wells 

were distributed over the Ejina area (Figure 5.4) and observations of groundwater depth from 

1989 - 2000 are available. In this study the measurements from 2000 were combined with 

satellite data. A map of the groundwater depth of the Ejina area was calculated at the same 

resolution as the MODIS NDVI image by interpolating the groundwater depth measurements 

in June 2000 to a 250 m × 250 m grid using kriging (Isaacs and Srivastave, 1989). More than 

1,000,000 pairs of groundwater depth measurements and MODIS NDVI values were obtained 

for the study area. In order to study the relationship between the groundwater depth and the 

vegetation growth, the oasis area was used as a subset area and groundwater depth data were 

extracted (Figure 5.5). 18,801 pairs of groundwater depth measurements and MODIS NDVI 

values remained after the oasis area was extracted. The NDVI values corresponding to the 

same groundwater depth were then averaged and the averaged NDVI value represents the 

vegetation growth at this depth. The relationship between the averaged NDVI and the 

corresponding groundwater depth in the area was then established. Since this relationship 

showed strong local variations, a low-pass (5×5) filter was applied to the curve depicting the 

relationship. Finally, the groundwater depth suitable for vegetation growth was derived from 

this analysis.  

For validation, seven root systems were analyzed in terms of rooting depth by performing 

excavations (Table 5.1). 

 

Table 5.1 Suitable groundwater depth for different plants in the Ejina Oasis. 

Species                                                           suitable groundwater depth [m]       threshold depth [m] 

Populus euphratica Olive.                                                    2-5                                          5.5 

Elaeagnus angustifolia L.                                                     2-5                                          5.5 

Tamarix ramosissima Ledeb                                                 2-5                                          5 

Haloxylon ammodendron (C.A.Mey.) Bunge                       2-4                                          4 

Phragmites australis (Cav.) Trin. ex Steud                            2-3                                          3 

Glycyrrhiza glabra L.                                                                2-4                                          4 

Apocynum venetum L.             
                                                 2-4                                          4 
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Figure 5.3  MODIS NDVI image of the Ejina area (June 2000). The oasis is located  within the red 

boundary.  

 

 

 

Figure 5.4  Distribution of groundwater observation wells in the Ejina oasis. 
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Figure 5.5  Contour map of the groundwater depth in the Ejina oasis overlaid over the NDVI map. 

Contours are in [m] and range from 2.6-5.2 m. 

 

 

5.3  Results and Discussions 

5.3.1 Relationship between vegetation and groundwater depth in June 2000 

All the observation wells showed a continuous decline in the water table level during the 

measurement period (1989 – 2000). Overall, the groundwater depth dropped 0.8 m according 

to field data of five observation wells in the Ejina oasis (Figure 5.6). However, the Ejina area 

has seen little increase in human pressure over time, because of its poor sandy soils and the 

difficulty to grow crops. The human groundwater exploitation of the area remained therefore 

at a low level and its impact on the regional groundwater is considered to be low. The 

dynamics of groundwater depth for each well over the years is between 0.5 m and 1.5 m and 

most of the groundwater depths also showed no big change within one year in the oasis 

(Figure 5.6). The standard deviation of groundwater depth for these five observation wells is 

shown in Figure 5.7. This standard deviation is between 0.14 and 0.40, whereby the northern 

observation well at Saishe has the smallest value and the other four wells of the oasis have a 
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similar value. These results confirm that the groundwater depth is relatively stable in the study 

area, indicating a low level of human influence. 
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Figure 5.6  Groundwater depth fluctuations in wells of Ceke, Jishe, Saishe, Jianguoying and Saihan 

during the period 1989-2000 in the Ejina area. 
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Figure 5.7  Standard deviation of groundwater depth for the observation wells of Ceke, Jishe, Saishe, 

Jianguoying and Saihan during the period 1989-2000 in the Ejina oasis. 
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The MODIS NDVI image of June 2000 showed that 90% of the Ejina area was covered 

with desert sand and bare soil. The oasis in this area corresponds well to NDVI values larger 

than 0.08 (Figure 5.5). A histogram of the number of pixels and the corresponding 

groundwater depth for the oasis is presented in Figure 5.8. Most pixels were in the depth 

range between 2.6 m and 5.5 m. The relationship between the groundwater depth and the 

corresponding average NDVI is plotted in Figure 5.9 using depth intervals of 0.1 m. This 

figure shows that the NDVI values were generally larger than 0.10 when the groundwater 

depth was between around 2.8 and 5 m with a maximum NDVI of about 0.20 for a 

groundwater depth of 3.4 m. The NDVI value decreased to less than 0.10 when the 

groundwater depth was larger than 5 m. Beyond this depth hardly any vegetation is growing 

because the water simply is too far away for the root system to maintain adequate water 

supplies to an extensive canopy. On the other hand, when the groundwater depth becomes less 

than 2 – 3 m, transpiration from the soil becomes significant, causing increased salt 

concentrations at and near the surface (in the root zone). Obviously, there is a fine balance 

between a too shallow and a too deep groundwater table for the present vegetation, resulting 

in a limited range of suitable groundwater depths for vegetation growth. 
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Figure 5.8  Number of pixels corresponding to different groundwater depths in June 2000. 
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Figure 5.9  Relationship between groundwater depth and mean NDVI in the Ejina area. The solid line 

represents the groundwater depth. At the maximum NDVI, the groundwater depth corresponds to 3.4 

m. The dashed lines indicate the depth range between 2.8 m and 5 m. 

 

 

5.3.2 Vegetation type and groundwater depth 

Indications in the literature exist that root depth is generally only limited by the water table or 

by soil characteristics that prevent rooting (Stone and Kalisz, 1991; Nepstad et al., 1994; 

Canadell et al., 1996; Jackson et al., 1996; Le Maitre et al., 1999). The variation of 

groundwater depth can affect the soil salt content and further control the surface vegetation 

growth. Different plants extract water from different depths in the Ejina oasis. Root 

excavation studies in June 2000 in the Ejina area showed that seven main plants developed 

strong sinker roots to a groundwater depth between 2 and 5 m (Table 5.1).  

    Populus euphratica, Elaeagnus angustifolia and Tamarix ramosissima are relatively deep-

rooting, drought tolerant tree species in the Ejina area. Their suitable range of groundwater 

depth is between 2 and 5 m, and the maximal rooting depth is 5 to 5.5 m. The corresponding 

depth interval of dense coverage of these three species is between 3 and 5 m. The plant 

develops well in a relatively large interval of groundwater depths. The root can not extract 
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enough water and the plant has difficulty to survive if the groundwater depth exceeds 5.5 m. 

Haloxylon ammodendron, Glycyrrhiza glabra and Apocynum venetum are three shrub species 

with a depth range for dense vegetation coverage between 2 and 4 m. Phragmites australis 

(Cav.) Trin. Ex Steud. is a relatively shallow-rooted type in the Ejina area and the suitable 

depth interval is between 2 and 3 m. It develops in a small range of groundwater depth. 

Indeed, species like Phragmites australis, Glycyrrhiza glabra and Apocynum venetum have 

nearly completely disappeared in this area. 

 

5.3.3 Vegetation and groundwater salt concentration 

The vegetation growth in the Ejina oasis is not only affected by groundwater depth, but also 

controlled by groundwater salinity. In general, Populus euphratica can develop well in the 

Ejina area if groundwater salt concentration is lower than 5 g/L, and the thresholds of salt 

concentration for Tamarix ramosissima, Phragmites australis and Glycyrrhiza glabra are 10 

g/L, 10 g/L and 7.5 g/L, respectively (Zhang et al., 2002). However, strong evapotranspiration 

and the decrease of incoming water in the Ejina area resulted in little groundwater recharge 

and caused increased salt concentrations at the surface of the soil and an increase of 

groundwater salt concentrations. Our experimental results indicate that Tamarix ramosissima 

is the most halophile species in the Ejina area and it can survive when the groundwater salt 

concentration is larger than 22 g/L. Most plants can develop well if the groundwater salt 

concentration is lower than 3 g/L and their growth is restrained if the salt concentration is 

between 5 and 10 g/L. In the Ejina area, most of the plants start to die when the salt 

concentration is larger than 10g/L except Tamarix ramosissima. The extent of this species has 

been increasing since the beginning of the 1990s. 

 

5.3.4 Vegetation change after 2000 

The Ejina oasis not only supports the social-economic development, but also characterizes the 

eco-environmental condition of the northwestern area of China. The drastic degradation of the 

eco-environment in the Ejina area has raised much concerns in the past. A new scheme of 

water allocation in the Heihe River basin was put in place after the year 2000 and the 

incoming water of the Ejina area increased to more than 7×108 m3 lately, bringing back a 

situation as before 1990 (cf. Figure 5.2) (Zhang and Dong, 2005). The increased amount of 

incoming water results in a steady recovery of specific parts of the eco-environment of the 

Ejina area and permanent water came back to the East Juyan lake in 2003. Some of the hygric 

and light salt-enduring species like Phragmites australis also recovered in the area. Although 

no observations of the groundwater depth after 2000 are available for this study to analyze the 

change of the depth, the indicated vegetation change reflects also the variation of the 

groundwater depth as discussed earlier. We use the oasis area to analyze the long-term change 
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of the vegetation after 2000. Figure 5.10 illustrates the change of the mean NDVI between 

June 2000 to 2008. This NDVI figure shows an increasing greening trend, ranging from 0.156 

to 0.179 during the period 2000 – 2008. Figure 5.11 shows the long-term change of the NDVI 

classes based on the classification used in Figure 5.3. According to this analysis, bare land 

(defined as 0 < NDVI < 0.08) covers nearly 74% of the Ejina area, low NDVI values (0.08 < 

NDVI < 0.2) cover 18%, moderate NDVI values (0.2 < NDVI < 0.4) cover 7%, and high 

NDVI values (NDVI > 0.4) make up the smallest area of about 1% surface cover. Trend 

analysis in this period reveals a decrease – or land improvement – of bare soil, whereas the 

other three NDVI classes show an increasing trend during the period 2000 – 2008. The annual 

conversion of bare land into improved land (measured by an increasing greenness trend) is 

about 608 pixels/year (Figure 5.11a). This result reveals a net land improvement of 38 km2 ± 

2.6 km2 (Figure 5.11a) per year since 2000 with the most significant improvement in the 

NDVI class ranging from 0.08 – 0.2 of 16 km2 (Figure 5.11b). The moderate NDVI class 

improved by 13 km2 (Figure 5.11c) and the improvement of the high NDVI class is 6 km2 

(Figure 5.11d) in the Ejina area. The above NDVI change analysis indicates an increasing 

greening trend in the Ejina oasis since the new water allocation scheme was put in place in the 

year 2000.  

Given the established link between groundwater depth and NDVI as indicated in Figure 

5.9, signs are that the groundwater table has been successfully expanded and is recovering to 

depth levels that are more vegetation friendly. 
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Figure 5.10  Mean NDVI changes as of June 2000 until 2008 in the Ejina area, expressing a general 

upward trend (y = 0.00243*x – 4.71) over that period. 
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Figure 5.11  Annual changes of NDVI classes as used in Figures 5.3 and 5.5 in pixel counts for the 

Ejina oasis: (a) represents 0 < NDVI < 0.08 (‘no vegetation’), (b) represents the low NDVI area (0.08 

< NDVI < 0.2), (c) corresponds to the moderate NDVI class (0.2 < NDVI < 0.4) and (d) to the high 

NDVI class area (NDVI > 0.4). 
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5.4  Conclusions and outlook 

In this study the quantitative relationship between groundwater depth and vegetation cover in 

the Ejina area in June 2000 was derived by combining remote sensing and groundwater 

observation data. Further we used the above established relation to monitor greenness in the 

Ejina area in the subsequent years, where extensive groundwater depth measurements are 

missing. The following conclusions can be drawn based on the results obtained. 

    (1) The threshold for the groundwater depth affecting the vegetation growth in the Ejina 

area varies around about 5 m. The vegetation growth in the Ejina area is mainly controlled by 

groundwater when the groundwater depth is less than 5 m and hardly any vegetation growth 

occurs when the groundwater depth is larger than 5 m; 

    (2) The range of groundwater depth suitable for vegetation growth in the Ejina area varies 

between 2.8 m and 5 m. Deep groundwater depth will cause shortage of water for the root 

system that thus it is not able to supply adequate water for the canopies. With a shallow 

groundwater depth, salinization will occur at the surface and this is also not suitable for 

vegetation growth in the Ejina area either; 

    (3) The excavation experiments in the Ejina area show that many plants developed strong 

sinker roots to a groundwater depth between 2 and 5 m below ground level. Species like 

Phragmites australis, Glycyrrhiza glabra and Apocynum venetum have nearly disappeared 

from the Ejina area because of a shallow rooting system;  

(4) In the Ejina area, vegetation can develop well if the groundwater salt concentration is 

lower than 3 g/L. Their growth is restrained if the salt concentration is between 5 and 10 g/L 

and most of the plants start to die when the salt concentration is higher than 10 g/L. Tamarix 

ramosissima is a halophile species occurring in the Ejina area and its extent has increased 

since the beginning of the 1990s. 

    (5) The mean NDVI shows an increasing greening trend in the Ejina area during the period 

2000 – 2008. The long-term change of the bare land area (0 < NDVI < 0.08) shows a 

decreasing trend and that of all the other three NDVI classes show an increasing trend during 

the period 2000 – 2008. It reveals a net land improvement of 38 km2 ± 2.6 km2 per year since 

2000 with the most significant improvement in the NDVI class ranging from 0.08 – 0.2 of 16 

km2. The analysis supports the hypothesis that the Ejina oasis is gradually recovering its eco-

environment. 

    This study on the impact of groundwater depth on vegetation growth can provide reference 

for protecting the water depth from declining, balancing the water quantity allocation, 

controlling the water salinity and finally slowing down the rate of degradation in the Ejina 

area. In future work, we will continue quantifying the relationship between groundwater depth 
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and vegetation growth after implementation of an updated water allocation scheme. New 

observation data of the groundwater wells will be needed, in combination with remote sensing 

data, to analyze further the spatial and temporal changes of the groundwater depth and its 

relationship with vegetation growth. In particular, the relation between structural vegetation 

components (e.g., grassland, shrubs, trees) will be of prime interest. 
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6.1 Conclusions 

The main objective of this thesis is to develop a methodology for large scale quantitative 

assessment of the eco-environmental changes in arid regions by integrating remote sensing 

methods with ecohydrology approaches. Each of the chapters of this thesis concentrates on 

answering one of the research questions proposed in section 1.3, subsequently achieving this 

overall objective. 

Question A: Can we use remote sensing methods for quantitatively assessing both the 

vertical and horizontal distribution of vegetation in a mountainous area and assess the 

main impact factors on vegetation growth?  The Qilian Mountains are located in the southern 

part of the Heihe River basin representing the upstream area. The runoff generated by 

precipitation in this area is the main water source for the total river basin. The vegetation 

cover is one of the most important indicators for the ecosystem in this area, it can affect local 

climate and further it has an important effect on water resources. Amongst the many 

impacting factors affecting vegetation cover, the effect of topography is most significant 

because it serves as a proxy for precipitation and temperature. Therefore, elevation and aspect 

determine the microclimate and the microclimate affects the spatial distribution of vegetation. 

In Chapter 2, the spatial distribution of vegetation in the Qilian Mountains is quantified 

using remote sensing. Seven years of MODIS NDVI data from 2000 to 2006 were used 

serving as an indicator for vegetation growth in this study. Our analysis shows that elevation 

and aspect are two important impact factors responsible for the vertical distribution of 

vegetation in mountainous areas. A contour map representing the relationship between NDVI 

and the elevation and aspect is generated based on a combination of MODIS NDVI and DEM 

data. The ranges of elevation and aspect corresponding to the best vegetation growth were 

assessed. In general, the NDVI increases with the elevation and reaches its maximum value at 

a certain elevation threshold, and then decreases as the elevation increases beyond this 

threshold. The optimal vegetation growth is on the shady side of the mountains because of 

reduced evapotranspiration losses. Furthermore, the effect of two primary climatic factors, 

temperature and precipitation, on vegetation growth was also very important. The monthly 

precipitation and land surface temperature providing optimal conditions for the vegetation 

growth were assessed in this chapter. 

Question B: Can regional evapotranspiration be precisely estimated by using a model 

based on the surface energy balance including remotely sensed data input and how can we 

validate the reliability of the evapotranspiration results at larger scales?  The Zhangye basin, 

located in the middle stream area of the Heihe River basin, is a very important agricultural 

area in northwest China. With the increase of population and farmland, the water consumption 

of this basin increased gradually during recent years. Most water is used for agricultural 

purposes and 90% of the water consumption is used for irrigation purposes. The water 
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consumption increased continuously during the past years and parts of the water resources 

disappear through net evapotranspiration (ET) loss. This caused a decrease of the incoming 

water in the downstream area resulting in a recession of the eco-environment of the 

downstream area. In order to properly estimate the increase of water consumption and the net 

ET loss in the Zhangye basin, the amount of water evaporated to the atmosphere should be 

estimated first. 

Chapter 3 demonstrated the use of the SEBS algorithm (Surface Energy Balance System) to 

estimate the regional ET in a basin. The SEBS algorithm requires cloud free satellite images 

as one of the input variables and there are only very few useful NOAA/AVHRR satellite 

images available in one month for the study area. Consequently, the daily ET could not be 

modelled. A new efficient method to estimate the monthly ET, and subsequently the annual 

ET, was proposed by using a combination of daily SEBS results and measurements of ground 

meteorological stations. First, the daily ET for each individual day in one month was 

calculated based on SEBS results and the observed pan evaporation at the meteorological 

station. Then the monthly ET for the whole basin was estimated by multiplying with the area 

of the basin, and finally the annual ET was computed by using again the pan evaporation data. 

The results indicate that the annual ET increased gradually during the period 1990-2004 and 

the main impact factor on the long-term increase of annual ET was the vegetation change. 

The reliability of the ET result based on the SEBS algorithm requires validation before it 

can be used for water resources assessment in a certain region. In this research, the study area 

is an isolated hydrological unit where recharge, runoff and discharge occur. The inflow and 

outflow are equal in this closed basin. The accuracy of the ET result was validated by using a 

water balance for the whole watershed. Although there were still some uncertainties in the 

SEBS algorithm, the validation indicated that the SEBS algorithm can be used to effectively 

estimate annual ET. Further, it is expected that these results can serve as a basis for the 

government to decide on a new policy of water resource allocation in the Heihe River basin.  

Question C: Can we use remote sensing methods for understanding the quantitative 

relationship between the runoff of a river towards an oasis landscape and the vegetation 

growth in the oasis, and can these relationships be used for estimating the water demand of 

the oasis?  The decrease of incoming water in the downstream area of the Heihe River basin 

resulted in a shrinking of the Ejina oasis. It caused a series of environmental problems like 

land desertification and because of this process the chance of sandstorms occurring increased. 

Water resources availability is essential for a continuous oasis development. In northwest 

China, all the oases depend on surface rivers and have a close relationship with the runoff of 

the river. 

The quantitative relationship between the runoff of the Heihe River and the long-term 

vegetation change of the Ejina oasis was studied in Chapter 4. The research was divided into 

two stages corresponding to before and after the implementation of a new allocation scheme 
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of the limited water resources in the Heihe River basin. For the first period from 1989-2002, 

the GIMMS NDVI dataset was used to quantify the long-term change of the oasis vegetation, 

and a good correlation between the runoff of the river and the vegetation change was 

established based on stepwise regression analysis. Complementing the first stage, we used 

MODIS NDVI in the second stage to analyze the vegetation change and the relationship 

between the runoff of the river and the vegetation variation (2000-2006). The results illustrate 

a decreasing trend of vegetation growth from 1989-2002 and an increasing trend from 2000-

2006. A good correlation between the runoff of the river and vegetation growth was found in 

both stages and the time lag of the hysteresis effect of the runoff of the river on the oasis 

vegetation development is one year. In addition, the yearly smallest amount of water which 

can sustain the demand of the downstream area was estimated as well on the basis of these 

MODIS images. 

Question D: Can we integrate remote sensing methods into ecohydrological approaches 

to study the effect of groundwater depth on vegetation growth in the oasis area, and use this 

to determine the range of groundwater depth for vegetation growth?  Groundwater is the 

most important impact factor in sustaining the ecological environment of an oasis. Decrease 

of incoming water caused a drop of the groundwater table in the Ejina area and the 

hygrophytic, mesophytic and light salt-enduring vegetation was replaced by xerophytic, 

halophilic vegetation. Understanding the hydrological link between the groundwater depth 

and vegetation cover is important for eco-environmental recovering and protection activities 

for the vegetation in the Ejina area. 

Chapter 5 explored a method to quantify the effect of the groundwater depth on the 

vegetation growth in the year 2000 in the oasis by combining MODIS NDVI with 

groundwater observation data. The groundwater depth of the downstream area was calculated 

at the same resolution as the MODIS NDVI image by interpolating the measured groundwater 

depth using a kriging method. The quantitative relationship between the NDVI and the 

corresponding groundwater depth in the oasis area was determined and the range of 

groundwater depth suitable for vegetation growth was derived from this relationship. Finally, 

the process of vegetation change after the implementation of a new water allocation scheme in 

2000 was analyzed in this study. The results indicate that the mean NDVI increased and the 

annual conversion of bare land into vegetated land is about 38 km2 per year during the period 

2000 – 2008. This indicates a potential recovery of the eco-environment in the Ejina area. The 

result of this study can be used as an example to develop a new method for assessing the 

impact of groundwater changes on large-scale vegetation growth by using remote sensing. 

General conclusions.  Based on the studies of the four previous chapters, it can be 

concluded that:  

• The spatial (vertical and horizontal) distribution of vegetation in mountainous areas 

can be successfully quantified using MODIS NDVI. The elevation and aspect, 
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serving as a proxy for precipitation and temperature, are two very important factors 

for the vertical distribution of vegetation in the Qilian Mountains. The vegetation 

was at a maximum between an elevation of 3200 m and 3600 m and the peak value 

of NDVI was around 3400 m. Vegetation growth is better on the shady side of the 

mountain than on the sunny side. A preferred precipitation of 46 mm/month and a 

land surface temperature of 21°C may provide suitable conditions for optimal 

vegetation growth. 

• The SEBS (Surface Energy Balance System) algorithm can successfully estimate 

the regional evapotranspiration of the inland basin using it in combination with 

observed pan evaporation of a meteorological station. The annual ET increased 

gradually during the period 1990-2004 and the main impact factor on the long-term 

increase of annual ET was the vegetation change. 

• GIMMS NDVI and MODIS NDVI data are two important time series allowing the 

assessment of the long-term vegetation changes in an oasis area located in an arid 

region. With the support of stepwise regression, the hysteresis effect of the runoff of 

the river on the oasis vegetation was efficiently evaluated based on these two time 

series in this study. The vegetation growth decreased during the period 1989-2002 

and increased from 2000 to 2006 in the Ejina Oasis. The time lag of the impact of 

the runoff of the river on the oasis vegetation is one year. Furthermore, the smallest 

water demand which can sustain the need of the eco-environment of the oasis area 

is 4×108 m3 per year based on the series of MODIS images.  

• The significant impact of groundwater on vegetation growth in an arid area can be 

quantitatively assessed at regional scale by integrating MODIS NDVI data with in-

situ groundwater observations. The range of groundwater depth suitable for 

vegetation growth in a certain region can be found by means of data mining. The 

range of groundwater depth for vegetation growth is between 2.8 m and 5 m and 

hardly any vegetation growth occurred when the groundwater depth is below 5 m 

because the rooting depth of the present species is limited and therefore cannot 

provide adequate water supply to their canopies in the Ejina area.  

 

6.2 Reflection 

In this section, we discuss the general contribution of this research integrating remote sensing 

methods with eco-hydrology approaches. In particular, we refer to the here developed 

methodology applied to the eco-environment in the Heihe River basin. 

The overall objective of this research is to find a sound and robust method evaluating the 

eco-environmental changes in an arid oasis area. Vegetation and water are two significant 
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factors and intimately coupled in an arid eco-system: changes in one factor automatically 

imposes changes on the other. Although this coupling has been studied for many years within 

various earth science and biological disciplines (Bonell, 2002), our understanding of the 

interdependencies and interaction of these two factors is still far from complete. The merger 

of ecology and hydrology into a science of “ecohydrology” is aiming at understanding 

environmental systems in a more integrated and comprehensive way (Newman et al., 2006). 

This study successfully integrates remote sensing methods with ecohydrology in quantifying 

the relationship between water resources and vegetation at larger scale. The first achievement 

of this thesis (Jin et al., 2008a, b) resides in quantitatively assessing the spatial distribution of 

vegetation and the topographic impact on the vegetation with remote sensing data in a 

mountainous area. The result can help us to study the interaction between vegetation and 

microclimate, and subsequently understanding the interdependence between vegetation and 

water resources.  

The second step of this thesis (Jin et al., 2008c) is developing an innovative and efficient 

method to estimate the annual evapotranspiration at regional scale by combination of the 

SEBS (Surface Energy Balance System) algorithm with meteorological observations. 

Subsequently, one of the key issues addressed in this thesis is the validation of the accuracy of 

the evapotranspiration result using a water balance. The work of the thesis indicates that the 

continuous increase of farmland and irrigation resulted in the ET increase. 

In general, the distribution, growth, and mortality of vegetation is more sensitive to the 

hydrologic cycle than to any other factor (Weltzin and Tissue, 2003). Although significant 

progress has been made in analyzing the interdependence between vegetation and water 

resources at local scale, quantitative methods relating vegetation change to hydrologic 

processes at regional scale are still in earlier stages of development. A main effort presented 

in this thesis is the conceptual and quantitative understanding of how the surface water and 

groundwater impact the vegetation growth in a large arid area using remote sensing data (Jin 

et al., 2007; 2008d; 2008e; 2008f). Selecting time series of remote sensing data with a 

moderate spatial resolution suitable for evaluating eco-environmental changes not only 

benefits from mapping the vegetation area over large regions, but it is also possible to detect 

long-term vegetation change using multi-temporal images (Jin et al., 2008f). The large 

amount of remote sensing data can be used efficiently to find potential variations and 

regulations of the eco-environment by means of data mining (Jin et al., 2008a; 2008f). 

Therefore, the main contribution of this work is the development of new methods for (i) 

quantitative assessment of the spatial distribution of vegetation and its impact factors in a 

mountainous area; (ii) accuracy estimation of the regional evapotranspiration and the 

validation of the evapotranspiration with a water budget; (iii) quantifying the important 

effects of surface water and groundwater on the vegetation growth. Furthermore, a new 
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particularly useful framework for evaluating the eco-environmental changes at large scale in 

an arid area was presented in this work. 

The importance of this work also lies in the choice of the study area, being the Heihe River 

basin. The Heihe River basin, located in middle part of the Hexi Corridor in China, is one of 

the most important agricultural areas in northern China and it is also one of the inland basins 

which is most strongly affected by human activities. The entire river basin can be divided into 

three parts based on three different landscapes - the upstream mountainous area, the middle 

stream cropland area and the downstream desert area. Due to sufficient precipitation, the 

runoff generated from the upstream mountainous area is the main water resource supporting 

the middle stream and downstream areas. There are close relations amongst these three 

systems and their composition represents a very typical vegetation-water-ecosystem in an arid 

region. The depletion of the water resources in middle stream area caused serious eco-

environmental problems in the downstream area and it has become a threat to the eco-safety 

of the whole river basin. The Heihe River basin was approved to be the first generation of a 

national protection area of the ecological function in 2001. The study of eco-environmental 

changes in the Heihe River basin shows consistent and significant impact originating from 

human activities, which has been discussed widely in many scientific contributions (e.g., Lu 

et al., 2003; Lan et al., 2004; Zhou et al,, 2004; Luo et al., 2005; Qi and Luo, 2005; Qi et al., 

2007; Wang, 2007). However, little progress has been made on the study of the quantitative 

relationship between vegetation change and water resources availability at regional scales in 

China. The main work of this thesis discussed the successive scientific issues as different 

parts and then combined them systematically. It provides a methodology to evaluate the long-

term vegetation change and the impact of water resources using remote sensing methods. On 

the other hand, river basins in water-limited landscapes are particularly well suited for 

studying environmental feedbacks and responses because they contain long and relatively 

complete records of past environmental change. Available eco-environmental results 

originating from the total river basin analysis of this thesis can be synthesized to build a 

comprehensive reconstruction of the hydrological and vegetation history of the Heihe River 

basin. This iterative, retrospective, and process-oriented approach of vegetation dynamics, 

runoff and groundwater change can lay a solid foundation for predicting the effects of future 

environmental changes. Therefore, this study provides a sound scientific reference to policy 

makers and may help to further support adaptation activities in order to carry out sustainable 

environmental protection in the Heihe River basin. 

 

6.3 Outlook 

In this section we put our findings into perspective and we outline possible improvements in 

future work. We segment the efforts into the following domains: 
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• Partitioning of evaporation and transpiration, 

• Vegetation and streamflow, 

• Vegetation change and groundwater recharge, and 

• Evaporation and groundwater. 

Partitioning of evaporation and transpiration.  The amount of available water is the driver 

of many plant and microbiological processes in water-limited environments. The amount of 

available water is determined by the spatial and temporal distribution and amount of 

precipitation, but it is also determined by how precipitation is redistributed via processes such 

as interception, infiltration, evaporation, and runoff. Most hydrological studies have estimated 

water budgets by combining canopy interception, soil evaporation (E), and transpiration (T) 

into a single term, evapotranspiration (ET) (Reynolds et al., 2000; Yepez et al., 2003; Loik et 

al., 2004; Huxman et al., 2005). Although combining E and T is very useful for some 

applications, the biological processes play a significant role in regulating the hydrological 

cycle directly or indirectly. Soil evaporation and transpiration all depend on vegetation cover, 

but in different ways. Therefore, study on evaporation and transpiration processes separately 

can help us to better understand how they are affected by vegetation cover and what their 

influence is on ecohydrological dynamics. Furthermore, partitioning E and T can help us to 

estimate the water demand and to improve our ability to quantify the effect of biological 

processes on the hydrological cycle.  

The E and T constitute more than 95% of the water budget in water-limited ecosystems 

(Wilcox et al., 2003a) and some studies quantified this partitioning for different ecosystems 

and temporal scales (Reynolds et al., 2000; Unsworth et al., 2004; Huxman et al., 2005; 

Scanlon et al., 2005a). The stochastic variation of precipitation is a very critical factor on this 

partitioning of E and T. The spatial and temporal stochasticity of precipitation in water-

limited environments results in highly dynamic patterns of soil water distribution and 

vegetation properties (Porporato et al., 2002; Knapp et al., 2002; Rodriguez-Iturbe and 

Porporato, 2004). Assessment of controls on E and T and further partitioning of E and T will 

be needed in the future. 

Vegetation and streamflow. Understanding the effect of vegetation on streamflow is one of 

the most important tasks in ecohydrology. The role of vegetation in the dynamics of soil 

moisture, runoff and streamflow in arid environments has been studied through field 

observations, hydrological modeling and remote sensing (Wilcox et al., 1997, 2003b; 

Newman et al., 1998, 2004; Cayrol et al., 2000; Neave and Abrahams, 2002; Porporato et al., 

2002; Ridolfi et al., 2003; Kerkhof et al., 2004b). Few studies have attempted to quantify 

relationships between the type and pattern of vegetation and streamflow. These relationships 

are a significant step in developing an ecohydrological approach to water resources 

management and environmental change. In some water-limited areas, the streamflow is 
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derived mostly from precipitation and melting snow, and it has close relationship with 

vegetation cover (Hibbert, 1983; Baker, 1984; Williamson et al., 2004). Therefore, study on 

the influence of vegetation on streamflow using remote sensing will remain a main topic of 

interest and importance in ecohydrology in the near future. 

Vegetation change and groundwater recharge. The important link between vegetation and 

groundwater has been shown in water-limited environments. The relation between 

groundwater recharge and vegetation type could enable vegetation to be used as a proxy for 

recharge to some extent (Walvoord and Phillips, 2004; Kwicklis et al., 2005). Vegetation 

mapping generated by using airborne- or satellite based approaches could then be used to 

predict subsurface flow and recharge and these methods can improve local to regional 

estimates of recharge. Hydrological processes in the thick infiltration zones of water-limited 

environments demonstrate longer timescales than those in surface soils. Changes in 

groundwater recharge brought about by changes in vegetation (caused by climate variation, 

land use, etc) can be predicted through a substitution of space by time. Although some 

important progress has been made on the relationship between vegetation dynamics, soil 

water storage, and precipitation in predictive models of groundwater recharge, the specific 

relation among recharge, hydraulic factors and vegetation type should be further assessed 

through coordinated hydrological measurements and monitoring using various remote sensing 

based methods (Allison et al., 1990; Smith et al., 2000; Walvoord et al, 2002; Scanlon et al., 

2003, 2005a; Seyfried et al., 2005). 

Phreatic evaporation and groundwater depth.  Evaporation is the main discharge path of 

groundwater in the hydrological cycle for water-limited areas. The groundwater moves up due 

to capillary forces and enters into the atmosphere through the unsaturated zone. Therefore, the 

groundwater depth and soil properties of the unsaturated zone have significant impact on 

phreatic evaporation. Quantifying the relation between groundwater depth and surface 

evaporation can improve our understanding of factors determining phreatic evaporation. The 

relationship between groundwater depth and phreatic evaporation for different soil properties 

have been studied through the use of various in-situ methods (Duell, 1990; Nichols, 1994; 

Laczniak et al., 1999; Berger et al., 2001; Steinwand, 2001, 2006). However, most studies 

focused on experimental measurements for certain soil types at local scale. Groundwater 

depth, soil property, vegetation type and evaporation are all spatially dynamic at regional 

scales. The regional phreatic evaporation can be efficiently estimated by using a remote 

sensing model, but quantifying the relationship between groundwater depth and phreatic 

evaporation at large scale in an arid region is still an open research question. 

This study summarizes and puts various points of discussion for future work forward. 

Implementation of the above efforts will need further integration of remote sensing and 

hydrological data at various spatial, temporal and spectral scales. A successful integration will 

further promote the development of even more powerful approaches for environmental 
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problem assessment. Even though past calibration and now-casting are important methods 

supporting this assessment, further data collection will need to include methods allowing 

forecasting models to be used, ultimately allowing us to address unforeseen upcoming 

environmental problems. 
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Summary 
 

Water-limited environments exist on all continents of the globe and they cover more than 
30% of the Earth’s land surface. The eco-environments of these regions tend to be fragile and 
they are changing in a dramatic way through processes like land desertification, shrinking of 
oases, groundwater depletion, and soil erosion. These are either human induced or results of a 
changing climate. Implications of these changes for both the regional hydrologic cycle and the 
vegetation have been documented. Since these changes occur over a wide range of scales in 
space and time, remote sensing methods are needed to monitor the land surface characteristics, 
to observe changes in vegetation and hydrological states, and to compare these with 
predictions from hydrological models. It is widely accepted that remote sensing methods offer 
the ability to acquire spatially continuous measurements over large areas. Remote sensing can 
also help to visualize complex processes because the spatial data can be captured regularly 
over time. 

China is one of several countries with large arid and semi-arid areas. The Heihe River basin, 
situated in the arid inland of northwestern China, is one of the areas severely affected by eco-
environmental degradation and recovery. The problem of the degraded environment is due to 
overexploitation of surface and ground water leading to shrinking of oases, including the 
decline and death of natural vegetation, and the lowering of the groundwater table. Exhaustive 
(over-)use of water resources is the main cause of land degradation in the lower reaches of the 
basin, called the Ejina oasis. The whole Heihe River basin is therefore selected as study area 
in this thesis to analyze the long-term eco-environmental changes. What happens in this river 
basin is likely to have a growing influence on regional hydrological cycles, even affecting 
human life. Effective management of eco-environmental problems in this critical zone of 
water-limited conditions will provide scientific evidence for protecting and improving the 
eco-environment in these Chinese northwestern arid regions, eventually resulting in land 
improvement. 

Studies on quantifying the relationship between the vegetation and the water resources are a 
critical step in developing an ecohydrological approach to resources management in order to 
minimize environmental degradation. Remote sensing measurements can help us to better 
understand the effects of changes in water management on hydrological processes and their 
subsequent feedback to the eco-environment at the regional scale. Remote sensing methods 
can also provide information to quantify heterogeneity and change at a large scale. Therefore, 
the main objective of this thesis is to develop a methodology for the quantitative assessment 
of eco-environmental changes at a large scale in arid regions by integrating remote sensing 
methods in ecohydrological approaches. 

Chapter 1 outlines the significance of quantitative assessment of eco-environmental 
changes using remote sensing methods and applying them for ecohydrology in northwestern 
China, resulting in the specific research objectives of this thesis. 
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Chapter 2 quantifies both the vertical and horizontal distribution of vegetation in the Qilian 
Mountains area, representing the upper reaches of the Heihe River basin, based on MODIS 
NDVI images from the year 2000 - 2006. Our analysis reveals that elevation and aspect are 
two important impact factors for the vertical distribution of vegetation in a mountainous area. 
The NDVI increases with the elevation and reaches a maximum value at a certain elevation 
threshold, and then decreases as the elevation increases beyond this threshold. The optimal 
vegetation growth is on the shady side of the mountains because of less evapotranspiration. 
The best combination of temperature and precipitation is assessed providing good conditions 
for vegetation growth. 

Chapter 3 presents an efficient method to estimate the regional annual evapotranspiration 

(ET) based on the SEBS algorithm (Surface Energy Balance System) in the Zhangye basin, 

representing the middle reaches of the Heihe River basin. The method proposed is a 

combination of the daily SEBS results and data collected by meteorological stations. The 

result shows that the annual ET increased gradually during the period 1990-2004 and the main 

impact factor on the long-term increase of annual ET was the vegetation change. The 

accuracy of the ET result is validated using a water balance for the whole watershed and the 

validation reveals that the SEBS algorithm can be used to effectively estimate annual ET in 

the Zhangye basin. 

Chapter 4 establishes the quantitative relationship between the runoff of the Heihe River 
and the long-term vegetation change of the Ejina oasis, located in the lower reaches of the 
Heihe River. In this part, two time periods are distinguished corresponding to before and after 
the implementation of a new water allocation scheme in the Heihe River basin. The GIMMS 
NDVI and MODIS NDVI data sets are used to quantify the long-term change of the oasis 
vegetation in the first period 1989-2002 and the second period 2000-2006, respectively. The 
vegetation change shows a decreasing trend from 1989 to 2002 and an increasing trend 
between 2000 and 2006. Good relation between the runoff of the river and the vegetation 
growth are found at both stages and the time lag of the observed hysteresis effect of the runoff 
of the river on the oasis vegetation is one year. In addition, the yearly smallest water amount 

which sustains the demand of the eco-environment of the Ejina area is estimated to be 4×108 

m3 based on MODIS images.  

Chapter 5 explores a method to quantify the effect of the groundwater depth on the 
vegetation growth in the year 2000 in the oasis area by combining MODIS NDVI with 
groundwater observation data. The result demonstrates that the groundwater depth suitable for 
vegetation growth in this region ranges from 2.8 to 5 m, depending on species composition. 
Hardly any vegetation growth occurs when the groundwater depth is below 5 m because the 
rooting depth of the occurring species is limited and cannot maintain adequate water supplies 
to their canopies when the water depth is below 5 m. The situation changes after 
implementation of the new water allocation scheme since 2000. The mean NDVI increased 
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and the annual conversion of bare land into vegetated land is about 38 km2 per year during the 
period 2000 – 2008. It reflects a potential recovery of the eco-environment of the Ejina area. 

Chapter 6 comprises the main conclusions and the outlook for possible improvements in 
future research. The main contribution of this study is the successful integration of remote 
sensing with ecohydrology in quantifying the relationship between water resources and 
vegetation occurrence at large scale. It provides a methodology to evaluate the long-term 
vegetation change and the water resources impact using remote sensing data in water-limited 
areas. The approach of vegetation dynamics, runoff and groundwater impacts presented in this 
thesis serves as a sound foundation for predicting the effects of future environmental changes.  
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Samenvatting 
 
Milieus met beperkte waterhoeveelheden bestaan op alle continenten en ze beslaan meer dan 

30% van het landoppervlak op aarde. Het eco-milieu van deze regio's is meestal kwetsbaar en 

verandert op een dramatische wijze door middel van processen zoals woestijnvorming, het 

inkrimpen van oases, uitputting van het grondwater en bodemerosie. Deze processen zijn 

ofwel door de mens veroorzaakt of het gevolg van een veranderend klimaat. De gevolgen van 

deze veranderingen voor zowel de regionale hydrologische cyclus als de vegetatie is reeds 

beschreven. Omdat deze veranderingen plaatsvinden over een breed scala aan ruimte- en 

tijdschalen, zijn remote sensing methoden nodig voor het monitoren van eigenschappen van 

het landoppervlak, voor het waarnemen van veranderingen in de vegetatie en de 

hydrologische toestand, en voor het vergelijken hiervan met voorspellingen uit hydrologische 

modellen. Het is algemeen aanvaard dat remote sensing methoden de mogelijkheid bieden om 

ruimtelijk continue metingen over grote oppervlakten te verkrijgen. Remote sensing kan ook 

helpen bij het visualiseren van complexe processen, omdat de ruimtelijke gegevens met 

regelmatige tussenpozen kunnen worden verkregen. 

    China is een van de landen met grote aride en semi-aride gebieden. Het stroomgebied van 

de Heihe rivier, gelegen in het aride binnenland van het noordwesten van China, is een van de 

gebieden die sterk beïnvloed zijn door degradatie en herstel van het eco-milieu. Het probleem 

van degradatie van het milieu is te wijten aan overmatig gebruik van het oppervlaktewater en 

het grondwater dat leidt tot het inkrimpen van de oases, met als gevolg achteruitgang en 

afsterven van de natuurlijke vegetatie, en verlaging van het grondwaterpeil. Overmatig 

gebruik van de watervoorraden is de belangrijkste oorzaak van bodemdegradatie in de 

benedenloop van het stroomgebied, de zogenaamde Ejina oase. Het hele stroomgebied van de 

Heihe rivier is daarom geselecteerd als studiegebied in dit proefschrift om de lange termijn 

veranderingen in het eco-milieu te onderzoeken. Wat er gebeurt in dit stroomgebied zal 

waarschijnlijk een groeiende invloed op de regionale hydrologische cycli hebben, en zelfs het 

leven van de mensen ter plaatse beïnvloeden. Effectief beheer van de problemen van het eco-

milieu in deze kritische zone met beperkte waterhoeveelheden zal wetenschappelijke 

aanwijzingen leveren voor de bescherming en verbetering van het eco-milieu in de 

noordwestelijke aride gebieden van China, uiteindelijk resulterend in landverbetering. 

    Studies naar de kwantificering van de relatie tussen vegetatie en de watervoorraad zijn een 

essentiële stap in de ontwikkeling van een ecohydrologische aanpak voor het beheer van 

hulpbronnen met het oog op het minimaliseren van de degradatie van het milieu. Remote 

sensing metingen kunnen ons helpen bij het beter begrijpen van de effecten van veranderingen 

in het waterbeheer op hydrologische processen en vervolgens van hun feedback op het eco-

milieu op regionale schaal. Remote sensing methoden kunnen ook informatie leveren om 

heterogeniteit en veranderingen op grote schaal te kwantificeren. Daarom is de belangrijkste 
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doelstelling van dit proefschrift het ontwikkelen van een methodiek voor de kwantitatieve 

bepaling van veranderingen in het eco-milieu op grote schaal in aride gebieden door de 

integratie van remote sensing methoden in ecohydrologische benaderingen. 

    Hoofdstuk 1 geeft een overzicht van de betekenis van de kwantitatieve bepaling van 

veranderingen in het eco-milieu met behulp van remote sensing methoden en de toepassing 

daarvan voor de ecohydrologie in het noordwesten van China, resulterend in de specifieke 

onderzoeksdoelstellingen van dit proefschrift. 

    Hoofdstuk 2 kwantificeert zowel de verticale als de horizontale verdeling van de vegetatie 

in het gebied van het Qilian gebergte, dat de bovenloop van het stroomgebied van de Heihe 

rivier vertegenwoordigt, gebaseerd op MODIS-NDVI beelden uit het jaar 2000 – 2006. Ons 

onderzoek toont aan dat hoogte en hellingsrichting twee belangrijke factoren voor de verticale 

verdeling van vegetatie in een bergachtig gebied zijn. De NDVI neemt toe met de hoogte, 

bereikt een maximale waarde op een bepaalde hoogte en neemt vervolgens weer af als de 

hoogte nog verder toeneemt. De optimale vegetatiegroei is aan de schaduwzijde van de 

bergen omdat daar minder evapotranspiratie plaatsvindt. De beste combinatie van temperatuur 

en neerslag voor goede vegetatiegroei is bepaald. 

    Hoofdstuk 3 beschrijft een efficiënte methode voor het schatten van de regionale jaarlijkse 

evapotranspiratie (ET) op basis van het SEBS algoritme ("Surface Energy Balance System") 

in het Zhangye bekken, de middenloop van het stroomgebied van de Heihe rivier. De 

voorgestelde methode is een combinatie van de dagelijkse SEBS resultaten en gegevens van 

meteorologische stations. Het resultaat toont aan dat de jaarlijkse ET geleidelijk toenam in de 

periode 1990 – 2004 en dat de belangrijkste impact factor op de stijging van de jaarlijkse ET 

op de lange termijn de verandering in vegetatie was. De nauwkeurigheid van het ET resultaat 

is gevalideerd met behulp van een waterbalans voor het gehele stroomgebied en uit deze 

validatie blijkt dat het SEBS algoritme gebruikt kan worden om effectief de jaarlijkse ET in 

het Zhangye bekken te schatten. 

    Hoofdstuk 4 stelt de kwantitatieve relatie tussen de afvoer van de Heihe rivier en de 

vegetatieveranderingen in de Ejina oase, gelegen in de benedenloop van de Heihe rivier, op de 

lange termijn vast. In dit deel worden twee perioden onderscheiden die overeenkomen met 

voor en na de invoering van een nieuw systeem voor toekenning van water in het 

stroomgebied van de Heihe rivier. De GIMMS-NDVI en MODIS-NDVI gegevens zijn 

gebruikt voor het kwantificeren van de lange termijn verandering van de vegetatie in de oase 

in respectievelijk de eerste periode 1989 – 2002 en de tweede periode 2000 – 2006. De 

vegetatieverandering vertoont een dalende trend tussen 1989 en 2002 en een stijgende trend 

tussen 2000 en 2006. Er is een goede relatie gevonden tussen de afvoer van de rivier en de 

vegetatiegroei in beide perioden. De tijdsvertraging van het waargenomen hysteresis-effect 

van de afvoer van de rivier op de reactie van de vegetatie in de oase is een jaar. Verder wordt 
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de minimale jaarlijkse hoeveelheid water die nodig is om te voldoen van de vraag van het 

eco-milieu in het Ejina gebied geschat op 4×108 m3 (gebaseerd op MODIS beelden). 

    Hoofdstuk 5 onderzoekt een methode om het effect van de grondwaterdiepte op de groei 

van de vegetatie in het jaar 2000 in de oase te kwantificeren door het combineren van 

MODIS-NDVI beelden met grondwatermetingen. Het resultaat toont aan dat de 

grondwaterdiepte geschikt voor vegetatiegroei in deze regio varieert van 2,8 tot 5 m, 

afhankelijk van de soortensamenstelling. Er vindt bijna geen vegetatiegroei plaats als het 

grondwaterpeil dieper is dan 5 m, omdat de bewortelingsdiepte van de voorkomende soorten 

beperkt is en niet voldoende water kan leveren aan het bladerdak als het waterpeil dieper is 

dan 5 m. De situatie is sinds 2000 veranderd na invoering van het nieuwe systeem voor 

toekenning van water. De gemiddelde NDVI is toegenomen en de jaarlijkse omzetting van 

kale grond in begroeid land is ongeveer 38 km2 per jaar in de periode 2000 – 2008. Dit geeft 

een eventueel herstel van het eco-milieu van de Ejina gebied aan. 

    Hoofdstuk 6 omvat de belangrijkste conclusies en een vooruitblik op mogelijke 

verbeteringen in toekomstig onderzoek. De belangrijkste bijdrage van deze studie is de 

succesvolle integratie van remote sensing met de ecohydrologie bij het kwantificeren van de 

relatie tussen watervoorraden en het voorkomen van vegetatie op grote schaal. Het biedt een 

methodologie om de vegetatieveranderingen op de lange termijn en de impact van 

watervoorraden vast te stellen met behulp van remote sensing data in gebieden met beperkte 

waterhoeveelheden. De aanpak van vegetatiedynamiek, afvoer en grondwatereffecten 

beschreven in dit proefschrift dient als een goede basis voor het voorspellen van de gevolgen 

van toekomstige veranderingen in het milieu. 
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内容概要内容概要内容概要内容概要    

干旱、半干旱地区在世界上分布广泛，占据了全球陆地约 30％的面积。这些地区的生态

环境极其脆弱, 由于人类活动及气候变化的影响导致土壤沙漠化、绿洲萎缩、地下水位下降以

及土壤侵蚀等生态环境地质问题, 许多学者研究了这些变化对区域水循环及植被的影响。由于

这些变化跨越大范围的时间和空间尺度, 遥感技术以其大范围区域内可获取实时监测数据的优

越性, 被广泛用于观测这些地面特征参数、植被及水文状态参数, 并可以与通过水文模型模拟得

到的参数进行对比验证。由于能够获取实时的空间数据, 遥感技术可以帮助我们透视复杂的变

化过程。 

中国是世界上干旱与半干旱区域广泛分布的国家之一。位于中国西北内陆的黑河流域, 是

受生态环境变化影响最大的地区之一, 其环境退化的主要原因是水资源的不合理开发导致的绿

洲萎缩, 包括自然植被的退化、死亡以及地下水位的下降, 特别是不合理应用水资源导致了黑河

流域下游额济纳绿洲的退化。因此, 本篇论文选择了黑河流域作为研究区分析生态环境的长时

期变化。流域内生态环境所发生的变化不仅影响了区域水循环, 而且影响了人们的生活。因而

在黑河流域这个典型干旱区内有效解决生态环境问题, 既可以为中国西北干旱地区的生态环境

保护提供科学依据, 也可以促进区域土地改良。 

研究植被与水资源之间的定量关系是应用生态水文学进行资源管理, 有效遏制环境退化的

关键一步。遥感技术不仅可以帮助我们更好地理解水资源管理对水文过程的影响, 及其在区域

尺度上对生态环境的影响, 还可以为我们定量研究大尺度上的不均一性提供信息。因此, 本篇论

文的主要研究目标是: 提出一种科学方法, 将遥感技术与生态水文学相结合, 定量评价干旱区大

尺度生态环境的变化。 

论文第一章主要介绍了将遥感方法应用于生态水文学中定量评价生态环境变化的重要意义, 

并提出本篇论文具体的研究目标。 

基于 2000至 2006年的 MODIS NDVI 遥感数据, 定量研究黑河流域上游祁连山地区植被在

垂直和水平方向上的空间分布, 是论文第二章的主要内容。研究结果表明: 高程与坡向是山区植

被空间分布的两个重要影响因素, 植被指数 NDVI 随着高程的增加而增大, 在一个高程处达到峰
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值; 之后, 植被指数又随着高程的增加而减小。由于蒸发蒸腾较低, 植被在阴坡发育最好。同时, 

温度和降雨的最佳耦合可以为山区植被发育提供良好的条件。 

论文第三章提出了一种有效方法, 即基于表面能量平衡原理 (SEBS) 估算黑河流域中游张掖

盆地的年蒸散量。此方法是将计算出的日蒸散量与气象站的观测数据相结合, 推算出月蒸散量, 

进而估算区域年蒸散量。从结果可以看出: 张掖盆地的年蒸散量在 1990至 2004年间呈逐渐增

加的趋势, 其主要影响因素是植被的变化。本章的最后运用水均衡法验证了表面能量平衡原理

估算张掖盆地年蒸散量的可靠性。 

论文在第四章建立了黑河流量与下游额济纳绿洲植被生长之间的定量关系。本章中, 我们

根据黑河流域新的配水方案将研究分为两个阶段。在 1989－2002年及 2000－2006年这两个阶

段分别采用 GIMMS NDVI 和 MODIS NDVI 数据进行定量分析。在第一阶段植被变化呈下降趋

势, 而在第二阶段则呈现上升趋势。在这两个阶段, 黑河前一年流量与当年植被生长之间均显示

有良好的相关性, 即河流流量对绿洲植被生长的影响滞后, 其滞后期是一年。另外, 基于 MODIS

数据, 本文计算出维持额济纳绿洲生态环境正常的最小需水量是 4 亿方。 

论文第五章提出了一种方法, 结合 2000年额济纳绿洲 MODIS NDVI 与地下水位观测数据, 

定量评价地下水位埋深对植被生长的影响。研究结果表明: 额济纳地区适宜于植被生长的地下

水位埋深范围是 2.8至 5 m。当水位埋深低于 5 m时, 由于植被根系深度有限无法供给叶片充足

的水分, 故而植被很难存活。自 2000年新的配水方案施行之后, 情况已有所好转, 额济纳绿洲的

植被指数开始呈现增大的趋势, 而且在 2000至 2008年间植被面积在每年以 38 km2的速度增长, 

这从另一侧面反映出额济纳地区的生态环境正在逐步恢复。 

论文最后是主要结论及对未来工作的展望。这篇论文的主要贡献是将遥感与生态水文学较

好地结合在一起, 定量评价了大尺度范围内水资源与植被生长之间的关系。所得结果为干旱区

运用遥感方法评价植被的长期变化及水资源对植被变化的影响提供了一种科学方法, 同时本文

对植被动态变化、地表水及地下水的影响研究也为预测未来生态环境的变化提供了科学基础。 
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