Production of Lactic Acid from Xylose by *Rhizopus oryzae* Ronald H.W. Maas, Robert R. Bakker, Gerrit Eggink and Ruud A. Weusthuis The production of the biodegradable polymer Poly Lactic Acid (PLA) requires preferably optically pure L(+)-lactic acid monomers. The filamentous fungus *Rhizopus oryzae* is able to grow with the hexose glucose as sole carbon source and to produce L(+)-lactic acid [1],[2]. Less is known about the conversion by *R. oryzae* of the pentose sugar xylose, which is abundantly present in lignocellulosic materials and forms an important potential feedstock for microbial processes. Conversion of both hexose and pentose monosaccharides by *R. oryzae* results in higher yield of lactic acid per mole of total amount of available sugars. ## **Objective** Study the ability of the filamentous fungus *R. oryzae* to convert the pentose sugar xylose into lactic acid. #### Results - *R. oryzae* strains convert the pentose xylose mainly into lactic acid with yield of 0.38 0.72 g/g - The production of the intermediate xylitol suggests that *R. oryzae* converts xylose through a two-step reduction and oxidation route Fig 1. Typical conversion of xylose by R. oryzae CBS 147.22, (\blacksquare) xylose, (\bullet) lactic acid, (\circ) ethanol, (\circ) glycerol, (\bullet) xylitol. Fungal biomass production was 1.3 g.L¹ Experiments were performed in baffled flasks and were aerobically agitated at 37°C. CaCO $_3$ was used to neutralize the produced lactic acid and maintain pH. Substrates and products were determined by HPLC analysis. - Diauxic growth of *R. oryzae* occurs in media with glucose and xylose where glucose is utilised faster than xylose - In mild-temperature alkaline treated wheat straw hydrolysate, xylose is converted by *R. oryzae* into lactic acid. Glucose is converted into both lactic acid and ethanol, which is likely caused by a low oxygen transfer rate in the hydrolysate. Fig 2. Conversion of sugars present in wheat straw hydrolysate by R. oryzae CBS 112.07, (\blacksquare) xylose, (\blacksquare) glucose, (\bullet) lactic acid, (\bigcirc) ethanol, (\blacksquare) glycerol, (\blacksquare) xylitol, (\blacktriangle) acetic acid. Hydrolysate was obtained by mechanical treatment followed by mild-temperature alkaline treatment and enzymatic hydrolysis. Experiment performed as described in Fig. 1. ### **Conclusions** *R. oryzae* converts the pentose xylose mainly into lactic acid. *R. oryzae* is able to convert both glucose and xylose in mild-temperature alkaline treated wheat straw hydrolysates. ### References [1] Datta, R., S.-P. Tsai, P. Bonsignore, S.-H. Moon and J. R. Frank, Technological and economic potential of poly(lactic acid) and lactic acid derivatives, FEMS Microbiology Reviews 16, 221-231 (1995) [2] Longacre A., J.M. Reimers, J.E. Gannon and B.E. Wright, Flux Analysis of Glucose Metabolism in *Rhizopus oryzae* for the Purpose of Increasing Lactate Yield, Fungal Genetics and Biology 21, 30-39 (1997) #### economieecologietechnologie This project is supported with a grant of the Dutch Programme EET (Economy, Ecology, Technology) a joint initiative of the Ministries of Economic Affairs, Education, Culture and Sciences and of Housing, Spatial Planning and the Environment. Co-financing was provided by Program 412 Renewable Resources of the Dutch Ministry of Agriculture, Nature and Food Quality.