Review of applied models of international trade in agriculture and related resource and environmental modelling

Frank van Tongeren Hans van Meijl (editors)

FAIR6 CT 98-4148 Interim report No.1

This report has been financially supported by the European Commission under the Fair-6 and Inco programmes. The content of this report is the sole responsibility of the authors and does not in any way represent the views of the European Commission or its services.

December 1999

Report 5.99.11

Agricultural Economics Research Institute (LEI), The Hague

The Agricultural Economics Research Institute (LEI) is active in a wide array of research which can be classified into various domains. This report reflects research within the following domain:

- □ Business development and external factors
- Emission and environmental issues
- Competitive position and Dutch agribusiness; Trade and industry
- Economy of rural areas
- \square National and international policy issues
- Farm Accountancy Data Network; Statistical documentation; Periodical reports

Review of applied models of international trade in agriculture and related resource and environmental modelling; FAIR6 CT 98-4148 Interim report No.1 Tongeren, Frank van en Hans van Meijl The Hague, Agricultural Economics Research Institute (LEI), 1999 Report 5.99.11; ISBN 90-5242-552-3; Price NLG 41.- (including 6% VAT) 120 p., fig., tab., app.

The prospect of a new round of trade negotiations under auspices of the World Trade Organisation, the perspective of enlargement of the European Union and international negotiations on transboundary environmental issues are some important policy issues that the European Union is currently facing. The assessment of likely impacts of policies in these areas is bound to be complex and is often supported by quantitative modeling analysis. This report provides an assessment of the present state of applied modelling in the area of international trade in agriculture and related resource and environmental modelling. It attempts to support users of models and users of model results in finding the most suited modelling tool for the problem at hand. The report has been written in the context of a larger concerted action project that is supported by the European Commison (FAIR6 CT 98-4148) and which assesses the usefulness of the Global Trade Analysis Project (GTAP) framework from a European perspective. This report is a joint effort by the 18 members of the project team, Frank van Tongeren and Hans van Meijl were in charge of editing the individual contributions.

Orders: Phone: 31.70.3358330 Fax: 31.70.3615624 E-mail: publicatie@lei.wag-ur.nl

Information: Phone: 31.70.3358330 Fax: 31.70.3615624 E-mail: informatie@lei.wag-ur.nl

Reproduction of contents, either whole or in part:

- \square permitted with due reference to the source
- \Box not permitted

The General Conditions of the Agricultural Research Department apply to all our research commissions. These were registered in the Central Gelderland Chamber of Commerce in Arnhem.

Contributors

Frank van Tongeren & Hans van Meijl (eds.), Agricultural Economics Research Institute (LEI), The Netherlands

Paul Veenendaal, Agricultural Economics Research Institute (LEI), The Netherlands

Søren Frandsen, Chantal Pohl Nielsen & Michael Stæhr, Danish Institute of Agricultural and Fisheries Economics, (SJFI) Denmark

Martina Brockmeier & Dirk Manegold, Federal Agricultural Research Centre (FAL), Institute for Market Analysis and Agricultural Trade Policy, Germany

Joseph Francois & Machiel Rambout, Tinbergen Institute Rotterdam, The Netherlands

Yves Surry, Institut National de la Recherche Agronomique (INRA), Station de Rennes, France

Risto Vaittinen & Leena Kerkela, Helsinki School of Economics and Business Administration, Department of Economics and Management Science, Finland

Thomas Ratinger, Research Institute for Agricultural Economics, Prague, Czech Republic

Kenneth Thomson, Department of Agriculture University of Aberdeen, U.K.

Bruno Henry de Frahan & Akka Ait El Mekki, Unité d'économie rurale, Université Catholique de Louvain, Belgium

Luca Salvatici, Universita degli studi di Roma La Sapienza, Dipartimento di Economia Pubblica, Rome, Italy

Table of contents

Introduction

1.

9

•	T I			10
2.		luation o		12
	2.1	-	otual framework: Definition and scope	12
		2.1.1	Market equilibrium models versus time series projection models	12
		2.1.2	Representation of national economies: partial versus economy-	
			wide models	13
		2.1.3	Regional scope	14
		2.1.4	Linked individual country models or parametric differences	
			between regions	15
	2.2	-	cation and modelling issues	15
		2.2.1	Dynamic versus comparative static specifications	15
		2.2.2	Modelling of international trade	16
		2.2.3	Representation of policies	18
		2.2.4	Theoretical consistency	20
		2.2.5	Model closures	20
	2.3	Data ar	nd parameters	21
3.	Mod	lel overv	iew	23
	3.1	Partial	models	23
		3.1.1	AGLINK	24
		3.1.2	ESIM	24
		3.1.3	FAO world model	25
			FAPRI	25
		3.1.5	GAPsi	26
		3.1.6	MISS	26
		3.1.7	SWOPSIM	26
		3.1.8	WATSIM	27
			Conclusion	27
	3.2		ny-wide models	31
		3.2.1	G-cubed	32
		3.2.2	GTAP	33
		3.2.3	GREEN	35
		3.2.4		36
		3.2.5		37
		3.2.6	MICHIGAN BDS MODEL	38
		3.2.7	RUNS	39

		3.2.8 3.2.9	WTO housemodel Conclusion	40 40
	3.3		gricultural models	40 44
	5.5	3.3.1		44
			CAPMAT and ECAM	45
4.	Ass	essment	t	48
5.	Ref	erences		54
Арр	pendix	ζ.		
1		ial mode		63
		1 AGLI		63
		2 ESIM		65
			world model	68
		4 FAPR		73
		5 GAPsi		75
		5 MISS		78
		7 SWOF		81
		8 WATS		86
2		•	vide world models	89
		1 G-Cub		89
		2 GTAP		94
		3 GREE		97
		4 INFOI		99
			ABARE and GTEM	101
			IIGAN BDS MODEL	103
		7 RUNS		106
_			housemodel	108
3		0	ural-models	110
		1 SPEL		110
		2 ECAN		113
	A3.3	3 CAPM	ЛАТ	118

Page

1. Introduction

This report provides an assessment of the present state of applied modelling in the area of international trade in agriculture and related resource and environmental modelling. The scope of this review is further limited by a deliberate bias towards current European policy issues. The prospect of a new round of trade negotiations and the perspective of enlargement increase the need to deepen the reforms of the Union's agricultural policies, as set out in Agenda 2000. The outcomes of negotiation rounds such as WTO trade negotiations and the Kyoto environmental summit bear implications for European farmers, related supplying and processing industries and European consumers. The assessment of likely policy impact is bound to be complex and should be supported by quantitative modeling analysis that explicit the relations of European countries with third countries.

At the present time such a modeling framework is provided by the Global Trade Analysis Project (GTAP), which is supported by a consortium of international and national agencies. GTAP maintains and develops a global database on the basis of which multiregion, multi-sector general equilibrium models are built. This survey of models is part of a larger project that sets out to investigate the usefulness of this type of modeling -and the associated database- for imminent policy issues in the European context. As a first step, we provide in this report a comparative assessment of alternative modeling approaches. This includes theoretical modeling foundations, datasets employed and institutional aspects, such as model maintenance and dissemination of results.

There is no ideal model that can serve all the above stated purposes. The choice of theoretical framework, the extent of regional and sectoral disaggregation and the choice of datasets and estimation methods determine the domain of applicability of the model. Model users often change their requirements from a given model, and develop their demands in response to new policy problems. Potential users of applied models should be aware of strengths and weaknesses of alternative approaches. This review primarily presents factual information about relevant models, and presents this information in a structured format so as to highlight common features, differences and areas of applicability of modelling approaches. In this way we hope to assist the users of models in making their own assessment.

The general 'filter' for inclusion of models in the current review has been that the model should:

- have relevance for current EU policy issues;
- be multi-region in nature;
- have relevance for agriculture and natural resource based activities;
- be multi-commodity;
- have a medium term time frame (around 5 years);
- be an equilibrium model (i.e. not models that project demand-supply gaps using primarily technical relations);
- be of recent vintage, and likely to be used in some form in the 1990s;

- be an applied model, i.e. uses a combination of theory and empirical data;
- be documented in a accessible way.

This has resulted in the following list of 18 models, which we distinguish according to the following two criteria: 1) models that cover world trade and those that focus on the European Union, 2) partial equilibrium models focussing on agriculture and economy-wide models:

World models

- Partial models	
AGLINK,	OECD
ESIM,	USDA, Stanford University USA, University Göttingen
FAO World model	FAO
FAPRI	Iowa State University
GAPsi	FAL Germany
MISS	INRA Rennes
SWOPSIM	USDA/ERS
WATSIM	University Bonn, European Commission, Federal Min-
	istry of Agriculture Germany
- Economy wide models	
G-cubed	McKibbin and Wilcoxen, U.S. EPA
GTAP	Purdue University, GTAP consortium
GREEN	OECD
INFORUM	University of Maryland
MEGABARE/GTEM	ABARE Australia
Michigan BDS	University of Michigan
RUNS	OECD
WTO house model	WTO secretariat

EU agricultural sector models

SPEL/EU	EUROSTAT, University Bonn
CAPMAT/ECAM	SOW/VU, CPB, LEI-DLO The Netherlands

The requirement that the model should be relatively recent and likely to be used in the 1990s has led us to exclude important precursors such as the IIASA Basic Linked System (Parikh et al., 1988), the GOL model developed by USDA-ERS (Roningen and Liu, 1983), OECD's MTM model (Huff and Moreddu, 1990) and the Tyers-Anderson model (Tyers and Anderson, 1992). We have also excluded single-commodity trade models and linear (or non-linear) programming models that attempt to describe input-output relationships for a certain production process in great detail, see Labys (1975).

Chapter 2 discusses general demarcation criteria for applied models of international trade in agriculture and related resource and environmental modelling. An attempt is made to identify design choices and scope of applicability. The resulting set of criteria is used for a description and classification of models in chapter 3, culminating in a summary presen-

tation in tabular form. Chapter 4 provides a comparative assessment of modelling approaches, by comparing models across the criteria introduced earlier.

A word on method: information on these models has been gathered by the team of contributors using published papers and journal articles, unpublished working documents, electronic www documents and personal contacts. An annex to this document provides a detailed description of each of the models reviewed in this report.

2. Evaluation criteria

This chapter introduces our set of evaluation criteria, which are subsequently used to describe and compare alternative modelling approaches. The set of criteria is based on the recognition that applied modelling forms a combination of theory and empirical data, both of which deserve due attention in policy relevant modelling.

2.1 Conceptual framework: Definition and scope

2.1.1 Market equilibrium models versus time series projection models

Although time series projection models have been excluded from the list, it is useful to distinguish this approach from equilibrium models. *Time series projection models* attempt to forecast the future on the basis of extrapolation of historical data. These models typically put more emphasis on the statistical behaviour of time series data than on the economic theoretical underpinnings of behavioural equations. A projection model may, for example, project commodity supply based on agronomic data on acreage and yield, without taking into account farmers' responses to changing market prices. For a discussion of this method and a large scale application, see Alexandratos (1995).

On the other hand, *market equilibrium models* contain the response (behaviour) of economic agents to changes in prices (costs), and prices adjust so as to clear markets. The objective of these models is the determination of equilibrium prices and quantities on (interrelated) sets of markets.¹ In a fully fledged global equilibrium model, there will typically be endogenous prices attached to world markets as well as domestic markets. This class of models is firmly established within mainstream economics where the behavioural response of suppliers and buyers is typically derived from optimising assumptions: given a description of the production technology, the supplier chooses a combination of inputs such that costs are minimised for a given level of output. Given a description of consumer preferences, the buyer determines his preferred consumptions bundle such that his utility is maximised for a given level of his budget. Standard assumptions include constant returns technology, homothetic preferences, and markets characterised by perfect competition. While these basic theoretical assumptions underlie equilibrium modelling, the optimisation process is usually not modelled explicitly. Rather, a reduced form approach is common, where demand and supply are specified as functions of income, prices and elasticities.

Depending on assumptions made about the flexibility of production factors, equilibrium models can be classified as short term, medium term or long term. Short term (in the

¹ This does not deny the existence and relevance of disequilibrium situations. Temporary shortages and excess supply situations (which may for example arise as a consequence of price- or quantity regulations) can very well be captured in equilibrium models, for example by allowing for stockpiling and -depletion. The key point is that these models catch market interactions in a coherent and theorectically sound way.

Marshallian sense) means that some production factors are fixed, and are not allowed to reallocate between alternative uses. The fixed factors will typically be capital, agricultural land, and perhaps agricultural labour. Medium term models allow for reallocation of all production factors as response to some exogenous events. Finally, long term models would also model endogenous capital formation.

Within the group of market equilibrium models, we can identify partial and economy-wide models.

2.1.2 Representation of national economies: partial versus economy-wide models

Partial models treat international markets for a selected set of traded goods, e.g. agricultural goods. They consider the agricultural system as a closed system without linkages with the rest of the economy. Effects of the rest of the domestic and world economy on the agricultural system may be included in a tops-down fashion by altering parameters and exogenous variables. Partial models are in principle able to provide much product detail. See also Meilke et al. (1996) who give a summary of global partial equilibrium models adapted to agricultural trade.

Partial models may be single- or multi-product. Multi-product models are able to capture supply and demand interrelationships among agricultural products. Most partial models include linear or log-linear behavioural equations, which allows the representation of supply and demand relationships (responses) prevailing in the markets under study. They also incorporate into their supply and demand relationships exogenous variables such as technical change, world population and household income.

Partial models of international trade in agriculture generally focus on trade in primary commodities. That is, they capture agricultural supply, demand and trade for unprocessed or first-stage processed agricultural products without taking into account trade in processed food products, despite the fact that the latter commodities represent an increasing share of world trade.

The main area of application of partial equilibrium models is detailed trade policy analysis to specific products, which represent only a small portion of the activities of the economy in question. This 'small sector' condition implies that policy-induced economywide changes are so small that they can safely be ignored.

On the other hand, economy-wide models provide a complete representation of national economies, next to a specification of trade relations between economies. A first step in moving from partial equilibrium to economy-wide modelling is to introduce supply and demand equations for an aggregate residual commodity. By imposing regularity restrictions on the supply and demand elasticities of the amended model, one obtains a model that includes demand and supply interactions between agricultural commodities and other commodities in a consistent way. A fuller economy-wide specification is obtained when the model is closed with respect to the generation of factor income and expenditures, which requires the explicit specification of factor markets for land, labour and capital. In other words, the essential general equilibrium features are captured by including factor movements between sectors, next to allowing for demand interactions. Economy-wide models capture implications of international trade for the economy as a whole, covering the circular flow of income and expenditure and taking care of interindustry relations. There are three broad classes of economy-wide models: macro-econometric models, input-output models and Applied General Equilibrium models (AGE). Macro-econometric models do not concern us here, since they will not zoom in on agriculture, but rather are concerned with macro-economic phenomena such as inflation and exchange rates. Input-output models provide a comprehensive description of interindustry linkages and a full accounting of primary incomes earned in production activities.

AGE models do also usually contain full Input-Output detail, but on top of that they contain equations that describe the behavioural response of producers, consumers, importers and exporters and possibly other agents in the economy.¹ AGE models are specifically concerned with resource allocation issues, that is, where the allocation of production factors over alternative uses is affected by certain policies or exogenous developments. International trade is typically an area where such induced effects are important consequences of policy choices. Needless to say, such induced effects are not visible in partial models. In the face of changing international prices, resources will move between alternative uses within the domestic economy, or even between economies if production factors are internationally mobile. Only if a complete description of the multi-sectoral nature of the economy is provided, can such developmental issues be analysed.

2.1.3 Regional scope

Multi-region models differ with respect to their regional coverage.² Global trade models attempt a closed accounting of the selected commodity trade flows for the entire world. If the model is economy-wide, the global model also includes a globally closed income accounting system. At the other end of the scale, a model might focus on trade between a selected set of trading partners, without attempting a globally closed accounting. Or it might even single out one group of countries, such as the EU-15, and describe its trade on world markets.

A globally closed database does not imply that all regions or countries distinguished are treated with the same amount of detail. An intermediate position is frequently adopted, wherein the model's database is closed with respect to the world, but only selected regions are treated with a great amount of detail, and confining the description of other regions to a smaller range of variables that are of crucial importance.

2.1.4 Linked individual country models or parametric differences between regions

There are two broad approaches with respect to the modelling of individual economies within the global economic system. One approach starts by giving a detailed representation of individual economies, taking into account much of the institutional and economic details

¹ Well known limitations of open Leontief input-output models include the absence of behavioural relationships, fixed prices, exogenous final demand, perfectly elastic factor supplies, and an inability to demonstrate welfare effects.

 $^{^2}$ In accordance with the international trade literature, 'regional' has a supra-national meaning in this report, and not an intra-national (provinces etc.) one. A 'country' corresponds to the notion of a nation state. Whenever this report refers to regions, we mean an aggregate of individual countries. Regional aggregations of countries therefore do not necessarily represent a coherent geographical space, for example, a 'Rest of the World' region.

of the individual countries, and subsequently linking individual country models through trade flows, capital flows and possibly factor mobility between countries.¹

The other route to global modelling starts by assuming the same modelling structure for all individual economies, and representing differences between economies in terms of data and parameters only. The approach yields a relatively transparent model structure, since there is only one economic model. This in turn greatly facilitates both the data handling aspects as well as the interpretation of results. In the linked country models approach, the individual country models may be based on different theoretical assumptions, which may make it difficult to disentangle model results into the effects of exogenous events on the one hand and differences in theories on the other hand. A disadvantage of the 'one model fits all' approach is clearly its limited capability to handle structural differences between economies.²

2.2 Specification and modelling issues

2.2.1 Dynamic versus comparative static specifications

Dynamic models allow the analysis of lagged transmissions and adjustment processes over time. Alternatively, the comparative static approach studies the differences between equilibria resulting from different assumptions on exogenous data or policy variables. The time path between equilibria is not the subject of analysis in comparative static models.

Dynamic models can be used to trace the accumulation of stock variables, whereas static models are unable to do this. In comparative static models, policy changes have no effect on the accumulation of stocks -e.g. capital stock- and the associated changes in production possibilities. For short-run agricultural analysis the implications of accumulating commodity stocks may be relevant as well.

Dynamic features can be incorporated in equilibrium models in several ways. The most frequently used approach is to specify a recursive sequence of temporary equilibria. That is, in each time period the model is solved for an equilibrium, given the exogenous conditions prevailing for that particular period. In between periods, stock variables are updated, either exogenously (e.g. population) or as a result of the equilibrium outcomes of the preceding period (e.g. investment demand leading to a changed capital stock in the next period). Recursive dynamics do not guarantee time-consistent behaviour. In contrast, in intertemporal equilibrium models agents display optimal behaviour over time as well as within periods. Intertemporal models are usually tantamount to using rational expectations assumptions.³ Such forward-looking behaviour leads to equilibrium time paths that move towards a long-run steady state (if it exists). A main reason to incorporate such intertempora

¹ The United Nations Project LINK (Klein and Su, 1979) is a well known example of this approach to global modelling.

² An intermediate approach has been followed by the GLOBUS model (Bremer, 1987), which included three prototypical model structures for respectively developed market economies, centrally planned economies and developing economies.

³ Furthermore, by modelling the intertemporal equilibrium behaviour of economic agents, as well as equilibria within periods, such models are able to counteract the Lucas (1976) critique on economic models.

ral features into general equilibrium models is the desire to model savings rates endogenously, and hence to allow the model to generate alternative (endogenous) growth rates. In such models, a policy change can have a lasting effect on the economy's growth rate through changes in the accumulation of capital stocks. A feature which is impossible with a fixed savings rate assumption.¹

Comparative static models are sometimes used to generate projections of policy impacts at some future point in time. Such projections are not to be confused with econometric forecasts, but are achieved by constructing an artificial future dataset that is consistent with the model's assumptions -a so called baseline-, and subsequently conducting a policy experiment on the basis of this projected dataset. The artificial future dataset is constructed by making assumptions on the growth of exogenous variables and parameters and subsequently letting the model solve for an equilibrium that is consistent with these assumptions. Typical projections with AGE models rely on exogenous forecasts of GDP, factor endowments and factor productivity.

2.2.2 Modelling of international trade

Assumptions concerning the nature of traded goods: homogeneous versus heterogeneous goods

In classical trade models, goods are assumed to be similar in the eyes of buyers. In such a market, the goods of one producer perfectly substitute for those of another and are called *homogeneous*. If the number of suppliers is sufficiently large, the market will approach the perfect competitive outcome and prices across suppliers will be equalised. Homogeneity and competitiveness also imply that each actor in the market is either a buyer or a seller of the good, but never both, since each actor is either able to produce the good with non-negative profits at the prevailing market price or not. This implies that a country can only be an exporter or an importer of a certain good, and models that include this assumption describe only inter-industry trade.

Homogeneity therefore simplifies the task of trade modelling considerably in two respects. First, the model does not need to track who trades with whom. Since prices are equalised and there is no other distinguishing characteristic of the goods, it makes no difference from which supplier a particular purchase is made. Second, the model needs only to track a single trade flow for each actor, either imports or exports.

However, these simplifications in modelling have severe limitations for applied trade research, as these models explain only inter-industry trade and not intra-industry trade. The latter turns out to be an important phenomenon in trade, since even at high levels of disaggregation, countries report both exports and imports in any sector. If intra-industry trade is netted out, one ignores an important phenomenon of the real world and underplays the importance of trade to each region. Furthermore, these trade models can be hypersensitive to changes in transportation costs and trade policy wedges, and run the risk of extreme specialisation when sector-specific factors of production are not present in the model, see also Francois and Reinert (1997).

¹ If knowledge is included as a production factor that can be accumulated, growth rates become endogenous, even with a fixed savings rate (see the endogenous growth literature, for example, Grossman and Helpman (1991).

One way to introduce intra-industry trade in a model is to assume that goods are distinguished by other factors than price alone, and hence are viewed as imperfect substitutes from the perspective of the buyer. When product differentiation is possible, goods are called *heterogeneous* and the task of trade modelling is considerably more complex. First, there is no need for prices to equalise across suppliers. If goods are heterogeneous, then different buyers are willing to pay different prices to obtain the same quantity of the good. Hence, independent price movements among suppliers are possible. Second, each actor in the market may be both a buyer and a seller at the same time if goods are differentiated. This implies that the trade model has to trace twice as many activities than under the homogeneity assumption.

There are two ways to incorporate product differentiation into applied trade models. On the one hand, product differentiation can be introduced exogenously by assuming that products are differentiated by country of origin. This method introduced by Armington (1969) simply assumes that imports and domestic goods are imperfect substitutes in demand. The often used Armington formulation in applied trade models invokes the assumption that products are differentiated by country of origin. In combination with a preference function that is separable in domestic products and combined foreign products, this yields empirically manageable import functions. Most often a CES functional form for preferences assumed. This assumption has received much criticism because the source of product differentiation is exogenously introduced on the demand side. Another disadvantage of this assumption is that terms of trade effects turn out to be quite large empirically. The Armington assumption implies that each importer, however small the region may be, has some degree of market power, and is therefore able to influence world prices.¹

An alternative approach is to introduce product differentiation endogenously at the firm level on the supply side. This approach assumes that consumers prefer differentiated goods either to obtain a better match between their preferred variety and those extant in the market place (Lancaster, 1980) or to obtain increased variety in consumption (Spence 1976, Dixit and Stiglitz 1977). Krugman (1979, 1980) and Ethier (1979, 1982) introduced the concept of monopolistic competition into international trade theory. In this approach fixed costs such as R&D or marketing costs are necessary to produce differentiated goods. The inclusion of fixed costs has some implications for trade policies. Next to the traditional gains from trade we get 'noncomparative advantage' gains from trade in the presence of scale economies and imperfect competition. First, shocks that increase output at firm level result in positive scale effects. Second, there are gains from trade in the form of increased variety (thereby incurring fixed costs and reducing the sales of existing firms). Thirdly, scale economies imply that the market can only support a limited number of firms, which are consequently imperfectly competitive. Trade creates a larger market that can support a larger number of firms and hence a greater level of competition. The reduction in market

¹ The terms of trade effects following an import enhancing trade liberalization will be larger, the larger the elasticity of substitution between domestic and combined foreign goods. The import demand equation becomes flatter, which in turn implies larger effects on the volume of imports of the liberalizing country, which translates into larger upward price effects on world markets. If goods are also distinguished by country of origin, a higher elasticity of substitution between imports from different regions will dampen terms of trade effects, because in this case the burden of adjustment is spread out over more exporting regions (Brown, 1987). One consequence of the Armington assumption is that trade diversion effects from regional trade integration are dampened.

power is called the procompetitive effect. The advantage of this approach is that it locates product differentiation on the supply side and it minimises terms of trade effects. A disadvantage is that the absence of firm level data makes econometric estimation of elasticities problematic (Winters, 1990).

Characterisation of the global market: Bilateral relations versus pooled markets

The global market can be thought of as a network of buyers and sellers. One way to represent this network is a bilateral specification, that is the complete set of interactions between each buyer and seller for each commodity. Alternatively, one may view the market as a 'black box' or pool in which we see only what each actor brings to the market (supply) and what that actor takes from the market (demand).¹ The pooled approach aggregates supply and demand for a certain good into one figure, and the bookkeeping and computational requirements are reduced to: 1) a mechanism to equilibrate demand and supply on a marketwide basis, 2) a mechanism to allocate trade shares to each supplier, and 3) a mechanism to allocate trade shares to each buyer. The pooled approach provides no information regarding who trades with whom, only the connection between the individual actor and the aggregate market pool is visible. For obvious reasons, the pooled market approach is also known as 'non-spatial' modelling.

Clearly, the bilateral specification provides a richer and more detailed picture of the market, but requires much more data, parameters, bookkeeping and computational effort. Whether the additional effort is justified by additional relevant information is dependent on the kind of problems a model has to tackle. Many policy disputes and policy instruments are bilateral in nature, and international economic relations should be modelled at the same level.

2.2.3 Representation of policies

Tariffs and quantitative restrictions such as quotas and voluntary export restraints (VERs) are two types of trade policy instruments examined in applied trade models. Tariffs can be introduced in a straightforward manner and are most of the time expressed as the percentage by which the domestic price exceeds the world price; i.e. an ad valorem tariff rate. Quotas are more difficult to implement. First, one has to investigate whether a quota is binding or not. Second, it is difficult to assess what would be the level of imports without the quota. Third, one has to model who appropriates the rents that accrue from the quota: domestic importers or foreign exporters. With regard to the second element researchers focus on the price distortions caused by the quota. There are several methods to quantify quotas and other non-tariff measures (Laird, 1997), which basically amount to two alternative ways to implement them in applied models: the first is a tariff equivalent representation, while the second method specifies quantity restrictions directly.

¹ In a network with *n* actors (nodes), there are a maximum of n(n-1) bilateral links. In the pooled market specification, a maximum of only 2n flows needs to be tracked.

Tariff Equivalents or Price Wedges

The tariff equivalent or price wedge of a non-tariff measure is the difference between the free world price of a good and the price on the domestic market. These measures can relatively easily be observed when goods are homogenous and free world prices can be obtained from transaction values. For manufactured goods, the former is a problem and for many (agricultural) commodities the latter is a problem. A popular method to arrive at estimates of tariff equivalents is use of Producer Support Estimates (PSE).¹ These include the transfer from price distortions (i.e. price wedges), and the transfers from government to producers. The transfer from price distortions or market price support is again the transfer from consumers to producers in the form of price gaps between domestic and world prices. The transfer from government expenditures includes both direct government payments and indirect transfers (e.g. input subsidies, tax concessions). The Consumer Subsidy Equivalent (CSE) measures the implicit tax or subsidy imposed on consumers. See Cahill and Legg (1990) for a comprehensive description. Both PSEs and CSEs are regularly published by OECD and USDA. A disadvantage of these subsidy equivalents is that they vary considerably from year to year, not only through changes in policies but especially through changes in world prices, exchange rates and the value of domestic production.

The representation of quantity restrictions as price wedges is not always an adequate approach. If a quota is not binding in the benchmark, its tariff equivalent will be equal to zero. However, the quota may become binding as the result of a policy change. This effect will not be captured when the quota is approximated by a tariff equivalent because the tariff equivalent remains zero. Additional complications arise in the case of multi-tier protective schemes like Tariff-Rate Quotas (TRQs). These schemes specify different tariff rates for different import quota levels, and it has to be determined whether each quota is really binding and/or the tariff is prohibitive. Also, the implementation of a quota implies the generation of quota rents, which accrues as income to the holder of the right to import or export under the quota. The endogenous determination of quota rents and their distribution over holders of quota rights can only properly be captured by an explicit representation of these policy measures. See for example de Melo and Tarr (1992) for a discussion of trade quota instruments. In the area of transboundary environmental policy (Kyoto protocol), tradable emission permits and tradable production quotas have emerged and should be captured in an appropriate way in policy models.

Other policy instruments

Next to border protection instruments strictu sensu, other relevant policies frequently need to be represented in models. For example, in relation to the EU's GATT/WTO commitments ceilings on the volume of subsidised exports as well as bounds on the value of export subsidies may be relevant. In relation to the CAP, land set-aside and headage premiums are clearly examples of agricultural polices that do not directly affect border protection, but nevertheless do have an impact on trade flows.

¹ Formerly known as 'Producer Subsidy Equivalents'.

2.2.4 Theoretical consistency

Judging the theoretical consistency of models has many facets, and the discussion here is far from exhaustive.¹ At its most basic level, a model's numerical results should be qualitatively in accordance with the theoretical foundations on which the model has been erected. At the level of numerical implementation of the model, theoretical consistency places requirements on the parameters used in functional forms, especially parameters used in demand systems and supply equations. The parameters used in the demand system and the supply equations should satisfy essential regularity conditions.²

The economic structure of general equilibrium models forces the model builder to exercises a strict discipline with regard to the restrictions on parameters. In particular, a necessary condition for the existence and uniqueness of an equilibrium solution is that all excess demand functions are homogeneous of degree zero in prices. This condition is met when the regularity conditions on demand and supply equations are satisfied. In a properly designed general equilibrium model, equality between incomes and expenditures will always be satisfied for the economy as a whole. This feature does not always hold for partial equilibrium models because they lack the restrictions imposed by an economy-wide national accounting framework.

2.2.5 Model closures

'Closing' the model is the process of classifying the variables as either endogenous, i.e. values are determined (solved for) by the model, or exogenous, i.e. predetermined outside the model. Model experiments are conducted by introducing alternative assumptions on exogenous variables.

Alternative model closures can also be employed to construct different models from the same basic modelling framework. Multi-region models with a global coverage can sometimes be transformed into single region models by singling out one specific region and declaring 'the rest of world' as exogenous. Similarly, economy-wide models can be transformed into partial models of selected sectors, by specifying a closure which holds 'the rest of the economy' as exogenous. The latter possibility is especially useful if one wants to compare partial equilibrium outcomes against general equilibrium outcomes, thereby checking for the presence of significant economy-wide induced effects following a certain policy change targeted at the agricultural sector.

¹ It is not a straightforward task to develop a sound set of criteria to judge the theoretical consistency of models. This theme is also closely related to the issue of model validation, which we have not taken up in this report. There exists a sizable, and rather inconclusive, literature on model validation, see e.g. Van Tongeren (1995) for an overview. In addition the evaluation of theoretical and numerical validity would require much more information on the individual models than is available.

² The four essential properties of demand functions are: 1) adding up: at the given level of prices and income, demand equals total expenditure, 2) homogeneity: compensated (Hicksian) demand is homogeneous of degree zero in prices and uncompensated (Marshallian) demand is homogeneous of degree zero in income and prices together, 3) symmetry: cross-price effects are symmetric, 4) negativity: the matrix of own- and cross price derivatives of compensated demand functions is negative semi-definite. In particular this implies that a) compensated demand function slope downward, and b) own price effects dominate cross-price effects. Similar observations hold for equation systems used to model the supply side.

There are certain general closure rules that have to be fulfilled by both partial and general equilibrium models. Both in a partial and a general equilibrium setting, a valid closure has to assure that the number of endogenous variables is equal to the number of equations. In addition to this necessary technical condition, the closure must specify a valid economic environment. For example, if the equilibrium model demands that all buyers exhaust their budget, the closure must be such that all buyers are on their budget constraint, and that there are no 'leakages' with respect to incomes and expenditures.

Since partial models describe only a subsystem of the economy, they do not have to be concerned about the so-called 'macroeconomic closure', i.e. the treatment of the link between investment and savings. In models without intertemporal decision making with respect to investments, the identity between macroeconomic investment and savings is guaranteed by fixing either one at some pre-specified level, and requiring the other variable to accommodate. For example, a so-called 'Keynesian closure' specifies an exogenous investment level and lets savings adjust endogenously. On the other hand, in 'neo-classical closures', investment is adjusting to savings levels. Since the source of savings may be both domestic and foreign, the closure rule also has implications for the treatment of the current account balance. If the trade balance is fixed exogenously, one essentially also fixes the difference between domestic savings and domestic investments. In addition, in multi-region economy-wide models, the approach of fixing trade balances at the regional level is a simplifying way to avoid modelling the allocation of global savings to individual regions. A disadvantage of this approach is the inability to model endogenous changes in the volume of regional trade balances. It is obvious that the specification of the macroeconomic closure can have profound impacts on model outcomes.

2.3 Data and parameters

Data

Data requirements are very demanding for multi-regional models of international trade. The amount of data is determined by the level of disaggregation (countries/regions, activities/commodities) and the theoretical structure (homogeneous/heterogeneous goods, bilateral/pooled markets).

Not only is the amount of data usually quite large, but the data need to be mutually consistent. Especially if trade is related to domestic inter-industry structures, substantial adjustments to the published data are necessary, because the procedures for collecting and classifying trade statistics differ from those employed for domestic input-output tables. While trade data with broad coverage are now widely available on a comparable basis, this is certainly not true for input-output data and for trade protection information¹. A Social Accounting Matrix (SAM) usually underlies economy-wide models. Although the SAM is sometimes only implicitly present in the database of AGE models, it forms the basis for a coherent and consistent description of national economies. See Laird (1997) for a descrip-

¹ A recent joint initiative by USDA/ERS, Agriculture and Agrifood Canada, the European Commission, UNCTAD and FAO develops a new Agricultural Market Access Database (AMAD). Upon completion this will contain tariff-line level data on market access commitment- and implementation of about 50 WTO members. AMAD is expected to become publicly available in 2000. See Wainio and Gibson 1999.

tion of widely used data sources for international trade analysis. The Annex to this report lists the datasources of individual models in some detail.

It is obvious that regular updating of datasets will improve the timeliness and relevance of results. The choice of base year for a modelling dataset has additional consequences, both for comparative static and dynamic models. The economic conditions that prevail at the point of reference determine the conclusions that can be drawn from alternative simulations.

Parameters

The parameters used in behavioural equations determine the response to policy changes, and are therefore a very crucial element in each modelling exercise. Key parameters usually are: price- and income elasticities and budget shares in demand systems; substitution elasticities and input cost shares in supply systems; Armington (substitution) elasticities in import demand; if economies of scale are included, parameters that capture the degree of exhaustion of returns to scale (cost-disadvantage ratio). As already mentioned above in section 2.2.4 the values of these parameters must be determined in consistency with data and theory.

Two approaches to estimating model parameters can be distinguished: econometric estimation and calibration. Econometric estimation of parameters should ideally be done by simultaneous equation estimation methods that take into account the overall model structure. However given the size of applied trade models, identification problems, lack of data etc., this is generally not feasible, and one has to resort to single-equation estimation methods, using either time-series or cross-section data. See Jorgenson (1984) for econometric estimation of AGE models.

Most applied trade modellers resort to calibration methods -also called the 'synthetic approach'- to generate a set of parameters that is consistent with both the benchmark data and the model's theory. The calibration approach takes initial estimates of elasticities etc. from outside sources and adjusts certain other parameters in the given functional forms to the initial equilibrium dataset. Calibration therefore exploits theoretical restrictions, equilibrium assumptions and assumptions on functional forms to arrive at a point estimate.

3. Model overview

3.1 Partial models

In this section we describe the features of the selected partial equilibrium models. We first describe the design choices of a prototypical standard multi-region partial equilibrium model. This standard model will serve as a point of reference for the individual partial equilibrium models. Secondly, we describe the individual models in alphabetical order and identify their non-standard features.

A standard partial equilibrium model:

A standard partial equilibrium model has the following characteristics:

- regional scope: Global coverage;
- regional unit of analysis: Parametric differences between countries;
- dynamics: comparative static;
- modelling of trade: Homogeneous goods;
- characterisation of global markets: Pooled markets;
- representation of policies: Ad valorem price wedges (trade: tariff equivalents);
- theoretical consistency: Not implied by theoretical structure;
- model closures: Factor markets and non-agricultural sectors are exogenous.

The standard multi-region applied partial equilibrium model framework consists of an economic structure that includes for each region constant elasticity supply and demand equations which determine domestic prices. The standard model is multiproduct by nature to capture supply and demand interrelationships among agricultural products. Therefore, supply and demand equations are functions of own and cross product prices. The interactions between the agricultural product groups are taken into account while influences of factor markets and the rest of the economy are treated as exogenous. Supply and demand relationships incorporate therefore exogenous variables such as population, household income and technical change. Each sector produces one homogeneous good that is perfectly substitutable both domestically and internationally. A region's international trade is viewed as the difference between the regions' supply and demand and brought to the world market (pooled approach, no bilateral trade). For each product, world market clearing price balances global trade. World prices for each product feed back into domestic prices through a set of equations which specify wedges between world price and domestic price. All policies are inserted as ad valorem price wedges. Finally, the standard model is comparative static in nature. In this paper the standard SWOPSIM model is an example of a typical standard partial equilibrium model.

The standard partial equilibrium model can be modified to capture the following elements:

- possibility that policy instruments can be represented explicitly and in a detailed fashion;
- inclusion of autonomous shifters into behavioural (supply and demand) relationships to generate projections.

Standard or modified standard partial equilibrium models included in this paper are ESIM, MISS, SWOPSIM and WATSIM. Another type of partial equilibrium models differs with respect to dynamics in the sense that they are recursive dynamic in nature. Examples of this type of models included in this paper are AGLINK, FAO World Model, FAPRI and GAPsi.

3.1.1 AGLINK

The AGLINK model is a recursive dynamic supply and demand model of world agriculture, which uses (Nerlovian) partial adjustment relationships. AGLINK is developed by OECD in co-operation with its Member countries, and is presently used by government services of OECD member countries. The model is used for analysis of the impacts of agricultural policies and for forecasting the medium term development in supply, demand and prices for the principal agricultural commodities produced, consumed and traded in member countries (e.g. used in medium term outlook of OECD). In contrast to the standard model land allocation is captured by endogenising planted area and yield. Furthermore, dynamics are introduced by including lags in both endogenous and exogenous variables. The AGLINK model is built around complete modules for 10 main OECD Member countries or regions (including EU, Hungary and Poland), and 3 non-OECD Member countries/regions, while the countries left over are treated as exogenous to the model. This implies that these 'main' countries/regions are represented in most of the commodity markets modelled, while a few other countries are included if they are 'important' in a certain commodity market. The markets modelled are 19 agricultural commodity markets and mainly the principal ones for the OECD countries. In terms of theoretical consistency and perhaps except for its feed demand equations, price elasticities in AGLINK are not necessarily theoretically consistent.

3.1.2 ESIM

The ESIM¹ model was initially developed in a co-operation between the USDA/ERS and teams of Prof. T. Josling of Stanford University and of Prof. S. Tangermann of Göttingen University. This SWOPSIM-style model is designed to evaluate accession of Central and Eastern European countries to the EU, see Tangerman and Josling (1994). Besides EU enlargement ESIM is used to analyse the effects of CAP (e.g. Agenda 2000) and WTO policies on agricultural markets and budgetary expenditure. It covers 27 commodities representing the major part of agricultural production value and it covers the world with special emphasis on European countries (EU-15, Bulgaria, Czech Republic, Estonia, Hungary, Poland, Slovakia and Slovenia, ROW). In contrast to the standard model land

¹ European Simulation Model.

allocation among different crops is addressed and CAP instruments such as compensation payments, land set aside, quota restrictions, and export refunds are treated explicitly. Projections can be generated in an ad hoc manner by including income, population and technology shifters.

3.1.3 FAO world model

The FAO world model is developed by the Commodities and Trade Division of the Food Agriculture Organisation (FAO). The model is designed to obtain medium- and/or longterm projections (e.g. used in outlook of FAO on agricultural commodity markets) and to simulate impacts of policy changes on prices, production, consumption and trade of the most important agricultural products (FAO, 1993, 1994, 1998). The model is quite active and is routinely used by FAO's Commodities and Trade Division. The model covers 13 agricultural commodities which belong to the grain/livestock/fats and oil complex, and 147 individual countries (115 developing and 32 developed countries). The European Community relates to the 15 member States including the new German Länder. In contrast to the standard model, area planted in cereals and oilseeds is an endogenous variable, which implies that the land allocation problem is to some extent captured in the World Food Model. Dynamics are introduced by adoption of a (Nerlovian) partial adjustment model specification for the supply equation and for some regions (e.g. EU15) which use lagged prices to capture the dynamic decision process of crop and livestock production. The baseline is generated by using time trends and constant growth rates for exogenous variables such as technical change, population and gross domestic product.

3.1.4 FAPRI

FAPRI models are developed at the Food and Agricultural Policy Research Institute (FAPRI) at Iowa State University (Devadoss et al., 1989). It is basically an integrated set of models used to 'provide quantitative evaluations of national and international agricultural policies and other exogenous factors that affect US and world agriculture' (Devadoss et al., 1993, p130). FAPRI has been used for several years in conducting US policy evaluations. The set of models involves domestic livestock models, domestic crop models, government cost and farm income models for the US linked to some world trade models. Currently, the system covers 24 agricultural commodities in 29 countries and/or regions. FAPRI belongs to econometric, dynamic and partial equilibrium based models. It is an estimated and synthetic system of structural econometric models where each component presents specific theory structure and can be solved individually. While demand is always treated as endogenous, supply can either be endogenous or exogenous. In most cases, it is exogenously modelled in countries with little domestic production. Dynamics have been introduced by lagged variables for supply and demand functions in a naive adjustment model for most of them. A projection function is included to generate projections of the exogenous variables for the next ten years.

3.1.5 GAPsi

GAPsi¹ is developed and used at the Institute of Market Analysis and Agricultural Trade Policy (MA) of the Federal Agricultural Research Centre (Frenz and Manegold, 1988, Kleinhanss et al., 1998, Salamon, 1998). This model is designed to evaluate EU agricultural policies (e.g. CAP reform, Agenda 2000). It describes supply and demand interactions between 13 agricultural commodities for 17 countries/regions (14 EU member countries). In contrast to the standard model GAPsi is recursive dynamic covering a period of 10-15 years. The gap between the base year (1995) and the target year (2005) is made up by annual model runs with the calculation for year t based upon model results for year t-1 and exogenous variables for year t. This method is used for providing both, a baseline projection (including a few years available for calibration) and the calculation of alternative policy scenarios. A second, deviation from the standard model is that quantity instruments (quota, budget restriction) are modelled explicitly.

3.1.6 MISS

MISS², a Simplified World Trade Model, is developed by the Institut National de Recherche Agronomique (INRA) in France (Mahé and Moreddu, 1987). It's main aim is to analyse the effects of agricultural policy changes in EU and US (e.g. Guyomard et al., 1988, Mahé and Tavéra, 1989). MISS is a standard partial equilibrium model that covers 10 agricultural commodities and four regions (EU, US, Centrally Planned Economies, and Rest of World). MISS is perhaps the only (or one the few) partial equilibrium models which satisfies all the theoretical regularity conditions pertaining to supply equations. On the demand side, this is not true. Another important aspect of the MISS model is that policy instruments are explicitly represented. A third aspect which is deemed important in the MISS model concerns the fact that it includes exogenous shifters in it's supply and demand relationships to capture the effects of for, example, technical change and population growth. MISS was perhaps the first synthetic partial equilibrium model where systematic simulation exercises and sensitivity analyses were conducted to test the impacts of these exogenous shifts. Therefore, beside its use in many policy-oriented analyses (trade policy games), MISS has also been used for projection simulations over a three year time horizon periods from 1988 to 2002 (Guyomard et al., 1991; Guyomard et Mahé, 1994). Finally, it has to be mentioned that MISS is currently not in use anymore.

3.1.7 SWOPSIM

The SWOPSIM³ world trade modelling framework was originally developed by Roningen (1986) at the Economic Research Service, United States Department of Agriculture (USDA) to study the impact from the GATT Uruguay Round. 'SWOPSIM models are designed to simulate the effects of changes in producer and consumer support policies on production, consumption, and trade' (Roningen 1986 p.iii). SWOPSIM is a standard multi-

¹ The acronym stands for Gemeinsame AgrarPolitik - Simulation (Common Agricultural Policy simulation).

² MISS is the acronym in French for 'Modèle International Simplifié de Simulation'.

³ Static World Policy Simulation Model.

commodity, multi-region partial equilibrium model, which describes the supply and demand interactions between 22 agricultural commodities for 36 regions (Sullivan, Wainio and Roningen 1989). Western Europe is largely covered by EC aggregation and Eastern Europe treated as a single block. Spain and Portugal may be treated separately but other smaller European countries were not specifically listed.

Generally, the framework has been employed to analyse the effect of policy changes on agricultural activity and trade. Applications of the SWOPSIM modelling framework have included: WTO trade liberalisation (e.g. the Uruguay round); effects on agriculture from EU enlargement and potential Eastern European EU membership; agricultural policy reform (e.g. CAP); free trade hypotheses versus supply control; trade prospects and the opening up of Asian markets; environmental change and global warming; crop disease; trade liberalisation impacts on production factor demand and the gains from trade (and comparative advantage); effects of protection and exchange rate policies on agricultural trade; and welfare analysis.

The SWOPSIM model has been made available to numerous academics who worked on the field of agricultural trade liberalisation (for a recent application on the Blair House agreement, see Ames et al., 1996). SWOPSIM data and parameters are frequently referenced as sources for other models. The standard SWOPSIM model has been extended to capture trade flows using an Armington-type specification (Dixit and Roningen, 1986), to include the permanent impact on derived demand for factors following policy shifts (Liapsis 1990) and to include medium and long term projections (e.g. Roningen et al., 1990).

3.1.8 WATSIM

The WATSIM¹ model is developed by the University of Bonn (Heinrichsmeyer et al., 1998, von Lampe, 1998). The model of world agriculture focuses on three target periods with different aims: Short-term shock analysis (in work, not yet available), medium-term projections and policy analysis, and long-term projections and analysis of various shift factors (e.g. income in Asia, productivity in transition countries). This SWOPSIM-type model covers 29 agricultural commodities and 15 regions (EU, rest of Western Europe, and Central and Eastern Europe). Most price and income elasticities are taken from the data base of the SWOPSIM modeling framework. In contrast to the standard partial equilibrium model policies such as compensation payments per ha or per head, set-aside obligations, productions quotas and export restrictions are treated explicitly.

3.1.9 Conclusion

In general, all the selected models are pretty close to the standard model. They differ from the standard model because they are recursive dynamic (AGLINK, FAO World Model, FAPRI, GAPsi), endogenise land allocation (AGLINK, FAO World Model, WATSIM), model explicitly quantitative policies (AGLINK, ESIM, GAPsi, MISS and WATSIM) or include bilateral trade by using the Armington assumption (SWOPSIM, one application).

¹ World Agricultural Trade Simulation Model.

Besides the design choices the models differ in their product and country coverage, which leads to a rather large differences in focus.

Idule J. I Model St	model summary of partial equilibrium models of it and in agricultural products	ouers of mane in agricult	urui producis	
	Description	modelling of trade	Goals	key applications
Standard model	static partial equilibrium model, global coverage, no factor markets included	Homogeneous good + pooled markets		
AGLINK OECD	Recursive dynamic model Includes land allocation	Standard	To assist the OECD Secretariat in its annual me- dium term outlook. Conduct quantitative analysis agricultural policies on principal agricultural mar- kets	Annual OECD medium term agricultural out- look.
ESIM USDA, Stanford, Goettingen	Standard model, land market included, special emphasis to Eastern Europe	Standard	Enlargement studies	EU enlargement
FAO World Model FAO	Recursive dynamic model Includes land allocation	Standard	Medium- and/or long- term projection model. Simulating impacts of policy changes.	To contribute to the outlook of FAO on agri- cultural commodity markets, Uruguay Round
FAPRI Iowa State University	Econometric recursive dynamic model, with a special emphasis on the US	Standard	Compound modelling system for: Policy analysis; Short-, medium and long term projections (1-10 years), annual baseline	Quantitative evaluations of (inter) national ag- ricultural policies that affect US and world agriculture, Farm legislation reform through Uruguay Round negotiations
GAPsi FAL`	Recursive dynamic model	Standard	EU agricultural policy analysis	CAP reform, Agenda 2000; planned: EU en- largement, WTO
MISS INRA	Standard model, four regions	Standard	Analysis of agricultural policy changes in EU and US	Trade liberalisation in GATT framework and CAP reform in game theoretic setting, focus- sing on EU-US relations
SWOPSIM USDA/ERS	Standard model	Standard: base model Armington: one appli- cation	Simulation of effects of changes in agricultural support policies on production, consumption and trade	multilateral trade liberalisation (GATT Uru- guay round), agricultural policy reforms in US and EU
WATSIM University of Bonn	Standard model	Standard	Three target periods with different aims: Short- term shock analysis (not yet available), Medium- term projections and policy analysis, Long-term projections and analysis of various shift factors.	 Baseline for years 2005, 2010, 2015 and 2020 2) Analysis of different shift factors in- cluding income in Asia, productivity in Transition Countries, 3) Trade liberalisation

Table 3.1 Model summary of partial equilibrium models of trade in agricultural products

Table 3.1 Continued	ned							
	Policy Representation	tion	Number of regions (r) or countries (c)	global cov- erage? (y/n)	Number of sectors/ products	number of farm (f) or processed (p) products	Software	data availabil- ity
Standard model	Price wedges	SS						
AGLINK	Quantity tions n explicitly	restric- modelled	11 (c) + 2 (r) EU: 1 (r)	Y	19	6 (f) + 13 (p)	SIMPC	y
ESIM	Quantity tions n explicitly	restric- modelled	7 (c) + 2 (r) EU: 1(r)	Y	27	17 (f) + 10 (p)	Spreadsheet (Supercalc 5.5 or Excel)	оц
FAO World Model	Standard		147(c) + 1 (r) EU: 15 (c)	Y	13	6 (f) + 7 (p)	FORTRAN	u
FAPRI	Standard		29 (c+r) EU: 1	Y	24	24 (f)	SAS-AREMOS, LOTUS 123	u
GAPsi	Quantity tions n explicitly	restric- modelled	13 (c) + 4 (r) EU: 13 (c)+ 1 (r)	Y	13	13 (f)	GAMS, Excel (output)	c
MISS	Quantity tions n explicitly	restric- modelled	1 (c) + 3 (r) EU: 1(r)	N	10 (final) + 10 (inputs)	10 (f) + 4 (non agri- inputs)	Home made software (Language C)	y
SWOPSIM	Standard		36 (r) EU: 2 (c) + 2 (r)	Y	22	22 (f)	Spreadsheet (Supercale 3 or 5)	yes
WATSIM	Quantity tions n explicitly	restric- modelled	4 (c) + 10 (r) EU: 1(r)	Y	29	14 (f) + 15 (p)	FORTRAN, GAMS	y

Table 3.1

30

3.2 Economy-wide models

As we did in section 3.1 for partial equilibrium models, we first define a prototypical model as a point of reference against which the features of individual economy-wide models can be compared. We choose as our standard a multi-region AGE model, which has the following characteristics in terms of the criteria introduced in section 2:

- regional scope: global coverage;
- regional unit of analysis: parametric differences between countries/regions;
- dynamics: comparative static;
- modelling of trade: Armington;
- characterisation of global markets: bilateral trade relations;
- representation of policies: ad valorem price wedges (trade: tariff equivalents);
- theoretical consistency: implied by model structure;
- model closure: Endogenous volumes and prices on all markets, including factor markets. Exogenous: factor endowments, policy instruments. Macro closure: 'neoclassical', savings driven investment at global level. (endogenous trade balance).

The main features of the standard multi-region AGE model correspond closely to those attributed by Baldwin and Venables (1995) to 'first generation' models: comparative static, constant returns to scale in production, perfect competition on all markets, Armington assumptions for imports. In addition, our standard model has a database with global coverage, i.e. in principle global economic activity is covered. 'Standard models' included in this report are RUNS, GREEN, GTAP and MEGABARE. Within each regional economy of a standard multi-region AGE model, inter-industry linkages are captured by an input-output structure. Demand for factors of production is derived from cost minimisation, given a sectoral production function (nested CES) that allows for substitution between inputs. Typically, substitution is allowed only between primary factors -land, labour, capital- while intermediate inputs are used in fixed proportion with output (Leontief technology). Each sector produces one homogeneous good that is perfectly substitutable domestically but substitutes imperfectly with foreign goods (Armington assumption). Next to the binary distinction 'domestic versus foreign', the multi-region nature of the model enables a distinction of traded commodities according their region of origin. That is, bilateral trade flows are captured.¹ Factor markets for land, labour and capital are included, endowments for these primary factors are given and the factors are fully employed. Labour and capital are assumed to be fully mobile across domestic sectors, while land is imperfectly mobile and tied to agricultural production. Consumer demand is derived from utility maximisation under a budget constraint, and consumers allocate their expenditures over domestic and foreign goods. A government actor levies various types of indirect taxes and subsidies -including import tariffs en export subsidies. All policy instruments are specified as ad valorem price wedges. All factor markets and commodity markets are assumed to

¹ One strand of AGE models uses, in addition to Armington style imports, a CET transformation function that models the split of domestically produced goods into exported commodities and those destined for the domestic market. An advantage of this method is that it dampens the size of terms of trade effects that emerge in Armington models, see de Melo and Robinson (1989).

clear, which yields equilibrium solutions to factor- and commodity prices as well as the corresponding equilibrium quantities.

All regional economies are linked through bilateral commodity trade and through interregional investment flows. As discussed in section 2.2.5, there are different approaches to deal with this latter aspect. If one is willing to assume a constant current account balance in all regions, then the difference between regional savings and investments is essentially predetermined, and as a consequence the aggregate level of the savings - investment balance is also predetermined. If one wants to allow for endogenous determination of the current account balance, the standard model must include a mechanism to redistribute aggregate savings over regions.

We also classify under the heading 'standard model' those which include a recursive sequence of temporary equilibria¹. Recursive models do generate time paths for endogenous variables, but there is in fact no behavioural linkage between periods. As a result, the equilibrium solution in each period can essentially be calculated without reference to earlier or later periods.

'Second generation' models add increasing returns and imperfect competition in some of the sectors, allowing for estimates of scale and variety effects, as discussed in section 2.2.6. These models are comparative static in nature. Examples included here are the Michigan BDS and WTO models. In contrast, 'third generation' models include time consistent forward looking behaviour and endogenous savings rates, hence allowing for the modelling of short run dynamics. The G-cubed model is an example of this brand. Below, we proceed to present an overview of economy-wide models in alphabetical order.

3.2.1 G-cubed

Initiated by Dr. McKibbin W., J. and J. Wilcoxen, the model was constructed with funding from the Brookings Institution, the US National Science Foundation and US Environmental Protection Agency. G-cubed² aims at contributing to the ongoing policy debate on environmental policy and international trade, with a focus on global warming policies. The model is a 'third generation' model that combines insights from modern macroeconomics with typical multi-sectoral resource allocation aspects. Key applications are economy-wide impacts of global warming policies, and impacts of global macroeconomic shocks (recent financial crisis in Asia).

G-cubed³ (McKibbin and Wilcoxen,1999) has 8 regions including the United States, Japan, Australia, Other OECD (composite region), China, Less developing countries (composite region), oil exporting developing countries (composite region), Eastern Europe and the Former Soviet Union (composite region). Each region/country is made up of twelve sectors, with a separation into energy sectors (electric utilities, gas utilities, petro-leum refining, coal mining, and crude oil and gas extraction) and non-energy sectors

¹ The Baldwin and Venables (1995) 'first generation models' are comparative static. However, single region recursive AGE models have a long tradition, starting from the work of Adelman and Robinson (1978) on Korea. While the standard recursive approach allows for accumulation of capital stocks, investment behaviour is not forward looking in these models.

² G-cubed stands for <u>G</u>lobal Computable <u>G</u>eneral Equilibium <u>G</u>rowth model.

³ http://www.msgpl.com.au/msgpl/msghome.htm

(mining, agriculture, fishing and hunting, forestry and wood products, durable manufacturing, non-durable manufacturing, transportation, and services).

The data set has been constructed by developing a consistent set of several input/output tables and related investment and consumption data and international trade data. The dataset relies heavily on information for the US economy, with 1987 as the base period. Time series were constructed for the US economy to estimate econometrically the consumption and production parameters (elasticity of substitution and distribution parameters of the US economy. Then, the relevant parameters (e.g. elasticities of substitution) are assumed to be equal across regions and other parameters are calibrated using the base period.

G-cubed is an intertemporal general equilibrium and macroeconomic model. It combines a conventional AGE model representing the real sectors in a disaggregated way and a model representation of financial and capital assets and flows. Imposition of the intertemporal budget constraints ensures that agents and countries cannot forever borrow or lend without undertaking the required resource transfers necessary to service outstanding liabilities. The short run behaviour is a weighted average of neo-classical optimising behaviour and ad-hoc 'liquidity constrained' behaviour. This feature allows for analysis of the short-run dynamics and adjustment paths to a long run steady state. The model assumes that agents form rational expectations about key decision variables and other exogenous variables. The model adopts the Armington specification and specification of bilateral trade flows for eight tradable commodities.

Policies are represented by relevant policy instruments such as taxes, interest rates, money supply, investment tax credit, government debt and government transfers, and emission permits. The model employs full short run and long run macroeconomic closure with macro-dynamics at an annual frequency around a long run Solow/Swan neo-classical growth model.

Due to its intertemporal orientation, a 'business as usual' baseline scenario needs to be generated, which serves a the benchmark for policy simulations. This baseline requires that assumptions on the long run evolution of exogenous variables are made (population, non-energy and energy productivity, energy efficiency and monetary policy). For the construction of the baseline it is also necessary to match assumptions on exogenous variables and expectations held by agents in the real world. The baseline trajectory is then constructed by solving the model for each period after the initial period given any observed shocks to variables, shocks to information sets or changes in initial conditions.

3.2.2 GTAP

In 1990/91, collaborative work by Thomas W. Hertel at Purdue University in the United States with the IMPACT Project in Melbourne, Australia, catalysed an initiative known as the Global Trade Analysis Project (GTAP). Since its inception, the explicit aim of the GTAP project has been the lowering of entry barriers to global trade analysis. The project is now supported by a consortium of 18 national and international agencies which provides financial support as well as guidance to the Center of Global Trade Analysis at Purdue University. The consortium includes some of the major players in global trade analysis (World Bank, WTO, UNCTAD, European Commission, OECD).

The GTAP project goes beyond the construction of a model. Its tangible publicly available products are:

- provision of a global database;
- provision of a standard general equilibrium modelling framework;
- software and accompanying literature (Hertel, 1997) for manipulating the data and implementing the standard model;
- annual short courses and a WWW based distance learning course which expose new users to the database, the model and the accompanying software;
- a global network of researchers with a common interest of multi-region trade analysis and related issues;
- a World-Wide Web site for the dissemination of data, software and Project related information;¹
- a technical paper series through which new developments and non-standard versions of the GTAP model are disseminated.

Much of the focus of GTAP is directed towards the analysis of agricultural policy and trade (Francois *et al.*, 1995; Hertel *et al.*, 1995), although there have been GTAPrelated applications in non-agricultural trade-related issues (McDougall and Tyers, 1994) as well as environmental policy analysis (Perroni and Wigle, 1997). European interest in GTAP has also grown, with a steady increase in the literature examining the impacts of European enlargement to the East and CAP compatibility under the Uruguay Round commitments (Hertel et al., 1997, Jensen *et al.*, 1998), modelling applications based on the Agenda 2000 reform proposals (Blake *et al.*, 1999). More recently, database development and modelling have also expanded in the direction of energy usage and climate change.²

The roots of the GTAP database can be traced back to the SALTER database created by the Australian Industry Commission. The current version of the database (version 4) has a coverage of 45 regions, 50 commodity groupings and 5 primary factors (Land, Skilled and Unskilled Labour, Capital and Natural Resources), and is benchmarked to 1995 US dollar values. Europe is represented by country data for the UK, Germany, Denmark, Sweden, Finland next to an aggregate 'Rest of the EU' and EFTA. The main components of the database consist of bilateral trade, transport and protection matrices that link the country/regional input-output (IO) databases. The database is fully documented in McDougall et al. (1999). Although the commodity coverage has a deliberate agricultural bias with 12 primary agricultural sectors (8 food processing sectors, 1 forestry sector and 1 fishing sector), within the remaining 30 commodity groupings, there is significant disaggregation of manufacturing, service and fossil fuel sectors.

The default GTAP model (Hertel 1997) is a standard multi-region AGE model as defined above. A special feature is modelling of consumption expenditures through a nonhomothetic Constant Differences of Elasticities of substitution (CDE) demand system (Hanoch, 1975, Surry 1989), which allows budget shares to vary with income. The standard GTAP model includes all quantitative restrictions as *ad valorem* price wedges. Although not apparent in the standard GTAP treatment, other policies may also be explicitly incorporated into the model framework, based on work by Bach and Pearson (1996). Thus, the

¹ http://www.agecon.purdue.edu/gtap/

² A related report forthcoming from this project surveys EU-relevant GTAP applications.

incorporation of budget restrictions (for example on headage payments), production quota (for example milk quota), tariff rate quota on imports and similar restrictions on volumes require the use of inequality constraints. GTAP parameters are determined through calibration. That is, key behavioural parameters are taken from extraneous sources and the remainder is calibrated to the benchmark dataset.

The default macro closure mechanism employed in the GTAP model is to have investment specified as being *savings-driven*.¹ Discrepancies between regional savings and investment are compensated by changes in the trade balance such that regional closure is satisfied. Alternative closures are readily implemented in GTAP. For example, the general equilibrium model can be transformed into a partial model of agricultural trade by declaring non-agricultural commodities as exogenous. Similarly, one region can be singled out for analysis by declaring the 'Rest of World' as exogenous.

The standard GTAP model is comparative static. Some GTAP studies (Bach *et al.*, 1998, Frandsen *et al.*, 1998) employ annual growth-rate projections for productivity, GDP and endowment variables to project the database into the future.

Although the standard GTAP can be characterised as a 'first generation' model in the Baldwin-Venables sense, it is flexible enough so it can be geared towards 'second'- and 'third generation' models. Deviations from perfect competition have been explored by Swaminathan and Hertel (1996), Francois (1998). Dynamic analysis has been pursued by McDougall and Ianchovichina (1996) International technology spillovers have been introduced by Van Meijl and Van Tongeren (1998, 1999a,b) (see GTAP website Technical Papers page).

3.2.3 GREEN

GREEN was developed at the OECD Secretariat in the period 1991-1992 and updated over the last years. Key developers are J.M. Burniaux, J.P. Martin, G. Nicoletti and J. Oliveira-Martins. The project was initiated at the OECD in 1990 at the request of the Economic Policy Committee. GREEN is routinely used by the OECD for the assessment of policies that affect carbon emissions. The model has recently extensively been used to assess implications of the Kyoto protocol on global climate change.

In GREEN the world is divided into 12 regions: OECD plus major energy producers and energy consumers. Europe is represented by the EEC. The industry aggregation covers nine sectors, six of them being energy sectors. Agricultural activities are aggregated into one sector.

GREEN is a relatively standard time-recursive AGE model with global coverage. Since it focuses on carbon emissions, It is data and modelling place much emphasis on energy demand and carbon emissions related to energy usage. The production structure is a nested CES with an explicit treatment of substitution among alternative energy sources in an energy nest. Except for crude oil, internationally traded commodities are differentiated according the Armington assumption. The model incorporates policy instruments such as ceilings (quotas) on emissions and tradable emission permits. No special attention is given to the agricultural sector and specific polices related to agriculture. GREEN is a recursive

¹ This depends on the choice of investment mechanism employed in the model framework.

dynamic model that considers the time period 1985 - 2050. The standard closure of the model is neo-classical with fixed trade balances.

The basic database and generation of parameters is very similar to the procedures employed in RUNS, see below section 3.2.7, with the exception of energy data. These have been compiled from International Energy Agency data.

3.2.4 INFORUM

The key institution is the economics department at the University of Maryland, and in particular the INFORUM center. INFORUM (INterindustry FORecasting at the University of Maryland) was founded by Professor Clopper Almon in 1967. In some ways, INFORUM is similar to the GTAP consortium. There is a network of researchers working on national models that feed into the overall scheme of linked macroeconomic models.¹ INFORUM publishes a great deal of data and public versions of its macroeconomic modelling software.

The system of linked INFORUM models has been used to produce annual forecasts and analyses of public policy since 1979. For example, it was one of three models used by the U.S. government in early policy research during NAFTA negotiations, though its role in the trade policy community has since been more limited. The current system of linked macroeconomic models contains models for the United States, Canada, Mexico, Japan, Korea, Germany, France, United Kingdom, Italy, Spain, Austria, and Belgium. A model of China has also been developed, but has not yet been made a part of the linked system.

The INFORUM system can be used to study the industrial and aggregate impacts of macroeconomic developments such as changes in exchange rates, trade policy, and government policy. Such experiments are qualitatively similar to those assessed with a standard AGE model. In addition, the system of models is used to provide the U.S. INFORUM model, LIFT, with forecasts of foreign prices and demands for U.S. exports by sector. Based on these forecasts, detailed macroeconomic forecasts are produced every six months. Applications to trade policy are relatively limited and tend to focus on North America. The Canadian, Mexican and USA models were used by the Canadian government (Department of External Affairs) in a study of the impacts of alternative free trade agreements between the U.S. and Canada on the Canadian economy and later a similar study was completed looking at the recently completed NAFTA accord, Almon et al. (1991). Richter (1994) has examined the consequences of the full participation of Austria in the European Union. Christou and Nyhus (1994) have examined broader aspects of European policy. They develop a number of assumptions representing EC directives on the Single Market, and introduce them in the INFORUM system of models.

The INFORUM models are internationally linked, dynamic macroeconomic models with inter-industry linkages, and are used to produce annual forecasts for a variety of industry indicators. At the heart of the individual country models lie national input-output models, where prices for each industry's product are determined by their input costs and a mark-up. Demand for each industry's product comes from other producers (i.e. intermediate demand) and from consumers, government and foreigners. These are ultimately

¹ See: http://www.inform.umd.edu/EdRes/Topic/Economics/EconData/Intpartn.html

combined through national accounting identities. The basic approach of INFORUM models is described by Almon (1991). In general, fully independent models are developed, which are then linked trough trade flows. The number of sectors may vary by country, and the base year from which projections are initially made may also vary.

Probably the best developed and most used INFORUM model is a model of the US economy known as LIFT. Being an econometrically driven macroeconomic forecast model, the LIFT model is a multi-sector model but not an equilibrium one. Rather, forecast models of individual sectors are linked through input-output relationships, and the general shifts in prices and incomes that result are linked to demand patterns. However, the sense of economywide constraints (i.e. capital and labour markets clearing) is not central to this class of models. Individual markets clear, but full adding-up conditions are not imposed. Neither is utility-maximisation based final expenditure patterns. The result is that the welfare implications of income changes can be difficult to interpret.

3.2.5 MEGABARE and GTEM

MEGABARE and its successor GTEM are dynamic models of the world economy, developed at the Australian Bureau of Agricultural and Resource Economics (ABARE)¹, with Kevin Hanslow as its principal developer. These models build on the GTAP model and database.² The focus for the development of MEGABARE was to create a dynamic general equilibrium model of the global economy suitable for analysis of international greenhouse policy, but its scope includes broader issues relating to international trade policy, especially agricultural trade reform.

As GTAP database has been the data source for the models, and consequently the regional and commodity coverage are the same as in GTAP. In MEGABARE the version 3 of the GTAP database with 30 regions and 37 industries was used, while GTEM utilises version 4. Additional data are included on sectoral usage of fossil fuels and the associated carbon dioxide emissions. Data on production, exports and prices of energy commodities (coal, oil and natural gas) rely on the United Nations Industrial Statistics Yearbook (United Nations 1994).

The key applications with MEGABARE and GTEM are related to the Kyoto Protocol and its implications on the economies of Australia, developing countries and EU. Another area of application is regional integration in the APEC and ASEAN context.

GTEM and MEGABARE are recursive dynamic AGE models, which share their basic structure with the GTAP model. The dynamics of the model enters through the capital stock evolution and the growth in population and labour force. Investments in physical capital follow a partial adjustment path influenced by the savings patterns of different age groups in each region and the international flow of capital. Additional dynamic features enter through the demographic module which simulates population growth (given births and deaths in each time period and net migration) and the growth in the labour force (given new entrants and retirements in each period). The dynamic process is of the recursive na-

¹ http://www.abare.gov.au

 $^{^{2}}$ The latest version of the model, GTEM, is under a development but the model documentation was not yet available at the time of writing. This description relies mainly on the interim documentation of MEGABARE (ABARE, 1996).

ture as in the Monash model¹. The production structure of the GTEM and MEGABARE have been further developed from the GTAP model. In certain sectors (electricity, steel and iron) the technology bundle approach has been used, which assumes that different technologies are available for each industry. Each technology uses inputs in fixed proportion to output, and the choice of a particular technology depends on relative prices. The endogenous technology choice feature is considered important in the context of greenhouse policies, where alternative technologies are likely to become available in the future. Emission accounting equations for each sector have been added, and additional equations are included to impose various policies intended to curb the growth in emissions. GTEM includes also the emissions trading and the implementation of emission response functions for greenhouse gases other than carbon dioxide.

The endogenous population growth has implications on the savings behaviour and the growth in the labour force. These modelling extensions have put additional demands on the data and parameters. The birth and mortality rates are econometrically estimated functions of GNP. The savings behaviour in different age groups has been calibrated from the data with the life cycle model given initial savings.

3.2.6 MICHIGAN BDS MODEL

The Michigan Brown-Deardorff-Stern (BDS) model, is aptly described as a comparative static 'second generation' model, with monopolistic competition in manufacturing sectors modelled in the Dixit-Stiglitz fashion. It evolved from earlier work in the mid 1970s on the Tokyo Round of Multilateral Trade Liberalisation.

The BDS model has been used to analyse the economic effects of the Canada-U.S. Trade Agreement (CUSTA) and later to analyse NAFTA (Brown, Deardorff, Stern 1992a,b, 1996), the extension of the NAFTA to some major trading countries in South America, the formation of an East Asian trading bloc, the potential effects of integrating Czechoslovakia, Hungary, and Poland into the EU (Brown, Deardorff, Djankov, and Stern (1996)). Besides regional integration issues the model has been used to analyse liberalisation of trade in services by Brown, Deardorff, and Stern (1995) and by Brown, Deardorff, Fox and Stern (1996).

The complete database consists of 29 sectors and 34 countries. Europe is represented by 12 countries. The industry specific breakdown has a deliberate bias towards manufacturing and services, with one aggregate sector for agriculture, fisheries and forestry, one extraction sector, 21 manufacturing branches of which one is food processing, and six service sectors. The initial databases have been compiled from a variety of sources, but the Michigan team is recently using the GTAP version 4 database.

The input-output data as well as the model documentation are available on Internet². The complete database and documentation should be available from the authors on request (Brown, Deardorff, Fox and Stern, 1996).

The model departs from the standard model by assuming imperfect competition that is based on increasing returns to scale technology. Imperfect competition is modelled in Dixit-Stiglitz fashion as monopolistic competition, where each firm produces its own vari-

¹ http://www.monash.edu.au/policy/monmod.htm

² http://www.spp.umich.edu/rsie/model

ety and free entry eliminates pure profits (Dixit and Stiglitz, 1977). This model displays the scale and variety effects that have been discussed above. Only manufacturing industries are modelled as imperfectly competitive ones. In the production of services perfect competition is assumed¹. To make the regional expenditure meet the budget constraint trade balance is fixed. Fixed trade balance rules out international capital mobility, but since investment behaviour is not modelled, this is conventional 'long term' closure.

The BDS model incorporates nominal tariffs as well as import quota and other NTBs, represented by endogenous tariff equivalents. The actual tariff that applies is a composite of the nominal tariff and the tariff equivalent of the non-tariff barrier. The quota facility is invoked by specifying the fraction of the sector covered by non-tariff barriers and the desired change in the quota limit.

3.2.7 RUNS

Runs was developed at the Centre d'Economie Mathématique et d'Econométrie at the Free University of Brussels during the eighties by Burniaux (1987). RUNS² has subsequently been integrated into the OECD Development Centre's 1990 - 1992 programme on Developing Country Agriculture and International Economic Trends, under the direction of Ian Goldin (Burniaux and van der Mensbrugghe 1990). The model is not currently in use at OECD, but RUNS results are still likely to be referenced to date. The main goal of the model was agricultural policy analysis, especially analysis of the impact of the common agricultural policy (CAP) on developing countries and assessment of the Uruguay Round of multilateral trade liberalisation. The model includes 22 regions (OECD members plus major developing economies). Europe is represented by the three regions: EEC; EFTA and Eastern European Economies. RUNS distinguishes 20 commodities, among which 11 primary agricultural commodities and four processed food products.

RUNS is a relatively standard time-recursive AGE model which covers global economic activity. A special feature of the model is the Rural-Urban distinction, which is represented by imperfect domestic factor mobility between rural and urban sectors. Sticky wages allow for analysis of labour absorption and unemployment issues. Modelling of production of agricultural commodities allows for joint production, whereas nonagricultural commodities follow the standard approach via nested CES functions. Agricultural commodities are considered homogeneous on international markets, whereas trade in manufactures is modelled along the Armington assumption. All policy instruments are represented as price wedges. The model is recursive dynamic, covering the period 1985 -2002. A temporary static equilibrium is calculated for every three years and updating of stocks occurs between temporary equilibria.

The standard closure of RUNS is neo-classical with fixed trade balances in each region. Alternatively an endogenous investment function has been specified which makes investment dependent on the price of future consumption. This version allows for endogenous trade balances.

¹ In earlier application of the model services where modeled as non-tradable goods Brown, Deardorff, and Stern (1992a,b) but recently the collection of services trade data (see Brown, Deardorff, Fox and Stern, 1996) has made it possible to treat these commodities as tradables.

² RUNS stands for Rural Urban North South.

As far as the estimation of parameters is concerned, RUNS relies on estimates available in the literature in conjunction with calibration to the benchmark data. Agricultural demand and supply elasticities rely mainly on USDA's GOL model (Roningen and Liu, 1983) and the OECD MTM model (Huff and Moreddu, 1990). The representation of policies in the form of price wedges utilises the OECD Secretariat's estimates of PSEs and CSEs as well as FAO producer prices. Other data sources include SAMs compiled by the Development Centre, Supply Utilisation Account of the FAO (SUA), and the CHELEM data base for bilateral trade flows.

3.2.8 WTO housemodel

The WTO housemodel has been constructed to evaluate the results of the Uruguay Round of Multilateral trade liberalisation and to support the WTO Secretariat in its preparations for the next round of negotiations. Principal developers have been Joseph F. Francois, Bradley McDonald, and Håkan Nordström. The basic WTO model is a 'first generation' model, but various aspects of imperfect competition have been added to it.

The model has a global coverage with 13 regions and 19 sectors of production. Europe is represented by the EU, EFTA and Eastern Europe. Agriculture is aggregated into three primary sectors (plus forestry and fishing), and one food processing sector. The basic data as well as elasticity estimates are taken from the GTAP dataset. Additional trade protection information on MFN tariff rates are from GATT's Integrated Data Base, the values of tariff equivalents for industrial non-tariff barriers are from estimates in the literature, while anti dumping duties are from national sources and actions reported to the GATT secretariat.

The WTO housemodel exists in different versions, The basic version is the standard perfect competition, constant returns, comparative static model with Armington assumption for international trade. The amended version assumes monopolistic competition and scale economies internal to each firm, in the line of Dixit and Stiglitz.

Quotas (MFA and minimum market access) are modelled explicitly as inequality constraints. Two types of closure rules to capture steady-state 'accumulation effects': Either fixed regional saving rates or endogenous regional saving rates.

3.2.9 Conclusion

The standard, 'first generation' multi-regional AGE model is a firmly established workhorse in international trade analysis. While retaining most of the standard assumptions, certain special features are introduced into some models to capture specific issues, such as developing country agriculture (RUNS) or aspects of the Common Agricultural Policy (some GTAP applications). Recursive dynamic variations of the standard model are now commonplace in research in the field of global climate change (GREEN, MEGABARE). Imperfect competition versions have gained ground in trade liberalisation of manufactures, and are likely to be used in the assessment trade liberalisation in services (WTO, BDS, GTAP). The most recent development is the intertemporal modelling of macroeconomic interactions between financial markets and real sectors (G-cubed). The size of the data collection effort for global models has in the past forced modellers to be rather economical as regards the regional and sectoral disaggregation. Two collaborative efforts to reduce this entry barrier exist to date: INFORUM and GTAP. The GTAP database is specifically tailored to the needs of general equilibrium modellers, and this has certainly contributed to its wider usage, also by non-GTAP modelling teams.

Standard modelApplied General EquilibriumArmington, bilateral floStandard modelmodel, multi-sector, comparativeArmington, bilateral floBrandard modelmodel, multi-sector, comparativeArmington, bilateral floBroduction, perfect competition onall markets, global coverageStandardG-cubedIntertemporal applied generalStandardWilcoxenmodel.Standard (default version)StandardGTAPStandard (default version)StandardCompetitic competiticCroundel.model.Standard (default version)StandardDectorStandard (default version)StandardCompetiticCronsortium/competition versions available.Standard, except crude ofPurdue Universitycompetition versions available.Standard, except crude ofDECDLinked system of dynamic and imperfectStandard, except crude ofOECDLinked system of dynamic nationalPrice and income sensitiNFORUMinter-industry Input-OutputPrice and income sensitiNFORUMinter-industry Input-OutputCompetitionsMEGABARE andrecursive dynamic endogenousStandardMichigan BDSscale economies and monopolistic competiticModel Universitycompetition in manufacturingMonopolistic competiticMichiganindustries,MonopolisticModel Universitycompetition in manufacturingModel Universitycompetition in manufacturingModel Universitycompetition in manufacturing <trr>Model Un</trr>	Modelling of trade	Goals	Key applications
Imodel, multi-sector, comparative static, constant returns to scale in production, perfect competition on all markets, global coverage Intertemporal applied general equilibrium and macroeconomic model. Standard (default version) Recursive dynamic and imperfect competition versions available. sity recursive dynamic nacroeconometric model. sity recursive dynamic nacroeconometric model. sity recursive dynamic nacroeconometric competition versions available. sity recursive dynamic nacroeconometric models with inkages. and recursive dynamic endogenous pundles in electricity and iron&steel idustries, pundles in electricity and iron&steel industries, recursive dynamic	Armington, bilateral flows		
static, constant returns to scale in production, perfect competition on all markets, global coverage Intertemporal applied coverage Intertempora applied coverage Intertempor	/e		
production, perfect competition on all markets, global coverage Intertemporal applied general equilibrium and macroeconomic model. Standard (default version) Recursive dynamic and imperfect competition versions available. sity recursive dynamic Linked system of dynamic national macroeconometric models with inter-industry Input-Output linkages. and recursive dynamic endogenous E population growth, technology bundles in electricity and iron&steel ity scale economics and monopolistic competition in manufacturing industries, recursive dynamic			
au markets, groun cuvicage Intertemporal applied general equilibrium and macroeconomic model. Standard (default version) Recursive dynamic and imperfect competition versions available. sity recursive dynamic and imperfect Linked system of dynamic national macroeconometric models with inter-industry Input-Output linkages. E population growth, technology bundles in electricity and iron&steel population in manufacturing industries, recursive dynamic	uo		
and the second and macroeconomic model. model. Standard (default version) Recursive dynamic and imperfect competition versions available. sity recursive dynamic mational macroeconometric models with inter-industry Input-Output linkages. and recursive dynamic endogenous Epopulation growth, technology bundles in electricity and iron&steel ty scale economics and monopolistic competition in manufacturing industries, recursive dynamic	Ctondord	Contribute to the volicy debate on	Recommunication of greenhouse
equinontum and macroeconomic model. Standard (default version) Recursive dynamic and imperfect competition versions available. isity recursive dynamic models with macroeconometric models with inter-industry Input-Output inter-industry Input-Output linkages. E population growth, technology bundles in electricity and iron&steel bundles in electricity and iron&steel ity scale economies and monopolistic competition in manufacturing industries, recursive dynamic	Statutatu	contribute to the policy decade on	LECUIUIII)-WINC IIIIPAUS UI EICUIIIUUSC
Inouce Standard (default version) Recursive dynamic and imperfect Recursive dynamic competition versions available. sity recursive dynamic Linked system of dynamic national macroeconometric models with inter-industry Input-Output linkages. and recursive dynamic endogenous E population growth, technology bundles in electricity and iron&steel ity scale economics and monopolistic industries, recursive dynamic		environmental pouco and memorial	pulicies, illigited trisis ill Asia, giunal aradiotions and cutlach of the world
Standard (default version) Standard (default version) Recursive dynamic and imperfect competition versions available. sity recursive dynamic Linked system of dynamic national macroeconometric models with inter-industry Input-Output linkages. E population growth, technology bundles in electricity and iron&steel ity scale economics and monopolistic industrise, industrise,		irade, with a locus on global warming	predictions and outlook of the world
Standard (default version) Recursive dynamic and imperfect sity recursive dynamic Linked system of dynamic national macroeconometric models with inter-industry Input-Output linkages. and recursive dynamic endogenous E population growth, technology bundles in electricity and iron&steel ity scale economics and monopolistic competition in manufacturing industries,		10110103.	controlity, crugues would
Recursive dynamic and imperfect sity Recursive dynamic competition versions available. Linked system of dynamic national nacroeconometric models with inter-industry Input-Output linkages. Linked system of dynamic national and recursive dynamic endogenous recursive dynamic endogenous E population growth, technology linkages. inter-industry ling recursive dynamic endogenous tecursive dynamic endogenous linkages. inter-industry ling recursive dynamic endogenous tecursive dynamic endogenous linkages.	Standard	Trade policy analysis, especially	GATT Uruguay Round, technological
sity competition versions available. sity recursive dynamic Linked system of dynamic national macroeconometric models with inter-industry Input-Output linkages. and recursive dynamic endogenous E population growth, technology bundles in electricity and iron&steel ity scale economics and monopolistic competition in manufacturing industries, recursive dynamic	ct Monopolistic competition versions	multilateral liberalisation. Agricultural	changes, environmental policies; EU
sity recursive dynamic Linked system of dynamic national macroeconometric models with inter-industry Input-Output linkages. E population growth, technology pundles in electricity and iron&steel bundles in electricity and iron&steel ity scale economies and monopolistic competition in manufacturing industries, recursive dynamic		policies.	enlargement, CAP reform
recursive dynamic Linked system of dynamic national macroeconometric models with nikages inkages and recursive dynamic endogenous E population growth, technology bundles in electricity and iron&steel ity scale economies and monopolistic industries, industries,			
Linked system of dynamic national macroeconometric models with ninkages. E population growth, technology bundles in electricity and iron&steel ity scale economies and monopolistic competition in manufacturing industries, recursive dynamic	Standard, except crude oil	Asses the economic impact of	Kyoto protocol assessment
Linked system of dynamic national macroeconometric models with inter-industry Input-Output linkages. and recursive dynamic endogenous population growth, technology bundles in electricity and iron&steel bundles in electricity and iron&steel industries. ity scale economics and monopolistic competition in manufacturing industries.	(homogeneous)	imposing limits on carbon emissions	
macroeconometric models with inter-industry Input-Output linkages. and recursive dynamic endogenous population growth, technology bundles in electricity and iron&steel bundles in electricity and iron&steel industries, ity scale economies and monopolistic competition in manufacturing industries,	anal Price and income sensitive	Annual forecasts and policy analysis at	Early work on NAFTA, national US
sity inter-industry Input-Output Inkages. E population growth, technology bundles in electricity and iron&steel ity scale economies and monopolistic competition in manufacturing industries, recursive dynamic		national and internationally linked	studies (LIFT), Austrian integration in EU
Iinkages. and recursive dynamic endogenous E population growth, technology bundles in electricity and iron&steel ity scale economies and monopolistic competition in manufacturing industries, recursive dynamic	export equations	levels.	
and recursive dynamic endogenous E population growth, technology bundles in electricity and iron&steel ity scale economies and monopolistic competition in manufacturing industries, recursive dynamic			
 E population growth, technology bundles in electricity and iron&steel scale economies and monopolistic competition in manufacturing industries, 	Standard	Policy scenario analysis primarily in	Climate change policy and the economic
bundles in electricity and iron&steel ity scale economies and monopolistic competition in manufacturing industries, recursive dynamic		climate change but also in global	impact of the Kyoto Protocol, WTO and
ity scale economies and monopolistic competition in manufacturing industries, recursive dynamic		agricultural trade reform and trade in	the agricultural trade liberalisation
ity scale economies and monopolistic competition in manufacturing industries, recursive dynamic		strategic commodities (e.g. coal).	
scale economies and monopolistic competition in manufacturing industries, recursive dynamic	Monopolistic competition	To analyse microeconomic effects of	Regional trade agreements (NAFTA,
higan competition in manufacturing industries, recursive dynamic	stic	trade liberalisation policies	extension of EU with Eastern European
industries, recursive dynamic			countries), Uruguay round, liberalisation
recursive dynamic			in services
	Agriculture: homogeneous goods &	Analysis of Agricultural policies	GATT Uruguay round, agricultural trade
Manufactures: standard	pooled markets Manufactures: standard		liberalisation
The WTO Standard and imperfect competition Standard and firm level	Standard and firm level product	To analyse global trade analysis issues	Multi-region CGE analysis of the results
housemodel versions differentiation		such as the upcoming WTO Round	of the Uruguay Round

1 able 3.2 Continued	nea						
	Policy representation	Number of regions (r) or countries (c)	Global cov- erage (y/n)	Number of sec- tors	Number of farm (f) or processed (p) products	Software	Public data avalilability
Standard model	Ad valorem Price wedges		Global			General purpose package	Yes
G-cubed	Standard	4 (c) + 4 (r) EU: part of 'other OECD'	Y	12	1 (f) + 1 (p)	Gauss	z
GTAP	Standard in default version Volume and value restrictions (quota etc) avaiulable	$ \begin{array}{rcl} 27 & (c) &+& 12(r) &+\\ R_0W & & & \\ EU: 5 (c) + 1(r) & & \\ \end{array} $	Y	50	12 (f) + 8 (p)	GEMPACK and GAMS versions available	Y, at cost
GREEN	Standard quota, tradable emission permits	5 (c) + 7 (r) EU: 1 (r)	Y	6	1 (f)	C	z
INFORUM	Standard macro-economic policy instru- ments, taxes and transfers	13 (c)	z	varies by country: min. 33, max. 100	Varies by country	IJ	Y partly, free
MEGABARE/ GTEM	Standard Tradable emission permits	27 (c) + 12(r) + RoW EU: 3 (c) + 1(r)	Y	50	12 (f) + 8 (p)	GEMPACK	Partly, Y, See GTAP Energy parts: N
Michigan BDS model	Standard	34 (c) +RoW EU: 12 (c)	Y	29	2 (f)	GEMPACK	Y
RUNS	Standard	13 (c) + 9 (r) EU: 1 (r)	Y	20	11 (f) + 4 (p)	Fortran	z
WTO housemodel	Standard And import quota	5(c) + 7(r) + ROW EU: 1(r)	Υ	19	3 (f) + 1 (p)	GAMS/MPSGE	Υ

Table 3.2 Continued

3.3 EU Agricultural models

This section focuses on agricultural models with a European perspective in stead of the models treated in section 3.1 and 3.2 which have a global perspective. We study a partial equilibrium (SPEL) and a general equilibrium model (CAPMAT) which are both recursive dynamic.

3.3.1 SPEL

The Sectoral Production and Income Model for Agriculture (which in German yields the acronym SPEL) is developed and used by Prof. Dr. W. Henrichsmeyer at the University of Bonn, the European Center for Agricultural, Regional and Environmental Policy Research (EuroCARE) and the SPEL group at Eurostat of the European Commission (Heinrichsmeyer 1995, Wolf, 1995, Zintl and Greuel, 1995a en b). The goals of the model are monitoring and diagnosis of the current situation in the agricultural sectors of the EU-Member States and, short and medium-term forecasts and policy simulations of the effects of agricultural policy decisions. Furthermore, the model is used to check the consistency of Eurostat's agricultural statistics. SPEL is a partial equilibrium model that covers supply and demand for 114 primary agricultural commodities for the 15 EU-member countries.

SPEL is not designed as an academic model for the agricultural sector, but as a policy information system comprising both an integrated data storage system and various versions of policy related forecasting and simulation models (Heinrichsmeyer 1995). The main part of SPELL is the SPEL/EU Base System (BS), which provides detailed ex-post descriptions of the structure, intensity and use of agricultural production and of income generation in the EU member states. The Base System contains of a consistent accounting framework and input/output (supply and use) generation based on input-output coefficients and is therefore comparable with a conventional macroeconomic input-output model, but it has much more detailed breakdown.

The Short-term Forecast and Simulation System (SFSS) is used to generate forecasts (1-2 years) by combining econometric, trend-based forecasts and the systematic incorporation of expert know-how. The Base System (BS) and the SFSS are continuously applied at Eurostat and EuroCARE (2 times a year) in order to up-date the reference period (1973 up to the current year). The SPEL/EU-Data (results of the BS and the SFSS) are published by Eurostat and available for everybody on technical media.

The Medium-term Forecast and Simulation System (MFSS) performs policy simulations relative to a reference data set (up to 7 projection years, which are based on econometric trends and expert assessments). The MFSS system contains a supply model which links price expectations of farmers (based on past experience), the reaction of production intensity (input use and yield per hectare) to expected input and output prices, and the central activity model which shows the level of production activities as a function of changes in value-added per unit of the production activities. Food demand is based on econometric analysis and a forecasting system. A partial equilibrium model is used for balancing supply with forecasted demand. The foreign trade component contains net-trade functions between the EU and the rest of the world. Finally, the model is recursive dynamic and includes explicitly CAP policies, like quota, set-aside, premiums, etc. For more detailed analysis of the effects of the EU agricultural policy on foreign trade, MFSS can be linked to WATSIM, see section 3.2.8. MFSS is in particular used for CAP/Agenda 2000 (Agenda 2000: Overview of the impact analysis of CAP reform proposals, Europe Agri No. 30, 1998).

Finally, the model is recursive dynamic and includes explicitly CAP policies, like quota, set-aside, premiums, etc.

3.3.2 CAPMAT and ECAM

CAPMAT¹ has been developed as a part of the FEA (Future of European Agriculture) project, a joint venture of three institutes: the Centre for World Food Studies (SOW) in Amsterdam in co-operation with the Central Planning Bureau (CPB) and the Agricultural Economics Research Institute (LEI). CAPMAT, which covers the EU-15, builds on the previously developed ECAM² model that covers only the EU-9 (Folmer et al., 1995). This model has been mainly used in order to carry out policy simulations, the main goal being the assessment of the impacts of agricultural policies, rather than the forecasting and/or the projection of variables. CAPMAT was used in 1996 for the EU Commission's preparation of 'Agenda 2000', and resulted in an unpublished FEA-Report. In 1997 the methodology and databases were subsequently updated for the analysis of the impact of the CAP reform proposals included in 'Agenda 2000'. Finally, a partial liberalisation scenario has been implemented in 1998.

CAPMAT consists of a dedicated database, an applied general equilibrium (AGE) model to simulate overall medium term effects and, a simulation and accounting tool (SAT) that applies selected growth factors from the AGE-model (or from explicit assumptions) to the information extracted from the database.

ECAM is used as the AGE component of CAPMAT (although in principle another model could be used). ECAM contains a detailed description of the agricultural sector, but is closed with respect to the domestic economy by incorporating the rest of the economy in a semi-exogenous manner. The ECAM model has the structure of a non-linear program, and consists of three main parts: a module for total demand, one for agricultural supply, and an exchange component, which balances demand and supply. ECAM mainly distinguishes itself from other models AGE models through its representation of agricultural supply, in particular its explicit treatment of pastures and other non-marketed green fodder, as well as the separate elaboration of yield and acreage relations (that is, crop yield per acre and acreage are both represented). As far as non-agriculture supply is concerned, the supply of the tradable good is treated as a given endowment which grows according to an exogenous trend; the non-tradable sector (mainly building and construction services) operates under a constant returns to scale technology with fixed mark-up rate over variable costs, and the level of production driven by demand. Consumer demand follows expenditure minimisation according to a two-level demand system: at the lower levels linear expenditure system (LES) with trends on commitments for food demand; at upper level an AIDS-system for food, beverages and tobacco and non-food.

¹ Common Agricultural Policy Simulation Tool.

² European Community Agricultural Model.

The model is consistent with micro-economic theory, since supply and demand responses are derived from assumed optimising behaviour of producers and consumers. Although non-agricultural sectors have a stylised representation in ECAM, the model is consistent with a general equilibrium framework, so that welfare theoretical conclusions can be drawn. On the other hand, the recursive dynamic simulation does not ensure agents behaviour to be time consistent and intertemporally efficient. As far as the functional specification is concerned, the model is 'statistically consistent', since all behavioural components have been estimated by econometric (maximum likelihood) methods. With regard to the data ECAM itself generates a SAM for every year in a simulation period, using the base year (1982) SAM and model outcomes.

The simulation and accounting tool (SAT) for the EU-15 uses growth factors from ECAM (EU-9). An AGE model like ECAM generates growth factors until 2005 for key variables. In each year considered, SAT calculates the input demand, the consumer demand and the net exports by member state (given an assumed change in stocks). Other outputs include for example supply and utilisation accounts by commodity and country, costs and revenue for every activity by country, farm revenue by country and EU budget. Because the number of commodities and regions of the AGE-components are different from those considered by SAT the factors of a 'sister'-country are applied for endogenous variables in countries not covered and for commodities a common growth factor is applied to all members of a subset. The models covers over forty agricultural commodities, the base year is 1995 and as ECAM, the model is recursive dynamic. Furthermore, CAP-policies are modelled explicitly (import levies, intervention prices, export subsidies, stock volumes, production/input quotas, producer/consumer subsidies/taxes, direct transfers).

I WULL J. J. DUILING	Dummury 20-usi wantar an mouch	(interior					
	Description		modelling of trade	Ŭ	Goals	key applications	ions
SPEL-EU University of Bonn	Recursive dynamic partial equilibrium model of agricul duction in EU-15	Recursive dynamic partial applied equilibrium model of agricultural pro- duction in EU-15	Homogenous goods + pooled markets		Short and medium-term forecasts and policy simulations of the effects of agricultural policy decisions		Particularly, CAP/Agenda 2000
CAPMAT/ECAM SOW-VU, CPB, LEI		general ation and l produc-	Homogenous goods + pooled markets		EU agriculture policy analyses		CAP reform (partial liberalisation), agricultural proposals in 'Agenda 2000'
	Policy Representation	number of regions (r) global cov- or countries (c) erage? (y/n)		Number of sectors/ products	number of farm (f) or processed (p) products	Software	data availability
SPELL/EU	Price wedges and quota	13 (c) + 1 (r) EU: 13 (c) + 1 (r)	u	5-6 DIGIT/NACE	114 (f)	Home made software	Y, cost
CAPMAT/ECAM	Price wedges and quota, explicit bounds on volumes and values	13 (c) + 1 (r) EU: 13(c) + 1 (r)	и	30	20 (f), 7(p)	SAT in GAMS, ECAM home made soft- ware (FORTRAN)	4

Table 3.3 Summary EU-agricultural models

4. Assessment

We started this survey with the claim that no model can serve all purposes. Following the criteria set out in section 2, Table 4.1 gives an overview of the design choices made in the surveyed models, and serves as an aid to get an overview of the current state of the field.

Table 4.1 Basic modelling desi				
	Partial Mod-	Economy wide	EU-Agricultural	Total
	els	models	models	
Scope of representation				
National economies:				
- Partial	8	0	1	9
- General	0	8	1	9
Regional scope:				
- Global coverage	8	7	0	15
- Non-global coverage	0	1	2	3
Regional unit of analysis:				
- Linked country models	0	1	0	1
- Parametric differences	8	7	2	17
Dynamics:				
- Static	4	3	0	7
- Recursive dynamic	4	4	2	10
- Forward looking	0	1	0	1
Modelling of trade:				
- Homogeneous	8	0	2	10
- Armington	0	5	0	5
- Monopolistic competit.	0	2	0	2
- Other	0	1	0	1
Treatment of quantitative poli-				
cies:				
- Tariff/price equivalents	3	5	0	8
- Explicit treatment	5	3	2	10
Data:				
Public data availability?				
- Yes	3	5	1	9
- No	5	3	1	9
Parameters:				
- estimated	2	0	2	4
- calibrated	6	8	0	14
Note: The table refers only to stand	1			•

Table 4.1Basic modelling design choices

Note: The table refers only to standard versions of models are taken into consideration.

Nine out of the 18 surveyed models are partial models, according to table 4.1. Results obtained from a general equilibrium analysis will only differ significantly from partial equilibrium results if agricultural trade policies lead to noticeable price shifts in other sectors. However, in industrial countries agriculture accounts for only a small share of GNP. Therefore the strength of the linkages of agriculture with other sectors is typically not very strong at the level of aggregation that AGE models tend to employ. An exception may be those linkages than run through markets for natural resources, especially land. In contrast, Central and East European Countries (CEECs) witness a relatively high share of agriculture in economic activity. There are, therefore, significant second-round effects to be expected from polices that pave the ground towards the EU enlargement process, and AGE models provide the only coherent way to analyse these. More generally, policy changes such as CAP reform and WTO agreements are associated with impacts that reach beyond the agricultural sector and involve effects on factor markets for land and labour, which can most fruitfully be studied in a general equilibrium framework.

In industrialised countries and the European Union, there do exist strong linkages, however, with sectors that are closely related to agriculture, either because they deliver key inputs such as fertilisers, herbicides, agricultural machinery, or because they process primary agricultural products, such as beef processing and dairy industries. Highlighting such interdependencies within the agricultural complex is one area where partial equilibrium models can potentially be very successfully used, and some of the recent partial models have taken up this challenge (WATSIM, ESIM). This aspect is also gaining importance in the presence of dramatically increasing trade shares of processed food products. Most of the partial equilibrium models surveyed in this report do not fully exploit this potential advantage because they have a focus on trade in primary agricultural commodities. As a result, there has been a tendency to use AGE models to highlight the forward and backward linkages within food supply chains, as well as to incorporate trade in differentiated food products.

The majority of the models has a global coverage, only three of them treat a regional subset of economies. One of those is a partial agricultural models (SPEL), one is economy-wide (INFORUM) and one is an EU-agricultural model with an economy-wide closure (CAPMAT/ECAM). Within the group of models that closes their accounting with respect to world trade, there are differences in regional emphasis. FAPRI focuses on the US, ESIM on Eastern Europe, MISS focuses on US-EU interactions, GAPsi emphasises the EU. A clear regional bias is less obvious in the economy-wide models with a global coverage. All of them include at least the major trading regions (US, EU, Asia Pacific).

The commodity coverage of partial models puts more emphasis and detail on agricultural commodities. Most AGE models include only 1-3 agricultural sectors. RUNS and GTAP are exceptions in this regard. The recent version of the GTAP database has an amount of agricultural detail that is comparable to partial agricultural models.

Only one of the models, INFORUM, features linked individual country models, while all others favour representation of differences between economies via differences in parameters. While in principle, individual country models can capture more regional economic and institutional detail, there are clear difficulties with this approach in terms of consistency and maintenance, see section 2.1.4. Indeed, the linked country models approach seems to be less sustainable, and their contribution to global trade analysis has been

rather limited. (The IIASA Basic Linked System, Parikh et al., 1988; The project LINK, Klein and Su, 1979)

Comparative static modelling has certainly not gone out of fashion, although ten models favour a recursive dynamic approach which permits them to generate time paths of variables and lagged adjustment patterns. Forward looking time consistent behaviour is only introduced into one model, G-cubed, which does not have a specific agricultural focus, but concentrates more on macroeconomic phenomena. Explicit introduction of time is certainly appealing to policy users of models, since this relates the model outcomes to concrete time periods. Comparative static models have reacted to this demand by generating projections without explicit modelling of the dynamics, see section 2.2.1. While this procedure has some appeal, it is also not free of criticism, and some caution should be exercised. Partial models have to make assumptions on the development of a large number exogenous variables to produce a projected future dataset. In fact, the largest part of the projected future does not derive from the model, but from outside assumptions. Since the partial model itself does not provide a consistency check, it is questionable whether these assumptions are always consistent among each other. Projections with static general equilibrium models do provide a consistency check, but these models rely on an extremely small number of assumptions for their projections. This implies that a large part of the step between two time periods is 'explained' by residual factors such as TFP growth rates which accumulate much of deviations not included in the original model. Finally, the features of the 'baseline' in all dynamic models as well as in projections are critical for the interpretation of policy results which are obtained relative to the constructed baseline scenario.

It is striking to note that all partial equilibrium models and the EU-agricultural models treat international trade in homogeneous products, while AGE models deal with trade in differentiated products by default. As already mentioned above, the volume of trade in processed food products is increasing relative to trade volumes in primary commodities. Since processed food can be considered to be of a more differentiated nature than primary products, it is highly relevant to come to grips with trade in differentiated products. By excluding intra-industry trade, and limiting the analysis to net trade, partial models capture the degree to which countries are interwoven only imperfectly. If net trade in a certain commodity turns out to be zero, two economies are unduly qualified as unlinked if in fact there exist intra-industry trade relations. These models also run the risk of predicting the empirically contestable phenomenon of extreme specialisation. Net trade in homogeneous goods also makes it impossible to incorporate bilateral trade policies. While the standard treatment of trade in differentiated products follows the Armington specification, two AGE models (BDS, WTO) incorporate firm-level product differentiation and economies of scale by default, and the standard GTAP model has been amended in that direction. These models focus on manufacturing and services, where these phenomena are perhaps more relevant than in agriculture. However, in food processing industries economies of scale and imperfect competition aspects are certainly relevant as well. A related issue is Foreign Direct Investment (FDI) by internationally operating processing and retailing firms. This is as yet untreated in the applied models surveyed, but does require the recognition of economies of scale at the plant level as well as at the firm level (Markusen, 1984, Markusen and Venables, 1998). Scale and variety effects tend to yield 'large numbers' in trade liberalisation studies. It must be recognised, though, that hitherto the empirical basis for these industrial organisation issues is rather weak. Cross country econometric evidence on key parameters that measure scale economies are not yet available.

Ten models attempt to capture explicitly quantitative trade restrictions and CAP-type policies, while eight of the models resort to a tariff-equivalent representation. Policies are typically formulated at the commodity level or tariff-line level. It is at this level that policy makers need information, and partial models are in principle able to get down to the required level of detail, including specific institutional arrangements. Partial models, with their focus on selected sectors, are in principle able to give a more precise representation of policies, such as quantitative restrictions. However, our survey of partial model reveals that some partial models under-utilise that potential and resort to a tariff-equivalent representation of policies. Specialised models of the EU agricultural sector (CAPMAT/ECAM and SPEL-EU) are a notable exception as regards the representation of EU agricultural policies, and the treatment of budgetary implications. However their treatment of international trade is rather limited.

The inventory of models shows that some datasets are used by different models. Usually, modellers adjust the raw data to suit their specific needs, and consequently some duplication of efforts occurs. Nine modelling teams choose to make there dataset publicly available, either free of charge or at cost. This practice, which is increasingly observed within the modelling community, is considered a very useful step as it allows others to build on existing (and time consuming) work and it increases the transparency of modelling results. Sharing of databases has in the past been hampered by well known public good problems, which provide insufficient incentives for individual teams to contribute to database development. The INFORUM network provides an early example of an institutional set-up that facilitates sharing of data. INFORUM contributors submit (input-output) data in a form that matches their particular country model, and does therefore not require major adjustments to a common standard. In contrast, the GTAP framework enforces uniform standards on regional data and trade data. In addition, GTAP is supported by a strong group of institutional stakeholders which puts high requirements on the quality, timeliness and documentation of the data.

It turns out that 15 of the models surveyed here rely on calibration methods, and take there initial parameter estimates from the same published sources that sometimes date back a considerable time. Current models are dominated by 'theory' over 'observations'. Econometric estimation of key behavioural parameters in applied models is certainly an underdeveloped area, although there are some initiatives to estimate partial models in consistence with micro-economic theory (ESIM, FAPRI, CAPMAT/ECAM). Recent developments in entropy estimation methods may help to alleviate some of the technical problems that one encounters in estimating large scale AGE models with limited data (see Golan et al., 1996).

Although not apparent from our earlier discussions, documentation of models is generally weak and scattered, with some notable exceptions (BDS, G-cubed, GTAP). Especially agency based models do not stand out by clarity of documentation. Modellers that are rooted in academia face stronger incentives to submit their work to peer reviews, which increases transparency. An important related aspect is the accessibility of models and data to outside users, who do not belong to the organisations or bodies which have (initially) financed or sponsored the development of these models. While nine models offer the possibility to obtain their datasets, the models themselves are often proprietary. However, some of the models which are presented in this report can be considered as 'public goods' (conditional on certain costs and guarantees) which can be used by or made available to interested organisations or persons. Thus, the SWOPSIM model developed by the Economic Research Service (ERS) of USDA has been made available to numerous academics who worked on the impact of agricultural trade liberalisation. The OECD AGLINK model is presently used by government services of OECD member countries. A part of the INFORUM models and modelling tools are in the public domain. At the present time, GTAP represents the most far reaching attempt to public availability, and has now several hundred users in the academic community as well as in research agencies all over the world.

Building an applied trade model is costly exercise, which tends to require several man-years of dedicated work on database construction, theory formulation, parameter estimation and computer implementation. In addition, the size of the investment implies that the basic design choices are to a large extent irreversible. Once a particular route has been chosen, the switching cost may become prohibitive. Some developments point towards a further reduction in entry costs to this type of work: (a) convergence towards standards in model building, where new models can build on established blueprints. (b) a major, and seldom fully appreciated, part of model building is devoted to database construction. GTAP has pioneered institutional innovations that lower the costs associated with database construction and database maintenance considerably. (c) The availability of powerful general purpose software packages renders it obsolete to develop own software to solve large scale models numerically. Additional advantages of using packages like GAMS, GEMPACK or GAUSS is the transferability, reproducibility (and therefore crosschecking) of models and ease of maintenance. Early partial equilibrium models have been implemented in spreadsheets, which was top technology at the time. Except for small scale models, and models for pedagogic purposes, spreadsheet models do not have much to commend them. They are inherently difficult to maintain and are very error-prone.

The degree to which models will contribute to new policy questions depends critically on their degree of adaptability. How capable are existing applied models to respond to newly arising policy questions? At a first glance, there are several issues on the current agricultural trade policy agenda that do not seem to fit well within existing trade modelling frameworks:

- 'consumer concerns' which are put forward as arguments to restrict imports of allegedly unsafe food products (e.g. hormone treated beef, genetically modified organisms);
- conservation of landscape as an argument to restrict imports from low-cost producers;
- environmental concerns, which lead to production restrictions and 'green trade' issues.

Unfortunately, we do not have the benefit of hindsight. It is conceivable, however, that existing models will be adapted for use in the above policy areas. This encompasses at least two issues. First, how existing models can be adapted in terms of policy representations, and second, how the outcome variables that they provide can be translated into

variables that arise on the policy agenda. With some creativity, the policy issues can be translated into preference and technology shifts, which interact with conventional import restrictions and production restrictions. A main contribution from existing models is likely to be a structuring of the discussion and initial quantification, rather than detailed numerical assessment.

Ten years ago, the OECD and the World Bank convened a symposium that assessed the 'state-of the-art' in agricultural trade modelling at that time, see Goldin and Knudsen (1990). The field has changed over the past decade, but to some extent the comments made at this symposium can be echoed today. Probably the most important innovations have not been theoretical, nor have they been technological. The most significant changes have been of an institutional nature, albeit supported by recent computer and communications technologies. Ten years ago, models, data and software were almost exclusively proprietary. Today, it has become more common to exchange computer code and to share databases. This tendency can be expected to be continued in the future. The 'open source' concept that spurred rapid innovations in some parts of the software industry may very well be the direction towards which the global trade modelling community is heading.

5. References

Note: an extended bibliography to each model is provided in the Annex to this report

ABARE, *The MEGABARE model: interim documentation*, Canberra: Australian Bureau of Agriculture and Resource Economics, 1996.

Adelman, I. And S. Robinson, *Income distribution policies in developing countries: a case study of Korea*, Stanford: Stanford University Press, 1978.

Alexandratos, N. (ed.), *World Agriculture towards 2005. An FAO study*, Rome: Food and Agricultural Organization of the United Nations, 1995.

Almon, C., The INFORUM Approach to Interindustry Modeling, *Economic Systems Research*. 3(1): 1-7, 1991.

Almon, C., A. Ruiz-Moncayo, and L. Sangines, Simulation of a Mexico-USA Free Trade Agreement. *Economic Systems Research*. 3(1): 93-97, 1991.

Ames, G.C.W., L.Gunter and C.D. Davis, Analysis of USA-European oilseeds agreements, *Agricultural Economics*, 15(2): 97-113, 1996.

Armington, P.A., 'A theory od demand for products distinguished by place of production', *IMF staff papers*16:159-178, 1969.

Bach, C.F, B. Dimaranan, T. Hertel and W. Martin, Market growth, structural change and gains from the Uruguay round, *Review of International Economics* (forthcoming), 1998.

Bach, C.F. and K. Pearson, 'Implementing quota in GTAP using GEMPACK or how to linearize an inequality', West Lafayette: Purdue University, GTAP Technical paper series No. 4. http://www/agecon.purdue.edu/gtap/techpapr/tp-4.htm, 1996.

Baldwin, R.E. and A.J. Venables, 'Regional economic integration', Chapter 31 <u>in</u>: Grossman and Rogoff (eds.), *Handbook of International Economics* (Volume III), Amsterdam etc.: Elsevier, 1995.

Blake, A.T., Hubbard, L.J., Philippidis, G., Rayner, A.J. & Reed, G.V. *General Equilibrium Modelling of the Common Agricultural Policy*, Report to UK MAFF and HM Treasury, March 1999.

Bremer, S.A (ed.), *The GLOBUS model. Computer simulation of worldwide polictical and economic developments*, Frankfurt and Boulder: Campus/Westview Press, 1987.

Brow, D. K., Tariffs, the terms of trade and national product differentiation, *Journal of Policy Modeling* 9:503-178, 1987.

Brown D. K., A. V. Deardorff, and R. M. Stern, A North American Free Trade Agreement: Analytical Issues and a Computational Assessment, *The World Economy* 15:15-29, 1992a.

Brown D. K., A. V. Deardorff, and R.M. Stern, North American Economic Integration, *Economic Journal* 102:1507-18, 1992b.

Brown D. K., A.V. Deardorff and R.M. Stern. 'Modeling multilateral trade liberalization in services', School of Public Policy University of Michigan Discussion Paper No. 378, 1995.

Brown D. K., A. V. Deardorff, and R.M. Stern, Expanding NAFTA: Economic Effects of Accession of Chile and Other Major South American Nations, *North American Journal of Economics and Finance*, 1996b.

Brown D. K., A.V. Deardorff, S. Djankov and Robert M. Stern, 'An Economic Assessment of the Integration of Czechoslovakia, Hungary, and Poland into the European Union', <u>in</u>: Stanley Black (ed.), *Europe's Economy Looks East.* New York: Cambridge University Press, 1996.

Brown D.K., A.V. Deardorff, A. K. Fox and R.M. Stern, '*Computational Analysis of Goods and Services Liberalization in the Uruguay Round'*, in: Will Martin and L. Alan Winters (eds.), *The Uruguay Round and the Developing Economies*, New York: Cambridge University Press, 1996.

Burniaux, J.-M., 'Le Radeau de la Méduse: Analyse de dilemmes alimentaires'. Paris: Economica, 1987.

Burniaux, J.-M. and D. van der Mensbrugghe, 'A Rural/Urban-North/South General Equilibrium Model for Agricultural Policy Analysis'. OECD Economics Department Technical Papers No. 33. Paris, 1990.

Cahill C. and W. Legg, 'Evaluation de l'aide à l'agriculture au moyen des équivalents subvention à la production et à la consommation; théorie et pratique', *Revue Economique de l'OCDE*. Vol 13: 16-46. Numéro spécial sur la modélisation des conséquences des politiques agricoles, 1990.

Christou, C., and D. Nyhus, Industrial Effects of European Community Integration, *Economic Systems Research*. 6(2): 179-98, 1994.

De Melo J. and D. Tarr, A general equilibrium analysis of U.S. Foreign Trade Policy, Cambridge (Ma.): MIT Press, 1992.

Devadoss S., P. Westhoff, M. Helmar, E. Grundmeier, K. Skold, W.H. Meyers and S.R. Johnson, 'The FAPRI Modeling System at CARD: A Documentation Summary', Technical Report 89-TR 13, December 1989. Center for Agricultural and Rural Development, Iowa State University, Ames, Iowa 50011, 1989.

Devadoss S. D., P.C. Westhoff, M.D. Helmar, E. Grundmeier, K. Skold, W.H. Meyers and S.R. Johnson, 'The FAPRI Modeling System: A Documentation Summary' in: C. R. Taylor, K.H. Reichelderfer and S.R. Johnson (eds), *Agricultural Sector Models for United States: Descriptions and Selected Policy Applications*. Ames: Iowa State University Press, 1993.

Dixit A.K and J. Stiglitz, Monopolistic competition and optimum product diversity, *American Economic Review* 67: 297 - 308, 1977.

Dixit, P.M. and V.O. Roningen, 'Modelling Bilateral Trade Flows-with the Static World Policy Simulation (SWOPSIM)-Modelling Framework', Staff Report, Economic Research Service, U.S. Department of Agriculture, Washington, D.C., 1986.

Ethier, W., Internationally Decreasing Costs and World Trade, *Journal of International Economics*, Vol. 9, pp. 1-24, 1979.

Ethier, W., Decreasing Costs in International Trade and Frank Graham's Argument for Protection, *Econometrica*, Vol. 50, pp. 1243-1268, 1982.

FAO, 'The World Food Model - Model Specification'. FAO Mimeograph, ESC/M/93/1, Rome, 1993.

FAO, 'World Food Model' Technical Documentation. Commodity and Trade Division, FAO, Rome, May 1998.

FAO, 'Impact of the uruguay Round on Agriculture' FAO CCP: 95/13, Rome, January 1995, 1994.

Folmer, C., M.A. Keyzer, M.D. Merbis, H.J.J. Stolwijk and P.J.J. Veenendaal, *The Common Agricultural Policy beyond MacSharry Reform*. Amsterdam: North-Holland, 1995.

Francois, J.F., McDonald, B. & Nordstrom, H., 'Assessing the Uruguay Round', <u>in:</u> W. Martin and L.A. Winters (eds), *The Uruguay Round and Developing Economies*, Cambridge: Cambridge University Press, 1995.

Francois, J. F. and K.A. Reinert, *Applied methods for trade policy analysis*. A handbook, Cambridge etc.: Cambridge University Press, 1997.

Frandsen, S.E., H.G. Jensen and D.M. Vanzetti, Expanding Fortress Europe'. Implications of European Enlargement for Non-Member Regions. Copenhagen: SJFI working paper 12/1998, 1998.

Frenz K. and D. Manegold, 'Lineares Modell zur Bestimmung von Preis- und Mengenwirkungen einer restriktiven Agrarpreispolitik in der EG', Arbeitsbericht des Instituts für landwirtschaftliche Marktforschung 88/1. Braunschweig, 1988.

Golan, A., G. Judge and D. Miller, *Maximum entropy econometrics: Robust estimation with limited data*, Chichester: Wiley, 1996.

Goldin, I. and O.Knudsen (eds.), 'Agricultural trade liberalisation. Implications for developing countries'. Paris: Organistion for Economic Co-operation and Development, 1990.

Grossman, G.M. and E. Helpman, Innovation and growth in the global economy, Cambridge (Ma): The MIT Press, 1991.

Guyomard H. & L. Mahé, EC-US Trade Relations in The Context of the Gatt Negotiations and of the Reform of the Common Agricultural Policy. In The Economics of the Common Agricultural Policy (CAP). *European Economy*, Reports and Studies, no 5, 1994.

Guyomard H., L. Mahé, C. Tavéra and T. Trochet, *Some Problems Of Modeling Agricultural Trade Policy Intercations Between the EC and US*. International Agricultural Trade Consortium. San Antonio, December 14-15, 1988.

Guyomard H., L. Mahé, C. Tavéra and T. Trochet, Technical Change and EC-US Agricultural Trade Liberalization. *Journal of Agricultural Economics*, 42, 2, pp 119-137, 1991.

Hanoch G., Production and Demand Models with Direct or Indirect Implicit Additivity. *Econometrica*. Vol 43: 395-419, 1975.

Henrichsmeyer, W., 'Das Konzept des SPEL-Systems: Stand und Perspektiven', Luxembourg: Eurostat, 1995.

Henrichsmeyer, W., von Lampe, M. and Möllmann, C., 'Weiterentwicklung und Andwendung des Welt-Agrarhandelsmodells WATSIM für Langfristsimulationen der Weltagrarmärkte sowie der Auswirkungen für die Landwirtschaft der EU und der Bundesrepublik Deutschland unter Einbeziehung des Modellsystems RAUMIS', Interim Report for the Federal Ministry for Food, Agriculture and Forestry, Bonn, 1998.

Hertel, T.W., W. Martin, K. Yanagashima and B. Dimaranan, 'Liberalizing manufactures trade in a changing world economy', <u>in</u>: Martin and Winters ,1995.

Hertel, T.W. (ed), *Global Trade Analysis: Modelling and Applications*, Cambridge University Press, 1997.

Hertel, T.W., M. Brockmeier and P. Swaminathan, Sectoral and economywide analysis of integrating Central and East European Countries into the European Union: Implications of alternative strategies, *European Review of Agricultural Economics*, 24, 1997.

Huff H.B. and C. Moreddu, 'The Ministerial Mandate Trade model (MTM)', *OECD Economic Review*. Vol 13. Special issue on Modeling the effects of Agricultural policies, 1990.

Jensen, H.G., S.E. Frandsen and C.F. Bach, 'Agricultural and economy-wide effects of European enlargement: Modelling the Common Agricultural Policy,', Copenhagen: SJFI working paper 11/1998.

Jorgenson D.W., Econometric methods for Applied General Equilibrium Modelling, Chapter 4 <u>in</u>: Scarf and Shoven (eds.) *Applied General Equilibrium Analysis*, Cambridge: Cambridge University Press, 1984.

Keyzer, M.A. and M.D. Merbis, 'Impact analyses of the Agenda 2000 proposals for CAP reform', *CAP Reform Proposals*. European Commission/DG VI: Bruxelles, 1998.

Klein, L.W. and V. Su, Protectionism: An analysis from Project LINK, *Journal of Policy Modeling* 1(1): 5-35, 1979.

Kleinhanss, W., B. Osterburg, D. Manegold,, K. Seifert, C. Cypris, T. Hemme, A. Jacobs, P. Kreins and F. Offermann, 'Auswirkungen der Agenda 2000 auf die deutsche Landwirtschaft. Eine modellgestützte Folgenabschätzung auf Markt-, Sektor-, Regions- und Betriebsebene', Institut für Betriebswirtschaft der Forschungsanstalt für Landwirtschaft Braunschweig-Völkenrode (FAL), Arbeitsbericht 2/98, Braunschweig, 1998.

Krugman, P.R., Increasing Returns, Monopolistic Competition, and International Trade, *Journal of International Economics*, Vol. 9, pp. 469-479, 1979.

Krugman, P.R., 1980, Scale Economies, Product Differentiation and the Pattern of Trade, *American Economic Review*, Vol. 70, pp. 950-959.

Labys W.C., *Quantitative models of commodity markets*. Cambridge (Ma): Balinger Publishing, 1975.

Laird S., Quantifying commercial policies, <u>in</u>: J. F. Francois and K.A. Reinert, *Applied methods for trade policy analysis*. *A handbook*, Cambridge: Cambridge University Press, 1997.

Lampe, M. von, *The World Agricultural Trade Simulatiomn System WATSIM. An overview.*, University Bonn, Agricultural and Resource Economics, discussion paper 98-05, 1998. Lancaster, K., Intra-industry Trade under Perfect Monopolistic Competition, *Journal of International Economics*, Vol. 10, pp. 151-175, 1980.

Liapis, P.S., 'Incorporating Inputs in the Static World Policy Simulation Model (SWOPSIM)', Technical Bulletin, United States Department of Agriculture, 1990.

Lucas, R.E., Econometric policy evaluation: a critique, *Journal of Monetary Economics*, 1(2): 19-46, 1976.

Mahé L. and C. Moreddu, 'An Illustrative Trade Model to Analyse CAP Changes: Unilateral Moves and Interaction with USA'. Economic Notes by Monte Dei Paschi Di Siena, 1, 1987.

Mahé L. and C. Tavéra, Bilateral Harmonization of EC and US Agricultural Policies. *European Review of Agricultural Economics*, 15, pp 325-348, 1989.

Markusen, J.R., Multinationals, multi-plant economies, and the gains from trade' *Journal* of International Economics, 16:205-226, 1984.

Markusen, J.R. and A.J. Venables, Multinational firms and the new trade thory, *Journal of International Economics*, 1998.

Martin W. and L.A. Winters (eds), *The Uruguay Round and Developing Economies*, Cambridge: Cambridge University Press, 1995.

McDougall, R. and Tyres, R., Asian Expansion and Labour-Saving Technical Change: Factor Market Effects and Policy Reactions, *American Journal of Agricultural Economics*, 76 (5), 1111-1119, 1994.

McDougall R.A., A. Elbehri, T.P. Truong (eds.), *Global trade, assistance and protection: The GTAP 4 database*, West Lafayette (In.): Purdue University, Center for Global Trade Analysis, 1999.

McKibbin, W. and Wilcoxen, P., The theoretical and empirical structure of the G-cubed model, *Economic Modelling*. Vol 16: 123-148, 1999.

Meilke, K. McClatchy D. and H. De Gorter, Challenges in quantitative economic analysis in support of multilateral trade trade negotiations. *Agricultural Economics*. Vol 14: 185-200, 1996.

Meijl, H. van, F.van Tongeren, *Endogenous international technology spillovers and biased technical change in agriculture*, Economic Systems Research, Vol. 11, No. 1, pp 31-48, 1999.

Meijl, H. van, F.van Tongeren, *Endogenous international technology spillovers and biased technical change in the GTAP model.* GTAP technical paper No. 15, West Lafayette (IN), Center for Global Trade Analysis, Purdue University. http://www/agecon.purdue.edu/gtap/techpapr/tp-15.htm,1999.

Meijl, J.C.M. van, F.W. van Tongeren, *Trade, technology spillovers and food production in China*, Weltwirtschaftliches Archiv, 134:3, pp 423-449, 1998.

Melo, J. de and S. Robinson, Product differentiation and the treatment of foreign trade in computable general equilibrium models of small economies., *Journal of International Economics* 27: 47-67, 1989.

Melo, J. de and D. Tarr, *A general equilibrium analysis of US foreign trade policy*. Cambridge (Ma.): The MIT Press, 1992.

Parikh, K.S., G. Fischer, K. Frohberg and O. Guldbrandsen, *Towards free trade in agriculture*, Dordrecht: Matinus Nijhoff, 1988.

Perroni, C. and Wigle, R (1997) Environmental Policy Modelling, Ch. 12 in Hertel, T.W. (ed), *Global Trade Analysis: Modelling and Applications*, Cambridge University Press, 1997.

Richter, J. 'Austria and the Single Market.' Economic Systems Research; 6(1), 77-90, 1994.

Roningen V. and K. Liu, 'The World Grain, Oilseeds and Livestock (GOL) Model - Background and Standard Components', ERS Staff Report No AGES830317, Econ. Res. Serv. U.S. Department fo Agriculture, 1983.

Roningen, V.O., 'A Static World Policy Simulation (SWOPSIM) Modeling Framework', Staff Report, Economic Research Service, U.S. Department of Agriculture, Washington, D.C., 1986.

Roningen, V.O., Dixit, P.M. and Seeley, R., 'Agricultural Outlook in the Year 2000: Some Alternatives', *Agriculture and Governments in an Interdependent World* (ed. A. Maunder and A. Valdes), Dartmouth, England, 1990.

Roningen and Yeats, 1976.

Salamon, P, 'Impacts of Different Policy Options on the EU Dairy Market', Landbauforschung Völkenrode 48: 213-222, 1998.

Spence M., Product differentiation and welfare, *American Economic Review* 66: 407 - 415, 1976.

Sullivan, J., Wainio, J., and V.O. Roningen, 'A Database for Trade Liberalization Studies', Staff Report, Economic Research Service, U.S. Department of Agriculture, Washington D.C., 1989.

Surry Y., The 'Constant Difference of Elasticities' (CDE) Functional Form: a Neglected Alternative ? Contributed Paper to the Annual meeting of the American Agricultural Economics Association. Baton Rouge. LA. USA, 1989.

Tangermann, S. and T.E. Josling, 'Pre-Accession Agricultural Policies for Central Europe and the European Union' Study commissioned by DG I of the European Commission. Göttingen, 1994.

Tongeren, F.W. van, *Microsimulation of the corporate firm: exploring Micro-Macro economic relations*, Berlin etc.: Springer Verlag. (Series Lecture Notes in Economics and Mathematical Systems, No. 427), 1995.

Tyers, R. and K. Anderson, *Disarray in World Food Markets: A quantitative assessment*, Cambridge etc.: Cambridge University Press, 1992.

Klein, L.W. and R.M. Young, Protectionism: an analysis from project LINK, *Journal of Policy Modeling* 1 (1): 5-35, 1979.

Wainio, J. and P. Gibson, Implementation of Uruquay Round tariff reductions, ERS/USDA, Agricultural Outlook, November, 1999.

Winters, A.L., 'The role of partial equilibrium agricultural models', <u>in</u>: Goldin, I. and O.Knudsen (1990), *Agricultural trade liberalisation*. *Implications for* developing countries. pp. 453-454, 1990.

Wolf, W., SPEL System: Methodological Documentation (Rev. 1), Vol. 1: Basics, BS, SFSS. Theme 5 Series E, Luxembourg: Eurostat, 1995.

Zintl, A., Greuel, H.-J., 'SPEL System: Technical Documentation (Rev. 1), Vol. 1: Basics'. Theme 5 Series E, Luxembourg: Eurostat, 1995a.

Zintl, A., Greuel, H.-J., 'SPEL System: Technical Documentation (Rev. 1), Vol. 2: BS, SFSS', MFSS. Theme 5 Series E, Luxembourg: Eurostat, 1995b.

Appendix 1 Partial models

A1.1 AGLINK

	The AGLINK Model
Institutions and individuals	OECD, Directorate for Food, Agriculture and Fisheries
Goal of the Model	To assists the OECD Secretariat in their yearly medium
	term outlook and to conduct quantitative analysis of the
	impacts of changes in agricultural policies on principal ag-
	ricultural markets
Regional scope	The world. Complete modules for major OECD countries
	or regions, that is, 10 OECD countries/regions and three
	non-OECD countries/regions modelled explicitly, while the
	part of the world not taken into account is exogenous
Commodity/sectoral scope	Major OECD agricultural commodity markets, that is, in
	broad terms 19 commodities
Key applications	Yearly OECD medium term agricultural outlook and analy-
	sis of the impacts of specific alternative agricultural policy
	scenarios
Documentation and availabil-	The model is documented through a preliminary and in-
ity	complete document
	http://www.oecd.org//agr/Documents/aglink98.pdf How-
	ever, the document is updated yearly, and some further and
	more complete information can be found on a OECD inter-
	net site, which is exclusively for member country use
Theoretical underpinnings	Partial equilibrium dynamic supply and demand model of
	the world agricultural commodity markets
Modeling of international trade	Homogeneous goods and pooled markets (net trade)
Representation of policies	Price linkages using OECD Producer Subsidy Equivalent
	(PSE) and Consumer Subsidy Equivalent (CSE) data and,
	explicit treatment of quantity restrictions
Theoretical consistency	Cross commodity linkages explicitly taken into account,
	but all other non-agricultural sectors are ignored
Model closures	World market equilibrium solving for world market prices
Regional aggregation	Complete modules for Argentina, Australia, Canada, China,
	EU-15, Hungary, Japan, Korea, Mexico, New Zealand,
	Poland, United States and the Rest of the World, while the
	Rest of OECD and the countries of the former USSR and
	Slovakia are considered exogenous to the model

Commodity aggregation	Main principal agricultural commodities: Wheat, rice, oil- seeds, oilseed meal, oilseed oil, fresh dairy products, butter, cheese, skim milk powder, whole milk powder, caseine, whey powder, other dairy products, beef and veal, pigmeat, poultrymeat, sheepmeat, eggs, and wool
Base year/time series	1997. Mainly calendar year basis for all data. Data updated annually
No. of agricultural commodi- ties	Same as commodity aggregation, see above
Variables generated and pa- rameters needed	Variables: The quantities for the individual coun- tries/regions of supply, demand and net-trade, as well as world market prices for the individual agricultural com- modities Parameters: partial supply and demand elasticities
Sensitivity	Not reported
Parameter estimates	'Institutional calibration': From the Secretariat in co- operation with member states and consultants
Policy data	From OECD PSE and CSE data
Data sources	Information not available
Software	SIMPC
Data set publicly available	Information not available
Functional relationships	A dynamic model, which is mainly linear in the logarithms of the variables with lags in both exogenous and endoge- nous variables

A1.2 ESIM

	The European Simulation Model (ESIM)
	The European Simulation Model (ESIM)
Institutions and indi-	Institute of Agricultural Economics /University of Goettingen:
viduals	Chair of Prof. Dr. S. Tangermann, Wolfgang Muench
	(wmuench@gwdg.de). The model was initially developed in a
	co-operation between the USDA/ERS and teams of Prof. T. Jos-
	ling /Stanford and of Prof. S. Tangermann/Goettingen (1993-94).
	Goettingen focused on the modeling of the EU and the CEEC
	and pursued its research further on in this area.
	Linked to a set of single country CGE models (Martin Banse,
	mbanse@gwdg.de)
Goal of the model	Medium term projections and simulation of the effects of chang-
	ing agricultural policies in Europe until 2005 incl. evaluation of
	accession of CEECs to the EU.
Regional scope	World, with special emphasis on European countries
Commodity / sectoral	Partial, agriculture, with rigorous macroeconomic links - 27
scope	commodities representing the major part of agricultural produc-
	tion value
Key applications	Analysis of effects of CAP policies on agricultural markets and
	budgetary expenditure, particularly, WTO trade liberalisation,
	EU enlargement, CAP/Agenda 2000, development of competi-
	tiveness
Documentation and	Both the model and data set are the property of the University of
availability	Goettingen, model will be publicly available soon.
-	Documentation: Münch, W. (1999). Market and Budgetary Impli-
	cations of CEC Accession to the EU. A partial equilibrium
	approach. Phd. Dissertation. Göttingen. (forthcomming)
Theoretical underpin-	Partial equilibrium model, with a special emphasis to Europe.
nings	
Dynamics	No (comparative static)
Modelling of interna-	Homogeneous goods and pooled markets (net trade)
tional trade	
Representation of poli-	Export refunds: product of net trade and the difference between
cies	domestic market price and world price
	Compensation payments: the product of given payment rate per
	hectare and crop area
	Total budget expenditures: the sum of export refunds, compensa-
	tion payments and other subsidies.
	Set-aside: there are special variables for defining area for set-
	aside. Quota restrictions incorporated
Theoretical consistency	The functional form is the isoelastic type for demand and supply
,	It guarantees the theoretical conditions of homogeneity and
	symmetry as well as the strictly quasi convexity/concavity in the
	positive orthant.

Model closures	zero net exports on world markets
Regional aggregation	9 regions/countries: (EU-15, Bulgaria, Czech Republic, Estonia,
8808	Hungary, Poland, Slovakia and Slovenia, ROW)
Commodity aggrega-	27 products: wheat (common, durum), coarse grains (barley,
tion	corn, other grains), rice, sugar, oilseeds (soybean, rape seed, sun-
	flower seed), oilmeals (soymeal, rapemeal, sunflower meal), feed
	(corn gluten feed, other energy feed, other protein feed), dairy
	products (liquid milk, skimmed milk powder, butter, cheese),
	meat (beef, pork, poultry), eggs, oils (soybean oil, rape seed oil,
	sunflower oil)
Base year / time series	1994-1996, 13 periods
# of agric. Commodi-	27 = 17agricultural + 10 food processing + 0 forestry and fishery
ties	products
Variables generated	Exogenous variables and parameters: technical progress, popula-
and parameters needed	tion growth, income growth, inflation, exchange rates,
	administered pricing regimes, quantitative controls on produc-
	tion, trade barriers
	Endogenous variables: domestic and world prices, production,
	consumption, international trade
	Necessary parameters: price elasticities of supply and demand,
	income elasticities, yield elasticities, feed cost elasticities, mini-
	mal import prices, intervention export prices, basic domestic and
g ::::::	world market prices etc.
Sensitivity	Reported in Münch, W. (1999). Market and Budgetary Implica-
	tions of CEC Accession to the EU. A partial equilibrium
Parameter estimates	approach. Phd. Dissertation. Göttingen. (forthcoming) Calibrated;
Policy data	CAP reform proposals, proposals of national policies.
Data sources	National statistical sources of the individual countries and gener-
Software	ally available sources (OECD, EU)
Sonware	original version: Supercalc 5.5 in work: Excel version, Czech module: in GAMS
Detect publicly avail	No
Dataset publicly avail- able?	

References

Tangermann, S. and T.E. Josling, Pre-Accession Agricultural Policies for Central Europe and the European Union. Study commissioned by DG I of the European Commission. Göttingen, 1994.

Banse, M. and W. Münch, Die Einführung der Gemeinsamen Agrarpolitik in den Beitrittsländern Mitteleuropas und die Agenda 2000. In: Agrarwirtschaft No. 3/4, 1998. Frankfurt am Main, 1998. Münch, W., Effects of CEC-EU Accession on Agricultural Markets and Government Budgets in the CEC. In: Tangermann (ed.). Agricultural Implications of CEEC-Accession to the EU. Final Report. FAIR1-CT95-0029. Göttingen, 1999.

Münch, W. and M. Banse, QUANTIFYING THE IMPACT OF EU-ACCESSION - A COMBINED PARTIAL AND GENERAL EQUILIBRIUM APPROACH FOR CENTRAL EUROPEAN COUNTRIES - Contributed Paper EAAE Congress, Warsaw August 24 to 28, 1999. Göttingen, 1999.

Tangermann, S. and W. Münch, Sugar Markets in Central Europe and Eastward Enlargement of the European Union. Diskussionsbeitrag 9705. Institut für Agrarökonomie. Universität Göttingen. Göttingen, 1997.

Banse, M., W. Münch and S. Tangermann, Accession of the Central European Countries to the EU: Implications for Agricultural Markets, Trade, Government Budgets and the Macro-Economy in Central Europe. In: J. F. M. Swinnen (ed.) 'Agriculture and East-West European Integration'. Ashgate (forthcoming), 1998.

EU-Commission, Strategy Paper. Brussels, 1995.

Núnez-Ferrer, J., and Buckwell, A..: Using ESIM to model economic impacts of Enlargement of the European Union to the Central and Eastern European Countries. University of London, Wye College, 1995.

A1.3 FAO world model

	World Food Model
General	
Institutions and individuals	Commodities and Trade Division, Food Agriculture Or- ganization, Rome, Italy.
Goals of the model	 Medium- and/or long- term projection model of the most important agricultural and food products. Simulating impacts of policy changes on prices, produc- tion, consumption and trade of the most important agricultural products.
Regional scope	Worldwide.
Commodity/sectoral scope	The World Food Model covers thirteen agricultural com- modities including grain, livestock, and oilseed oils and fats.
Key applications	 To contribute to the outlook of FAO on agricultural commodity markets by providing medium and long term projections (base line) on prices, supply, demand and trade of most important agricultural and food products. Impacts on, developed and developing countries' agriculture of the Uruguay Round.
Documentation and availabil- ity Theory	 Documents publicly available and listed on the following web site: http://www.fao.org/es/esc Several in-depth papers can be obtained from Mr. De Nigris, senior econometrician, Commodities and Trade Division, FAO, Rome. This model is not publicly available.
General underpinnings	- Multi-product (sectoral), partial equilibrium, dynamic,
	 world model supply equations are typical partial adjustment (nerlovian) relationships with some modifications (see text). demand equations are all static and specified acording to the final use of the product considered. Generally speaking, food demand equations depend direct and other relevant prices and GDP. Feed demand equations are typical compensated input demand relationships with arguments being the relevant prices of cereals and meals and livestock herds converted in cereals or protein meal equivalennts. Stock demand equations are specificed for crops and some livestock products (beef) in some regions (EU15).
Dynamics	 Adoption of the partial adjustment model specification for the supply equations. Use of lagged prices to capture the dynamic decision pro- cess of crop and livestock production.

Modelling of intermetional	 Use of time trend and constant growth rate specifications to capture the evolution of exogenous variables such as technical change, population and gross domestic product. Price transmission equations between world and domestic prices are expressed in first order differences or in terms of relative rates of changes.
Modelling of international trade	Homogeneous goods and pooled markets (net trade)
Representation of policies	 tariff-equivalents and/or price wedges. A typical price transmission equation linking domestic and world price is used for the majority of developing countries. All policy measures generating gaps between both prices are captured by a single parameter defined as the elasticity of transmission of domestic prices with re- spect to world prices. For other countries (mostly developed or those for which PSE and CSE data are available), a linear price transmis- sion equation between world and domestic price is used. The intercept term in this equation captures all the tariff equivalents of agricultural policy instruments which have an incentive on production but are not linked to world price levels while the slope reflects the 'ad-valorem' tariff equivalent of all policy policy instruments (which are di- rectly linked to world price levels).
Model closures	This feature (specific to CGE models) corresponds to a partial equilibriulm model to the identity equating net imports and exports, leading to the dertemination of world equilibrium prices.
Functional forms	- All behavioural relationships (supply and demand) use constant elasticity functional forms which are linearized using the logarithmic transformation
Theoretical consistency	The World Food Model does not satisfy all the laws of de- mand or supply (homogeneiy, additivity, symetry and negativity). However, to avoid the ermergence of perverse effects during the simulation excercises, the linearized ver- sion of the model satisfies the existence condition of a unique price equilibrium solution. Basically, underlying to this existence condition is the necessity to have direct price elasticities (responses) bigger in absolute values thant their cross price counterparts.
Data	
Regional aggregation	Worldwide in scope, the World Food Model make projec- tions for 147 invidual countries (115 developing and 32 developed countries). The European Community relates to the 12 member States including the new German Länder,

	the Republics of the Former USSR are treated a sone geo-
	graphical entity.
Commodity aggregation	Thirteen agricultural commodities:
	- The grain group (5 individual commodities or groups of
	commodities) includes wheat, rice, maize, millet and sor-
	ghum, and other coarse grains.
	- Meat and meat product products group (4 individual
	meats and meat groups) is made up of bovine meat, sheep-
	meat and goatmeat, pigmeat and poultry meat.
	- Two dairy products are considered. On of these two dairy
	products is 'butter' which is viewed as a sub-commodity of
	fats and oils complex as well part of the dairy products
	group.
	- The fats and oils group is made up of two aggregate
	commmodities denoted 'fats oils' and 'oilmeals', respec-
	tively. The former commodity aggregate grouping includes
	13 individual oils and fats converted in oil equivalents. The
	latter commodity aggregate includes 9 individual oilmeals.
Data set construction, en-	- Data pertaining to the quantity variables (supply, demand,
dogenous variables	stocks and trade) are directly obtained from the detailed
	commodity balance sheets of the FAO data AGROSTAT
	and/or provided by the FAO's Commodity and Trade Divi-
	sion. This data base provides 'supply utilization accounts'
	for 600 primary and processed crops, livestock and fish
	products. A 'standardization' procedure allows converting
	derived and processed products (such as wheat flour) into
	primary commodity equivalent through the use of appropri-
	ate conversion factors.
	- Data on domestic and world prices are also obtained from
Data act construction avons	FAO databases.
Data set construction, exoge-	The only exogenous variables entering the World Food Model are population and gross domestic products.
nous variables Base year/time series	- The present version of the World Food Model uses the
base year/time series	1993-1995 period as the base period.
	- Concerning the agricultural policy instruments, PSE and
	CSE generated by the OECD and the USDA were used to
	generate the various tariff-equivalents. The base period
	chosen to measure these tariff-equivalents were the period
	1986-1988.
Parameters needed	- Parameters include supply and demand price elasticities,
	income elasticities, price transmission, and partial adjust-
	ment coefficients and exogenous specified growth rates.
	- FAO publications stress that 'elasticities and parameters
	used in the equations are mainly from estimates made by
	FAO, supplemented by the elasticity databases of the

	USDA's SWOPSIM and the OECD's MTM models.
Model's sensivitiy	 Sensitivity analysis as it is conducted for CGE models by changing the values of key parameters is not conducted systematically in the World Food Model. On the other hand, sensitivity analysis has been conducted for the Uruguay Round impacts by considering different
	policy scenarios based on different assumptions on the evolution of world economy and world agriculture
Dataset availability	- The dataset supporting the World Food Model is not pub- licly available.
Generating a baseline	 Since the World food Model is to provide projections on the supply, demand, trade and prices of th emajor agricul- tural commodities, it is necessary to make several assumptions on the exogenous variables. Assumptions made on the rate of growth of each country's GDP are essentially based on long-term predictions made by the International Economics department of the World Bank. Assumptions on the growth of each country's population are based on demographic projections prepared by the
	United Nations Population Division.
Algorithm and computer pro- grammes	
Algorithm	 The World Food Model is mamouth model containing about 15 000 equations. Given this size, it has been divided into 18 blocks. The World Food Model can be viewed as a hierarchical structure made up of many sub-models that can be resolved separately. Hence, it is possible to consider three submodel structures: i) Single-commodity, single-country model structures (consisting of four or five equations that are resolved sequentially. In this structure, the international prices and competing commodites' prices are set at exogenous levels) ii) Single-commodity global model model structure determines a unique world equilibrum price through the market clearing equation (sum of all net imports = sum of all net exports). Note that all other commodites prices are set at exogenous levels.
	iii) Multiple-commodity global model: all international commodity prices are endogenous and a set of mixed linear and nonlinear (however almost linear due to the use of the logarithmic functional forms for most of behavioural rela- tionships) equations are resolved simulatenously. In this
	last structure, there are concerns about the existence of a

	 single equilibrium solution and the overall dynamic stabil- ity of the model. This is the reason why the existence condition mentionned earlier must be satisfied. Given the existence of dynamic specification of all supply equations with lagged prices, a large component of the multiple-commodity global model can be viewed as a re- cursive structure whereby the supply (depending on lagged prices) is already determined during the current period. Then, equating exogenous supply with all the demand schedules allow to generate reduced form simultaneoous equations for all international prices which also are a func- tion of all exogenous variables.
Computer programmes	 Home made softwares written in FORTRAN. The Gauss-Seidel recursive method is used to resolve the World Fod Model through successive iterations.

References

FAO, 'The World Food Model - Model Specification'. FAO Mimeograph, ESC/M/93/1, Rome, 1993.

FAO, 'World Food Model' Technical Documentation. Commodity and Trade Division, FAO, Rome, May 1998, 1998.

FAO, 'Impact of the uruguay Round on Agriculture' FAO CCP: 95/13, Rome, January 1995, 1994.

A1.4 FAPRI

Model	FAPRI	
Model	Food and Agricultural Policy Research Institute	
Institutions and in-	Food and Agricultural Policy Research Institute	
dividuals		
uividuais	sity, USA Devedos S. D. Westhoff M. Helmer, F. Crundmeier, K. Skeld, W.	
	Devados S., P. Westhoff, M. Helmar, E. Grundmeier, K. Skold, W.	
Goal of the model	Meyers, S. R. Johnson	
Goal of the model	Compound modeling system for:	
	- Policy analysis; Short medium and long term projections (1, 10 years), appual here	
	- Short, medium and long term projections (1-10 years), annual base-	
Regional scope	World, with special emphasive on USA	
Commodity/sectoral	partial agriculture: 24 agricultural products	
Scope Key applications	Quantitative evaluations of national and international agricultural	
Key applications	Quantitative evaluations of national and international agricultural policies that affect US and world agriculture	
	Farm legislation reform (e.g Farm bill 1985, 1990) through Uruguay Round negotiations	
Documentation and	Some difficulties rise in relation to the base data availability of the	
Availability	models;	
Availability	,	
Theoretical under-	FAPRI models cannot be used beyond a partnerships frame.Set of neoclassical, econometric partial and recursive dynamic mod-	
pinnings	els. Each component of FAPRI presents specific theory structure and	
pinnings	can be solved individually. Components are:	
	- Livestock models	
	- Domestic crop models	
	- World trade models	
	- US government cost models	
	- Net farm income model	
Dynamics	Dynamics included both on the supply and demand sides	
Modeling of Inter-	Homogeneous products and pooled markets (net trade)	
national Trade	fiomogeneous products and pooled markets (net trade)	
Representation of	Price wedges	
Policies	The wedges	
Theoretical consis-	Imposition of theoretic restrictions (mainly homogeneity and sym-	
tency	metry) differs among models, but also depending on the short or long	
	term specification	
Model closures	No closures like those used for CGE models. Domestic Crop models	
	and Trade models include Market Clearing Identity	
Regional aggrega-	29 countries and/or regions: USA and other countries. The number of	
tion	countries and regions is variable depending on the models	
Commodity aggre-	Major agricultural and processed commodities. The number is vari-	
gation	able depending on the models type:	
	Domestic livestock Models: beef, pork, chicken, turkey	

	Domestic Crop Models: corn, wheat, soybeans, soymeal, soybean oil,	
	sorghum, barley, oats, cotton, rice, sugar, corn gluten	
	Trade models wheat: corn, sorghum, barley, oats, soybeans	
	Government Cost Model: corn, wheat, soybeans, cotton, rice, sor-	
	ghum, barley, oats, dairy	
	Net Farm Income Model: domestic crops, livestock	
Base year/ time se-	Use of annual time series for estimation. The initial base year was	
ries	1988	
Number of agricul-	Variable depending on the model versions and objectives	
tural Commodities		
Variables generated	Supply and demand are endogenous except for countries where do-	
And parameters	mestic production is not important. For that case, supply is	
needed	exogenous.	
Sensitivity	No information	
Parameter estimates	Computation of elasticities at various year values (e.g for livestock	
	models: 1984-86 mean values; for domestic crop models: 1988 val-	
	ues)	
Policy data	Annual time series data, trade protection, output price support and	
	farm produced input price policies	
Data sources	Most data have been derived from publications in the USDA Agri-	
	cultural Statistics Board Series, from circulars such as: World Grain	
	Outlook and Situation Report, Oil Seed and Products Outlook, from	
	the Food and Agricultural Organization reports	
Software	SAS-AREMOS econometric package with LOTUS 123	
Data set availability	Available for partnerships frame	

Devadoss S., P. Westhoff, M. Helmar, E. Grundmeier, K. Skold, W.H. Meyers and S.R. Johnson, The FAPRI Modeling System at CARD: A Documentation Summary. Technical Report 89-TR 13, December 1989. Center for Agricultural and Rural Development, Iowa State University, Ames, Iowa 50011, 1989.

Devadoss S. D., P.C. Westhoff, M.D. Helmar, E. Grundmeier, K. Skold, W.H. Meyers and S.R. Johnson, The FAPRI Modeling System: A Documentation Summary. '*Agricultural Sector Models for United States: Descriptions and Selected Policy Applications*'. Edited by C.R. Taylor, K.H. Reichelderfer and S.R. Johnson. Ames: Iowa State University Press, 1993.

Helmar, M.D., V. Premakumar, K. Oerter, J. Kruse, D.B. Smith and W.H. Meyers, Impacts of the Uruguay Round on Agricultural Commodity Markets. *GATT Research Paper 94-GATT-21*, Center of Agricultural and Rural Development. Iowa State University, Ames, Iowa, 1994.

Johnston S.R., W.H. Meyers, A.W. Womack, J. Brandt, G. Grimes, s. Devadoss, P. Westhoff, M. D. Helmar, K.D. Skold, E. Grundmeier, S.Y. shin, J. Trujillo, R. Perso and S. Brown, Policy Scenarios With the FAPRI Modeling System. . '*Agricultural Sector Models for United States: Descriptions and Selected Policy Applications*'. Edited by C. R. Taylor, K.H. Reichelderfer and S.R. Johnson. Ames: Iowa State University Press, 1993.

Young R.E. II, P.W. Westhoff, D.S. Brown, G. Adams and A.W. Womack, Modeling the World Agri-Food Sector; The Food and Agricultural Policy Research Institute Approach. Paper Prepared for The Agricultural Economics Society, Annual Conference 1999. Stranmillis University College, The Queen's University, Belfast, 28 March 1999, 1999.

A1.5 GAPsi

Name of the model	GAPsi (Gemeinsame AgrarPolitik - Simulation)
Institutions & individuals	Institute of Market Analysis and Agricultural Trade Policy
concerned with model de-	(MA) of the Federal Agricultural Research Centre (FAL),
velopment and application	Braunschweig, Germany
veropinent and appreation	Dirk Manegold together with Petra Salamon and Karl Frenz
Goal of the model	EU agricultural policy analysis
Regional scope	World: EU-15, applicant countries, main agricultural ex-
Regional scope	porters, rest of world
Commodity / sectoral scope	Partial agriculture: 13 agricultural commodities
Key applications	CAP reform, Agenda 2000; planned: EU enlargement,
Key applications	WTO
Documentation & availabil-	Partly, see references below
ity	
Theoretical underpinnings	Partial multi-sector, multiregion equilibrium model
Dynamics	Recursive dynamics over a period of 10-15 years
Modelling of international	Homogeneous goods and pooled markets (net exports)
trade	Drive wedges together with fixed prices and quotes EU set
Representation of politics	Price wedges together with fixed prices and quota; EU set-
	aside programme discriminating between obligatory and
	voluntary set-aside (rate of obligatory set-aside applied to
	participating producers, voluntary set-aside according to
Theoretical consistency	RAUMIS results)
Theoretical consistency	Theoretical consistency is generally warranted, however,
	since cross-price elasticities are mostly zero, area use, meat
	demand, feed input and milk processing (dairy module) are of main concern
Model closures	
	Balancing world net trade
Regional aggregation	14 countries and 3 regions: Austria, Belgium/Luxembourg,
	Denmark, France, Finland, Germany, Greece, Ireland, Italy,
	Netherlands, Portugal, Spain, Sweden, United Kingdom,
	plus 3 non-EU regions: EU applicant countries (combining
	Poland, Tschech Republic, Slovakia, Hungary), main agri-
	cultural exporters (combining Canada, USA, Mexico,
	Argentina, Brazil, Australia, New Zealand), rest of the
	world (combining all the remaining regions)
Commodity aggregation	Cereals, pulses, oilseeds, potatoes, sugar, dairy, beef, lamb,
	pork, poultry, eggs; compound feed (cereals, protein meals,
	milk, other non-grains)
Base year / time series	Base year: 1995 / time series: 1993-2005
Number of ag. commodities	13 agricultural commodities,
Variables generated &	Variables generated: word equilibrium prices (derived: do-
parameters needed	mestic market prices, producer prices, consumer prices)

	balancing changes in production and demand Exogenous variables: productivity shifters, estimates of population and economic growth, inflation and exchange rates
Sensitivity	Sensitivity is not regularly reported
Parameter estimates	Various sources: literature, SWOPSIM, model calibration
Policy data	Intervention prices, production quotas, direct payments (coupled to production), set-aside requirements, WTO ex- port restrictions
Data sources	International agric. statistics (PS&D), UN population fore- casts, agric. baseline projections (USDA, FAPRI, OECD), EU & national statistics (land use, prices, economic growth, inflation, exchange rates)
Software	GAMS (data management, model formulation), Excel (out- put)
Dataset publically avail- able?	No.

CYPRIS, CH.; KLEINHANSS, W.; KREINS, P.; MANEGOLD, D.; MEUDT, M.; SANDER, R., Modellrechungen zur Weiterentwicklung des Systems der Preisausgleichszahlungen.- Forschungsgesellschaft für Agrarpolitik und Agrarsoziologie e.V., Arbeitsmaterial 2. Bonn, 1997.

FRENZ K. and MANEGOLD, D., Lineares Modell zur Bestimmung von Preis- und Mengenwirkungen einer restriktiven Agrarpreispolitik in der EG. - Arbeitsbericht des Instituts für landwirtschaftliche Marktforschung 88/1. Braunschweig, 1988.

FRENZ K.; MANEGOLD, D., Mögliche Preis- und Mengenwirkungen einer restriktiven Agrarpreispolitik in der EG. - Berichte über Landwirtschaft 66, S. 71-84, 1988.

FRENZ K.; MANEGOLD, D., Auswirkungen von GAP-Reform und GATT-Auflagen auf Erzeugung und Verbrauch von Getreide, Hülsenfrüchten und Ölsaaten in der EU -Modellrechungen . In: FRENZ K.; MANEGOLD, D.; UHLMANN, F.: EU-Märkte für Getreide und Ölsaaten. - Schriftenreihe des Bundesministeriums für Ernährung, Landwirtschaft und Forsten, Reihe A: Angewandte Wissenschaft, Heft 439. Münster, 1995.

FRENZ, K., Die Wirkung von Handelsinstrumenten und Subventionen im Agrarsektor. Landbauforschung Völkenrode, Sh. 61. Braunschweig-Völkenrode, 1982.

KLEINHANSS, W.; OSTERBURG, B.; MANEGOLD, D.; SEIFERT, K.; CYPRIS, CH.; HEMME, T.; JACOBS, A.; KREINS, P.; OFFERMANN, F., Auswirkungen der Agenda 2000 auf die deutsche Landwirtschaft. Eine modellgestützte Folgenabschätzung auf Markt-, Sektor-, Regionsund Betriebsebene. - Institut für Betriebswirtschaft der Forschungsanstalt für Landwirtschaft Braunschweig-Völkenrode (FAL), Arbeitsbericht 2/98, Braunschweig, 1998. KLEINHANSS, W.; OSTERBURG, B.; MANEGOLD, D.; SEIFERT, K.; CYPRIS, CH.; KREINS, P., Auswirkungen der Agenda 2000 auf die deutsche Landwirtschaft. - Agrarwirtschaft 47, Heft 12, S. 461-470, 1998.

MANEGOLD, D., Agenda 2000: Reformansätze auf dem Rindermarkt. - Agrarwirtschaft 47, Heft 8/9, S. 305-312, 1998.

MANEGOLD, D.; KLEINHANSS, W.; KREINS, P.; OSTERBURG, B.; SEIFERT, K., Interaktive Anwendung von Markt, Regional- und Betriebsmodellen zur Beurteilung von Politikalternativen. -Vortrag auf der 39. Jahrestagung der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V., Bonn, 1998.

SALAMON, P.: Impacts of Market Liberalization and Other Policy Options on the EU Dairy Market. - In: Proceedings of the EAAE Seminar Agricultural Markets beyond Liberalization, 23.-26.09.1998 in Wageningen. Wageningen (The Netherlands) 1998.

SALAMON, P.: Überlegungen zur Neugestaltung der Milchmarktpolitik der EU. Agrarwirtschaft 47, H. 8/9, S. 313-320, 1998.

Salamon, P.: Impacts of Different Policy Options on the EU Dairy Market. Landbauforschung Völkenrode 48, H. 4, S. 213-222, 1998.

A1.6 MISS

Model	MISS (Modèle International Simplifié de Simulation)	
Institutions and in-	Institut National de la Recherche Agronomique (INRA), Station	
dividuals	d'Economie et de Sociologie Rurale de Rennes, France	
	Mahé L., Guyomrd H., Moreddu C., Tavera C. and C. Trochet	
Goal of the model	Agricultural policy analysis by simulation, projections short and	
	medium term (3-5 years)	
Regional scope	Worldwide (4 regions/countries)	
Commodity/sectoral	Partial agriculture: output side: 10 agricultural commodities; input	
Scope	side: 6 agricultural inputs and 4 non-agricultural inputs	
Key applications	Unilateral and bilateral trade liberalization between EU and USA	
ine j apprications	Budget costs of CAP reform	
Documentation and	Model and documentation publically available	
Availability	Complete system of data and elasticities available upon request	
5	(Guyomard et al., 1991, p.124).	
Theoretical under-	Partial equilibrium model. Technical change introduced both on	
pinnings	supply and demand sides (by ad hoc shifters) for more information	
	about interactions of cross policy effects	
Dynamics	No dynamics but trends of variables calculated for projection simu-	
	lations over a 3-year time horizon	
Modeling of Inter-	Homogeneous goods and pooled markets (net-trade)	
national		
Trade		
Representation of	Price wedges and explicit representation of policy instruments.	
Policies		
Theoretical consis-	Elasticities derived from review of studies and adjusted for more	
tency	theoretical consistency including:	
	- Theoretical properties of restricted profit function (homogeneity,	
	symmetry and convexity in prices of the output supply and derived	
	demand system)	
	- other technical knowledge related to the complementarity and sub-	
	stitutability among commodities	
Model closures	No closures like those used for CGE models but MISS starts with an	
	initial equilibrium and presents a new (final) equilibrium.	
Regional aggrega-	4 areas: EU, USA, Rest of the World Market Economies, Centrally	
tion	Planed Economies	
Commodity aggre-	Agricultural sector disaggregated into outputs including grains	
gation	(wheat and coarse grains), vegetable proteins, vegetable oils (escept	
	for olive oil included in the rest of agriculture), cereal substitutes	
	(corn gluten feed, manioc, citruspulp), beefmeat, pork, poultry and	
	eggs, milk, sugar, rest of agriculture. 10 inputs are also included	
	among them 6 are of agricultural origin for animal feed (grains,	
	vegetable proteins, corn, manioc, other grain substitutes, milk) and 4	
	not produced by farming sector (other feed ingredients, fertilizers,	

	other intermediate consumption, capital services)	
Base year/ time se-	Two main 'representative' years: 1986 and 1990	
ries		
Number of agricul-	Variable depending on the model versions and objectives	
tural Commodities		
Variables generated	Aggregate balance for each region and each product for specific us-	
and parameters	ers: human consumption, animal feed, other demand and net exports	
needed	Prices, levels of taxation and protection rates. Elasticities of supply,	
	derived demand and final demand all adjusted for theoretical con-	
	sistency	
	Domestic prices, taxes, protection rates and quotas can be either en-	
	dogenous or exogenous.	
Sensitivity	Some sensitivity analyses especially on the supply side	
Parameter estimates	Calibrated elasticities	
Policy data	The initial values of the protection rates are first estimated prior to calculate the range by which they must vary to move towards free trade. The protection coefficients are calculated from ratio of domestic to border price in the case of import quotas and from budget expenditures documents in the other cases with some corrections when necessary for special regimes	
Data sources	Mostly Eurostat and EEC reports	
Software	'Home made' software using a spreadsheet	
Data set availability	Available on request. Some data and parameters are available in	
	major papers related to MISS	

Guyomard H. & L. Mahé, EC-US Trade Relations in The Context of the Gatt Negotiations and of the Reform of the Common Agricultural Policy. In The Economics of the Common Agricultural Policy (CAP). *European Economy*, Reports and Studies, no 5, 1994.

Guyomard H., L. Mahé, C. Tavéra and T. Trochet, Some Problems Of Modeling Agricultural Trade Policy Intercations Between the EC and US. International Agricultural Trade Consortium. San Antonio, December 14-15, 1988, 1988.

Guyomard H., L. Mahé, C. Tavéra and T. Trochet, Technical Change and EC-US Agricultural Trade Liberalization. Journal of Agricultural Economics, 42, 2, pp 119-137, 1991.

Mahé L. and C. Moreddu, An Illustrative Trade Model to Analyse CAP Changes: Unilateral Moves and Interaction with USA. Economic Notes by Monte Dei Paschi Di Siena, 1, 1987.

Mahé L. and C. Tavéra, Bilateral Harmonization of EC and US Agricultural Policies. European Review of Agricultural Economics, 15, pp 325-348, 1989.

Mahé L., C. Tavéra and T. Trochet, An Analysis of Interaction Between EC and US Policies with a Simplified World Trade Model: MISS. Economie et Sociologie Rurales, INRA France, 1988.

A1.7 SWOPSIM

	SWOPSIM (Static World Policy Simulation Model)	
General	Sworshive (State world Folley Shindiation Woder)	
Institutions and indi-	USDA ERS (Roningen, 1986)	
viduals	USDA EKS (Konnigen, 1980)	
Goal of the model	Simulation of offects of changes in agricultural support policies	
Goal of the model	Simulation of effects of changes in agricultural support policies	
D	on production, consumption and trade	
Regional scope	World: 36 regions	
Commodity / sectoral	Partial agriculture: 22 US-traded agricultural commodities	
scope		
Key applications	Multilateral trade liberalisation (GATT Uruguay round),	
	Agricultural policy reforms in US and EU, effects on agricul-	
	ture from EU enlargement	
Documentation and	The model is publicly available and fully documented in Ronin-	
availability	gen, Sullivan & Dixit (1991); database in Sullivan, Wainio &	
	Roningen (1989);	
Theory		
Theoretical underpin-	Partial equilibrium; constant-elasticity cross-price supply and	
nings	demand equations (with Q effects also possible)	
Dynamics	None (in basic model)	
Modelling of interna-	Homogeneous goods and pooled markets (net trade in basic	
tional trade	model); Armington in later version Dixit & Roningen (1986)	
Representation of poli-	Price wedges (PSEs, CSEs)	
cies		
Theoretical consis-	Elasticities possibly inconsistent (see, Liapis 1990)	
tency		
Model closures	Multi-market equilibrium	
Data		
Regional aggregation	36 regions; including EC-10, Spain, Portugal, Other Western	
	Europe, Eastern Europe, regions can be aggregated; 'small	
	world' models possible	
Commodity aggrega-	22 commodities; 4 meats, eggs, 4 dairy, 4 grains, 6	
tion	beans/seeds/meals/oils, cotton, sugar, tobacco, can be aggre-	
	gated	
Base year / time series	1984 and 1986; most studies use 1986	
No. of agricultural	22	
commodities		
Variables generated,	Variables generated: production, consumption, (net) trade;	
parameters needed	prices; producer/consumer/taxpayer welfare effects	
Purumeters needed	Parameters needed: supply & demand elasticities; feed share	
	coefficients; policy price-wedge parameters	
Sensitivity	Yes in some applications??	
Parameter estimates	Taken from individual commodity/sector studies	
i arameter estimates	Taken mominium mutation commoully/sector studies	

Policy data	Price linkages (PSEs, CSEs)	
Data sources	USDA FAS world supply and utilisation set	
Software	Spreadsheet (Supercalc 3 or 5)	
Dataset publicly avail-	Yes (Sullivan, Wainio and Roningen (1989))	
able?		

Papers Employing SWOPSIM

Listed below are the principal works establishing and extending the SWOPSIM framework and describing applications which appear (from the title) to be relevant to the EU to Eastern Europe.

Ballenger, N., '*The ERS Trade Liberalization Study: Methods and Preliminary Results*', Agriculture and Trade Analysis Division, Economic Research Service, Staff-Report, U.S. Department of Agriculture, Washington, D.C., 1988.

Cochrane, N., '*Trade Liberalization in Eastern Europe: the Case of Yugoslavia and Poland*', Staff Report, Economic Research Service, U.S. Department of Agriculture, Washington, D.C., 1990.

Cochrane, N., '*The Longer Term Effects of Major Policy Reform on Poland's Agricultural Production and Trade*', paper presented at joint OECD and Governments of Denmark and Poland Conference, Agriculture in the East and West: The Polish Case, Copenhagen, Denmark, March 1990, 1990.

Dixit, P.M. and V.O. Roningen, 'Modelling Bilateral Trade Flows-with the Static World Policy Simulation (SWOPSIM)-Modelling Framework', Staff Report, Economic Research Service, U.S. Department of Agriculture, Washington, D.C., 1986.

Dixit, P.M. Herlihy, M. and S. Magiera, 'Global Implications of Agricultural Trade Liberalization', *Agricultural Food Policy Review: U.S. Agricultural Policies in a Changing World*, 1989.

Gardiner, W.H., Roningen, V.O. and K. Lui, '*Elasticities in the Trade Liberalization Database*', Staff Report, Economic Research Service, U.S. Department of Agriculture, Washington, D.C., 1989.

Ginzel, J. and B. Krissoff, 'An Assessment of the Economic Effects of a Ban on Beef Trade', *Economic Impact of the European Economic Community's Ban on Anabolic Implants*, Food Safety and Inspection Service, U.S. Dept. of Agriculture, 1987.

Gunasekera, H. Don B.H., Rodriguez, G.R. Andrews, N.P. and A.N. Rae, 'Taxing Fertiliser Use in EC Farm Production', Australian Bureau of Agricultural and Resource Economics in *Pacific Rim Agriculture: Opportunities, Competitiveness and Reforms*. Proceedings and papers for the fifth workshop of the Agricultural, Trade and Development Task Force of the PECC, Hawaii, 14-16 May, 1992.

Haley, S., 'Joint Products in the Static World Policy Simulation (SWOPSIM) Modeling-Framework', Staff Report, Economic Research Service, U.S. Department of Agriculture, Washington, D.C., 1988.

Haley, S. and Praveen Dixit, '*Economic Welfare Analysis: An Application to the SWOPSIM Modeling Framework*', Staff Report, Economic Research Service, U.S. Department of Agriculture, Washington, D.C., 1988.

Haley, S., Calculating Consumer Welfare Gains Resulting from Trade Liberalization in Centrally Planned Economies, unpublished manuscript, May 1989, 1989.

Haley, S., 'Using Producer and Consumer Subsidy Equivalents in the SWOPSIM Modeling Framework', Staff Report, Economic Research Service, U.S. Department of Agriculture, Washington, D.C., 1989.

Haley, S., Herlihy, S., and B. Johnston, 'Assessing Model Assumptions in Trade Liberalization Modeling: An Application to SWOPSIM', paper presented at the Southern Agricultural Economics Association meetings, Little Rock, Arkansas, 1990.

Hertel, T.W., Peterson, E.B. and J.V. Stout, 'Adding Value to Existing Models of International Agricultural Trade', Technical Bulletin, U.S. Department of Agriculture, Washington, D.C., 1994.

Liapis, P.S., *Incorporating Inputs in the Static World Policy Simulation Model* (SWOPSIM)', Technical Bulletin, United States Department of Agriculture, 1990.

Magiera, S.L. and M. Herlihy, '*Comparing World Price Changes from Trade Liberalization Models*', background paper prepared for the International Agricultural Trade Research Consortium Symposium on 'Bringing Agriculture into the GATT', Annapolis, Maryland, August 1988, 1988.

Magiera, S.L. and P. Dixit, '*Decoupling Agricultural Support*', paper presented at the American Agricultural Economics Association meetings, Baton Rouge, Louisiana, August 1989, 1989.

Magiera, S.L., Dixit, P.M. Chadee, D.D. (ed.) and A.N. Rae (ed.), 'Decoupling agricultural programmes: their costs and benefits', Economic Research Service, US Department of Agriculture, Washington, D.C. in *Toward Freer Trade: Strategies and Experiences in Pacific Agricultural Reform.* Proceedings and papers for the fourth workshop of the Agricultural, Trade and Development Task Force of the PECC, Agricultural Policy Proceedings, 1990.

Roberts, I. Tie, G and N. Andrews, '*Potential EC Membership for Eastern European Countries: Effects on Agricultural Markets*', Economic Policy Analysis Group, Australian Bureau of Agricultural and Resource Economics, Canberra, Australia, 1993.

Roningen, V.O., 'A Static World Policy Simulation (SWOPSIM) Modeling Framework', Staff Report, Economic Research Service, U.S. Department of Agriculture, Washington, D.C., 1986.

Roningen, V.O., Sullivan, J. and Dixit P. M., *Documentation of the Static World Policy Simulation (SWOPSIM) Modeling Framework*, USDA ERS Staff Report no. AGES 9151, 1991.

Roningen, V.O., Sullivan, J. and J. Wainio, '*The Impact of the Removal of Support to Agriculture in Developed Countries*,' Paper presented at the International Agricultural Trade Consortium meetings, Warrenton, Virginia, 1987.

Roningen, V.O., Sullivan, J. and J. Wainio, *The Liberalization of Agricultural Support in the United States, Canada, the European Community and Japan*, paper presented at the GATT Agricultural Policy Modeling Workshop, London, Ontario, Canada, May, 1987.

Roningen, V.O., Sullivan, J., and J. Wainio, '*The Impacts of Liberalizing Agricultural Trade in Developed Countries*', paper presented at the American Agricultural Economics Association meetings, East Lansing, Michigan, August 1987, 1987.

Roningen, V.O., and P.M. Dixit, '*Economic Implications of Agricultural Policy Reforms in Industrial Market Economies*', Staff Report, Economic Research Service, U.S. Department of Agriculture, Washington, D.C., 1989.

Roningen, V.O., and P.M. Dixit, '*How Level is the Playing Field?: An Economic Analysis of Agricultural Policy Reforms in Industrial Market Economies*', Foreign Agricultural Economic Report No. 239, Economic Research Service, U.S. Department of Agriculture, Washington, D.C., 1989.

Roningen, V.O., and P.M. Dixit, 'Assessing the Implications of Freer Agricultural Trade', *Food Policy*, Vol. 15, February 1990, pp. 67-75, 1990.

Roningen, V.O., Dixit, P.M. and Seeley, R., 'Agricultural Outlook in the Year 2000: Some Alternatives', *Agriculture and Governments in an Interdependent World* (ed. A. Maunder and A. Valdes), Dartmouth, England, 1990.

Roningen, V.O., Dixit, P.M., Sullivan, J. and T. Hart, '*Overview of the Static World Policy Simulation (SWOPSIM) Modeling Framework*', Staff Report, Economic Research Service, U.S. Department of Agriculture, Washington, D.C., 1991.

Roningen, V.O., and P.M. Dixit, 'Documentation of the Static World Policy Simulation (SWOPSIM) modeling framework', Staff Report, Economic Research Service, U.S. Department of Agriculture, Washington, D.C., 1991.

Sharples, J.A., 'Building a world trade model: some lessons we are learning', Agriculture and Trade Analysis Division, Economic Research Service, U.S. Department of Agriculture, Washington, D.C., 1988.

Sullivan, J., Wainio, J., and V.O. Roningen, 'A Database for Trade Liberalization Studies', Staff Report, Economic Research Service, U.S. Department of Agriculture, Washington D.C., 1989.

Sullivan, J., Roningen, V.O. and J. Wainio, '*The Impacts on World Dairy Markets from Removal of Support to Agriculture in the Developed Economies*,' paper presented at the Northeast Agricultural Economics Association Meetings, Kingsport, Rhode Island, June 1987, 1987.

Sullivan, J., 'Price Transmission Elasticities in the Trade Liberalization Database, Staff Report, Economic Research Service, U.S. Department of Agriculture, Washington D.C., 1990.

Sullivan, J., Roningen, V.O., Leetmaa, S. and D. Gray, 'A 1989 global database for the Static World Policy Simulation (SWOPSIM) Modeling Framework', Staff Report, Economic Research Service, U.S. Department of Agriculture, Washington D.C., 1992.

A1.8 WATSIM

	WATSIM (World Agricultural Trade Simulation Model)	
Institutions and indi-	Institute for Agricultural Policy, Market Research and Economic	
viduals	Sociology, Bonn University:	
	Prof. Dr. W. Henrichsmeyer, M. v. Lampe and C. Moellmann	
Goal of the model	Three target periods with different aims: Short-term shock analysis	
Cour of the model	(in work, not yet available), Medium-term projections and policy	
	analysis, Long-term projections and analysis of various shift fac-	
	tors	
Regional scope	World, currently 15 regions incl. EU as one agregate (flexible, see	
Regional scope	database)	
Commodity / soctoral	Partial agriculture, currently 29 agricultural commodities	
Commodity / sectoral	Partial agriculture, currently 29 agricultural commodities	
scope		
Key applications	1) Baseline for years 2005, 2010, 2015 and 2020 2) Analysis of	
	different shift factors including income in Asia, productivity in	
	Transition Countries, irrigation in Asia, Africa and Latin America	
	3) Analysis of Agenda2000 and WTO trade liberalisation envis-	
	aged 4) Impact of a worldwide liberalisation of cereals, oilseeds	
	and pulses markets	
Documentation and	Database and model is property of the Federal Ministry for Food,	
availability	Agriculture and Forestry, Bonn, and the Commission of the Euro-	
	pean Union	
	Provisional documentation in Henrichsmeyer, W., von Lampe, M.	
	and Möllmann, C. (1998). Weiterentwicklung und Andwendung	
	des Welt-Agrarhandelsmodells WATSIM für Langfristsimula-	
	tionen der Weltagrarmärkte sowie der Auswirkungen für die	
	Landwirtschaft der EU und der Bundesrepublik Deutschland unter	
	Einbeziehung des Modellsystems RAUMIS. Interim Report for the	
	Federal Ministry for Food, Agriculture and Forestry, Bonn (ger-	
	man only)	
	Detailed documentation in preparation	
Theoretical underpin-	Partial equilibrium model, global-multi-region multi-commodity	
nings		
Dynamics	None	
Modelling of interna-	Homogeneous goods with pooled world markets (net trade); refer-	
tional trade	ence (trade) prices depending on world market prices as well as on	
	a region's net-trade quantity, In work: Differentiation of imports	
	and exports	
Representation of	Ad-valorem and specific tariffs, Floor-price fixation (non-	
policies	differentiable price transmission), Other subsidies (direct pay-	
r	ments, other payments etc.) from PSE/CSE estimations,	
	Compensation payments per ha or head, Set-aside obligations,	
	Production quotas, Export restrictions	
Theoretical consis-	Curvature only approximated by sign of (compensated) own-price	
rneorenear collsis-	1 Curvature only approximated by sign of (compensated) own-price	

tency	elasticities	
	Joint calibration of elasticities for supply of agricultural products	
	and feed use ensuring feed balance	
	Separate calibration of elasticities for industrial processing of oil-	
	seeds (to oils/cakes) and milk (to butter&cream, cheese and SMP)	
	Separate calibration of elasticities for consumption	
Model closures	No closures like in CGE models.	
Regional aggregation	15 regions: EU-15, Rest of Western Europe, Central and Eastern	
Regional aggregation	Europe, Commonwealth of Independent States, Sub-Saharan Africa	
	(incl. South Africa), North Africa & West Asia, China (incl. Tai-	
	(incl. South Affea), North Affea & West Asia, Clinia (incl. Tal- wan), India, ASEAN-Rim, Rest of Asia, Australia & New Zealand,	
	USA, Canada, Latin America	
Commodity occurace		
Commodity aggrega-	29 Products: 5 Cereals (Wheat, Barley, Maize, Rice, Other cereals),	
tion	4 Oilseeds (Soy, Sunflower, Rape, Other Oilseeds), 4 Veg. oils	
	(corresponding), 4 Veg. Cakes (corresponding), 3 Other crops	
	(Sugar, Starch products, Pulses), 4 Meat (Beef & Veal, Pigmeat,	
	Poultry, Other meat), 2 Other livestock products (Eggs, Milk)	
	3 Milk products (Cheese, Butter & Cream, Skim milk products)	
Base year/ time series	1994	
Number of agricultural	18 primary products (12 crops, 6 livestock, s.o.), 11 processed	
Commodities	commodities (s.o.)	
Variables generated	Exogeneous data: Population, Urbanisation, real GDP, Wastes,	
And parameters needed	Total land availability, irrigation, yields (given constant irrigation),	
	Policy parameters	
	Endogeneous data: Supply, demand (human consumption, feed,	
	processing, seed use, other use), intervention stock change and net	
	trade quantities; world, reference, market and incentive prices	
	Necessary parameters: Supply, demand and feed price elasticities	
	and income elasticities (literature), Feed requirement parameters	
	(estimated from time series).	
Sensitivity	Yes, Subject of the project for the Federal Ministry of Agriculture.	
	Final Report: 31 May 1999 (german language) and subject of: von	
	Lampe, M. (forthcoming): A modelling concept for the projection	
	and simulation of long-term developments on the agricultural world	
	markets - World Agricultural Trade Simulation Model WATSIM	
	(dissertation).	
Parameter estimates	Calibrated supply, demand, feed and income elasticities	
	Estimated feed requirement parameters, based on time series (live-	
	stock production, feed energy use) and parameters from literature	
Policy data	PSE and CSE OECD	
Data sources	Which data sources are used and which processing is applied ?	
	FAOSTAT (FAO), PS&D (USDA), World Data 1995 / World De-	
	velopment Indicators 1998 (World Bank), World Population	
	Prospects 1996 (UN), PSE and CSE 1997 (OECD)	
Software	Own software based on Fortran77, C, developed at the Institute	
Soltware	own sortware based on roruan / , C, developed at the institute	

PE Model written in GAMS	
	Solved by Minos5 and Conopt2
Data set availability	No.

Henrichsmeyer, W., von Lampe, M. and Möllmann, C., Weiterentwicklung und Andwendung des Welt-Agrarhandelsmodells WATSIM für Langfristsimulationen der Weltagrarmärkte sowie der Auswirkungen für die Landwirtschaft der EU und der Bundesrepublik Deutschland unter Einbeziehung des Modellsystems RAUMIS. Interim Report for the Federal Ministry for Food, Agriculture and Forestry, Bonn (german only), 1998.

Lampe, M. von, The World Agricultural Trade Simulatiomn System WATSIM. An overview., University Bonn, Agricultural and Resource Economics, discussion paper 98-05, 1998.

Appendix 2 Economy-wide world models

A2.1 G-cubed

	G-cubed: Global computable general equilibrium growth
	model
General	
Institutions and individuals	Initiated by Dr. McKibbin W., J. and J. Wilcoxen, the model was constructed with funding from the Brookings Institution, the US National Science Foundation and US Environmental Protection Agency.
Goals of the model	Policy oriented model aimed at 'contributing to the on- going policy debate on environmental policy and international trade (with a focus on global warming poli- cies)'.
Regional scope	World.
Commodity/sectoral scope	Economy-wide coverage, 12 sectors with focus on dis- tinction between energy and non-energy sectors.
Key applications	Economy-wide impacts of warming policies (Kyoto protocol), Other applications: regional integration i Asia/ Pacific, impacts of global macroeconomic shocks (fi- nancial crisis in Asia), global predictions and outlook of the world economy.
Documentation and availability	Papers and/or reports which are publicly available and listed on the following special web site: http://www.msgpl.com.au/msgpl/msghome.htm
Theory	
General underpinnings	Intertemporal general equilibrium and macroeconomic model. The model combines a conventional CGE model representing the real sectors (models) and a model repre- sentation of financial and capital assets and flows. Short run behavior is a weighted average of neoclassical optimizing behavour and ad-hoc 'liquidity constrained' behaviour.
Dynamics	Intertemporal accounting of stocks and flows of real res- sources and financial assets. Imposition of intertemporal budget constraints, rational expectations about key deci- sion variables and other exogenous variables.
Modelling of international trade	Armington specification of bilateral trade flows for eight tradable commodities.
Representing policies	Quite full: taxes, interest rates, money supply, invest-

	ment tax credit, governement debt and government
	transfers, emission permits
Model closures	Full short run and long run macroeconomic closure with
Woder closures	macro-dynamics at an annual frequency around a long
	run Solow/Swan neoclassical growth model.
Functional forms	0
Functional forms	A CES functional form is being used at most various
	tiers of the firms' production technology and consumers
	preferences. The Leontief functional forms are being
	used to represent the combination of emission permits and output in each sector. The present version of 'Gcu-
	bed' assumes that a Cobb-Douglas functional form
	represents the trade modeling structure and consumer
	preferences.
Theoretical consistency	As for any CGE models, 'Gcubed' is theoretically con-
Theoretical consistency	sistent.
Data	Sistent.
Regional aggregation	8 regions including the United States, Japan, Australia,
Regional aggregation	Other OECD (composite region), China, Less develop-
	ing countries (composite region), clining, less develop
	developing countries (composite region), on exporting
	and the Former Soviet Union (composite region).
Commodity aggregation	12 sectors. Energy sectors: electric utilities, gas utilities,
commonly aggregation	petroleum refining, coal mining, and crude oil and gas
	extraction; non energy sectors: mining, agriculture,
	fishing and hunting, forestry and wood products, durable
	manufacturing, non-durable manufacturing, transporta-
	tion, and services.
Data set construction (variables	- The principal source of information for these raw
generated)	data was the benchmark input/output tables produced
	by the Bureau of Economic analysis at the U.S. De-
	partment of Commerce. The (commodity by
	industry) industry accounting matrix, the use matrix,
	the value added and the returns to primary factors
	and the components of final demand (private and
	government consumption, investment, exports and
	imports was developed for the United States.
	- Input/output tables are available for Japan, Australia,
	China and the Former Soviet Union and have been
	used to generate a consistent set of industry ac-
	counting matrices. For the remaining regions, the
	necessary data set has been developed using adjusted
	US-based information (shares) to account for actual
	final demand data from the national accounts of the
	corresponding region.
	- An eight by eight matrix of trade flows giving the

	 import and export flows has been constructed for each of the twelve goods. The trade flow matrices seem to have been constructed using the 1987 United Nations trade database. Consumer durables are not considered as consumer goods but as consumer investment. Data on capital and labour are constructed using in- formation obtained on the U.S. Economy. Time series using ouput and employment data from a data set constructed by the Office of Employment Projections at the U.S. Bureau of Labor Statistics. Macroeconomic data: no documettaiuon provided, but likely to be obtained from the database of the macroeconomic model 'MSG2'.
Policy instruments	Due to it's macroeconomic orientation, policy relevant variables are macroeconomic policy instruments such as tax rates, monetary policy. In addition corporate and la- bour income tax rates, investment tax credit, government debt, interest rates, exchange rates and government transfers; taxes on externalities (such as carbon dioxide emissions) and /or emissions permits by sector.
Base year/time series	 The base period is 1987. Time series were constructed for the US economy to estimate econometrically the consumption and production parameters (elasticity of substitution and distribution parameters of the US economy. For instance, consistent input/output tables were constructed for 1958, 1963, 1967, 1972, 1977 and 1982. These various input/output tables for the US economy are used to estimate the substitution and distribution parameters of the CES functional forms used to represent each sector technology.

Devenue atoms manada d	Demonstrate related to final demond apple
Parameters needed	- Parameters related to final demand, each sector's
	production and the production function of new in-
	vestment goods are 'econometrically' estimated for
	the U.S. economy. Then, the relevant parameters
	(e.g. elasticities of subsitution) are assumed to be
	equal across regions. Then once, the elasticities of
	substitution have been estimated, all other parame-
	ters in other regions are calibrated using the base
	period.
	- Concerning the U.S. economy, special care has been
	taken to estimate the production parameters of each
	sector: subsitution elasticities, share parameters and
	other parameters. All the substitution elasticities as-
	sociated with the domestic production of each sector
	are econometrically estimated using U.S. data. It is
	assumed that all susbtitution elasticities are equal
	across regions and use of all the U.S. estimates eve-
	rywhere. Substitution elasticities are estimated for
	each U.S. sector using 6 data points (1958, 1963,
	1967, 1977 and 1982) and using an equation sys-
	tem's maximum likelihood estimation procedure.
	Share (distribution) and other parameters: are esti-
	mated 'residually' and econometrically once the
	substitution elasticities have been derived.
	- Trade (Armington) elasticities are imposed and as-
	sumed to be equal to one.
	- Other parameters are imposed and/or calibrated for
	the base period.
	- Parameters associated with macroeconomic relation-
	ships are needed, e.g. the interest elasticity of
	demand for money is set at -0.6 .
Model's sensitivity	Systematic model sensitivity is not documented
Dataset availability	Not publicly available.

Generating a baseline	Due to its intemporal orientation, a 'business as usual' baseline scenario has to be generated, which serves a the benchmark for policy simulations. This baseline requires that assumptions on the long run evolution of exogenous variables be made (This concerns population, non-
	energy and energy productivity, energy efficieny and monetary policy). Tax rates and the shares of govern- ment spending devoted to each commodity remain unchanged.
	The baseline trajectory is constructed by solving the model for each period after 1990, given any shocks to variables, shocks to information sets or change sin inital conditions.
Computer software	Tailor made software developed by McKibbin for solv- ing large models with rational expectations on a personal computer. The software is written in GAUSS program- ming language.

McKibbin, W. and Wilcoxen, P., *The theoretical and empirical structure of the G-cubed model*, Brookings Discussion Paper in International Economics, No 118, The Brookings Institution, Washington, D.C., 1995.

McKibbin, W. and Wilcoxen, P., *G-cubed: a dynamic multi-sector general equilibrium growth model of the global economy (Quantifying the costs of CO₂ emissions)*, Brookings Discussion Paper in International Economics, No 98, Brookings Institution, Washington, D.C., prepared for the US EPA, 1992.

McKibbin, W. and Wilcoxen, P., *The theoretical and empirical structure of the G-cubed model*,. Brookings Discussion Paper in International Economics, No 118, The Brookings Institution, Washington, D.C., 1995.

McKibbin, W. and Wilcoxen, P., The theoretical and empirical structure of the G-cubed model, *Economic Modelling*. Vol 16: 123-148, 1999.

McKibbin W. J. and Z. Wang, *G-cubed Agriculture Model: a tool for analyzing US agriculture in a globalizing world.* 67 pages. Mimeo, 1998.

Coyle W., W. J; McKibbin and Z. Wang, The asian fiancial crisis: effects on U.S. agriculture. Staff paper 9805. Market and Trade Economics Division, ERS, USDA, Washington, 1998.

A2.2 GTAP

	GTAP: Global Trade Analysis Project
Institutions and indi-	Purdue University USA (T. Hertel), GTAP consortium
viduals	
Goal of the model	Global analysis of impacts of trade policy changes. Specifically
	agricultural trade.
Regional scope	World. (45 regions, including 4 EU member states, rest of EU,
	etc.)
Commodity / sectoral	Economy-wide. 50 sectors/commodities (Version 4), 12 primary
scope	agric., 8 food, 5 primary factors (land, 2 labour, capital, natural
	resources). Bias towards agriculture and food processing
Key applications	GATT/WTO Rounds, regional integration, technological
	changes, environmental policies; EU enlargement,
Documentation and	Book (Global Trade Analysis, ed. Hertel, 1997, Cambridge UP),
availability	website (www.agecon.purdue.edu/gtap/). Model is publicaly
	available.
2. Theory	
Theoretical underpin-	Standard multi-region AGE model. Constant returns, perfect
nings	competition.
Dynamics	None in standard static model; recursive and fully dynamic
Madalling of interna	model versions available
Modelling of interna- tional trade	Quite full, using Armington specification, CES demand
	Tax/aubridy instruments (price wedges) and income transfers
Representation of poli- cies	Tax/subsidy instruments (price wedges) and income transfers. Qunatitative measures represented as tariff equivalents in stan-
CIES	dard version. Extensions using explict quota etc. available
Theoretical consis-	Theoretically consistent within standard general equilibrium
tency	framework
Model closures	Macro: Savings-driven investment levels (standard version).
Wioder closures	Other closures available, including partial equilibrium closures
3. Data	outer closures uvaluete, morading partial equitorian closures
Regional aggregation	Australia, New Zealand, Japan, Korea, Indonesia, Malaysia,
	Philippines, Singapore, Thailand, Viet Nam, China, Hong Kong,
	Taiwan, India, Sri Lanka, Rest of South Asia, Canada, United
	States of America, Mexico, Central America and Caribbean,
	Venezuela, Colombia, Rest of the Andean Pact, Argentina,
	Brazil, Chile, Uruguay, Rest of South America, United King-
	dom, Germany, Denmark, Sweden, Finland, Rest of European
	Union, EFTA, Central European Associates, Former Soviet
	Union, Turkey, Rest of Middle East, Morocco, Rest of North
	Africa, South African Customs Union, Rest of southern Africa,
	Rest of sub-Saharan Africa, Rest of World
Commodity aggrega-	1 Paddy rice, 2 Wheat, 3 Cereal grains nec, 4 Vegetables, fruit,

tion Base year / time series	nuts, 5 Oil seeds, 6 Sugar cane, sugar beet, 7 Plant-based fibers, 8 Crops nec, 9 Bovine cattle, sheep and goats, horses, 10 Ani- mal products nec, 11 Raw milk, 12 Wool, silk-worm, cocoons, 13 Forestry, 14 Fishing, 15 Coal, 16 Oil, 17 Gas, 18 Minerals nec, 19 Bovine cattle, sheep and goat, horse meat products, 20 Meat products nec, 21 Vegetable oils and fats, 22 Dairy prod- ucts, 23 Processed rice, 24 Sugar, 25 Food products nec, 26 Beverages and tobacco products, 27 Textiles, 28 Wearing ap- parel, 29 Leather products, 30 Wood products, 31 Paper products, publishing, 32 Petroleum, coal products, 33 Chemical, rubber, plastic products, 34 Mineral products nec 35 Ferrous metals, 36 Metals nec, 37 Metal products, 38 Motor vehicles and parts, 39 Transport equipment nec, 40 Electronic equipment, 41 Machinery and equipment nec, 42 Manufactures nec, 43 Electricity, 44 Gas manufacture, distribution, 45 Water, 46 Construction, 47 Trade, transport,48 Financial, business, rec- reational services, 49 Public administration and defence, education, health services,50 Dwellings
# of agricultural com- modities	12 primary, 8 food processing, 1 forestry, 1 fishing
Variables generated, parameters needed	Variables generated: market and income/welfare values Parameters needed: CES import demand substitution elasticities; compensated own-price and income elasticities of private household demand using CDE function; tax/subsidy rates
Sensitivity	Depends on modeller
Parameter estimates	Standard set available. Various sources.
Policy data	Standard set available
Data sources	Various, including national I-O tables, WTO, COMTRADE, USDA
Software	GEMPACK
Dataset publicly avail- able?	Yes, at cost

For an up-to-date list of applications see: http://www.agecon.purdue.edu/gtap/apps/

Francois, J.F., McDonald, B. & Nordstrom, H., Assessing the Uruguay Round, in *The Uruguay Round and Developing Economies*, W. Martin and L.A. Winters (eds), World Bank discussion paper 307, 1995.

Hertel, T.W. (ed), *Global Trade Analysis: Modelling and Applications*, Cambridge University Press, 1997.

McDougall R.A., A. Elbehri, T.P. Truong (eds.), *Global trade, assistance and protection: The GTAP 4 database*, West Lafayette (In.): Purdue University, Center for Global Trade Analysis, 1999.

A2.3 GREEN

	GREEN: GeneRal Equiibrium ENvironmental model
Institutions and individuals	OECD development centre. Burniaux, J.M., Martin, J.P.
	Nicoletti, G. and Oliveira-Martins, J.
Goal of the model	asses the economic impact of imposing limits on carbon
	emissions
Regional scope	World. 12 regions; 4 OECD countries, 2 East European
C I I I I I I I I I I I I I I I I I I I	countries, 5 Developing countries
Commodity / sectoral scope	Economy-wide. 20 sectors; focus on energy sectors.
Key applications	Environmental policies, Kyoto protocol
Documentation and availability	Documentation is available, the model is not
Theoretical underpinnings	Recursive dynamic multi-region AGE model
Dynamics	Recursive dynamic; period 1985 - 2050; equilibrium
	solution for every five year
Modelling of international trade	crude oil: homogenous product; other commodities:
	ARMINGTON assumption
Representation of policies	explicit implementation of policy instruments, emissions
	ceilings, trdable permits
Theoretical consistency	not documented; however, GREEN is theoretically con-
	sistent within the framework of a CGE model
Model closures	Neoclassical, savings-driven
Regional aggregation	12 Regions: United States, Japan, EEC, Other OECD,
	Former Soviet Union, Central and Eastern European
	Countries, China, India, Energy Exporting Countries,
~	Dynamic Asian Countries, Brazil, and Rest of the World
Commodity aggregation	8 Sectors: agriculture, coal, oil, gas, refined petroleum
	products, electricity, gas and water, energy intensive in-
~	dustries, other industries and sectors
Base year / time series	1985; period 1985 - 2050
# of agric. commodities	1 primary agriculture
Variables generated and pa-	Prices and quantities on domestic and world markets as
rameters needed	well as the related value flows;
~	demand and supply elasticities
Sensitivity	Yes, in several applications
Parameter estimates	partly taken from the literature; remaining part is cali- brated
policy data	FAO producer price data bank, for OECD countries this
	information is complemented and updated using the
	OECD Secretariat's PSEs/CSEs
Data sources	SAMs compiled by the OECD, SUA published from the
	FAO, FAO Production Year Book, CHELEM data base
Software	С

Dataset publically available?	No
-------------------------------	----

BURNIAUX, J.-M., MARTIN, J.P., NICOLETTE, G. and MARTIN, J.O., The Cost of Reducing CO₂ - Emissions: Evidence from Green. OECD Economics Department Working Papers No. 115. Paris, 1992.

BURNIAUX, J.-M., MARTIN, J.P., NICOLETTE, G. and MARTIN, J.O., GREEN - A Multi-Sector, Multi-Region Dynamic General Equilibrium Model for Quantifying the Cost of Curbing CO2-Emissions: A Technical Manual. OECD Economics Department Working Papers No. 116. Paris, 1992.

VAN DER MENSBRUGGHE, D., Green: The Reference Manual. OECD Economics Department Working Papers No. 143. Paris, 1994.

LEE, H., OLIVIERA-MARTINS, J. and VAN DER MENSBRUGGHE, D., The OECD Green Model: An Updated Overview. OECD Economics Department Technical Papers No. 97. Paris, 1994.

A2.4 INFORUM

INFORUM: INterindustry Forecastin ate the University of MarylandInstitutions and individualsINFORUM Center University of Maryland, Clopper AlmonGoal of the ModelAnnual forecasts and public policy analysisRegional scopeNot global. 13 linked country modelsCommodity/sectoral scopeEconomy-wide. Sectoral scope varies by country
Institutions and individualsINFORUM Center University of Maryland, Clopper AlmonGoal of the ModelAnnual forecasts and public policy analysisRegional scopeNot global. 13 linked country modelsCommodity/sectoral scopeEconomy-wide. Sectoral scope varies by country
Goal of the ModelAnnual forecasts and public policy analysisRegional scopeNot global. 13 linked country modelsCommodity/sectoral scopeEconomy-wide. Sectoral scope varies by country
Regional scopeNot global. 13 linked country modelsCommodity/sectoral scopeEconomy-wide. Sectoral scope varies by country
Commodity/sectoral scope Economy-wide. Sectoral scope varies by country
Key applicationsNational US studies (KIFT), NAFTA, Austrian integration
into EU
Documentation and avail- Documentation on country models available on request. Gen
ability eral information on INFORUM: Almon, C. 'The INFORUM
Approach to Interindustry Modeling.' Economic Systems Re-
search. 3(1), 1991: 1-7.
Website:
http://www.inform.umd.edu/EdRes/Topic/Economics/EconI
ata/Intpartn.html
Theoretical underpinnings Linked system of dynamic national macroeconometric mod-
els with inter-industry Input-Output linkages. Three main
components: 1) the real side, 2) the price-income side, and 3
the accountant. The real side estimates final demands and
output by sector, as well as labor requirements. The price
side estimates both the components of gross product origi-
nating by industry (value-added) and unit prices by product.
The accountant closes the model with respect to income, de-
termines the economic aggregates, and estimates transaction
which have not been calculated elsewhere in the model. The
components are run iteratively until the model converges on
a solution.
Modelling of international Price- and income sensitive econometrically estimated impo
trade and export equations
Representation of policies Macroeconomic policy instruments, taxes and transfers.
Theoretical consistency Forecast models of individual sectors are linked through in-
put-output relationships, and the general shifts in prices and
incomes that result are linked to demand patterns. Economy-
wide constraints (i.e. capital and labor markets clearing) are
not central to this class of models, and full adding-up condi-
tions are not imposed.
Model closures Single country models or linked system.
Regional aggregation 13 countries: United States, Canada, Mexico, Japan, Korea,
Germany, France, United Kingdom, Italy, Spain, Austria,
Belgium. China module under development.
Commodity aggregation Varies by country: min. 33, max 100.
Base year/time series Varies by country. Forecast horizon 2010
No. of agricultural com- Varies by country

modities	
Variables generated and pa-	Variables: Production, bilateral trade, consumption, prices,
rameters needed	EV, etc.
	Parameters: Elasticities of substitution in trade and factor use
Sensitivity	Not sytematically reportedAuthors explicit considered sensi-
	tivity.
Parameter estimates	Various methods. Econometric (time series) estimation.
Policy data	Various national sources
Data sources	Various national sources. Mainly I-O tables
Software	Basic INFORUM software package is called G, which is an
	econometric regression and model-building program for use
	on personal computers. It is designed for estimation of re-
	gression equations with annual, quarterly, or monthly data.
	PDG is the Public Domain version of G, with limited fea-
	tures. PDG is written in the C language.
Data set publicly available	Some datasets and software are freely available through
	INFORUM, but the public versions are limited, and critical
	features of the models and software are proprietary.

Almon, C. 'Industrial Impacts of Macroeconomic Policies in the INFORUM Model,' in Miller, R.E., Polenske, K.R., and Rose, A.Z., eds. *Frontiers of input-output analysis*. New York and Oxford: Oxford University Press, 1989: 12-21.

Almon, C. 'The INFORUM Approach to Interindustry Modeling.' *Economic Systems Research*. 3(1), 1991: 1-7.

Almon, C., Ruiz-Moncayo, A., and Sangines, L. 'Simulation of a Mexico-USA Free Trade Agreement.' *Economic Systems Research*. 3(1), 1991: 93-97.

Christou, C., and D. Nyhus. 'Industrial Effects of European Community Integration.' *Economic Systems Research*. 6(2), 1994: 179-98.

McCarthy, M.B., 'LIFT: INFORUM's Model of the U.S. Economy.' *Economic Systems Research*. 3(1), 1991.

Richter, J. 'Austria and the Single Market.' Economic Systems Research; 6(1), 1994: 77-90.

A2.5 MEGABARE and GTEM

	MEGABARE and GTEM (Global Trade and Environment
	Model)
Institutions and indi-	Australian Bureau of Agriculture and Resource Economics
viduals	(ABARE) Kevin Hanslow
Goal of the model	Policy scenario analysis primarily in climate change but also in
	global agricultural trade reform and trade in strategic commodi-
	ties
Regional scope	World. See GTAP
Commodity / sectoral	See GTAP. Plus emphasis on energy sectors
scope	
Key applications	Climate change policy and the economic impact of the Kyoto
	Protocol, WTO and the agricultural trade liberalisation
Documentation and	Documentation of MEGABARE describing the main features
availability	available, the outcoming GTEM will be publicly available in the
	future, website: http://www.abare.gov.au/
Theoretical underpin-	Recursive dynamic multi-region AGE, constant returns and per-
nings	fect competition. Special feature: technoly bundles in energy
	sectors
Dynamics	Stock-flow dynamics with partial adjustment, growth in the labor
Madallina of interma	force and population
Modelling of interna- tional trade	Bilateral trade flows, choosing between domestic and imported
Representation of poli-	goods by Armington assumption All polices as tariff equivalent price wedges
cies	An ponces as tarm equivalent price wedges
Theoretical consis-	Theoretically consistent within general equilibrium framework
tency	Theoretically consistent within general equilibrium framework
Model closures	Variable depending on the simulation
Regional aggregation	See GTAP
Commodity aggrega-	See GTAP
tion	
Base year / time series	1992/1995
# of agric. Commodi-	See GTAP
ties	
Variables generated	Price and quantity variables endogenously determined in the
and parameters needed	model, needs parameters on the substitution possibilities in the
	production structure and the consumption structure
Sensitivity	Not reported
Parameter estimates	Technology bundle parameters calibrated, savings behaviour
	calibrated, other demographic elasticities estimated
policy data	Protection and Support data GTAP
Data sources	GTAP, The technology bundles from various publications (IEA
	1993a, b; International Iron and Steel Institute 1992), Birth rates

	and mortality based on econometric analysis (United Nations 1992, Encyclopaedia Britannica 1994)
Software	GEMPACK (Unix version)
Dataset publically available?	GTAP available, GTEM data in public release in the future

ABARE, *The MEGABARE model: interim documentation*, Canberra: Australian Bureau of Agriculture and Resource Economics, 1996.

Harrison, J. and Pearson, K., An Introduction to GEMPACK, Monash University IMPACT Project GEMPACK Document No. GDP-1, Melbourne, 1994.

International Energy Agency, Energy Balances of OECD Countries: 1990-1991, OEC/IEA, Paris, 1993a.

International Energy Agency, Energy Statistic and Balances of Non-OECD Countries: 1990-1991, OECD/IEA, Paris, 1993b.

International Iron and Steel Institute, Steel Statistical Yearbook, 1992, IISI, Brussels United Nations 1992, World Population Prospects 1950-2025 (The 1992 Revision), Magnetic Tape, New York, 1992.

United Nations 1994, Industrial Statistics Yearbook, Volume II, Commodity Production Statistics, United Nations, New York, 1994.

A2.6 MICHIGAN BDS MODEL

	Michigan BDS Model (Brown Deardorff Storn Model)
In stitutions and in di	Michigan BDS Model (Brown-Deardorff-Stern Model)
Institutions and indi-	University of Michigan / Drusilla Brown, Alan Deardorff and
viduals	Robert Stern
Goal of the model	To analyze microeconomic effects of trade liberalization policies
Regional scope	World. 34 regions.
Commodity / sectoral scope	Economy-wide. 29 commodities. Focus on manufacturing
Key applications	Regional trade agreements, Tokyo round, Uruguay round, CUSTA, NAFTA, EU enlargement
Documentation and	Model algebra and IO-tables of the regions in Internet
availability	http://www.spp.umich.edu/rsie/model
Theoretical underpin-	AGE model with monopolistically competitive manufacturing in-
nings	dustries
Dynamics	No dynamics. Comparative static
Modeling of interna- tional trade	Bilateral trade. Firm level product differentiation (Dixit-Stiglitz)
Representation of poli- cies	Price wedges, endogenous tariff equivalents
Theoretical consis-	Satisfied within the AGE framework.
tency	
Model closures	Fied trade balance
Regional aggregation	34 individual countries + aggregate Rest of the world: Argentina,
0 00 0	Australia, Austria, Belgium-Luxembourg, Brazil, Canada, Chile,
	Colombia, Denmark, Finland, France, Germany, Greece, Hong
	Kong, India, Ireland, Israel
Commodity aggrega-	29 sectors: Agriculture&Forestry&Fisheries,
tion	Food&Beverages&Tobacco, Textiles, Paper&Paper Products,
	Printing&Publishing, Chemicals, Petroleum&Related Products,
	Rubber Products, Non-ferrous Mineral Products, Glass&Glass
	Products, Iron&Steel, Non-ferrous Metals, Metal Products, Non-
	electric Machinery, Electric Machinery, Transportation Equip-
	ment, Miscellaneous Manufactures, Mining&Quarrying,
	Electricity&Gas&Water, Construction, Wholesale& Retail Trade,
	Transportation, Storage and Communication, Fi-
	nance&Insurance&Real Estate, Community- Social- and Personal
	Services
Base year / time series	Reference year 1990
# of agric. Commodi-	1
ties	
Variables concreted	
Variables generated	Based on input-output, trade data and published studies on sub-
and parameters needed	Based on input-output, trade data and published studies on sub- stitution elasticity parameters. Armington, capital-labor

	rieties needed.	
Sensitivity	Not reported sensitivity analysis	
Parameter estimates	Trade elasticities from Stern, Francis and Schumacher, capital-	
	labor substitution elasticities from Zarembka and Chernicoff	
	(1971). Substitution elasticity between varieties assumed to be 15	
	(Brown and Stern, 1989).	
policy data	Tariffs and estimated tariff equivalents for quotas	
Data sources	UNCTAD, United Nations trade statistics, national IO tables	
Software	Gempack	
Dataset publically	Database documentation, full statement and description of the	
available?	equations and parameters of the model are available from authors	
	on request. IO-tables and model equations are on internet.	

Brown Drusilla K., and Robert M. Stern, 'Computable General Equilibrium Estimates of the Gains from U.S.-Canadian Trade Liberalization', in David Greenaway, Thomas Hyclak, and Robert J. Thornton (eds.), *Economic Aspects of Regional Trading Arrangements*. London: Harvester Wheatsheaf, 1989.

Brown Drusilla K., Alan V. Deardorff, and Robert M. Stern, 'A North American Free Trade Agreement: Analytical Issues and a Computational Assessment', *The World Economy* 15:15-29, 1992a.

Brown Drusilla K., Alan V. Deardorff, and Robert M. Stern, 'North American Economic Integration,'*Economic Journal* 102:1507-18, 1992b.

Brown Drusilla K., Alan V. Deardorff, and Robert M. Stern, 'Modeling multilateral trade liberalization in services', School of Public Policy University of Michigan Discussion Paper No. 378, 1995.

Brown Drusilla K., Alan V. Deardorff, and Robert M. Stern, 'Computational Analysis of the Economic Effects of an East Asian Preferential Trading Bloc,' *Journal of the Japanese and International Economies*, forthcoming, 1996a.

Brown Drusilla K., Alan V. Deardorff, and Robert M. Stern, 'Expanding NAFTA: Economic Effects of Accession of Chile and Other Major South American Nations,' *North American Journal of Economics and Finance*, forthcoming, 1996b.

Brown Drusilla K., Alan V. Deardorff, Simeon Djankov, and Robert M. Stern, 'An Economic Assessment of the Integration of Czechoslovakia, Hungary, and Poland into the European Union,' in Stanley Black (ed.), *Europe's Economy Looks East*. New York: Cambridge University Press, forthcoming, 1996c.

Brown Drusilla K., Alan V. Deardorff, Alan K. Fox, and Robert M. Stern, 'Computational Analysis of Goods and Services Liberalization in the Uruguay Round,' in Will Martin and L. Alan Winters (eds.), *The Uruguay Round and the Developing Economies*, New York: Cambridge University Press, 1996.

Codsi, G. and K. R. Pearson, 'GEMPACK: General-Purpose Software for Applied General Equilibrium and Other Economic Modellers', Computer Science in Economics and Management, Vol. 1, pp. 189-207, 1988.

Dixit Avinash K., and Joseph E. Stiglitz, 'Monopolistic Competition and Optimum Product Diversity,' *American Economic Review* 67:297-308, 1977.

Deardorff Alan V., and Robert M. Stern, *The Michigan Model of World Production and Trade*. Cambridge Massachusetts: The MIT Press, 1986.

Deardorff Alan V., and Robert M. Stern, *Computational Analysis of Global Trading Arrangements*. Ann Arbor: University of Michigan Press, 1990.

Harrison W. J. and K. R. Pearson, 'Computing Solutions for Large General Equilibrium Models Using GEMPACK', *Computational Economics* vol. 9: 83-127, 1996.

Stern Robert M., Jonathan Francis, and Bruce F. Schumacher, *Price* elasticities in international *Trade*. London: Macmillan, 1976.

Zarembka Paul, and Helen Chemicoff, 'Further Results on the Empirical Relevance of the CES Production Function', *Review of Economics and Statistics* 53:106-10, 1971.

A2.7 RUNS

	Rural/Urban - North South (Runs) - Model
Institutions and individuals	OECD, Burniaux, J.M. (1987)
Goal of the model	Analysis of Agricultural policies
Regional scope	World. 22 regions; 6 OECD countries, 2 East European
	countries, 14 Developing countries
Commodity / sectoral scope	Economy-wide. 20 sectors; focus on agriculture
Key applications	Agricultural trade liberalization, GATT/Uruguay round
Documentation and availability	Documentation is available, the model is not
Theoretical underpinnings	Recursive dynamic multi-region AGE model
Dynamics	Recursive dynamic; period 1985 - 2002; equilibrium
	solution for every three year
Modelling of international trade	Agriculture: homogenous product; non-agriculture:
	Armington assumption
Representation of policies	Price wedges
Theoretical consistency	not documented; however, RUNS is theoretical consis-
	tent within the framework of a CGE model
Model closures	Neoclassical, savings-driven
Regional aggregation	22 Regions: United States, Canada, Australia/New Zea-
	land, Japan, EEC; EFTA, Eastern European Economies,
	Soviet Union, Low Income Asia, China, India, Upper
	Income Asia, Indonesia, Africa, Nigeria, South Africa,
	Maghreb, Mediterranean, Gulf Region, Latin America,
	Brazil, Mexico
Commodity aggregation	20 Sectors / commodities (11 primary agriculture, 4
	processed food): Wheat, rice, coarse grain, sugar (re-
	fined), beef, veal and sheep, other meats, coffee, cocoa,
	tea, oils and oil cakes, dairy and dairy products, other
	foods, wool, cotton, other non-food from the agricultural
	sector, other manufacturing, energy, services, equipment
B asa yaar / tima sarias	goods, fertilizer
Base year / time series	1985; period 1985 - 2002
# of agric. commodities	11 primary agriculture; 4 processed food
Variables generated and pa- rameters needed	prices and quantities on domestic and world markets as well as the related value flows; demand and supply
Tameters needed	elasticities
Sensitivity	No
Parameter estimates	agricultural supply and demand elasticities: USDA's
	GOL model and MTM model developed by the OECD
	Secretariat
Policy data	FAO producer price data bank, for OECD countries this
	information is complemented and updated using the
	OECD Secretariat's PSEs/CSEs

Data sources	 SAMs compiled by the development centre, Supply Utilisation Account of the FAO (SUA) bilateral trade flows: CHELEM data base primary factors in agriculture: FAO Production Year Book
Software	Fortran
Dataset publically available?	No

BURNIAUX, J.-M., Le Radeau de la Méduse: Analyse de dilemmes alimentaires. Paris: Economica, 1987.

BURNIAUX, J.-M., Intersectoral Effects of CAP Trade Liberalisation. In: TARDITI et. al., (eds.) Agricultural Trade Liberalisation and the European Community. Oxford, 1989.

BURNIAUX, J.-M. and VAN DER MENSBRUGGHE, D., A Rural/Urban-North/South General Equilibrium Model for Agricultural Policy Analysis. OECD Economics Department Technical Papers No. 33. Paris, 1990.

BURNIAUX, J.M., VAN DER MENSBRUGGHE, D. and WAELBROECK, J., The Food Gap of the Developing World: A General Equilibrium Approach. In: GOLDIN, I. and KNUDSEN, O. (Eds.), Agricultural Trade Liberalisation: Implication for Developing Countries. Paris, 1990.

BURNIAUX, J.-M. and VAN DER MENSBRUGGHE, D., Trade Policies in a Global Context. Technical Specification of the Rural/Urban-North/South (RUNS) Applied General Equilibrium Model. OECD Economics Department Technical Papers No. 48. Paris, 1991.

A2.8 WTO housemodel

	World Trade Organization Model	
Institutions and individuals	WTO and Joseph F. Francois, Bradley McDonald, and Håkan Nordström	
Goal of the Model	To analyze global trade analysis issues such as the upcoming WTO Round	
Regional scope	Global with 13 regions	
Commodity/sectoral scope	Economy-wide based on 19 sectors	
Key applications	Multi-region CGE analysis of the results of the Uruguay Round	
Documentation and avail- ability	Formal written documentation of the model is ad hoc. How- ever, model code and data can be downloaded from http://www.intereconomics.com/handbook/disk.htm Moreover, a description of the model can be found in Joseph F. Francois et al., (1995)	
Theoretical underpinnings	A global General Equilibrium Model, which exists in differ- ent versions, e.g.: Perfect competition, CRTS, static comparative, Armington representation Monopolistic competition and scale economics internal to each firm, and firms from different regions compete indi- rectly in an Armington-type framework Monopolistic competition and scale economics internal to each firm, and firms from different regions compete directly	
Modelling of international	Armington or monopolistic competition where firms compete	
trade	directly or indirectly	
Representation of policies	Quotas (MFA and minimum market access) are modelled explicitly	
Theoretical consistency	Consistent within general equilibrium framework	
Model closures	Two types of closure rules to capture steady-state 'accumula- tion effects': Either fixed regional saving rates or endogenous regional saving rates	
Regional aggregation	13 regions: Australia, Japan, Canada, United States, EU, EFTA, China, East Asia, South East Asia, Latin America, Africa, Eastern Europe, and Rest of the World	
Commodity aggregation	19 broad sectors: Grains, other crops, livestock, forestry, fishery, mining, processed food, textiles, apparel, lumber, petroleum, chemicals, steel industry, non-ferrous metal in- dustry, fabricated metal products, transport equipment, other machinery, other manufactures, and services	
Base year/time series	1992 (GTAP version 3, updates to version 4 forthcoming)	
No. of agricultural com- modities	3 primary and 1 processing industries	

Variables generated and pa-	Variables: Production, bilateral trade, consumption, prices,
rameters needed	EV, etc.
	Parameters: Elasticities of substitution in trade and factor use
Sensitivity	Authors explicit considered sensitivity. Results depends criti-
	cally on the chosen theoretical structure, and in addition they
	are sensitive to a number of parameters
Parameter estimates	Elasticity parameters are from the GTAP database of elas-
	ticities, while the rest of the parameters are calibrated from
	the model, the exogenously specified elasticities, and the in-
	formation on initial prices and quantities contained in the
	benchmark data set
Policy data	MFN tariff rates are from GATT's Integrated Data Base, and
	the values of tariff equivalents for industrial non-tariff barri-
	ers are from estimates in the literature, while dumping duties
	are from national sources and actions reported to the GATT
	secretariat. Finally, agricultural protection data are from
	OECD and USDA
Data sources	Most social accounting data are from the GTAP database,
	supplemented with production and trade data for EFTA and
	ROW. With respect to policy data, see above.
Software	GAMS/MPSGE
Data set publicly available	Yes, model and data can be downloaded from
	http://www.intereconomics.com/handbook/disks.htm

References

Joseph F. Francois et al., 'Assessing the Uruguay Round'. Chapter 6 in Will Martin & L. Alan Winters (eds.), 'The Uruguay Round and the Developing Economies'. World Bank Discussion Paper, No. 307, 1995, 1995.

Appendix 3 EU agricultural-models

A3.1 SPEL

	ODEL/ELL Contours Durchard and Language Model for Anni-
	SPEL/EU - Sectoral Production and Income Model for Agricul-
	ture
Institutions and indi-	Department for Economics, Agricultural Policy, and Agricultural
viduals	Information Systems, University of Bonn European Center for
	Agricultural, Regional and Environmental Policy Research,
	EuroCARE, Luxembourg - Bonn, European Commission, GD 34,
	(SPEL group at Eurostat), Luxembourg
Goal of the model	Ex-post analyses of sectoral developments,
	Monitoring and diagnosis of the current situation in the agricul-
	tural sectors of the EU-Member States,
	Short and medium-term forecasts and policy simulations of the
	effects of agricultural policy decisions
	Checking the consistency of Eurostat's agricultural statistics
Regional scope	Regionalisation at EU-Member State level, 15 regional units and
	the entire European Union.
Commodity / sectoral	Agricultural partial equilibrium model:
scope	Production activities: 35 crop activities and 13 animal activities.
	Product groups: 51 crop products, 27 animal products.
	Intermediate input groups: 9 specific for crop production, 19 spe-
	cific for animal production, 8 for crop and animal production.
Key applications	The Base System (BS) is continuously applied at Eurostat and
	EuroCARE (2 times a year) in order to up-date the reference pe-
	riod (1973 up to the current year). The Short-term Forecast and
	Simulation System (SFSS) is continuously applied in combination
	with the up-dating of the reference period at Eurostat (2 times a
	year) and further on request of the Commission for specific
	simulations. The SPEL/EU-Data (results of the BS and the SFSS)
	are published by Eurostat and available for everybody on techni-
	cal media. The Medium-term Forecast and Simulation System
	(MFSS) is applied on request of the Commission at Eurostat in
	co-operation with EuroCARE The reference data set for these
	simulations are published by Eurostat (up to 7 projection years).
	Particularly, CAP/Agenda 2000 (Agenda 2000: Overview of the
	impact analysis of CAP reform proposals, Europe Agri No. 30,
	1998) The SPEL/EU-Data and the SFSS are implemented and ap-
	plied inside the political decision process of nine EU-Member
	States.
l	States.

Documentation and	Dataset (SPEL/EU-Data) is publically available, while the model
availability	is not. Model is in details described in following publications:
availability	Wolf (1995), Zintl and Greuel (1995a en b), Henrichsmeyer
	(1995), Henrichsmeyer, Weber and Wolf.
Theoretical underpin-	- The main part of SPELL is the SPEL/EU Base System (BS),
nings	which provides detailed ex-post descriptions of the structure, in-
	tensity and use of agricultural production and of income
	generation in the EU member states.
	- The Short-term Forecast and Simulation System (SFSS) is used
	to generate forecasts (1-2 years) by combining econometric,
	trend-based forecasts and the systematic incorporation of expert
	know-how. The Base System (BS) and the SFSS are continuously
	applied at Eurostat and EuroCARE (2 times a year) in order to up-
	date the reference period (1973 up to the current year). The
	SPEL/EU-Data (results of the BS and the SFSS) are published by
	Eurostat and available for everybody on technical media.
	- The Medium-term Forecast and Simulation System (MFSS) per-
	forms policy simulations relative to a reference data set (up to 7
	projection years, which are based on econometric trends and ex-
	pert assessments). The MFSS system contains a supply model
	which links price expectations of farmers (based on past experi-
	ence), the reaction of production intensity (input use and yield per
	hectare) to expected input and output prices, and the central ac-
	tivity model which shows the level of production activities as a
	function of changes in value-added per unit of the production ac-
	tivities. Food demand is based on econometric analysis and a
	forecasting system. A partial equilibrium model is used for bal-
	ancing supply with forecasted demand. The foreign trade
	component contains net-trade functions between the EU and the
	rest of the world.
Dynamics	Recursive dynamic for the simulation models.
Modelling of interna-	Homogeneous goods and pooled markets (net trade).
tional trade	
Representation of	Explicit incorporation of CAP policies, like Quota, Set-aside,
policies	Premiums, etc.
Theoretical consis-	No.
tency	
Model closures	No closures like those used in CGE models.
Regional aggregation	Individual EU member states
Commodity aggrega-	5-6 digit NACE/CLIO breakdown
tion	
Base year / time series	1973 up to the current year
# of agric. Commodi-	114 primary agricultural commodities
ties	
Variables generated	Indication of endogenous / exogenous split, depending on simu-

and parameters needed	lations scenario and depending on sub-model.
	For each model the whole national economy variables, like infla-
	tion rate, ex-change rates, etc. have to be specified exogenously.
Sensitivity	Not, reported.
Parameter estimates	Generation of parameters Literature, own specifications ex-post
	data based, parts are calibrated econometrically.
policy data	Production subsidies and taxes, direct payments as they are re-
	ported in EAA
Data sources	Mainly official statistics of Eurostat data 'NewCRONOS, do-
	mains: ZPA1, COSA, FEED, PRAG, SEC1 and FADN data of
	DG VI, Brussels and other official national statistics.
Software	Specific model software are tailor made, results are available by
	multi-purpose software.
Data set publicly	Yes, from Eurostat, see above.
available?	

References

Wolf, W., SPEL System: Methodological Documentation (Rev. 1), Vol. 1: Basics, BS, SFSS. Theme 5 Series E, Luxembourg: Eurostat, 1995.

Zintl, A., Greuel, H.-J., *SPEL System: Technical Documentation (Rev. 1), Vol. 1: Basics.* Theme 5 Series E, Luxembourg: Eurostat, 1995a.

Zintl, A., Greuel, H.-J., SPEL System: Technical Documentation (Rev. 1), Vol. 2: BS, SFSS, MFSS. Theme 5 Series E, Luxembourg: Eurostat, 1995b.

Henrichsmeyer, W., Das Konzept des SPEL-Systems: Stand und Perspektiven, In: Eurostat (1995), 1995.

Henrichsmeyer, W., Weber, G., Wolf, W., *SPEL System: Überblick über das SPEL-System* (*Rev. 1*), Theme 5 Series E, Luxembourg: Eurostat, 1996.

A3.2 ECAM

	ECAM (European Community Agricultural Model)
Institutions and indi-	Centre for World Food Studies, Central Planning Bureau and the
viduals	Agricultural Economics Research Institute - C. Folmer, M.A.
	Keyzer, M.D. Merbis, H.J.J. Stolwijk and P.J.J. Veenendaal
Goal of the model	The assessment of the impacts of agricultural policies, rather than
	the forecasting and/or the projection of variables.
Regional scope	EU model: 9 EU countries
Commodity / secto-	Economy-wide, with a focus on agriculture: 3 sectors (agriculture,
ral scope	tradeable and nontradeable non-agriculture)
Key applications	CAP reforms (price reductions, decoupling, quotas), MacSharry Re-
	form, GATT Uruguay Round
Documentation and	Documented through research reports and academic publications.
availability	Model only available to the organizations sponsoring the model
Theoretical under-	Applied general equilibrium model. The model has the structure of
pinnings	a nonlinear program, and consists of three main parts: a module for
	total demand, one for agricultural supply, and an exchange compo-
	nent, which balances demand and supply.
	As far as non-agriculture supply is concerned, the supply of the
	tradeable good is treated as a given endowment which grows ac-
	cording to an exogenous trend; the nontradeable sector (mainly
	building and construction services) operates under a constant returns
	to scale technology with fixed mark-up rate over variable costs, and
	the level of production driven by demand.
	Consumer demand follows expenditure minimization according to a
	two-level demand system: at the lower level s linear expenditure
	system (LES) with trends on commitments for food demand; at up-
	per level an AIDS-system for food, beverages and tobacco and non-
Demonsion	food.
Dynamics Modelling of inter	Recursively dynamic
Modelling of inter- national trade	No explicit modelling of the relations with non-member countries.
national trade	Trade flows between each country and the EU-market level (intra-
	EU market clearing at given international prices).

Modelling of agri- cultural supply	through its representat plicit treatment of pass as well as the separate (that is, crop yield per Agricultural supply is mizing nonlinear prog energy constraint and constraint set is comp green fodder balance. nously specified trend linearity enters via pro- because of the decomp with via separate cost The one-year producti cation component exp and given intermediate commodities by the far every year of the simu gration and investmen specified through a tir Explicit modelling of	tion of agricultural s tures and other non- e elaboration of yield acre and acreage are modelled via a one- gram with a land con a livestock operating leted with commodit Yields of crops and s which reflect techn oduction and transfor posable structure of the and revenue function toon lag assumed in the lains why it is with g e and investment den urmers that the market ilation. The resulting the following instrue	e both represented). period, revenue maxi- straint, a livestock-feed g-capacity constraint. The ty balances including a animals follow exoge- nical progress. Non- rmation functions, which the program, can be dealt ns. he crop and livestock allo- given agricultural supply mand for non agricultural et equilibrium is solved in g incomes then affect mi-
poncies	revenue tax and grants	-	sumption (ax/substates,
Theoretical consis- tency	Optimizing behaviour in a general equilibrium framework ensures theoretical consistency, but the recursive dynamics does not guar- antee intertemporal optimization		
Model closures			farm sector is (semi) ex-
Regional aggrega- tion	Belgium-Luxembourg, Denmark, France, West Germany, Ireland, Italy, Netherlands, United Kingdom.		
Commodity aggre- gation	Different aggregations in different parts of the model (exchange, demand, agricultural supply)		
Exchange commodi-	Supply activities	Consumer demand	
ties		First level	Second level
Wheat	Wheat	Food products	Bread and cereals
Coarse grains	Coarse grains		Beef and veal
Rice	Rice		Lamb
Sugar	Sugarbeet		Poultry meat
Fats and oils	Oilseeds		Pig meat

Protein feed	Consumable potatoes		Fish
Temperate fruit & vegetables	Vegetables		Milk and cheese
Subtropical fruit & nuts	Temperate fruit		Eggs
Wine	Non-temperate fruit		Fats and oils
Industrial crops	Olives		Fruits and vegetables
Carbohydrates	Grapes		Potatoes
Coffee, tea and cocoa	Industrial crops		Sugar
Butter	Non-consumable po- tatoes		Coffee, tea, cocoa
Dairy products	Other vegetable products		Other food products
Bovine and equine meat	Pasture grass	Beverages and to- bacco	
Ovine meat	Fodder maize	Non-food products	
Pork	Other roughage		
Poultry and eggs	Dairy cows		
Fish	Laying hens		
Non-agricultural tradeable	Cattle and horses		
Non-agr. nontrad. Belgium/Lux.	Sheep and goats		
Non-agr. nontrad. Denmark	Pigs		
Non-agr. nontrad. France	Poultry		
Non-agr. nontrad. Germany	Fish		
Non-agr. nontrad. Ireland			
Non-agr. nontrad. It- aly			
Non-agr. nontrad. Netherlands			

Non-agr. nontrad. UK		
Base year / time se- ries	1982 / 1970-85 (mostly)	
# of agric. com-	19 (exchange module) - 24 (agricultural supply module) - 15 food	
modities	products (demand module)	
Variables generated	Variables generated depict the complete economy, at national level	
and parameters	as at EU-level	
needed	Parameters: substitution elasticities between output and inputs, yield trends, land outflow trend, impact of per capita income and lagged	
	employment on occupational migration, substitution elasticities in	
	feed and consumer demand	
Sensitivity	Robustness guaranteed by econometric results rather than sensitivity analysis.	
	ECAM has been validated over the period 1982-1992. The model	
	appears to replicate the past with reasonable accuracy, given the	
	deterministic nature of the model and its focus on the main tenden-	
	cies rather than on the details.	
Parameter estimates	Econometric estimation plus calibration for validation over the pe-	
	riod 1982-1992. Although it is not possible to perform the full	
	system econometric estimation (due to identification problems, re- strictions on the distribution of disturbance terms, impossibility to drop variables rejected on statistical grounds, and lack of data), pa-	
	rameters of most of the behavioural equations have been obtained	
	via time series estimation. Such a modular approach is more easily	
	manageable, but it is insufficient to ensure a good fit for the model	
	as a whole when it is validated over a historic period. This explains	
	the need for a calibration phase (see 3e) in order to generate a good	
	dynamic behaviour.	
Policy data	Prices, rates, quotas, indexed amounts	
Data sources	EAGGF, EU Commission, Eurostat, IMF, OECD, World Bank,	
	FAO, FADN	
Software	Data Management Software - FORTRAN algorithm	
Dataset publically available?	No.	

References

Bettendorf, L. and M. Merbis, 'Implications for net positions of the agriculural reform in Agenda 2000', *Central Planning Bureau Report* 98/2, The Hague, 1998.

Folmer, C. M.A. Keyzer, M.D. Merbis, H.M.E. Schweren and P.J.J. Veenendaal, 'Modelling alternative Common Agricultural Policies'. in S. Bauer e W. Henrichsmayer (eds), *Agricultural Sector Modelling*, Vauk: Kiel, 1989. Folmer, C: et al., A demand system for marketed and non-marketed feed in te EC-9, mimeo, Central Planning Bureau, The Hague, 1991.

Folmer, C., 'ECAM data input 1983/1992', *Report IV/92/11*, Central Planning Bureau, The Hague, 1992.

Folmer, C. et al., 'CAP-reform and the EC-US GATT compromise: compatible or not?', *Working Paper 49*, Central Planning Bureau, The Hague, 1993.

Folmer, C. et al., 'CAP reform and its differential impact on member states', *European Economy. Reports and Studies*, 5, 1994.

Folmer, C., M.A. Keyzer, M.D. Merbis, H.J.J. Stolwijk and P.J.J. Veenendaal, *The Common Agricultural Policy beyond MacSharry Reform*. Amsterdam: North-Holland, 1995.

Keyzer, M.A. and M.D. Merbis, 'Impact analyses of the Agenda 2000 proposals for CAP reform', *CAP Reform Proposals*. European Commission/DG VI: Bruxelles, 1998.

A3.3 CAPMAT

	CAPMAT (Common Agricultural policy Modelling and Ac- counting Tool)
Institutions and indi	
Institutions and indi-	Centre for World Food Studies, Central Planning Bureau and the
viduals	Agricultural Economics Research Institute - L. Bettendorf, M.A.
	Keyzer, M.D. Merbis, and J. Muskens
Goal of the model	Policy analysis. Since ECAM had been designed for the EU-9, a
	new tool was needed, covering all member states and starting
	from a more recent base year. It performs simulations to derive
	the implications of various policy scearios.
Regional scope	EU: 15 EU countries
Commodity / sectoral	Agricultural sector
scope	
Key applications	CAP reform (partial liberalization), agricultural proposals in
5 11	'Agenda 2000'
Documentation and	Scarce documentation
availability	Only available to the organizations sponsoring the model
Theoretical underpin-	CAPMAT consists of three components:
nings	- a dedicated database,
C	- an applied general equilibrium (AGE) model to simulate overall
	medium term effects,
	- a simulation and accounting tool (SAT) that applies selected
	growth factors from the AGE-model (or from explicit assump-
	tions) to the information extracted from the database.
	CAP commodities follow the assumed intervention prices, while
	some sectors (pork, poultry, eggs and other animals) have a
	mark-up pricing (covering the unit cost with a given gross margin
	of the least-cost producer).
Dynamics	Same as the AGE-component
Modelling of interna-	No explicit modelling (gross imports and exports depend on a
tional trade	time trend)
	,
Representation of poli- cies	Explicit modelling of the following instruments: production/input quotas, intervention prices, production/consumption
cies	
	tax/subsidies, stock volumes, direct transfers
Theoretical consis-	Optimizing behaviour in a general equilibrium framework en-
tency	sures theoretical consistency of the AGE component. It is
	questionable whether this is maintained in the SAT's simulations.
Model closures	Same as the AGE-component
Regional aggregation	13 countries and 1 region: Austria, Belgium-Luxembourg, Den-
	mark, Finland, France, Germany, Greece, Ireland, Italy,
	Netherlands, Portugal, Spain, Sweden, United Kingdom.

Commodity aggrega- tion	30 products: wheat, coarse grains, milled rice, pulses, consum- able potatoes, refined sugar, fats and oils, protein feeds, tobacco, other industrial crops, carbohydrates, vegetables, fruits, wine, other final crops, fresh fodder, dry fodder, fat from milk, skimmed milk, beef and veal, pork, meat from sheep and goats, egg, poultry meat, other animal products, fish, manure, fertilisers, plant protection, pharmaceutical inputs.
Base year / time series	1995
# of agric. commodi- ties	27 products
Variables generated	Supply and utilization accounts by commodity and country
and parameters needed	Costs and revenue for every activity by country
	Farm revenue by country
	EU budget
Sensitivity	No
Parameter estimates	No documentation
Policy data	EAGGF expenditures, prices and quotas
Data sources	EU-budget, Eurostat, EU Court of Auditors, OECD, World Bank,
	FAO, FADN, FAPRI, SPEL, EXMIS
Software	Database aggregation procedure and SAT (GAMS programs)
Dataset publically available?	No