
Opportunities offered by dense marker maps for local breeds

Jack J. Windig CGN Animal Breeding & Genomics Centre

Animal Breeding & Genomics Centre

<u>Agrobiodiversity</u>

- Local breeds
- Worth to conserve
 - Beautiful
 - Cultural Heritage
 - Contain unique genetic diversity
- National and international efforts for conservation
 - E.g. gene banks
 - Genomics helpful?

Animal Breeding & Genomics Centre

Unique traits of local breeds

- Adapted to local environment
 Generally low input low output
 - Can survive in harsh conditions or periods
 - Dry areas
 - Mountain areas
 - Poor soils
 - High disease pressure
 - Etc.
- High input high output -> global breeds
 Slow food better taste

Local breeds under threat

Few breeds dominate the world more and more

- E.g. Holstein Friesians
- Superior production
- Superior breeding programs

Can Genomic Selection help in local breeding programs?

Options for local breeding

- Improve local traditional breeds
- Cross with improved / exotic breeds
- Replace with exotic high production breeds
 - Loss of diversity
 - Limited success
 - May not reach local farmers

Breeding program components

Determine breeding goal
Collect data

Phenotype recording
Pedigree recording

Estimate breeding values
Selection and mate
Disseminate improved genotypes

ANIMAL SCIENCES GROUP WAGENINGEN UR MAGENINGEN UR

Data collection

Poor infrastructure

- No or limited pedigree recording
- No (regular) phenotype recording
- Recording in research herd
 - More optimal conditions than in field
 - Other genotypes or small sample of genotypes in the field
 - Limited herd size

Pedigree estimation

- What is the relationship of animals with unknown or incomplete ancestry
- Is the research herd a representative sample of all the genotypes in the breed?
- Limited number of markers
 - E.g. 30 micro satellite markers
 - Within breed (e.g. Oliehoek et al. 2006 Genetics)
 - Across breeds (e.g. Eding 2002 GSE)
- Dense marker maps
 - E.g. 10 000 SNPs
 - Relationship of specific parts of the genome

ANIMAL SCIENCES GROUP WAGENINGEN UR Animal Breeding & Genomics Centre

Genomic selection

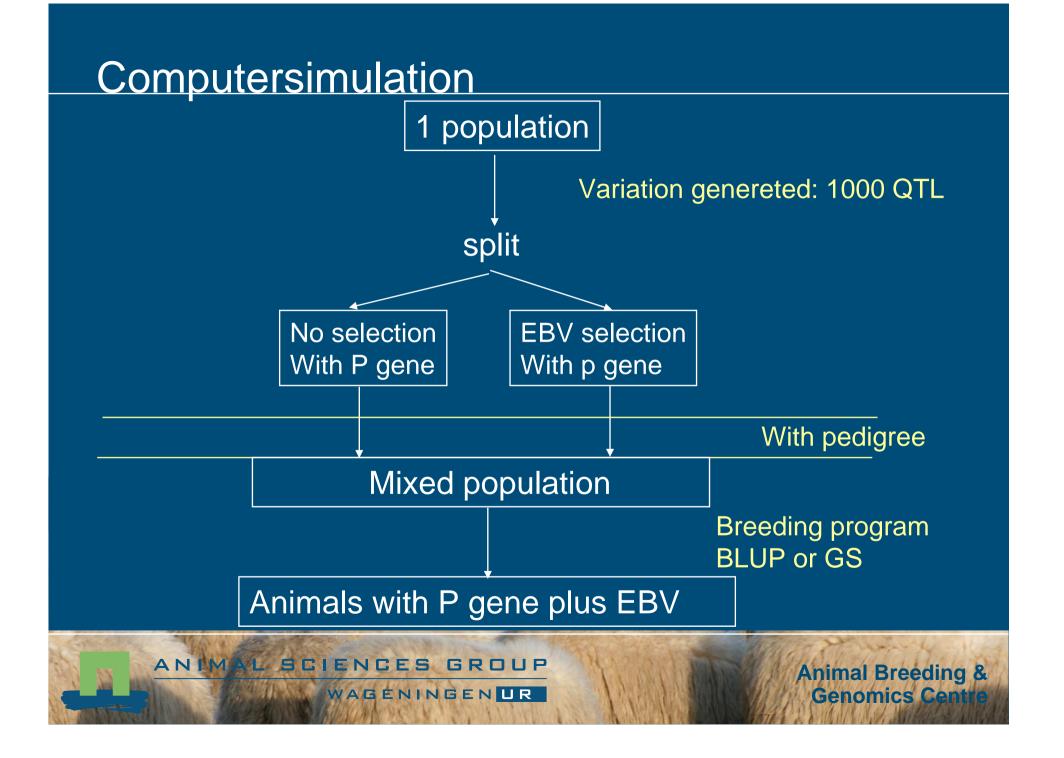
- Pedigree estimation and breeding value (BV) estimation combined
 - Also for populations of 1000 Animals
 - Genomic EBV ≈ BLUP EBV with 10 daugthers
- G*E interaction research herd field
- Multiple traits some in research herd some in field
- Estimate BV in research herd select in field
- Cross breeding

Introgression of single genes

- Interesting traits of local breeds for high production breeds
 - Disease resistance
 - Polledness
 - Etc. etc.
- And the other way around
 - QTLs

Can genomic selection help?

Classical program: backcross

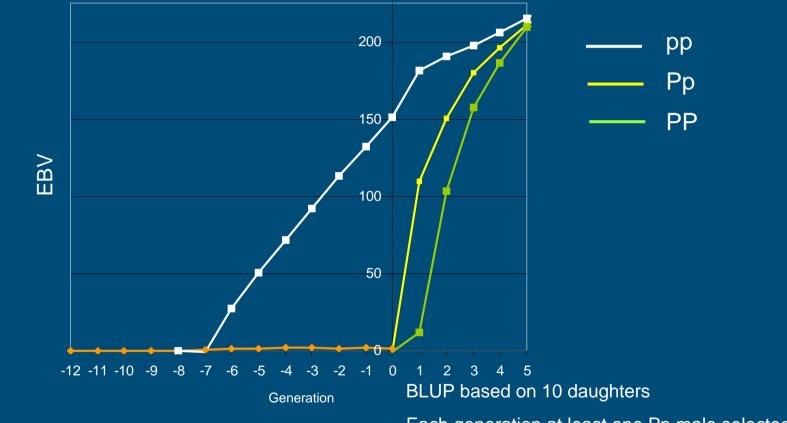

Selection for gene + rest original population

Animal Breeding &

- No selection for breeding values
- BLUP program
 - Selection for gene + BLUP EBV
 - May take long (e.g. > 4 generations)
- Genomic selection
 - Selection for gene + Genomic EBV

WAGENINGENUR

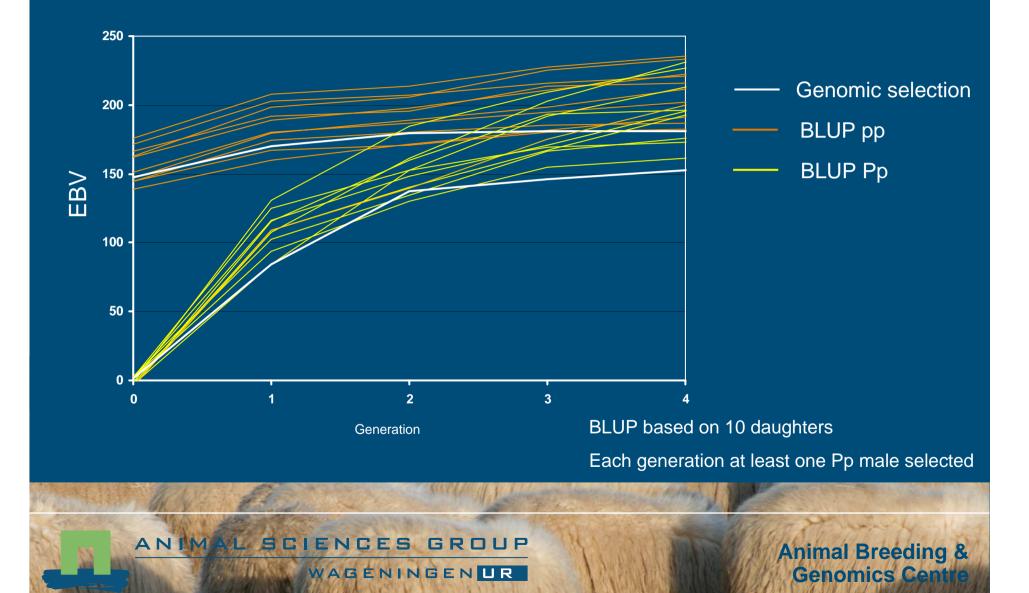
ANIMAL SCIENCES GROUP



Breeding programs

- 100 males, 900 females
- Breeding value estimation (index value)
 - GS
 - BLUP: 100 daughters (r = 70%)
 - BLUP: 10 daughters (r = 50%)
 - BLUP: No daughters (r = 30%)
- 10 best males selected
 - At least 1 male with P gene (homo- or heterozygote)
 - At least 5
 - 0 or more

ANIMAL SCIENCES GROUP WAGENINGEN UR Animal Breeding & Genomics Centre


Results simulation program

Each generation at least one Pp male selected

GS vs. BLUP

Conclusions introgression

- GS better than BLUP with 10 daughters
 - Progress in EBV comparable
 - But: generation interval shorter
- In 4 generations homozygote animals with high EBVs can be bred
 - Re-estimation of marker effects each 2-3 generations?

Gene banking

- Now based on average relationship
- With the help of markers
 - Target specific areas for conservation
 - Monitor loss in other diversity if specific alleles (or traits) are targeted

General conclusion

Dense marker maps provide the opportunity to incorporate specific diversity into conservation
(Single) traits, QTLs, Alleles
Breeding in small populations
Introgression
Gene banking