

Contributio	on of breeds to genetic var	riation
Set of br	reeds	
0.44	0.11 0.37 0.05	Contribution Vector
	0.10	0.44
A-matrix	0.00 0.90	0.05
	0.01 0.00 0.10	0.11
	0.00 0.00 0.08 0.10	0.37
	0.05 0.00 0.04 0.01 0.50	0.03
	CES GROUP CC	SN / Animal Breeding & Genomics Centre

Example		
69 European cattle breeds ty	ped for 30	microsatellite markers
Core set contribution		
Chianina (I)	22%	2
German Shorth. (D/GB)	19%	
Normand (F)	18%	
Red Danish (DK)	15%	
Friesian Holland (NL)	10%	
Guernsey (GB)	8 %	
8 other breeds	8 %	A CALL AND A CALL
		a sa na s
ANIMAL SCIENCES GROUP WAGENINGEN UR		CGN / Animal Breeding & Genomics Centre

Prioritisation of breeds
 Some breeds can be considered safe High input/high output breeds that dominate the world Holstein Friesian in dairy cattle Texelaar in sheep Hy-line in chicken Etc. Eding method: Determine safe set Calculate genetic diversity Add rare breed Recalculate genetic diversity Repeat for all breeds Prioritise rare breeds according to added genetic diversity
ANIMAL SCIENCES GROUP WAGENINGEN UR CGN / Animal Breeding & Genomics Centre

Core set contribution			Safe + 1 set analysis Added Diversity	
Chianina (I)	22%		Betizu (E)	6.02%
German Shorth. (D)	19%		Mallorquina (E)	4.88%
Normand (F)	18%		German Shorth. (D)	4.71%
Red Danish (DK)	15%		Podolica (I)	4.16%
riesian Holland (NL)	10%	1.	Chianina (I)	4.03%
Guernsey (GB)	8 %		Retinta (E)	4.02%
8 other breeds	8 %		etc.	

Other methods FST • Heterozygosity relative to total set of breeds • Measure for divergence (amongst others) No. of (private) alleles • Focus on uniqueness of breeds Genetic distances • Based on mutation model - In (Similarity weighted by maximum similarity possible given population frequencies) • Equal frequencies: distance = 0 no alleles in common: distance = ∞ Phylogenetic trees • Generally based on genetic distances **CGN / Animal Breeding** ANIMAL SCIENCES GROUP WAGENINGENUR & Genomics Centre

Example: Ethiopian Sheep Bre	eds (Gizaw submitted)
Core Set Contribution Simien 0.44 Bonga 0.18 Gumz 0.13 Washera 0.07 Menz 0.01 Horro 0.01 etc.	
ANIMAL SCIENCES GROUP WAGENINGEN UR	CGN / Animal Breeding & Genomics Centre

Ethiopian S	Sheep	Bree	eds: E	Extinc	tion Risk
Simien Bonga Gumz Washera Menz Horro	Pop. size 0.3	Ram/ herd 0.3	cross breed 0.3	Pure Stock 0.1	Farmers Appreciation 0.1 0.3 0.4 0.9 0.1 0.4 0.9 0.1 0.3
	ES GROU Eningen <mark>ur</mark>	P 2			CGN / Animal Breeding & Genomics Centre

	Genetic Contribution	Extinction Risk	Utility Value	Priority
imien	0.44	0.3	0.33	1
Bonga	0.18	0.4	0.20	4
Gumz	0.13	0.9	0.23	2
Washera	0.07	0.1	0.27	5
Menz	0.01	0.4	0.40	3
Horro	0.01	0.3	0.20	6
Priority base	d on 2(C * E) + U		0.20	0

Transboundary breeds (Population genetic viewpoint) ■ Can be seen as consisting of sub-populations ■ Highly related ■ The smaller the subpopulations the more divergence ■ Genetic variation within countries is lost at a higher rate if no or limited exchange between countries ■ Diversity lost in one country may be conserved in another