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Chapter 1

Introduction

In this dissertation the work of my PhD project is presented. This

project, part of the research program of the Dutch Polymer Institute

and carried out within the Laboratory of Physical Chemistry and Colloid

Science at Wageningen University, was officially titled ”SF2: Colloidal

interactions modified by associative thickeners in waterborne paint for-

mulations. Surface forces and Scheutjens-Fleer modeling”. As you can

see, the thesis in front of you bears a title, ”Physics of Associative Poly-

mers”, much broader in definition (and a bit more concise). During the

course of this project we came across a variety of interesting phenom-

ena and decided to pursue several routes, some closer to the original

working plan than others.

1



2 INTRODUCTION 1.1

1.1 Paints

Coatings are ubiquitous in everyday life. These layers are applied to almost any

imaginable surface for various reasons, ranging from protecting the underlying sur-

face from corrosion, weathering or microbial attack, to giving the surface specific

properties such as electric conductance, light reflectance (shine) or water repel-

lency, and not to forget purely aesthetical reasons such as providing surfaces (e.g.

walls) with a desired color. Because of their widespread use, the coating industry is

also economically of significance in the world economy; in 2008 thirty billion liters

of coating products (paints, powders, etc.) have been sold worldwide, at a total

turn-over of around 100 billion euro.

One of the ways to apply a coating is by means of a paint, that according to

the Merriam-Webster Dictionary is ”a mixture of a pigment and a suitable liquid to

form a closely adherent coating when spread on a surface in a thin coat”. A paint

is thus a vehicle with which a coating can be applied. Nevertheless, these terms

are often used interchangeably.

Most paints consist of 3 basic components; i) a solvent, that thins the paint

to facilitate application in the form a thin coat, ii) a binder, that forms the final

coating after evaporation of the solvent, and which holds iii) the pigment, that gives

the coating its opacity and color. This basic lay-out is already found in some of the

oldest known paint formulations; for example the so-called tempera paints, used

in the earliest European civilizations, consisted of egg yolk (binder), pigments and

water as a thinner. In the middle ages, slow-drying and curing (i.e. plastic-forming)

vegetable oils, such as linseed oil, replaced egg yolk as a binder. Synthetic (man-

made) plastics (polymers) became largely available as modern binder materials in

the twentieth century, starting with the introduction of nitrocellulose as a binder

by DuPont in 1920.

Modern decorative paints, e.g. for painting in- and exteriors of buildings and

other structures, can be split up into two main categories, either solvent-based or

water-based, depending on the type of liquid that carries the pigments and the

binder.

In solvent-based paints, that have dominated the decorative coatings market for

decades, the binder is dissolved in a volatile apolar, organic solvent, together with

various additives. While these traditional systems have a high performance in terms

of leveling, resistivity to water, durability and aesthetics (e.g., gloss), they pose a

serious threat to both the environment and to consumers that handle the paints, as

significant quantities of harmful substances are released into the air during drying

of the paint. In recent years it has been established that prolonged exposure
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Table 1.1: Maximum allowed VOC content in grams per liter of paint, for either water

based (WB) and solvent based (SB) paints, as indicated in Directive 2004/42/CE of the

European Union/European Council. Phase 1 has commenced in January 2007, Phase 2

will start in 2010.

Product category Product type Phase 1 Phase 2

Interior matt wall paints WB 75 30

SB 400 30

Interior gloss wall paints WB 150 100

SB 400 100

Exterior stone/brick wall paints WB 75 40

SB 450 430

Exterior/Interior wood paints WB 150 130

SB 400 300

to a solvent-enriched atmosphere can cause a variety of severe health problems.

The best-documented of these is the so-called painter’s disease, or chronic solvent-

induced encephalopathy, leading to memory problems, dysfunctional mental and

motorial speed and impaired concentration. Moreover, emission of volatile organic

compounds (VOCs) leads to ozone formation in the troposphere, and is thought

to contribute to global warming and climate change. Paints, lacquers and glues

are identified as the second largest contributors to the emission of VOCs, the first

place being held by VOCs released during the combustion of fossil fuels.

For the reasons stated above, the European Union has adopted strict guide-

lines (EU directive 2001/81/EC) for the further production and use of VOC-rich

products, and has the intention to eventually phase-out these products completely.

The current agreements to reduce the VOC content of paints consist of two phases,

the first one is currently in action (started in 2007). In the second phase, starting

in 2010, even more drastic reductions in VOC contents must be accomplished (see

Table 1.1 for an example of allowed VOC contents of paints). Note that in 2010

almost all VOCs must be removed from paints used in closed areas, for the health

reasons mentioned above. Similar recommendations are also part of international

agreements such as the Kyoto-protocol (UN directive FCCC/CP/1997/L.7/Add.1).

Several technologies are currently available to reduce the VOC emission from

coatings:

• Waterborne paints: water is used as the main solvent

• High solids paints: reduction of the VOC content by increasing the concen-
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Figure 1.1: Market share of various coating types (SB: solvent-based, WB: water-based,

UV: UV-curable coatings) for either industrial use or decorative purposes (consumer mar-

ket) in 2004 and prediction for 2010. Data courtesy of Akzo Nobel.

tration of solid materials (pigments, binders) in the paint

• Powder coatings: the solvent is completely removed and the coating is applied

as a dry powder, which is cured with a heat treatment

• Reactive solvent technology: the solvent is not released but becomes part of

the coating by reacting during a curing process.

An overview of the market share of these various paint systems, compared to

solvent-based paints, is given in Fig.1.1. It is clear that already in 2004, wa-

terborne paints are the most important alternative to traditional VOC-rich paints.

From their introduction in the 1980s, waterborne systems have achieved a signif-

icant market share in the industrial market and have almost completely replaced

solvent-based paints in the consumer market.

Whereas the binder material is dissolved in an organic solvent in traditional

paints, binder materials are typically not soluble in water. To create a suitable

waterborne paint, the binder must be dispersed in small (typically between 10-

1000 nanometers) droplets or particles. Such a dispersion of small polymer colloids

in water is called a latex, giving its name to the well known latex paints. A

typical latex paint consists of 25 wt% binder particles, 25% titanium dioxide (a

white pigment that gives the final coating its opacity), 5 wt% surfactants (i.e.

surface-active compounds used mainly for stabilization of the binder and pigment

particles), 1 wt% thickeners and 44 wt% of water.

To establish the intended shift in the coatings market, it is essential that modern

water-based paints can offer the same performance as their traditional, solvent-
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1 2
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substrate

Figure 1.2: Illustration of some problems that can lead to poor coating quality. An ideal

coating (top picture) is a flat homogeneous layer of uniform thickness. Complications in

aqueous paint systems include (bottom row from left to right): i) poor leveling; brush or

spray marks remain visible in the final coating. ii) inhomogeneous film; lack of coalescence

of the latex particles gives an irregular and porous film. iii) sagging; the paint flows due

to gravity if the viscosity of the paint does not increase fast enough during drying.

based, counterparts. However, there are many issues with the formulation and

application of aqueous paints that must be solved in order to reach this objective.

Such issues include homogeneity of the film formed from the binder material, re-

sistivity to water after drying and leveling of the paint after brushing or spraying.

See Fig.1.2 for an illustration of several of the complications when working with

aqueous paints.

In solvent-based paints, the binder material is dissolved, i.e. the polymer chains

of the binder are swollen, and ensure a high viscosity of the paint so that it does not

sag or drip once it is applied. In water-based paints, the polymer (latex) particles,

have only a very small effect on the viscosity of the paint, and without the addition

of thickeners the paint would be approximately as viscous as milk. Thickeners are

therefore essential for the performance of the paint during application. Unfortu-

nately, it seems that the thickeners of choice, so-called associative thickeners, which

can provide a paint with all the desired flow properties, have an adverse effect on

the colloidal stability of the binder and pigment suspension. This destabilization

is thought to lead to a phenomenon known as syneresis or clear-liquid separation,

in which the paint expels a clear liquid phase.

In this dissertation we have studied the mechanisms that underly both the
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desired and undesired behavior of these associative thickeners in aqueous systems.

Improving the performance of thickeners in waterborne paints is one of the steps

towards the further phasing-out of solvent-based paints.

1.2 Associative Thickeners

Associative thickeners for aqueous applications are macromolecules (polymers),

with a part that is soluble in water, the so-called backbone or spacer, to which

two or more moieties that do not dissolve in water, the stickers, are attached. The

hydrophilic backbone of associative thickeners can be any water-soluble macro-

molecule, either linear, branched or star-shaped and can be neutral or bear charges.

The hydrophobic stickers can be any type of water-fearing molecule, such as small

hydrocarbon or fluorocarbon chains or apolar polymer chains. The simplest class

of associative polymers, which we have used in this thesis as a model system for

associative thickeners in general, are telechelic associative polymers, in which two

end-anchored hydrophobic stickers are connected by a watersoluble, flexible poly-

mer chain (Fig.12.6a). More specifically, we have used the HEUR (hydrophobically-

modified ethoxylated urethanes) class of thickeners; composed of a poly(ethylene

oxide) backbone with hydrocarbon tails at both chain ends.

In general, molecules with distinguishable hydrophilic (water-loving) and hy-

drophobic (water-fearing) parts are known as amphiphiles. Amphiphilic molecules

are very common in nature, such as phospholipids that form the membranes around

cells and almost all proteins. Another well known class of amphiphiles are soaps,

or surfactants, which are widely used as detergents, emulsifiers, foaming agents,

and so on.

Amphiphiles in solution can spontaneously form supramolecular structures, i.e.

objects formed from multiple molecules, in a process commonly known as self-

assembly. The parts of these molecules that do not like the surrounding solvent tend

to cluster in order to reduce the unfavorable contacts with solvent molecules. On

the other hand, the solvophilic parts of amphiphiles do not want to be clustered, so

that they can maximize their contact with the solvent. A delicate balance between

these two opposing forces, a growth and a stopping force, is responsible for the

formation of well-defined structures, such as micelles (see Chapter 2), vesicles,

membranes, and networks. The type of structure that is formed depends on the

structure of the amphiphile, its concentration in solution, the solvent in which it is

dissolved and many more physicochemical factors.

When telechelic associative polymers are dissolved in water at sufficient con-
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a) b)

c) d)

Figure 1.3: Illustration of the 4 different states of telechelic associative polymer solutions

with increasing concentration from a to d; a) at concentrations below the critical micelle

concentration (cmc) the chains exist as isolated unimers, b) above the cmc the telechelic

polymers associate into flowerlike micelles, c) at intermediate concentrations (typically

between 0.1 and 1 wt%) some systems (depending on the molecular architecture) show a

demixing into a percolated polymer-rich phase and a polymer-poor phase that contains

some isolated micelles and unimers, d) above the percolation concentration a sample-

spanning transient network is formed in which micellar cores form the network nodes,

interconnected by flexible polymer chains. At even higher concentrations, depending on

the molecular weight of the spacers, additional crosslinks due to chain entanglements are

formed.
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centration (i.e. above the critical micelle concentration), hydrophobic interactions

between the end-blocks and the preference for the spacer to remain in contact with

the solvent cause the thickeners to self-assemble into micelles. In dilute solutions,

when the average distance between the micelles is much larger than the size of

the micelles, both stickers will reside in the same micellar core, forcing the flexible

spacer into a loop configuration (Fig.12.6b). As these looped chains resemble the

petals of a flower, these micelles are referred to as flowerlike micelles. The for-

mation of flowerlike micelles, and of polymeric micelles in general, is discussed in

Chapters 2 & 3.

As the polymer concentration is increased, the number of micelles increases.

At some point, the average distance between the micelles is on the order of the

size of a micelle, allowing a chain to have one of its associating ends in one micelle

while the other end forms part of a neighboring micelle. In this way bridges are

formed between micelles. This gives rise to a purely entropic attraction between

the flowerlike micelles, which can cause demixing of the solution into a phase rich

in polymer and a phase containing mainly excess solvent and some micelles and

unimers (Fig.12.6c). This behavior is not observed for all systems of telechelic

polymers and depends strongly on the molecular architecture, as is discussed in

Chapter 4.

At high enough concentrations, all micelles will be interconnected by polymer

bridges, leading to a sample-spanning network (Fig.12.6d). Due to the dynamic

character of the micelles, the nodes or crosslinks in these networks are not perma-

nent, but have a finite lifetime. That is why these networks are called transient or

reversible, in contrast to, e.g., rubbers in which the polymer chains are connected

through covalent, chemical bonds that are permanent.

Networks formed by associative thickeners show two main features that makes

them interesting rheology modifiers for coatings. First of all, these systems have a

high viscosity compared to solutions of unmodified polymers, due to the efficient

structure of the networks they spontaneously form. A high viscosity in rest prevents

sagging of the paint after application and before drying is complete. Secondly, all

of these associative polymer networks display non-Newtonian behavior. In general

this signifies that the viscosity depends on the rate of deformation, whereas a

Newtonian fluid (such as water) has a viscosity that does not depend on the rate

with which the liquid is deformed. More specifically, these transient networks show

pronounced shear thinning, that is a viscosity that decreases with increasing flow

rate. This facilitates the application of the paint and improves the leveling, which

is the spreading of the paint directly after application so that no brush marks are

visible in the final coating. The microscopic interpretation and consequences of
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this shear thinning are discussed are Chapters 9 to 11.

In order to understand the function of associative thickeners in paints, we must

realize that paints are highly complex systems. As discussed above (paragraph 1.1),

a typical latex paint contains only 44 % of water, while the remainder consists of

various particulate materials (binder, pigments) and a large variety of additives

(surfactants, co-solvents). Many of these components interact with each other.

The thickener can adsorb onto the particle surfaces, but must compete with the

surfactant to do so. Moreover, the surfactants that remain in the bulk will assemble

together with the thickener, which can either enhance or reduce the thickening

action, depending on the relative amounts of both species.

In my PhD work I adopted a bottom-up approach. I started by studying the

self-assembly and phase behavior of bulk solutions of telechelic associative polymers

in thermal and mechanical equilibrium (Part 1). Subsequently, I investigated the

behavior of these polymers at and near solid surfaces (Part 2). Finally, I studied

the mechanical properties of networks formed by associative polymers, and how

these properties are influenced by shear flow (Part 3).

1.3 Bridging time and length scales

Aside from the practical relevance described above, associative polymers are inter-

esting from a purely academic point of view. They are ideally suited to study a

number of topical themes in soft matter physics, such as hierarchical self-assembly,

non-newtonian fluid mechanics, phase equilibria and colloidal interactions. In a

way, these systems are a playground for soft matter scientists, which I have ex-

plored in this thesis.

One of the fascinating aspects of these associative polymers, due to their ten-

dency to assemble into structures at various levels, is that interesting physics can be

found across many time and length scales. Hence the sub-title of my dissertation.

In Fig.1.4 some of the phenomena under study are categorized according to the

typical time scale on which they occur. Starting from the dynamics of colloidal

particles embedded in associative polymer networks, as discussed in Chapter 9, that

show a Rouse-like motion on microsecond timescales, to the elastic caging of the

same particles on timescales on the order of the relaxation time of the networks,

which depends on sticker chemistry and length, temperature and concentration.

For the systems explored here this microscopic relaxation time is typically between

0.1 and 100 milliseconds. At longer timescales, we find more cooperative processes,

such as the capillary condensation described in Chapters 5 and 6. Due to the
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Figure 1.4: Illustration of the various time scales and associated phenomena in associa-

tive polymer systems reported in this thesis.

ultralow interfacial tension between the two coexisting phases and the small length

scales, this condensation process was still fast enough (order 25 milliseconds) to

allow us to measure capillary forces in full thermodynamic equilibrium for the

first time. Although the formation of polymeric bridges between two surfaces, as

discussed in Chapter 7, is not a cooperative process (i.e. it does not require several

chains to perform the same action simultaneously), it is significantly slower than the

capillary condensation. This is due to the fact that bridging requires the polymer

chains to desorb, which is inherently slow. In our study of mechanical instabilities

in associative polymer networks under shear flow, as described in Chapters 10 to

12 we found processes on even longer timescales. These are associated with the

formation of shear bands, which are coexisting zones of varying shear rate and

different internal structure, and the subsequent erratic fluctuations in the banded

structure. Again, these long time scales are the result of cooperative processes that

are further hindered by the velocity gradients between neighboring fluid elements

due to the flow. At time scales of a day to several days we find the hierarchical

adsorption of telechelic polymers from dilute solutions onto a an air-water interface,

discussed in Chapter 8. The ’normal’ adsorption modes, i.e. diffusion towards the

bare interface and reorganizations at the interface, which are also found for other

types of amphiphiles, are relatively fast. However, the formation of a secondary

sub-surface layer of pendant micelles, a specific feature of the network-forming

polymers studied in this dissertation, may take up to 106 seconds to complete.

In the same way we can categorize some of the phenomena that we have studied

according to the typical length scale on which they occur. The smallest relevant
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Figure 1.5: Illustration of the various length scales and associated phenomena in asso-

ciative polymer systems reported in this thesis.

length scale is obviously the size of a single telechelic polymer molecule. Here

we have worked with telechelic polymers with a radius of gyration between 2 -

5 nm. Above the critical micelle concentration (see Chapters 2 - 4), several of

these molecules associate to form the flowerlike micelles discussed above. There

are typically around 10-20 polymers in a single micelle, yielding micelles with a

radius of 10 - 20 nanometers. When two hydrophilic surfaces covered with these

flowerlike micelles are brought in close contact, bridges between the two surfaces

can be formed, as we show in Chapter 7. When we subsequently increase the

distance between these surfaces again, a polymer bridge is stretched like a spring,

until the restoring force becomes too large, and the bridge detaches from one of

both surfaces. Here we found that the polymer chains are typically stretched

to ∼5 times (i.e. 15-40 nm) their preferred size, before the bridges are broken.

Between very hydrophobic surfaces however, where there is a strong tendency for

the hydrophobic stickers to adsorb, we find attractive forces that range up to 300

nm. In Chapters 5 and 6 we attribute this attraction to a phenomenon called

capillary condensation, i.e. a condensation (phase separation) of a polymer-rich

liquid between the two surfaces. Finally, we have studied a phenomenon that occurs

on macroscopic length scales (millimeters): shear banding (Chapter 10). Under

steady deformation, networks of these polymers may become unstable. Rather than

a thermodynamic phase transition, shear banding can be regarded as a mechanical

phase separation. The fluid splits up into two macroscopic bands that differ in

viscosity and internal structure. Around the boundary between these layers we have

found anomalous fluctuations in fluid velocity, resulting in large stress fluctuations

(Chapter 11). These non-linear dynamics, that we have colloquially called ’soft
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earthquakes’ also occur on macroscopic length scales (0.1 - 1 millimeter).

The Chapters in this dissertation are written as independent scientific papers,

and each one deals with one (or several) of the phenomena listed above. However,

in the final chapter of this thesis, the General Discussion, I have tried to bring

together and connect some of the observations from the various chapters. This

discussion also serves to speculate in which direction one has to look for possible

solutions to the remaining questions.







Chapter 2

Comprehensive theory for star-like

polymer micelles

In this Chapter a comprehensive theory is proposed that combines clas-

sical nucleation and polymer brush theory to describe star-like polymer

micelles. With a minimum of adjustable parameters, the model pre-

dicts properties such as critical micelle concentrations and micellar size

distributions. The validity of the present theory is evidenced in direct

comparison to experiments. Furthermore, we show that the predicted

saddle points in the free energy correspond to those solutions that are

accessible with self-consistent field methods for self-assembly.

This chapter was published as:

J. Sprakel, F.A.M. Leermakers, M.A. Cohen Stuart and N.A.M. Besseling: Com-

prehensive theory for star-like polymer micelles; combining classical nucleation and

polymer brush theory, Phys. Chem. Chem. Phys. 10 (2008), 5308.
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2.1 Introduction

Micellization can be regarded as arrested, mesoscopic demixing. Solvophobic tails

segregate from a solvent, but the growth of droplets is restricted by the build-up of

a lateral pressure at the interface between the segregated droplet and the surround-

ing solvent phase. This lateral pressure in the so-called micellar corona, essentially

comes from the solvatation of the head groups and can be described either by elec-

trostatic interactions between charged head groups (ionic surfactants), or by steric

effects between neutral solvophilic head groups. Without this stop mechanism, the

growth of nuclei would ultimately lead to the formation of a macroscopic phase, sep-

arated from the solvent by a flat interface. Because of the two counteracting forces

at play, a thermodynamic equilibrium is reached between unimers and well-defined

objects of a finite size, i.e. micelles. This conceptual picture basically decomposes

any micellization problem into two main issues: the micellar core and the micellar

corona. This division is also found in many of the theoretical investigations of

surfactant and polymer self-assembly.

Nagarajan and Ruckenstein [1] describe three main contributions to the free

energy of micellization for small surfactants, that are associated with the micellar

core; i) the transfer of a solvophobic block from the solvent to the micellar core,

ii) the deformation energy of solvophobic tails in the core and iii) the work of

forming the interface between the core and the surrounding solvent. Zhulina et

al. [2] consider the same three core-contributions in their model for spherical

polymeric micelles. They argue however, that contribution i) can be ignored, since

the solvophobic block will be in a collapsed state even for unassociated molecules,

i.e. unimers. Of course this argument is only valid when the solvophobic block

consists of many statistical segments. When the associating block is a short alkyl-

tail, with only 2 or 3 statistical segments, collapse of this block in the unimer

state is not very likely. Moreover, when contribution i) is omitted the theory can

no longer predict a critical micelle concentration. In other, more approximate,

models, contributions i) and ii) are neglected, and only the interfacial energy is

accounted for [3, 4]. In the model that we propose in this Chapter we will account

for contributions i) and iii) using classical nucleation theory [5], and use Semenov’s

approach [6] to account for the deformation of the tails in the core. A nucleation

approach to the formation of micelles was employed by Besseling and Cohen Stuart

[7], in the context of a self-consistent field theory, leading to the conclusion that

nucleation in solutions of amphiphiles is significantly different from nucleation in

systems of immiscible simple fluids. In this work they have also shown that the

free energy barrier for the dissociation of micelles is zero below the cmc and that
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it increases with concentration above the cmc. Similar conclusions follow from

our analytical model. For small surfactants, a comprehensive micellization theory,

based on classical thermodynamics of nucleation, has been extensively reported by

Rusanov and co-workers [8, 9].

For the self-assembly of small, neutral surfactant molecules, the steric interac-

tions in the corona can be described reasonably well with a 2D van der Waals equa-

tion of state, since the head groups consist of only one or a few statistical segments

[1]. This has also been attempted for polymeric amphiphiles [10], which is however

not accurate, as it neglects the conformational entropy change of stretched chains in

the micellar corona with respect to unassociated, relaxed chains. The elastic defor-

mation of chains in the corona of micelles can be accounted for using so-called blob

models, as shown by Zhulina et al. [2]. For spherical micelles consisting of neutral

polymers, which is the topic of this Chapter, we use the approach of Halperin [11]

that is based on the Daoud-Cotton blob model for the conformation of star-shaped

polymers [12]. Many of the previous theoretical efforts in polymer micellization are

in a scaling approach. An interesting comparison between experiments on strongly

segregated polymer micelles and existing scaling predictions is given by Forster et

al. [13].

Many of the analytical approaches discussed above, contain approximations,

such as the strong stretching approximation wherein only the most likely trajecto-

ries of the polymer chains are evaluated. If one prefers to avoid these approximate,

yet explicit, methods, there are numerical methods for exactly solving Edward’s

diffusion equations, which have been shown to be ideally suited to study self-

assembling systems [14]. The downside to these techniques, which depend on the

self-consistent field method, are limited to finding saddle points in the free energy

landscape. Interpretation of the results of these numerical techniques can there-

fore be troublesome in the sense that the underlying physical concepts are not

transparent. In this Chapter we argue that the advantages of both approaches can

be joined if one combines classical nucleation theory with polymer brush theory.

Moreover, we will show how the classical theory for self-assembly (using analyti-

cal polymer brush theory, scaling concepts, etc.) is related to the corresponding

analysis making use of the self-consistent field theory.

2.2 Nucleation-based model

In this Chapter we will elaborate the ideas brought forward in the Introduction, by

constructing a minimal model describing the micellization of amphiphilic, neutral
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polymers. We assume ideal, dilute solutions of unimers and micelles and only

consider the formation of spherical micelles.

We consider an amphiphilic AB diblock copolymer that consists of a solvopho-

bic A-block (tail) and a solvophilic B-block (head). It is dissolved in a solvent

S. The chains are divided into statistical Kuhn segments, with a corresponding

Kuhn length li for i = A, B, resulting in amphiphiles consisting of NA solvophobic

segments and NB solvophilic segments. This allows accounting for differences in

excluded volume and flexibility between the A and B blocks.

As a starting point, we use classical nucleation theory [5]. For the time being,

we consider the solvophobic A-blocks as separate molecules, that are dissolved in

the solvent S. The reversible work of formation W of a nucleus with volume V and

surface area A is given by:

W = γA − ∆PV (2.1)

where γ is the interfacial tension between the newly formed A-rich phase and the

surrounding solution. The Laplace pressure ∆P is coupled to the (super)saturation

of the A-tails in the bulk phase by Kelvin’s law. For a two-component system of a

droplet rich in A coexisting with a solvent S, the Kelvin equation reads

∆P =
ϕc

A

vA
(µA − µs

A) (2.2)

where ϕc
A is the volume fraction of A in the droplet, i.e. the micellar core, vA is the

volume per molecule A (for isometric segments vA = NAlA
3). µA is the chemical

potential of A in the bulk and the reference state µs
A is the chemical potential of

species A at saturation (i.e. binodal value). We can find the chemical potential

difference ∆µA = (µA − µs
A), for ideal dilute solutions of unimers, from ∆µA =

kBT ln(ρA(1)/ρs
A), where ρA(1) is the actual number concentration of unimers A in

solution and ρs
A their saturation concentration. The number concentration ρA(1)

of A blocks is equal to the number concentration of AB unimers ρ(1) in the bulk.

The saturation concentration ρs
A for solvophobic A-blocks can be described by:

ρs
A = c1 exp

[−∆GA

kBT

]

= c1 exp [−c2NA] (2.3)

where c1 and c2 are constants [15]. ∆GA is the free energy change (i.e. increase)

associated with the transfer of an A-block from a pure A phase to the solvent S.

When A is a linear chain, ∆GA is proportional to the number of A segments in

the molecule. The proportionality constant c2 represents an interaction parameter

between A segments and the solvent. The expression to the right, in terms of NA, is
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only accurate for A-blocks of only several statistical segments. These short blocks

cannot collapse onto themselves, hence each segment is in contact with the solvent.

The more general form in terms of ∆GA is of course valid in all cases.

In the following we will express all thermodynamic properties in terms of the

molecular parameters (such as NA and NB) and micellar properties, such as the

aggregation number f , which is the number of AB chains in a micelle.

The volume of the core of a micelle with aggregation number f , composed of

A-segments and (some) solvent, is given by

Vc =
fvA

ϕc
A

(2.4)

For a spherical core, the surface area Ac is thus given by

Ac = 4π

(

3fvA

4πϕc
A

)
2

3

(2.5)

and its radius by

Rc =

(

3fvA

4πϕc
A

)
1

3

(2.6)

We can now write the reversible work of formation of a single micellar core as

Wnuc

kBT
= γ̃4π

(

3fvA

4πϕc
A

)
2

3

− ln

(

ρ(1)

ρs
A

)

f (2.7)

where γ̃ = γ/kBT is the scaled interfacial tension between the core and the bulk.

This nucleation approach (Eqn 2.7) assumes that the composition of the core

is similar to a macroscopic A phase and that the interface between the core and

corona is sharp, i.e. the thickness of this interface ≪ Rc. Of course this is an

approximation when dealing with micelles, and it can be expected to break down

when the quantity fNA is small [5].

So far we neglected that the A blocks in the micellar core do not have the same

freedom as in a random phase of A chains. As the coronal B-blocks are permanently

coupled to one end of the A blocks, this end of the A block is restricted to reside

at or near the core-corona interface. This leads to a decrease in the entropy of the

tails in the core. We can correct for this, using Semenov’s approach [6], by counting

the local deformation energy of the tails. Following Nagarajan and Ruckenstein

[1], we can express this correction as a change in chemical potential, per polymer

chain in the micelle, due to this deformation

∆µdef

kBT
=

9πPRc
2

80NAlA
2 (2.8)
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Figure 2.1: a) Schematic illustration of the ’blob’ model to describe the conformation of

polymer chains in the corona of a star-like micelle. The ’blob’ size ξ is a function of the

distance from the center of the micelle r, and can be described using a variation on the

Daoud-Cotton model [12], that takes the finite size of the micellar core into account [4].

where P is the so-called packing factor, which equals 1
3 for spherical micelles and

Rc is the radius of the micellar core (Eqn 2.6). The total correction due to tail

deformation Wdef = f∆µdef , can now be written as

Wdef

kBT
=

adeff
5

3

NA
1

3 ϕc
A

2

3

(2.9)

where the numerical constant adef = 35/3π1/3/(42/380) ≈ 0.05. Wdef is always

positive, and as such acts as the first stopping force, that balances the tendency

of the micellar core to grow to macroscopic dimensions as predicted by nucleation

theory. We can see that this term becomes of more importance for shorter A blocks,

as these are forced to stretch more in order to reach the center of the micellar core,

for a given aggregate size.

The main stopping mechanism for growth of neutral polymeric micelles is due

to the elastic deformation of the B-blocks in the corona. The Daoud-Cotton model

[12] describes the stretching of polymer chains making up a star-branched polymer

for which the geometry is spherical as well. For spherical micelles, that by definition

have a non-zero core size, some corrections are needed for an accurate description

of the stretching energy (see also Chapter 3).

We start by defining ’blobs’ at a distances r from the center of the micelle, see

also Fig.2.1. Each ’blob’ represents 1 kBT of stretching energy. The blob size ξ(r)

follows from geometric arguments and is given by:
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ξ(r) =
adcr

f1/2
(2.10)

where adc is an unknown proportionality constant. Following Halperin [11], the

local osmotic pressure in the corona is taken as kBT/ξ(z)3. Hence, the increase in

energy of the system due to elastic deformation in the corona is found by integrating

the osmotic pressure over the volume of the corona. This gives

Wdc

kBT
=

∫

Π

kBT
dVcorona = 4π

∫ Rm

Rc

r2

ξ3
dr = adcf

3

2 ln

[

Rm

Rc

]

(2.11)

This result is similar to what we derive in Chapter 3. In this expression, Rm is the

radius of the micelle and Rc that of the corona (Eqn 2.6). In this same Daoud-

Cotton model we can derive that, under θ-conditions for the B-blocks, the radius

of the entire micelle Rm is given by

Rm = lBf
1

4 (NB + f
1

144 N
1

9

A )
1

2 ≈ lBf
1

4 NB
1

2 (2.12)

where lB is the Kuhn length of the B-blocks that form the micellar corona [4].

The second expression is an approximation of the exact result, which is valid when

NB ≫ f1/144N
1/9
A . In this latter form, which is an approximation for micellar

objects, it is exactly the correction for the finite core size which is omitted, hence

it corresponds to the original Daoud-Cotton result for star-shaped polymers [12].

For the numerical calculations in the following parts of the Chapter, we however

use the exact result for accuracy.

When the B-blocks are in a good solvent, the expression for the radius of the

micelle is slightly different, and given by

Rm = lBf
1

5 ν
1

5 (NB + (f
2

15 N
1

3

A )
5

3 )
3

5 ≈ lBf
1

5 ν
1

5 NB
3

5 (2.13)

Again, the right-hand side of Eqn 2.13, is the original Daoud-Cotton result, where

the finite size of the micellar core has been neglected. This equation now includes

the Edwards excluded volume parameter ν = 1 − 2χBS , where χBS is the Flory-

Huggins interaction parameter between the B-segments and the solvent S [16]. The

exponent 3
5 that relates the micelle radius to the chain length, can be recognized

as the Flory exponent for the dependence of the coil size of a polymer on its length

[17].

Using Eqns 2.7, 2.9 and 2.11, we can now write the total reversible work of

formation Wt of a micelle with aggregation number f as

Wt(f) = Wnuc(f) + Wdef (f) + Wdc(f) ∀ f ≥ 2 (2.14)
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Figure 2.2: a) Total reversible work of formation of a micelle Wt (Eqn 2.14) versus

aggregation number and its separate contributions; nucleation term Wnuc (Eqn 2.7), core

entropy correction Wdef (Eqn 2.9) and stretching energy Wdc (Eqn 2.11). For NA = 25,

NB = 250 and θ-conditions for the B-blocks, γ̃ = 1.2 (in units kBT/l2i ), li = 1 ∀i,

adc = 1, ϕc
A = 1 and ln(ρ(1)/ρs

A) = 0.96. b) Effect of unimer bulk concentration ρ(1)

on Wt, for the same parameters as in a), shown are three limits; i) bulk concentration

smaller than a critical value ρc(1) (ln[ρ(1)/ρs
A] = 0.85), ii) concentration equal to critical

value (ln[ρ(1)/ρs
A] = 0.89) and iii) concentration above critical value (ln[ρ(1)/ρs

A] = 0.96).

For sake of simplicity, we will consider all objects with f ≥ 2 to be a micelle. Of

course Eqn 2.14 is not valid for f = 1, as the work of formation of a unimer, from

a unimer, should be zero.

In adsorption problems, the Gibbs equation relates the adsorbed amount (an

excess quantity) to the derivative of the free energy with respect to the chemical

potential. Within our model, we can do the same for a micellar system (Eqn 2.14):

∂Wt

∂∆µA
= −f (2.15)

Where the aggregation number f is now the excess quantity, as it represents the

excess number of molecules in a system with respect to the reservoir (bulk) phase.

This illustrates that our theory complies with classical thermodynamics.

2.3 Small systems

With the expression for the total work of formation for a single micelle (Eqn 2.14),

we can explore the energy landscape of micellization in detail. In this section we

will still consider the formation of a single micelle from a solution of unimers, hence

this section is denoted Small systems. In a following section we will expand our
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view to macroscopic systems composed of many micelles.

In Fig.2.2a an example of the total work of formation as a function of aggrega-

tion number is shown together with the three contributions that it is composed of.

The nucleation term Wnuc shows the characteristic profile of classical nucleation

theory. The first term in Eqn 2.7, which increases with f2/3 dominates for small

f , leading to the increase in Wnuc. At some point, for larger f , the second term

that decreases with f , becomes dominant. This leads to the maximum in Wnuc.

The other two terms in Wt, both represent stopping mechanisms as they in-

crease with increasing f . The strength of both stopping forces depends largely on

the system and conditions. The stretching term Wdc (Eqn 2.11) becomes more

important for longer chains and when the solvency of the chains is increased. The

entropic correction of the tails in the core Wdef (Eqn 2.7) becomes larger when the

tails become shorter, as they must stretch more to reach the center of the micellar

core. For most conditions Wdc dominates Wdef .

When all three terms are combined in Wt, the shape of the function that results

depends strongly on the concentration of unimers in the bulk, i.e. on the ratio

ρ(1)/ρs
A in Eqn 2.7. In Fig.2.2b we see how Wt(f) changes with concentration.

This Figure shows strong resemblance to results derived by Rusanov et al. for the

micellization of small surfactants [8]. When the unimer concentration in the bulk

is relatively small, Wt is a continuously increasing function, without any stationary

points. When we go to relatively high concentrations, two stationary points, i.e.

∂Wt/∂f = 0, appear in the function. We see a maximum at small f and a minimum

at higher f . The aggregation number for which Wt has its maximum can, in analogy

with classical nucleation, be regarded as critical nucleus size.

Since the features are significantly different for low and high concentrations,

there must be some transition point. This is also shown in Fig.2.2b. At some

concentration, the first stationary point, appears in the form of an inflection point,

i.e. ∂Wt/∂f = ∂2Wt/∂f2 = 0. All concentrations above this critical bulk con-

centration ρc(1) will show a maximum and minimum in Wt(f). At concentrations

below this critical threshold, Wt(f) is an increasing function, and as a result any

association would lead to an increase in the free energy of the system. Hence at

concentrations below this threshold no micelles are formed.

From these considerations we can identify this critical bulk unimer concentra-

tion ρc(1) as the concentration where the first stable micelle will appear. In other

words this concentration can be regarded as a critical micelle concentration (cmc).

We now have a simple criterion for the critical micelle concentration, i.e. the con-

centration for which Wt(f) has an inflection point, i.e. a point where both the first

and second derivative of this function with respect to f are zero. As we will also
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deal with another, more macroscopic, definition of the cmc, we will refer to the

criterion above as the ”microscopic cmc”.

2.4 Connection with SCF models

Numerical self-consistent field (SCF) methods, such as that developed by Scheut-

jens and Fleer [16] (SF-SCF), are often employed to study self-assembling systems.

In Chapters 3 and 4, we use an SCF method to study the micellization and phase

behavior of telechelic associative polymers. In the past, similar methods have been

used to study self-assembly of, e.g., non-ionic surfactants [14], ionic surfactants

[18] and also block copolymers [19]. An overview of the possibilities for using

self-consistent field theory in micellization problems can be found in [20].

In SCF methods, thermodynamic equations are solved numerically by finding

extrema in the free energy. It is important to note that as a result, all self-consistent

solutions that are found correspond to stationary points in the free energy land-

scape, similar as the minima, maxima and horizontal inflection point in Fig.2.2.

Interpretation of the primary outcome of these calculations is often based on the

thermodynamics of small systems, as founded by Hill [21] and applied to micellar

solutions by Hall and Pethica [22].

The basis of small system thermodynamics is the classical expression for the

change in internal energy U of a macroscopic and homogeneous system, with

changes in entropy S, volume V and number of molecules ni, which is comple-

mented with a term to account for energy stored in the micelles:

dU = TdS − PdV +
∑

i

µidni + EdN (2.16)

where T is the temperature, P the pressure and µi the chemical potential of species

i. The micellar term, consists of the number of micelles N and the subdivision

potential E . In a macroscopic system consisting of micelles, unimers and solvent,

the number of micelles is not a controlled variable. This means that a system,

with a fixed volume V , temperature T and composition {ni}, will change N , by

changing the mean aggregation number f̄ , until the free energy F = U − TS is

minimal. As a result, the work of formation per micelle E must vanish:

(

∂F

∂N

)

V,T,{ni}

= E = 0 (2.17)

In self-consistent field calculations however, the number of micelles is a controlled

variable, since a single micellar object is considered (N = 1). In our model above,



2.4 CONNECTION WITH SCF MODELS 25

we also regard the work of formation of a single micelle. This is the first indication

for the connection between SCF theory and our minimal model.

In SCF methods the micellar object is normally translationally restricted by

pinning it to the center of the coordinate system. In the work of formation of

a micelle Wt (Eqn 2.14), as formulated above, translational entropy is also not

included. The total work of formation of a micelle Wt in our model, has a similar

physical meaning as the grand potential Ω in self-consistent field theory, which is

defined as Ω ≡ F −∑i µini. The main difference is that in our model the entire

landscape of the work of formation can be produced, whereas only stationary points

are found in SCF calculations. To complete the connection between the results of

our model and self-consistent field calculations, we introduce W ∗
t , which represents

all values of Wt, for which ∂Wt/∂f = 0. This quantity is exactly the same as the

grand potential in the SCF models.

Since E must be zero and the translational entropy Str is not included yet,

we can derive that for the mesoscopic models (here given in terms of the grand

potential Ω)

E = −TStr + Ω = 0 (2.18)

The finite values found for the work of formation (either Ω or W ∗
t ), must be com-

pensated by the translation entropy. Eqn 2.18 together with Eqn 2.16 forms the

connection between the mesoscopic models and macroscopic thermodynamics.

In Fig.2.3a we have plotted the work of formation Wt obtained from our min-

imal model (Eqn 2.14) as a function of the chemical potential and aggregation

number f . In this same plot the stationary points, i.e. for which ∂Wt/∂f = 0,

are connected with the thick line. These stationary points represent the solutions

that are also found in SCF calculations. When these stationary points, denoted

W ∗
t , are projected onto the appropriate planes, as shown in Fig.2.3b, we obtain re-

sults which show strong resemblance to typical results from SCF calculations (see

Chapter 4, Fig.4.3).

The microscopic cmc, to be found where ∂Wt/∂f = ∂2Wt/∂f2 = 0, is found at

the maximum W ∗
t (f) (Fig.2.3b), as this point corresponds to the inflection point

in Wt (Fig.2.3a).

In the analysis of self-consistent field calculations, often the same definition of

the cmc is used, i.e. the cmc is found where Ω(f) has a maximum. Interestingly,

this definition can also be derived from small system thermodynamics. The Gibbs-

Duhem equation for micellization in the SCF method (analogous to Eqn 2.15), is

−∂Ω/∂µ = f , µ is the chemical potential of the unimers. Note that this equation
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Figure 2.3: a) Work of micellization versus scaled chemical potential of unimers ∆µ =

ln[ρ(1)/ρs
A] and aggregation number f , for the same parameters as in Fig.2.2a; drawn lines

represent Wt(f) for given chemical potentials, thick drawn line connects all stationary

points, i.e. points for which ∂Wt/∂f = 0. b) Projection of the stationary points in a)

onto the (f, Wt)- and (f, ln[ρ(1)/ρs
A])-planes. Stationary solutions of W (t) are indicated

here with an asterix (W ∗

t and ρ∗(1)).

is analogous to Eqn 2.15. Fluctuations in f are proportional to ∂f/∂µ, a quantity

that is > 0 by definition. As a result, micelles that are macroscopically stable must

obey the so-called stability constraint ∂Ω/∂f < 0. In other words, all micelles

for which ∂Ω/∂f > 0 are not stable, and hence the first stable micelle appears at

∂Ω/∂f = 0. We have now returned to the same result as found in our nucleation-

based approach.

2.5 Case study: CMCs of PEO-laurates

The validity of our micellization model is demonstrated here in comparison to

experimental results for the cmc of poly(ethylene oxide) (PEO) chains modified

with a single C12H25 alkyl (laurate) tail. To do so we need to enter realistic

values for the model parameters. The interfacial tension between a homogeneous

laurate phase and pure water is approximately 50 mN/m [23] and hardly any water

dissolves in the laurate phase, so ϕc
A ≈ 1 [24]. The saturation concentration of pure

dodecane (C12H26) in water is 5 · 10−8 mol/l [25].

To divide the PEO chains and the alkyl tails into statistical segments, we use

the Kuhn length of PEO chains, which is approximately 7Å, corresponding to 2



2.5 CASE STUDY: CMCS OF PEO-LAURATES 27

Figure 2.4: a) Experimental critical micelle concentrations for PEO-laurates as a func-

tion of number of EO units per head group, from van Os et al. (◦, [28]), Reddy et al. (�,

[29]) and Gourier et al. (△, [30]). Drawn line is the prediction of our nucleation-based

theory. b) Predicted ratio of the corona radius Rm −Rc (Eqns 2.12 and 2.6) over the core

radius Rc (Eqn 2.6); when this ratio is > 1 the micelles are star-like, for values < 1 we

have crew-cut micelles.

EO units [26]. This same discretization length is expected to be quite accurate for

alkyl tails, hence we count 6 CH2 groups for every Kuhn segment. This means that

NB is equal to half the number of EO units in the PEO chains, and for laurate

(NCH2
= 12) NA = 2. In this way we realistically account for the flexibility of

the two blocks. PEO in water at room temperature is close to theta conditions

[27], so we use Eqn.2.12 to describe the radius of the micellar objects. With these

parameters fixed, there is just one remaining unknown, i.e. the proportionality

constant adc in the stretching term (Eqn 2.11). This constant will be determined

by comparing the model to experimental data.

Experimentally determined critical micelle concentrations for PEO-laurates were

found in various sources [28, 29, 30] and are shown as symbols in Fig.2.4a as a

function of the number of EO monomers NEO in the head group. Because the

Daoud-Cotton model [12] is only accurate for polymer chains with many statistical

segments, we take the experimental cmc of a laurate surfactant with a large head

group (NEO = 450) to calibrate our model. Experimentally a cmc of 2.5 mmol/l

is found [30]. In our model the (microscopic) cmc is determined by finding the

concentration for which Wt(f) shows an inflection point. For adc = 0.2, the model

gives a cmc of 2.55 mmol/l. With this value of adc, we can use the model to predict

the cmc for different NEO. These predictions are shown in Fig.2.4a as the drawn

line.
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We see that our model works well for relatively large NEO, however when

NEO ≈ 10 or smaller the model prediction starts to deviate from the experimental

data. The Daoud-Cotton model, used here to account for the chain stretching in

the corona, only applies when the micelles have a star-like structure. This means

that the corona must be larger than the core. The corona size can be found by

subtracting the core radius Rc (Eqn 2.6) from the radius of the entire micelle Rm

(Eqn 2.12). The ratio of the corona radius over the core radius ((Rm − Rc)/Rc)

is the determining parameter. When this ratio is > 1 the micelles are star-like.

For ((Rm − Rc)/Rc < 1) we are dealing with crew-cut micelles [31]. In Fig.2.4b

this ratio is shown, and we see where the Daoud-Cotton model is no longer valid.

The transition from the star regime to the crew-cut regime (i.e (Rm − Rc)/Rc =

1), occurs almost at the same point where our theoretical model starts to fail in

describing the experimental data, i.e. for NEO = 10. This illustrates the limitation

of our model when predicting the micellization of oligomeric surfactants, resulting

from the choice for the Daoud-Cotton model to describe the lateral pressure in the

corona.

For small values of NEO, Wdc (Eqn 2.11) underestimates the true osmotic pres-

sure in the corona, which leads the model to predict very large aggregation numbers

for these parameters. As a result, the correction term for the tails in the core Wdef

(Eqn 2.9) increases drastically, which in turn leads to the overestimation of the

cmc, as seen in Fig.2.4a.

Another important aspect of the transition from stars to crew-cut micelles, is

that crew-cut micelles are inherently unstable. They will be prone to strong shape

fluctuations, and at concentrations above the cmc might undergo a morphological

transition from spherical micelles to wormlike objects. In the current Chapter

we only consider spherical micelles, but the model can in principle be adjusted

relatively easily toward other geometries such as cylinders or even bilayers.

2.6 Micellar size distributions

An interesting feature of our model is that it allows predicting the entire size

distribution of micelles (f ≥ 2) in a macroscopic system, i.e. a system composed

of many micelles. We can find the number concentration of unimers that are

associated in an aggregate of size f , from a simple Boltzmann argument:

ρ(f) = f exp

[

−Wt(f)

kBT

]

∀ f ≥ 2 (2.19)

The expression for the total reversible work of micellization Wt (Eqn 2.14), is only
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Figure 2.5: a) Work of micellization Wt(f) (dotted line) and probability distribution

p(f) of finding a unimer in an aggregate of size f for the same parameters as in Fig.2.2a.

b) Effect of bulk unimer concentration ρ(1) on the number distribution ρ(f) (in units ρs
A)

of unimers in micelles (f > 1) for the same system parameters as in a).

applicable for f ≥ 2. We can now calculate the micellar size distribution for a

given chemical potential, i.e. given value of ρ(1).

In Fig.2.5a, an example is shown of a distribution of micellar sizes with the

corresponding work of micellization. Of course, the peak position in the distribution

corresponds to the minimum in Wt, as this is the most favorable configuration. The

width of the peak in ρ(f) is directly related to the curvature around the minimum

in Wt.

In Fig.2.5b, we can see the evolution of the size distribution of micelles ρ(f)

with increasing concentration. Of course all concentrations shown are above the

microscopic cmc, as there will be no micelles present below the cmc. When the bulk

concentration of unimers is increased, the total number of unimers in the system

that is present in micelles, in other words that is in a state with f > 1, increases.

We also see that the position of the peak in ρ(f) does not shift significantly, which

indicates that the mean aggregation number f̄ is fairly constant. We must realize

that in these micellar systems, the chemical potential of the unimers is buffered

above the cmc, i.e. large changes in overall composition of the system lead only

to slight changes in chemical potential, i.e. small changes in ρ(1). This in turn

implies that over a wide overall concentration range only a small part of the curve

in Fig.2.3b is probed, hence the mean aggregation number is only a very weak

function of the overall concentration.

The results in Fig.2.5b are typical for a closed-association process, with the

difference that there is a degree of polydispersity in the micelles that are formed,
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Figure 2.6: Number concentration of unimers ρ(1) (�) and of polymer chains associated

in micelles ρm (◦) versus the total number of AB molecules per unit volume ρt, all

expressed in units of the reference state ρs
A. The dotted line is the microscopic critical

micelle concentration, as discussed in a previous section. Model parameters as in Fig.2.2.

as we will discuss below. In the simplest closed-association model, unimers coexist

with a monodisperse population of micelles. In open-association processes, the size

of the object continues to grow with increasing concentration, which is not the case

here (see Fig.2.5b). Open-association processes are expected for linear objects such

as wormlike micelles or living polymers [32].

Now that we have a way to calculate the size distribution of micelles for a given

concentration of unimers ρ(1), we can easily obtain the total number of molecules

in micelles ρm, i.e. the number of AB polymers that are associated with f > 1,

with

ρm =

∫ ∞

2

ρ(f)df =

∫ ∞

2

f exp

[

−Wt(f)

kBT

]

df (2.20)

From which we can obtain the total polymer concentration in the system, i.e. the

total number of AB molecules per unit volume ρt = ρ(1) + ρm.

This analysis gives rise to a classical picture, as shown in Fig.2.6. In this plot

we can see how the number of unimers and the number of molecules in micelles

changes with the overall concentration. We see that for concentrations below the

microscopic cmc, which was the point where the first and second derivative of

Wt(f) (Eqn 2.14) with respect to f are both zero, the number of unimers increases

linearly with concentration, as expected. For these concentrations, no micelles are

formed, so ρm = 0. Just above the microscopic cmc, we see a rather sudden change

after which the number of unimers seems to remain practically constant and it is

the number of associated molecules that increases linearly with concentration.
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The microscopic cmc (dotted line in Fig.2.6), as discussed above, represents

the concentration where the first stable micelle appears. At this concentration the

number of micelles is therefore very low, and impossible to observe in experiments.

A definition of the cmc that is more in line with experimental methods is to choose

the cmc as the concentration where one macroscopically observes the formation of

micelles. Here we choose to define such a ”macroscopic cmc” as the concentration

where the sharp transition in Fig.2.6 is found.

Many experimental techniques are sensitive to the number of micelles that are

present, such as spectroscopic techniques employing solubilization of dye molecules,

or scattering techniques. By extrapolating the output of these experiments to the

point where the signal due to the micelles reaches zero, the ”macroscopic cmc”

can be obtained. It is interesting that the microscopic and macroscopic definition

of the cmc, as proposed above, are found relatively close together. It also implies

that the microscopic definition of the cmc, associated with the thermodynamics of

small systems, is not that different from an experimentally observable parameter.

2.7 Polydispersity

If we take another look at Fig.2.5, we see that the predicted distributions appear to

be close to Gaussian. The Gaussian shape of these curves indicates that the work of

micellization has a parabolic shape around the minimum, as can be seen in Fig.2.5.

Gaussian distributions are defined by two parameters, i.e. the average and the

variance. The average corresponds to the position of the peak in the distribution

and the variance, which is the square of the standard deviation, corresponds to the

width of the distribution. The width of the distribution is coupled to the curvature

around the minimum of the work of micellization, as fluctuations become less likely

if their energy increase with respect to the minimum of the free energy is much

larger that kBT .

In Fig.2.3 we can see that the minimum in Wt is infinitely shallow at the criti-

cal micelle concentration, as the curvature, given by the second derivative at that

point, is zero. When we increase the concentration of unimers the minimum be-

comes sharper. This directly implies that the width of the distribution of micellar

aggregation numbers should decrease with increasing concentration. Qualitatively

this can be seen in Fig.2.5b.

For a quantitative analysis, we first notice that ρ(f) as defined in Eqn.2.19, gives

the concentration of molecules in micelles of size f . The concentration of micelles

of size f is given by ρ(f)/f . The standard deviation in aggregation number σf in



32 COMPREHENSIVE THEORY FOR STAR-LIKE POLYMER MICELLES 2.7

Figure 2.7: Relative standard deviation σf/f̄ in aggregation number versus normalized

concentration ρt/ρc(1), as a function of the strength of the segregation of the core, set by

means of the scaled interfacial tension γ̃ (in units kBT/l2), other parameters as in Fig.2.2.

a distribution of micelles is given by:

σf =

√

∫∞

2
(f − f̄)2ρ(f)/fdf
∫∞

2
ρ(f)/fdf

(2.21)

where f̄ is the average aggregation number, given by

f̄ =

∫∞

2 ρ(f)df
∫∞

2
ρ(f)/fdf

(2.22)

It is convenient to define a relative standard deviation, as σf/f̄ , which reflects the

relative width of the distribution.

Fig.2.7 shows how σf/f̄ develops as a function of the total polymer concentra-

tion scaled with respect to the microscopic cmc; the microscopic cmc is found at

ρt/ρc(1) = 1. Upon approaching the critical micelle concentration, the polydis-

persity strongly increases. Interestingly, we find that the strength with which the

micellar core segregates from the solvent, set with γ̃, influences how the polydis-

persity develops.

The stronger the segregation, the steeper the divergence of σf/f̄ close to the

cmc. Even small differences, here shown a maximum difference in interfacial tension

of a factor of 4, can change the divergence of the standard deviation in the limit

of the cmc, from a smooth incline (γ̃ = 0.5), to a sharp transition (γ̃ = 2). The

relative concentration ρt/ρc(1) where the polydispersity starts to diverge is also a

function of the segregation strength, and occurs at higher relative concentrations
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for stronger segregating systems. The absolute value of the cmc is of course a

decreasing function of the segregation strength.

Recent experiments also show that the polydispersity increases significantly

upon approaching the cmc [33]. The micellar size distributions that were derived

in these experiments show resemblance with what is shown in Fig.2.5b and also

the values for the relative standard deviation are of the same order of magnitude

as predicted here.

At concentrations well above the cmc, the polydispersity levels off but contin-

uously decreases with increasing concentration. Experiments are often carried out

at concentrations of at least several times the cmc, and we can expect the poly-

dispersity to be somewhere in this quasi-plateau. This means that for strongly

segregating systems, such as polymers modified with alkyl tails, the polydisper-

sity in the experimental domain will be smaller, than for comparable systems with

low interfacial tensions between the core and corona, such as micelles formed by

complexation of oppositely charged components [34].

2.8 Conclusions

In this Chapter we have proposed a comprehensive model for the micellization of

polymeric amphiphiles and shown that it can be used to describe the behavior of

real polymeric surfactants. A direct comparison with experiments revealed that our

approach remains valid even for solvophilic corona blocks of only several statistical

segments, as long as the corona of the micelle is larger than the core. The com-

plementary character of this model with respect to self-consistent field calculations

was discussed using some concepts from the thermodynamics of small systems.

The model developed in this Chapter describes the micellization of polymers

with a single, neutral solvophilic and a single solvophobic block, from ideal solu-

tions, into spherical micelles. Hence, interactions between micelles are ignored in

our model. For uncharged micellar systems, interactions only become important

when the typical distances between the objects becomes of the order of twice their

radius. The approach chosen here is therefore expected to be valid up to rela-

tively high concentrations. Several expansions of our minimal model toward more

complicated systems would be of interest. One might think of introducing a term

accounting for loop formation of the solvophilic blocks, such as that proposed by ten

Brinke en Hadziioannou [35], to predict the micellization of polymers with solvo-

phobic blocks at both chain ends, also known as telechelic associative polymers.

Adding a term to account for the formation of bridges between micelles, might also



34 REFERENCES 2.8

lead to a model describing the higher-order assembly of these telechelic polymers

into percolated networks. For polymeric systems with strongly segregating core

blocks (e.g. alkyl-tails in water), the corona is much larger than the compact core,

and the spherical conformation is favored. Systems with only weakly segregating

cores, such as, e.g., micelles in which the core is formed by complex coacervation,

can be expected to have a much larger core as a result of the higher content of sol-

vent and the lower interfacial tension. In these system we can therefore expect that

morphology changes, e.g. from spherical to cylindrical or lamellar structures, occur

more often, although experimental results indicating such changes are scarce [36].

Implicating different geometries in the model would require alternate descriptions

for the stretching of the corona blocks.
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Chapter 3

Micellization of telechelic

associative polymers

We present numerical results, from self-consistent field calculations,

on the micellization of telechelic associative polymers and their mono-

functional analogues. These results are confronted with relatively simple

scaling concepts. We find a good agreement between the numerical de-

pendence of the aggregation number upon both backbone and terminal

hydrophobe length and an analytical expression that was derived from

the well-known Daoud-Cotton model by introducing a correction for the

finite size of the micellar core.

This chapter was published as:

J. Sprakel, N.A.M. Besseling, F.A.M. Leermakers and M.A. Cohen Stuart: Micel-

lization of telechelic associative polymers: Self-consistent field modeling and com-

parison with scaling concepts, J. Phys. Chem. B 111 (2007), 2903.
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3.1 Introduction

Aqueous telechelic associative polymers are watersoluble polymer chains end-capped

with hydrophobic moieties. A well-known class of associative polymers are so-called

HEURs or hydrophobically modified ethoxylated urethanes, which are polyethylene

oxides with paraffinic tails grafted at both ends of the chain. They are analogues

of simple nonionic surfactants.

In a polar solvent, at concentrations above the critical micelle concentration

(CMC), these telechelics self-assemble into spherical, flowerlike micelles. At higher

concentrations, above a percolation threshold, they form transient, micellar net-

works [1]. Some of the polymers in this class have been reported to show an

entropically driven demixing, into a dilute (micellar) phase and a condensed phase

with a higher polymer concentration (typically 1 wt%) [2].

For a better understanding of the phase behavior of these associative polymers,

which is of practical importance in the formulation of e.g. paints and inks, we first

study their micellization in detail.

Some crude analytical models for the properties of telechelic micelles have been

reported [3, 4]. Francois et al. [4] apply the scaling concepts of Halperin and

Alexander [5, 6] to explain experimental neutron scattering data. However, they

neglect the loop entropy contribution to the free energy of these micelles, leading to

underestimation of the CMC. The large influence of this entropic penalty associated

with loop formation on the micellization of telechelics was first stressed by Ten

Brinke and Hadziioannou [7] and further elaborated by, e.g., Balsara et al. [8].

In order to predict aggregation numbers for telechelic micelles Meng and Russel

[9] balanced the interfacial and configurational free energy of the micellar core

chains against the elastic stretching of the coronal chains. To account for the latter

they use a model by Li and Witten [10], which was published earlier by Wijmans

and Zhulina [11]. In these models for the conformation of spherical brushes 2 zones

are predicted; in the inner zone, closest to the core, the density decay of the chains is

predicted to show power-law behavior, after which (outer zone) the density follows

a parabolic profile. This parabolic density profile, for curved polymer brushes, was

first observed by Dan and Tirrel in numerical self-consistent field calculations [12].

The power-law behavior close to the core was predicted by Daoud and Cotton, in

their model for the conformations of star-shaped polymers [13].

We use the discrete self-consistent field theory of Scheutjens and Fleer [14] to

study the properties of isolated micelles assembled from telechelic chains, adopting

a model that has been shown to be effective in predicting the micellization of

nonionic surfactants [15]. These numerical results are confronted with approximate,
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yet insightful, scaling arguments, where our main focus is on the dependencies of

the CMC and the aggregation number on the molecular architecture.

3.2 Thermodynamics and SCF modeling

For a proper analysis of micellization we start from the thermodynamics of small

systems, as described in the classical work of Hill [16] and Hall & Pethica [17]. For

micellar systems, the classical expression for the change of the internal energy U of

a macroscopic system, with a change in entropy S, volume of the system V and/or

the numbers of molecules ni of each component i, is extended with an additional

term, to account for the energy stored in the micelles:

dU = TdS − PdV +
∑

i

µidni + EdN (3.1)

with E the subdivision potential, easily identified as the grand potential (Ω) per

micelle, N the number of micelles, P the pressure, µ the chemical potential and T

the temperature. From the Helmholtz energy F = U − TS we can formulate two

constraints;

∂F

∂N

∣

∣

∣

∣

ni,V,T

= E = 0 (3.2)

to ensure that the macroscopic thermodynamics are conserved, and

∂2F

∂N 2

∣

∣

∣

∣

n,V,T

=
∂E
∂N









ni,V,T

> 0 (3.3)

that assures the stability of the micelles.

In the calculations we are restricted to considering a single micellar object.

To apply the constraints above, formulated for a macroscopic system of many

micelles, to a single-micelle system we use the following argument; we can consider

the system with a single micelle to be a sub-system of a larger closed ensemble

(constant ni, V , T ) of many micelles. In this system an increase in the aggregation

number nagg, results in an equivalent decrease of the number of micelles. Now,

using the grand potential per micelle Ω = F
N −∑i µi

ni

N + p V
N , we can write the

stability constraint as

∂Ω

∂nagg

∣

∣

∣

∣

ni,V,T

< 0 (3.4)

that will give us ground for defining the critical micelle concentration in a subse-

quent section of this Chapter.
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The self-consistent field method is ideally suited to obtain information on the

grand potential for micellar systems in a molecular model. In this Chapter we

apply a self-consistent field method, using the discretization scheme of Scheutjens

and Fleer [14, 18, 19, 20]. In this method the same length scale (l) is used to

subdivide space into lattice sites and molecules into segments. For the sake of

brevity we will only discuss the major premisses.

The first step is to make a choice for a lattice geometry, with the direct con-

sequence that the shape of the self-assembled object is fixed. We shall consider a

micelle pinned in the centre of a spherical coordinate system, where sites of equal

volume (l3) are arranged in concentric layers. The number of sites in layer z is

proportional to z2. The mean-field approximation is applied to all sites in a layer,

implying that inhomogeneities are allowed in the radial direction only. The radial

distance from the centre of the lattice is z. Segments, with rank number s = 1 · · ·N ,

are placed on the lattice as step-weighted walks, giving freely-jointed chains in a

self-consistent potential field. In effect, in a self-consistent field model there exists

a pair of conjugated functions per segment type j; the volume fraction profiles

ϕj(z) and the corresponding segment potential profiles uj(z). In the potentials

there are contributions of packing and nearest-neighbor interactions, accounted for

by Flory-Huggins interaction parameters.

The probability of finding a molecule i in a conformation c is proportional to the

Boltzmann weight p = exp(−uc
i/kBT ) of the corresponding segment potential uc

i =
∑

s u(zc
s,i), where zc

s,i is the coordinate of segment s of molecule i in conformation

c. The volume fraction profiles ϕi(z) of all species i are found after normalization of

the sum of the Boltzmann weights of all possible conformations. The self-consistent

field equations are satisfied when the segment potentials and volume fractions are

consistent, meaning that the potentials both determine and follow from the volume

fractions. This solution is obtained by a numerical iteration procedure. The correct

solution obeys the incompressibility constraint:
∑

i ϕi(z) = 1 ∀z.

When a consistent solution for the volume fractions and potentials is found,

the grand potential for a single micelle Ω({ϕi(z)}, {ui(z)}), that is a functional

of the profiles ϕi(z) and ui(z), can be calculated. It can be interpreted as the

translationally restricted subdivision potential, because we neglect the translational

entropy of the micelle that is pinned in the centre of the lattice. In this Chapter

we will focus on the most probable micelle, but in this same method it is possible

to obtain information on the size distribution of micelles through analysis of the

fluctuations in the aggregation number [21].

We model the telechelic associative polymers of the HEUR type using 2 types

of segments, labeled C, which stands for CH2 or CH3, and O. Their general
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structure is CNT (CCO)NEO CNT , where CCO represents an ethylene oxide (EO)

monomer, and CNT is an aliphatic tail. Their mono-functional analogues are given

by CNT (CCO) 1

2
NEO

. Because the polymers are modeled as freely-jointed chains the

Kuhn length equals 1 segment. Hence the number of Kuhn segments in a polymer

backbone NB is 3NEO. A solvent molecule takes 5 lattice sites (NS = 5); it consists

of a central segment connected to 4 neighbors, all of type W . This approach has

proven to be successful in the modeling of simple non-ionic surfactants [15].

The various interactions can be tuned with the Flory-Huggins interaction pa-

rameters (χ) between the different segments [22]. The hydrophobic interaction

between the tails, that drives the micellization, is set by χCW , in these calculations

χCW is constant at a value of 1.1. χCO is set at 2, which suppresses the solubility

of the polymeric backbone in the hydrophobic core of the micelle. The solvency of

the EO-backbone can be tuned with χOW . The effective interaction parameter for

an averaged backbone segment with the solvent can be calculated with

χBW = χCWFC + χOWFO − χCOFCFO (3.5)

where FC = 2
3 and FO = 1

3 are the fractions of C and O segments in the backbone,

respectively. For chains in a non-monomeric solvent we can define the Edwards

excluded volume parameter τ for the polymer backbone as

τ ≡ 1 − 2χBW NS (3.6)

From Equations 3.5 and 3.6 and the choices mentioned for χCW and χCO, we

find that χOW needs to be set at −0.57 to reach theta conditions for the polymer

backbone (τ = 0). A more negative value for χOW will increase the solvent quality

(τ > 0).

3.3 Results and Discussion

3.3.1 CMC

There are various ways to define the critical micelle concentration in these SF-

SCF calculations. The most straightforward definition of the CMC is the polymer

concentration where a first stable micelle appears. In Fig.3.1 a typical result from

the SF-SCF calculations is shown. We calculate these quantities for a single micelle,

that we consider as one sub-system of a larger ensemble of equal cels (ni, V, T

constant). An increase in aggregation number inherently results in a decrease in

the number of micelles in the ensemble. This justifies using the stability constraint
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Figure 3.1: Grand potential Ω and polymer bulk volume fraction ϕbulk versus aggrega-

tion number nagg for a C20EO200C20 micellar system in a theta solvent (τ = 0).

in Eqn.3.3 for defining the CMC. An alternative explanation of this CMC criterion

is derived in Chapter 2.

At low aggregation numbers we first enter an unstable regime, where the system

does not yet obey the stability constraint 3.4. At a given aggregation number the

quantity ∂Ω
∂nagg

will be zero, which can be regarded as the condition where the first

stable micelle is formed. The unimer bulk concentration where this occurs will

be our definition for the CMC [23]. Experimental CMCs will obviously be higher

than this thermodynamic criterion for the CMC, as experimental methods are not

sensitive enough to measure a single micelle. The experimental CMC is found

when the number of micelles is significantly large, depending on the method. In

fact, the scaling behavior of the CMC or the aggregation number is independent

of the criterion chosen for the CMC, as long as it is unambiguously defined.

In Fig.3.2 we see how the CMC, under theta conditions for the polymer back-

bone (τ = 0), changes with hydrophobic tail length length NT and hydrophilic back-

bone length NEO, for mono-functional chains (Fig.3.2a) and telechelics (Fig.3.2b).

The CMC is given as a number concentration; the number of molecules per lattice

unit volume (l3).

The exponential decay of the CMC with hydrophobe size, known as Traube’s

rule [24], for the mono-functional chains CMC ∝ exp(−0.8NT ), is in good agree-

ment with what is experimentally found for simple nonionic surfactants [25].

It is known that the critical micelle concentration is proportional to e−F m/kBT ,

where Fm is the free energy change associated with transfer of a unimer from
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Figure 3.2: Dimensionless critical micelle number concentrations for a) a mono-

functional polymeric surfactant of type CNT EO 1

2
NEO

where CMC = ϕCMC/(1 1

2
NEO +

NT ) and b) telechelic associative polymer of type CNT EONEOCNT where CMC =

ϕCMC/(3NEO + 2NT ), under theta conditions for the backbone (τ = 0).

solution into a micelle. Note that Fm < 0 for a stable micelle. A telechelic

unimer that transfers from solution into a micelle gains twice as much interaction

energy compared to the mono-functional unimer, while it looses the same amount

of translational entropy. This leads to an exponential decay of the CMC with NT

that is twice as strong as compared to the mono-functional associating polymers

(Fig.3.2b). Hence for the telechelic polymers we find that CMC ∝ exp(−1.6NT ).

Fig.3.3a takes a closer look at the scaling of the CMC with NB. Ten Brinke

and Hadziioannou [7] were the first to argue that the entropic penalty due to loop

formation, as predicted by Jacobson and Stockmayer for single Gaussian chains

[26], has a strong effect on the micellization of loop-forming polymers.

The free energy increase, corresponding to a loss of conformational entropy, due

to loop formation, F loop, for a micelle composed of nagg chains, with backbones of

NB Kuhn segments long, is given by

F loop =
3

2
βnaggkBT ln NB (3.7)

where the factor 3
2kBT ln NB originates from the decrease in possible conformations

of a single Gaussian chain when it is required to loop back to its origin [26]. β is

a parameter accounting for non-ideality of the chains. Under theta conditions

β should be unity, and Eqn.3.7 returns to the Gaussian limit. For the CMC of

telechelic chains we can derive that
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Figure 3.3: a) The dependence of the CMC upon the number of Kuhn segments in the

backbone NB = 3NEO , as a function of the solvent quality, for a system of C20EONEOC20

chains and a mono-functional analogue C20EO 1

2
NEO

. b) Ten Brinke’s β-parameter versus

the Edwards excluded volume parameter for the polymer backbone τ as found from the

numerical results for C20EONEOC20 chains. Solid line is a parabolic fit; β = 1+2.5τ −τ 2.

CMC ∝ exp

(

Fm + F loop

kBT

)

(3.8)

where CMC = ϕCMC/(3NEO + 2NT ) is the dimensionless critical micelle number

concentration for telechelic chains and here Fm is the free energy change associated

with transfer of a telechelic unimer into a micelle without the contribution of the

formation of loops.

From the calculations we find that for mono-functional chains CMC ∝ Nk
B,

where k is an exponent that ranges from 0.9 to 1.8 depending on NT yet indepen-

dent of the solvent quality, in the range considered here (0 < τ < 1). The NT

dependence of the exponent k is possibly linked to the complicated dependence of

the aggregation number on NT and NB, as will be shown in a following section of

this Chapter. Fig.3.3a shows the result for theta conditions (τ = 0) and an alkyl

length of 20. For these chains we find that k = 1.0.

We can now derive the following expression for telechelic chains, using Eqn.3.7

and 3.8

CMC ∝ N
3

2
β+k

B (3.9)

For telechelics with C20 alkyl tails, under theta conditions for the polymer back-

bone, the numerical exponent is found to be 5
2 . From Eqn.3.9, knowing that for

the equivalent mono-functional chains k = 1, we find that β = 1 for τ = 0, as was
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Figure 3.4: Volume fraction profile for a micelle of C20(EO)200C20 chains in a good

solvent for the polymer backbone (τ = 1). z is the radial distance to the centre in lattice

units. The drawn lines are the profiles for the alkyl tails and backbones. Dashed line is

the decay predicted by the Daoud-Cotton model (DC), dotted line is the 2-zone model

predicted by Wijmans-Zhulina and Li-Witten (WZ/LW).

predicted [26]. In the same way we can extract the values for β from the numerical

results for chains in a good solvent, for which the value of β was so far unknown.

In Fig.3.3b we have plotted β as a function of the excluded volume parameter

τ , for molecules with C20 tails. We find the following empirical relationship, for

0 < τ < 1; β = 1 +2.5τ − τ2. Similar result are found for all tail lengths examined

here (from C12 to C30). The fact that the penalty associated with loop formation

is larger for non-ideal chains was already predicted by des Cloizeaux for a single

self-avoiding chain [27].

3.3.2 Micellar Structure

Information on the structure of the micelles follows most directly from the density

profiles of the various segments. In Fig.3.4 the volume fraction profiles are shown

for the core (alkyl) and corona (EO) segments of a C20(EO)200C20 micelle in a

good solvent for the polymer backbone (τ = 1) at the CMC.

The volume fraction of alkyl tails in the core is almost 1, as expected for micellar

cores in the strong segregation limit. The strong decay of the tails in the z direction

indicates a sharp interface between the core and the surroundings. We see a peak

in ϕEO at the surface of the hydrophobic core, indicating adsorption of the coronal

segments onto the core/solvent interface to shield the core from the solvent. Note

that this effect is not taken into account in the models that will be discussed below.

In their model for the conformations of a star-shaped polymer, Daoud and
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Cotton (DC) [13] predict a density decay in the radial direction, starting from

the centre of the star, that goes with either z−1 for theta conditions and z−4/3

for chains with excluded volume interactions. For a flowerlike micelle consisting

of telechelic polymers, in a good solvent for the polymer backbones, we compare

the DC model to our numerical results (dashed line in Fig.3.4). We see that the

DC-regime is only found in the first few lattice layers outward from the core, after

which the volume fraction of the coronal chains follows a parabola-like profile.

Wijmans and Zhulina [11] and Li and Witten [10] have described the structure

of spherical brushes using a two-zone profile. These models consist of an exclusion

zone close to the core where the chain ends cannot penetrate (the so-called dead-

zone [28]), where DC behavior prevails, which is complemented by an outer zone

that the chain ends can freely access. Hence they derive the following description

for the density decay in a spherical brush of swollen chains [10], adjusted for a

micelle with finite core size rcore:

ϕEO(z) =







(

z+rcore

rexcl

)−4/3

ϕEO (rexcl)∀ (z + rcore) < rexcl

11B
2ν

(

h∗2 − (z + rcore)
2
)

∀ rexcl < (z + rcore) < r
(3.10)

where ϕEO is the volume fraction of EO chains, rexcl = 0.86(naggN
3
Ba2ν)1/5 is the

radius of the exclusion zone, h∗ is a height given by the size of the exclusion zone

rexcl/h∗ = 0.94 and r is the radius of micelle. B is given by 9/(25N2
Ba2), where

a is the Kuhn length, in this lattice model a = 1, and ν is the swelling exponent

(ν = 3
5 for chains in a good solvent).

In Fig.3.4 we compare this model with a typical SCF result for the density decay

in the corona of the flowerlike micelles and see that this addition to the Daoud-

Cotton model significantly improves the agreement with our numerical result. This

implicates that the models for the structure of spherical brushes can also be used

to predict the structure of micelles assembled from telechelic chains, and that the

formation of loops does not significantly affect the micellar structure.

3.3.3 Aggregation number

In the following, the aggregation number (nagg) is defined as the number of

hydrophobic tails in the micellar core. The aggregation numbers are calculated at

Ω = 0, meaning that we neglect translational entropy of the micelles. In other

words we are calculating the aggregation number at concentrations >> CMC.
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Figure 3.5: Aggregation numbers, at ω = 0 for a mono-functional polymeric surfactant

of type CNT EO 1

2
NEO

(a) and telechelic associative polymer of type CNT EONEOCNT (b)

under theta conditions for the polymer backbone (τ = 0).

In this set-up we consider a fixed total amount of material in micelles, hence an

increase in aggregation number results in an equivalent decrease in the number of

micelles.

In Fig.3.5 we show the calculated aggregation numbers as a function of NEO

and NT under theta conditions for the backbone. We see that there are no large dif-

ferences between the aggregation numbers of the mono-functional chains (Fig.3.5a)

and the telechelic chains (Fig.3.5b). Unlike the case for the CMC, loop formation

does not influence the results here. Since the total number of chains in micelles is

fixed we do not take into account the free energy change associated with transfer

of a unimer into a micelle, but only look at the most favorable distribution of a

given number of chains over a variable number of micelles. We therefore do no see

the influence of loop formation, as the entropy loss per chain due to loop formation

is independent of the size of the micelle.

The decrease of the aggregation number with NEO is the result of increasing

elastic stress on the coronal chains with increasing backbone length. The increase

in aggregation number with NT results from geometrical effects of packing the tails

in the core. Similar observations as shown in Fig.3.5b were recently reported by

Meng and Russel [9].

The Daoud-Cotton model, that we have introduced above, is based on the

stacking of stretching blobs, each containing an equal amount of elastic energy,

in concentric layers around the grafting centre. The number of blobs per layer is

constant and equals the number of arms in the polymer star f . The size of the

blobs increases with increasing distance from the centre. In this way they account

for the fact that stretching is strongest in proximity of the grafting centre. In our
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micellar approach the aggregation number nagg is equivalent to the number of arms

f .

The size of a blob follows from geometric considerations;

ξ(z) =
z

f1/2
=

z

n
1/2
agg

(3.11)

where z is the radial distance from the centre of the coordinate system. We can

obtain the free energy of stretching of the coronal chains, in an approach similar

to Halperin [29], by integrating the osmotic pressure in the corona over the total

corona volume. The osmotic pressure Π is given by 1
ξ3 . The free energy of stretching

(F s) is given by

F s =

∫

ΠdVcorona = 4π

∫ r

rcore

z2

ξ3
dz (3.12)

The radius of the core rcore equals the cubed root of the dimensionless volume of

the core. By assuming that the volume fraction of alkyl tails in the core is unity,

we find that

rcore = n1/3
aggN

1/3
T (3.13)

In the Daoud-Cotton model the radius of the star-polymer scales as Nν
Bnb

agg, where

ν = 1
2 and b = 1

4 for theta conditions and ν = 3
5 and b = 1

5 for chains in a good

solvent. To apply this DC argument to predict the size of the micelle we must

account for the finite volume of the micellar core. We can do this by extending the

actual backbone with a number of virtual backbone segments, N∗
B, that together

correct for the size of the core, such that rcore = n
1/3
aggN

1/3
T = (N∗

B)νnb
agg. Rewriting

gives N∗
B = (n

1

3
−b

agg N
1

3

T )1/ν . With this correction the size of the micelle is given by

r = (NB + N∗
B)νnb

agg (3.14)

Inserting these expressions and the blob size, as defined in Eqn.3.11, into

Eqn.3.12 gives

F s ∝
∫ r

rcore

(

n
1/2
agg

z

)3

z2dz = n3/2
agg ln

[

(NB + N∗
B)νn

b− 1

3

agg

N
1/3
T

]

(3.15)

As a first-order approximation we can balance this elastic energy in the corona

with the excess free energy at the interface of the hydrophobic core and its sur-

roundings (F σ), to obtain nagg.

Although the micellar core cannot be considered as a homogeneous macroscopic

phase, we assume that there is some sort of interfacial tension γ, between the core
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and its surroundings. If we assume that γ is a constant, the excess free energy of

the interface then follows

F σ = γAcore ∝ n2/3
aggN

2/3
T (3.16)

where the surface area of the spherical core is given by Acore = (naggNT )2/3. By

balancing

∂F s

∂nagg
=

−∂F σ

∂nagg
(3.17)

and inserting the exponents ν and b as given above, we find the following result

n−5/6
agg ∝ f(nagg) =















N
−2/3
T ln

[

(NB+N∗
B)1/2n−1/12

agg

N
1/3

T

]

if τ = 0

N
−2/3
T ln

[

(NB+N∗
B)3/5n−2/15

agg

N
1/3

T

]

∀ τ > 0
(3.18)

where

N∗
B =







n
1/6
aggN

2/3
T if τ = 0

n
4/15
agg N

2/3
T ∀ τ > 0

(3.19)

The agreement between the scaling argument and the numerical results is sat-

isfying both for the NT - and NB-dependence of nagg, as shown in Fig.3.6a and b.

Upon varying the alkyl chain length, for fixed values of NB under theta conditions

for the polymer backbone, the numerical results give a slope that is equal or close

to the predicted slope (on double logarithmic scale) of −5/6 (Fig.3.6a). This indi-

cates that even for the smallest backbone length considered here (NEO = 50) the

micelles can be seen as star-like structures and are not yet in the crewcut regime.

When we change the backbone length under theta conditions, for fixed NT ,

we also find a good agreement between the model and SCF results (Fig.3.6b).

However, if we do the same under good solvent conditions for the backbone the

agreement is significantly less. We attribute this to the fact that the value 3
5 for

the swelling exponent ν is valid in the limit of infinite chain lengths and might not

be accurate for the finite chain lengths chosen here.

In this Chapter our interest is in the scaling behavior of the aggregation number,

analyzed using the scaling argument above. However, using our numerical results

we can determine the arbitrary prefactor needed to convert the proportionality in
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Figure 3.6: Comparison of the numerically calculated aggregation numbers and the

scaling model f(nagg) in Eq.3.18. Open symbols are numerical results, solid lines are

corresponding power-law fits and dotted lines indicate the exponent of − 5

6
, as predicted

by Eq.3.18. a) For fixed values of NB (600, 300 and 150) as a function of alkyl length

NT , which increases in the direction of the arrow, under theta conditions for the polymer

backbone and b) For NT = 20 as a function of backbone length NB , which increases in

the direction of the arrow, for theta (τ = 0) and good solvent conditions (τ = 1) for the

polymer backbone.

Eqn.3.18 into an equality. For theta conditions, where the model describes the

numerical scaling best, we find a prefactor of 0.17.

For the same flowerlike micelles Francois and co-workers have predicted that

nagg ∝ N
4/5
T [4]. It is easily shown that by neglecting the logarithmic term,

Eqn.3.18 returns to this result. Although this is a good approximation and gives

reasonable correspondence with our numerical results, we cannot neglect the loga-

rithmic correction to find the exact dependence of the aggregation number on the

hydrophobe length.

3.4 Conclusions

We have studied the micellization of telechelic associative polymers and their mono-

functional analogues focussing on the proportionality of e.g. the CMC and the

aggregation number on the size of the hydrophilic and hydrophobic block(s). The

numerical results from the self-consistent field calculations are compared to ap-

proximate, but insightful, scaling arguments. We have shown that the scaling of

the CMC with the hydrophilic backbone length could be explained with a sim-

ple model based on the entropic penalty for loop formation. We also found that

coronal density profiles are reasonably described by the Wijmans-Zhulina and Li-
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Witten model, which are elaborations on the Daoud-Cotton model that could only

describe the coronal density decay in a limited part of the corona. Furthermore we

have shown that the proportionality of the aggregation number with the length of

the hydrophobic tail and hydrophilic backbone is well described by an expression

based on the same Daoud-Cotton model, taking into account the finite volume of

the core. In summary we conclude that simple scaling arguments can be used to

predict the various aspects of the micellization of telechelic associative polymers in

reasonable detail.
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Chapter 4

Phase behavior of flowerlike

micelles

We study the interactions between flowerlike micelles, self-assembled

from telechelic associative polymers, using a molecular self-consistent

field (SCF) theory and discuss the corresponding phase behavior. Adopt-

ing a SCF cell model, we calculate the free energy of interaction between

a central micelle surrounded by others. Based on these results, we pre-

dict the binodal for coexistence of dilute and dense liquid phases, as a

function of the length of the hydrophobic and hydrophilic blocks. In the

same cell model we compute the number of bridges between micelles, al-

lowing us to predict the network transition. Several quantitative trends

obtained from the numerical results can be rationalized in terms of sim-

ple scaling arguments.

This chapter was published as:

J. Sprakel, N.A.M. Besseling, M.A. Cohen Stuart and F.A.M. Leermakers: Phase

behavior of flowerlike micelles in a SCF cell model, Eur. Phys. J. E 25 (2008),

163.

53
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4.1 Introduction

Telechelic associative polymers are solvophilic linear polymers modified with a

solvophobic group or block at both ends of the chain. The central block can,

e.g., be a neutral polymer such as poly(ethylene oxide) [1] and poly(acryl amide)

[2] or a polyelectrolyte [3]. Also for the end-groups a wide variety of choices exist,

such as alkyl tails [1, 2], perfluoroalkyl tails [4], pyrene groups [5], hydrophobic

polymer blocks such as poly(propylene oxide)s [6] and even buckminsterfullerenes

[7].

When two layers of end-adsorbed telechelic polymers (also known as telechelic

brushes), are brought close to each other, bridges between the two surfaces will

form. As chains gain conformational freedom when they can form bridges in ad-

dition to forming loops, an entropic attraction between the brushes results. Early

numerical investigations by Milner and Witten [8] revealed that the overall interac-

tion potential between these types of brushes is a balance between steric repulsion

and a weak bridging attraction, both appearing at distances of the order of twice

the brush thickness. A recently published study, using density-functional theory,

substantiates these conclusions [9]. There is also experimental evidence of bridge

formation between end-adsorbed layers of telechelic polymers [10, 11].

Bridging also occurs between micelles of telechelic associative polymers and

leads to the formation of transient networks, but can also cause a demixing into a

dilute and a more concentrated liquid phase [12]. The depth of the attractive well in

the pair potential between these flowerlike micelles is reported to depend primarily

on the aggregation number and on the degree of stretching of the coronal chains

[13]. For ideal chains, the possibility to form bridges increases the conformational

possibilities with a factor of 2 per chain. This leads to an increase in the entropy

per chain of kB ln 2 = 0.69kB, hence a change in free energy of −0.69kBT per chain.

For chains with excluded volume, steric effects also come into effect, and as a result

the effective contribution, per chain, to the attraction is reduced [14].

Based on theoretical predictions for the pair potential, several descriptions are

available that link the compositions in the dilute and the dense coexisting phases

to the molecular architecture [15, 16]. For associative polymers bearing many as-

sociating groups per chain it is predicted that, in the absence of excluded-volume

interactions, all solutions are unstable above the network threshold and therefore

must phase separate [17]. For telechelic associative polymers, with only 2 associ-

ating groups per chain, we will show that formation of a transient network is not

necessarily accompanied by phase separation. This is also suggested by experiments

on alkyl end-capped poly(ethylene oxide)s [16].
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In a previous study we have used the self-consistent field theory of Scheutjens

and Fleer in combination with scaling arguments to investigate some important

aspects of the self-assembly of telechelic associative polymers into spherical flow-

erlike micelles [18], such as the entropic penalty associated with the formation of

loops in the corona. In this Chapter we extend this work in studying the inter-

actions between flowerlike micelles, and two of the macroscopic consequences of

these interactions; phase separation and network formation. Our method differs

from previous efforts to model the interactions between these micelles. We choose

a more ’ab initio’ approach; we do not make a priori assumptions on the micellar

structure and aggregation number, instead these follow from our analysis.

We will start from the free energy of interaction between a central micelle sur-

rounded by others, calculated in a so-called cell model. Subsequently, we use these

results to predict the coexistence curves for dilute and dense micellar phases. Fi-

nally, we briefly discuss the threshold where intermicellar bridging leads to the for-

mation of a transient network, which can also be predicted from the self-consistent

field calculations. Several trends from the numerical results will be explained using

scaling arguments based on the molecular architecture of the telechelic polymers.

4.2 Self-consistent field cell model for micelles

Our calculations are based on the discrete self-consistent field theory developed

by Scheutjens and Fleer (SF-SCF) [19, 20]. In SF-SCF theory the same length a

is used to divide chains into segments and space into lattice sites. We consider

telechelic chains, with segments s = 1, 2, . . . , N , and a spherical lattice consisting

of h concentric layers with reflecting boundary conditions. The spherical lattice

will be referred to as the ”cell”’ in the remainder of this Chapter. The mean-field

approximation is applied to each layer z with z = 1, 2, . . . , h, hence the micelles are

spherical. The key lattice parameters are the number of sites L(z) in each layer, for

our spherical geometry L(z) = 4
3π(z3−(z−1)3), and the a priori step probabilities

λ∆z(z). These step probabilities are given by the fraction of all neighboring sites

of a site in layer z that are located at z + ∆z (∆z = −1, 0, +1) and reflect the

probability that a segment s − 1, linked to a segment s located at z, is in layer

z+∆z. In a curved geometry, the step probabilities are a function of z and obey the

internal balance: λ−1(z)L(z + 1) = λ1(z)L(z) [21]. Nearest-neighbor interactions

are taken into account in terms of the Flory-Huggins interaction energy that is

parameterized by the interaction parameters χxy, where x and y represent any two

different segment species [22].
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In the context of this model we can define a molecular state c of a species i,

by the subsequent z-positions of all chain segments zc
is. The number of possible

conformations ωc
i of a chain i in state c is, within a Markov approximation, given

by

ωc
i = L(zc

i1)

Ni
∏

s=2

λ∆z(z
c
is)Z (4.1)

where zc
is is the layer in which segment s of molecule i in state c is found, L(zc

i1) is

the number of sites in layer z, where the first segment of species i in conformation

c is located, and Z is the number of neighbors of each site.
∏N

s=2 λ∆z(z
c
is) is the

multiple product of the step probabilities of the subsequent steps, going from the

layer where segment 1 is located to the layer where segment 2 is located, etc. up

to the last segment Ni, all according to the conformation c.

The Helmholtz energy of the inhomogeneous system can be written as a func-

tional of the distribution of molecular states;

F ({nc
i}, T )

kBT
=
∑

i,c

nc
i ln

(

nc
i

ωc
i

)

+
F int

kBT
(4.2)

The first term accounts for the configurational entropy. The Flory-Huggins inter-

action energy is given by the second term, and can be written as

F int

kBT
=

1

2

∑

z,x,y

nx(z)〈φy(z)〉χxy + u′(z)

[

∑

x

nx(z) − L(z)

]

(4.3)

in which nx(z) is the number of segments of segment species x in layer z. The

factor 〈φy(z)〉 is the average fraction of y segments among the nearest neighbors of

a segment in layer z and is found with 〈φy(z)〉 =
∑

∆z λ∆z(z)φy(z) where ϕy(z) =

ny(z)/L(z). The second term in Eqn.4.3 is coupled to the incompressibility of the

system, in which u′(z) is the Lagrange parameter.

The abundance of each molecular state in terms of a molecular field is obtained

by evaluating ∂Ω/∂nc
i = 0 (∀i, c), with the grand potential

Ω = F −
∑

i

µini (4.4)

where µi = (∂F/∂ni)T,nj 6=i
. The number of molecules of species i in state c, nc

i ,

is found from a Boltzmann weight of the potential fields for that species uc
i , and

follows

nc
i ∝ ωc

i exp

[−uc
i

kBT

]

(4.5)
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Figure 4.1: Comparison between the numerical results for the critical micelle concentra-

tion for A20-BN -A20 chains using the present coarse-grained model for telechelic polymers

(filled symbols) and the molecularly realistic model used in Chapter 3 (open symbols).

The potential field for a species i in conformation c, follows from summation over

the segment potentials u(zc
is) for all segments in the chain;

uc
i =

Ni
∑

s=1

u(zc
is) (4.6)

The segment potential for a segment s of type x in layer z is obtained by differen-

tiating the interaction term in the free energy (Eqn.4.3) to the number of segments

of type x in that layer; ux(z) = ∂F int/∂nx(z).

A solution for the complete distribution of molecular states {nc
i} should satisfy

the following incompressibility constraints:
∑

x nx(z) = L(z) for all z, which fixes

u′(z), and
∑

c nc
i = ni for all i, which gives the normalization constant for Eqn.4.5.

It turns out that the segment density distributions, that determine the molec-

ular field, can be found using the propagator scheme developed by Scheutjens en

Fleer [19] without explicitly evaluating all nc
i . In this way both the molecular fields

and the segment density distributions can be efficiently calculated in a numerical

iteration procedure, until self-consistency is reached [23]. A more detailed descrip-

tion of SF-SCF theory and its applications to self-assembly can be found elsewhere

[24]

In a previous study on the micellization of telechelic polymers we have used

a molecularly realistic model to predict the self-assembly of a specific class of

telechelic associative polymers, i.e. alkyl end-capped poly(ethylene oxide)s, in

which hydrogenated carbon atoms and ether oxygens of poly(ethylene oxide) were

treated as different segment types [25]. Here we choose a coarse-grained version
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Figure 4.2: Schematic representation of the self-consistent field cell model, at a cell size

h, with reflecting boundary conditions. Coronal chains, departing from the micellar core,

have two ’dominant’ configurations: i) loops, for all values of h, the one shown here just

reaches the outer layer and ii) bridges, that cross the cell boundary, for not too large

values of h.

of that model, in which the solvophilic, middle-block segments are represented by

one ”average” segment type B, and the solvophobic, end-block segments are rep-

resented by segment type A, such that the present study is applicable to a wide

variety of telechelic associative polymers. Freely jointed A-B-A chains are placed

on the spherical lattice together with a monomeric solvent S. The A-blocks are

oligomeric (NA between 10 and 35) and strongly segregate with the monomeric

solvent. The central B-blocks are polymeric (NB between 100 and 10,000). The

interactions between the three segment species are quantified by the corresponding

χ parameters. All calculations are carried out under θ-conditions for the poly-

mer backbone, i.e. χBS = 0.5. For example for poly(ethylene oxide), one of the

most used neutral backbones in associative polymers, it is known that the Flory

interaction parameter between the polymer and water at room temperature is very

close to 0.5 [26]. The other two parameters were chosen such that the results for

the critical micelle concentrations (CMC) of the molecularly realistic model in [25]

are reproduced. The results from the earlier model could be reproduced, with an

error of less than 10% for the investigated range of block lengths, with χAS = 1.9

and χAB = 1 in the present coarse-grained model. The correspondence between

the results for the CMC from the molecularly realistic model [18] and the current

model is illustrated in Fig.4.1.
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4.2.1 Isolated, non-interacting micelles

Isolated micelles are studied in the self-consistent field cell model for large values

of h, such that the central object cannot interact with any neighbors. For large h,

no bridges can form, and all chains form loops (see Fig.4.2).

According to the thermodynamics of small systems [27, 28], the work associated

with the formation of micelles E must vanish, i.e. E = 0. In a real system, the

number of micelles N is adjusted by the system until this condition is met, i.e.

∂F/∂N = E = 0. In this sense, the number of micelles is not a controlled variable

(i.e. it is not an external variable). In the self-consistent field modeling of flowerlike

micelles, however, one studies a small system that contains a single micelle. Indeed,

for such an analysis the number of micelles is exactly controlled. This implies

that the thermodynamic analysis of micellization in a SCF model requires special

attention.

The micellar object in the SCF model is translationally restricted to the center

of the coordinate system. The grand potential Ω of such a micelle is readily available

from the SCF calculations (see Eqn.4.4). For dilute solutions one can estimate the

translational entropy per micelle as Strans = −kB ln ϕm
p , where ϕm

p is the volume

fraction of micelles in the system. The overall work of formation of a micelle in the

SCF model is therefore

E = kBT ln ϕm
p + Ω = 0 (4.7)

which gives the connection between the microscopic model to the macroscopic ther-

modynamics [27, 28]. In the SCF model, Eqn.4.7 is used as follows. Typically from

the calculations the relation Ω(nagg) is known, where nagg is the excess number of

amphiphiles per micelle. From Eqn.4.7 we then find ϕm
p (nagg). As 0 < ϕm

p < 1, it

is clear that relevant micelles have Ω > 0.

It can be shown that the Gibbs-Duhem equation for micellization in the small

system reads

∂Ω/∂µp = −nagg (4.8)

As the fluctuations in (micellar) aggregation numbers are related to ∂nagg/∂µp, and

because this is necessarily a positive number, we find from Eqn.4.8 that relevant

micellar systems obey to ∂Ω/∂nagg < 0 (stability constraint).

In the context of this SCF model, the critical micelle concentration is defined as

the concentration where ∂Ω/∂nagg = 0. The aggregation number nagg is defined

as the number of polymer chains in the micelle, and is related to the total number

of polymer chains np in the system and the number of micelles N with np =
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Figure 4.3: Typical results from the SF-SCF calculations for isolated and non-interacting

micelles (h >> hmin, a & c) and for interacting micelles at the minimum of the inter-

action energy between the micelles with respect to h (h = hmin, b & d). Results shown

are for systems of A20-B500-A20 polymers, dotted lines represent solutions that are not

macroscopically stable.

Nnagg + V ϕb
p/N , where V is the volume of the system, ϕb

p is the bulk unimer

concentration and N is the total chain length of the polymer. For the calculations,

where N = 1, the appropriate volume is the cell volume V cell = 4
3πh3.

In Fig.4.3a we see the grand potential as a function of aggregation number, due

to the stability constraint we only consider the solutions for which ∂Ω/∂nagg < 0.

In Fig.4.3 all solutions from the self-consistent field calculations, which correspond

to situations that are not macroscopically stable, i.e. when ∂Ω/∂nagg > 0, or which

are physically not meaningful, i.e. when Ω < 0, are indicated with dotted lines.

4.2.2 Interacting micelles in concentrated systems

The interactions between micelles are studied in the cell model by decreasing the

cell size h to the same order of magnitude as the size of the micelle. Typical results

for this situation are shown in Fig.4.3b and 4.3d. Here again we only consider those
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solutions for which ∂Ω/∂nagg < 0. By decreasing the cell size, which is equivalent

to increasing the concentration of micelles, the central object can interact with

its neighbors by way of the reflecting boundary conditions. In essence the idea

of a reflecting, i.e. mirroring, boundary, is straightforward. In a flat geometry,

the reflecting boundary is a plane of symmetry; for each chain configuration that

leaves the system volume through the boundary, a complementary chain enters

the volume through the same boundary. Mathematically this is implemented by

forcing the segment densities, as well as the segment potentials, in a given layer

outside the boundary to assume the same (known) value as its mirror-image inside

the volume. The mathematical implementation of the boundary condition in the

current spherical geometry is the same. An intuitive understanding of the resulting

situation is, however, somewhat troublesome. Again, for each chains that leaves

the cell through the outer boundary a complementary chain enters the volume as if

it comes from a neighboring micelle. The exact position of all neighbors is however

not realistically accounted for. The distance between the center of the central

micelle and its mirror images is 2h. For small enough values of h we distinguish

two dominant types of conformations of the coronal parts of the polymers upon

interaction; bridges and loops. This is illustrated schematically in Fig.4.2.

We compute the thermodynamic quantities for these interacting micelles at Ω

= 0 as a function of h. As discussed in the previous section the grand potential

is directly coupled to the translational entropy of the micelles (Eqn.4.7). Setting

the condition Ω = 0 implies that we consider the translational entropy to be neg-

ligible. At high concentrations, where the micelle interacts with many neighbors,

this assumption is reasonable. It is known that under experimental conditions

a structured and highly interconnected micellar network is formed, in which the

translational freedom of the micelles is obviously suppressed [29]. One of the con-

sequences of the cell model is that the distances between all micelles in the system

are approximated to be equal. We can argue that this approximation should be

reasonable for concentrated systems where the micelles are closely packed, and for

systems where the micelles are trapped in an attractive well that is many times

larger than the thermal energy kBT , such that fluctuations around the equilib-

rium position are small. This issue is evaluated in somewhat more detail in the

Discussion at the end of this Chapter.

The free energy difference of a micelle surrounded by neighbors with respect to

an isolated micelle (for which Ω = 0), is defined as ∆Fm(h) = Fm(h) − Fm(∞).

Note that this free energy difference is not a pair potential, rather the interaction

free energy between a central micelle and all its neighbors. The cell size value

where ∆Fm is minimal is denoted hmin.
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4.2.3 Computing biphase coexistence

The attractive interactions between flowerlike micelles can cause macroscopic demix-

ing [12]. To determine the coexistence in the context of this SCF model we make

two approximations. The first is that in the dilute phase the micelles have no

intermicellar interactions, such that we can use the results for isolated micelles to

predict the properties of this phase. The second approximation is that in the dense

phase the micelles have no translational entropy, such that we can use the results

from the cell model for intermicellar interactions for this phase. These approxima-

tions are likely to be valid away from the critical point. Close to the critical point

however, the micelles will interact with each other in both phases as well as have

significant translational entropy in both the dense and the dilute phase. The true

position of the critical point is therefore not obtained in this approach.

In the coexisting liquid phases (denoted dense and dilute) both the osmotic

pressures (Πdense = Πdilute) and the chemical potential of the polymer (µdense
p =

µdilute
p ) should be equal. For the dilute phase we can argue that, as the concen-

tration of micelles is very low, the osmotic pressure will be negligible. Here we

approximate the osmotic pressure to be zero. Consequently, the osmotic pressure

in the dense phase will also be zero. Although the concentration of micelles is sig-

nificant in the dense phase, we can argue that the attraction between the micelles,

resulting in a negative second virial coefficient, can strongly reduce the osmotic

pressure to negligible values. To predict coexistence we need to find solutions to

the self-consistent field model for both isolated and interacting micelles, that have

the same chemical potential of the polymer µp.

Our approach is schematically illustrated in Fig.4.3. We start with the typical

result of the grand potential versus aggregation number for interacting micelles

(dense phase). Above we discussed the choice for approximating the osmotic pres-

sure to be zero in both phases. For an incompressible system, as is the case in

these SCF calculation, we can find the osmotic pressure by differentiating the free

energy to the cell volume, that is given by 4
3πh3, hence;

Π =
−∂Fm(h)

∂V
=

−∂Fm(h)

4πh2∂h
= 0 (4.9)

Since 4πh2 is always finite positive, ∂Fm/∂h must be zero. As a consequence, we

will regard the minimum of the free energy of interaction with respect to h to be the

equilibrium situation. In other words, we find the solutions to the self-consistent

field model for h = hmin and for which Ω = 0. These requirements are met, as

indicated in Fig.4.3b, for a given aggregation number (here nagg = 34). In the plot

of the chemical potential of unimers µp versus aggregation number (Fig.4.3d) we
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can now find the corresponding chemical potential of the polymer chains in the

bulk phase (here −266.5kBT , arrow I).

The volume fraction in the dense phase (ϕdense
p ), given by the composition

in the cell, can be split up into two contributions: that of polymer chains that

are associated in the central micelle (ϕm
p ) and that of free unimers (ϕb

p). The

contribution of chains in the micelle, ϕm
p , is obtained by dividing the total number

of polymer segments (each occupying 1 lattice site) in the micelle by the cell volume

V cell = 4
3πh3

min;

ϕm
p =

Npnagg

4
3πh3

min

(4.10)

where Np = 2NA + NB is the total chain length of the ABA polymer. The bulk

volume fraction of free unimers follows from µp, using the Flory-Huggins expression

for the chemical potential for a system composed of species S (solvent) and ABA

(polymer) and segments S, A and B;

µp − µ∗
p

kBT
= − lnϕb

p + (1 − ϕb
p)(1 − Np) +

+
1

2
Np

∑

i

∑

j

(ϕb
i − Φi)χij(ϕ

b
j − Φj) (4.11)

in which µ∗
p is the reference state of the chemical potential of the polymer, defined

such that Eqn.4.11 returns zero for ϕb
p = 1. ϕb

i and ϕb
j are the bulk volume fractions

of segment types i and j, with i or j = A, B, S. Φi and Φj are the fractions of

segments in ABA the polymer that are of type i and j respectively. Hence, ΦS is

zero, ΦA = 2NA/Np and ΦB = NB/Np.

Now that we have all ingredients to compute the composition of the dense

phase, we proceed to calculate the composition of the dilute phase. We now start

from the chemical potential of the unimers found in Fig.4.3d (arrow I). As the

chemical potential of the unimers must be equal in both phases, we can find the

coexisting configuration of a system of isolated non-interacting micelles. In Fig.4.3c

we see that at the given chemical potential, the isolated micelles have an average

aggregation number of 25 (arrow II). For the dilute system we can now also see,

in Fig.4.3a, that at this chemical potential and corresponding configuration, the

micelles have a finite, non-zero grand potential (arrow III), in this case Ω ≈ 20 kBT .

This indicates that in the dilute phase the micelles do have significant translational

entropy, since Ω = −StransT .

With the chemical potential and the grand potential known for the dilute phase,

we can also calculate its overall composition. Again, the overall polymer volume
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Figure 4.4: Free energy of interaction ∆F m(h) between a central flowerlike micelle

and all its neighbors, calculated in the self-consistent field cell model; a) for A20-BN -A20

polymers with NB = 200, 400, 600, 800 and 1000 and b) for AN -B500-AN with NA = 20,

25, 30 and 35.

fraction is given by ϕdilute
p = ϕb

p + ϕm
p . The bulk volume fraction ϕb

b again follows

from Eqn.4.11, and must be the same as in the dense phase since the chemical

potentials are also equal. The volume fraction of polymer in micelles in the dilute

phase can be obtained from Ω (Eqn.4.7).

4.2.4 Computing the number of bridging chains

In this SCF cell model it is also possible to obtain the number of bridges nb that

are formed by a micelle. To find nb we start by defining the lattice parameters

for the central object and its mirror image. The system now contains twice as

many layers; z = 1, 2 . . . h, h + 1 . . . 2h. The number of sites per layers L(z) is

given by L(z) = 4
3π(z3 − (z − 1)3) ∀ z < h + 1 and L(z) = L(2h − z + 1) ∀

z > h. Consequently, we need to mirror the step probabilities, such that for z > h:

λ∆z(z) = λ−∆z(2h − z + 1) (∆z = −1, 0, 1), and the segment potentials, with

ux(z) = ux(2h − z + 1) for all z > h and x. By defining a bridge as a chain that

has its first segment in a layer with z < h+1 and its last segment in z > h, we can

calculate nb using the propagator scheme of Scheutjens and Fleer.

4.3 Intermicellar interactions

Several results for the interactions between flowerlike micelles, calculated in the

SCF cell model, are shown in Fig.4.4, as a function of backbone length (Fig.4.4a)
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Figure 4.5: a) Effect of interactions in the cell model on the aggregation number (nagg),

in comparison to the interaction free energy ∆F m for A20-B500-A20 polymers and b) de-

pendence of the aggregation number on the backbone length for isolated micelles (h >>

hmin, circles) and micelles at the minimum of the interaction potential (h = hmin, trian-

gles).

and end-block length (Fig.4.4b). We can recognize some clear trends: the interac-

tions decrease in strength and increase in range with increasing backbone length

and with decreasing length of the associating end blocks.

For end-adsorbed layers of telechelic polymers it has been predicted that the

range of both steric and bridging interactions is proportional to the brush thickness

[8]. For micelles this suggests that the interaction range is characterized by the

radius of the micelle (R) [13]. We have previously shown [18] that

R ∝
(

NB + nagg
1

6 N
2

3

A

)
1

2

nagg
1

4 (4.12)

This follows from the Daoud-Cotton model [30], adjusted for the non-zero size of the

micellar core. When the concentration of micelles is increased, or, in other words,

when the typical distance between the micelles is decreased, the chemical potential

changes. This also leads to a change in aggregation number. In Fig.4.5a the change

in aggregation number with h is shown (dotted curve). We see a significant change

of the number of chains per micelle with decreasing h that is equivalent to increasing

the concentration of micelles. This implies that, to properly apply Eqn.4.12 we

must use nagg(h) rather than a fixed nagg. In Fig.4.5b it is shown that although the

absolute value of nagg depends on the concentration, the same dependence between

aggregation number and backbone length is found for isolated micelles and micelles

that interact with multiple neighbors. The change in aggregation number with a

variation in the molecular architecture has been discussed previously [18].
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Figure 4.6: Rescaled free energy of interaction between a central flowerlike micelle and all

its neighbors, calculated in the self-consistent field cell model, plotted versus the rescaled

cell size h/R; a) for A20-BN -A20 polymers with NB ranging from 200 to 1000 and b) for

AN -B300-AN with NA ranging from 30 to 35.

Adopting a Derjaguin approximation, Meng and Russel calculate the interac-

tions between flowerlike micelles starting from the results for flat telechelic brushes.

Within this approximation, the strength of the interaction is governed by two pa-

rameters only; the aggregation number nagg and the degree of stretching of the

coronal chains RN
−1/2
B . They derive that ∆Fm ∝ naggNBR−2. For R we can use

Eqn.4.12. Here we can approximate R by N
1/2
B nagg

1/4, since NB is generally much

larger than nagg
1/6N

2/3
A . Rewriting gives

∆Fm(h) ∝ nagg(h)
NB

R2
≈ nagg(h)

1

2 (4.13)

With Eqns 4.12 and 4.13 as predictions for the range and strength of the interac-

tions respectively, we can plot the curves in Fig.4.4 on rescaled coordinates. We

plot the normalized interaction energy ∆Fm/
√

nagg versus the normalized distance

between the centers of the micellar objects h/R, where R is found from Eqn.4.12.

The result is shown in Fig.4.6.

We see that the curves, with the exception of the curves for NB = 200 in

Fig.4.6a, now almost collapse onto a master curve. This confirms that the range

of the interactions is determined by the size of the micelles and that the strength

of the interactions is a function of the aggregation number and chain stretching

only. The curve for the smallest middle block length (NB = 200) in Fig.4.6a does

not coincide with the other curves because the assumption that nagg
1/6N

2/3
A is

negligible compared to NB (see derivation of Eqn.4.13) is not valid for this short

chain length.
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If we take the value of the interaction energy at hmin and divide this by the

aggregation number, we find the contribution per chain to the depth of the at-

tractive well. In the range of molecular parameters investigated here, we find an

average contribution per chain to the attraction of 0.6 - 0.7 kBT . This is of the

same order of magnitude as the predicted value of kBT ln 2 = 0.69 kBT for ideal

chains [13]. We must note that, although we are at θ-conditions for the polymer

backbone (χBS = 0.5), the chains do show stretching in the micellar corona. This

is also reflected in the fact that for micelles of ideal chains the depth of the min-

imum would depend solely on the aggregation number, whereas here we need to

account for chain stretching as well in order to collapse the curves in Fig.4.6. We

can attribute this apparent importance of excluded volume effects for chains in a

θ-solvent, to crowding in the corona of the micelle.

The interactions start when h/R is approximately unity, which corresponds to

a separation between the centers of the interacting objects of roughly twice the

micellar radii. This has also been predicted previously [8].

4.4 Biphase Coexistence

In Fig.4.7 we show the numerically calculated coexisting compositions (Eqns 4.7,

4.10 and 4.11) in systems of flowerlike micelles, both as a function of the length of

the middle B-block and as a function of the length of the A-end-blocks. We can

immediately see that the phase diagrams are strongly asymmetric with respect to

the volume fraction of polymer at the extrapolated critical point.

In the concentrated phase the amount of unimers is negligible compared to the

chains assembled in the micelle, hence ϕdense
p ≈ ϕm

p . Also Np ≈ NB as the end-

block length is small compared to the middle block in the molecular architectures

investigated here. We already argued that hmin ∝ R. Using Eqn.4.10 we can derive

ϕdense
p ∝ naggNB

R3
(4.14)

The proportionality ϕdense
p ∝ R−3 was already predicted by Francois et al. [16].

The radius of the micelle R can again be approximated by N
1/2
B n

1/4
agg. The aggrega-

tion number is intricately linked to molecular architecture, as discussed in [18]. As

a first order approximation we can use nagg ∝ N
4/5
A , in which the logarithmic de-

pendency of the aggregation number on NB has been omitted as it is much weaker

than the power-law proportionality between NA and nagg. We now find

ϕdense
p ∝ N

− 1

2

B N
1

5

A (4.15)
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Figure 4.7: Numerically obtained binodals (symbols) as a function of a) backbone length

(NB) in a system of A20-BN -A20 polymers and b) end-block length (NA) in a system of

AN -B500-AN polymers. Solid lines are numerically calculated critical micelle concentra-

tions (CMC) and fits to the scaling relation in Eqn.4.15, with ϕp ∝ N
−1/2

B in a) and

ϕp ∝ N
1/5

A in b).

To test this scaling relation, we have fitted the dense branches of the binodals in

Fig.4.7 to ϕdense ∝ N
−1/2
B (Fig.4.7a) and ϕdense ∝ N

1/5
A (Fig.4.7b), respectively.

An excellent correspondence is found between the scaling argument and the nu-

merical results.

For the dilute branch of the binodal we find that the compositions are close

to the critical micelle concentrations (CMC). This can be seen in Fig.4.7, where

the lower solid lines are the critical micelle concentrations. For the parameters

chosen here, that imply strong segregation of the end-blocks, we have previously [18]

discussed the dependency of the CMC on the molecular architecture. Combining

ϕdilute ≈ CMC with the result found in [18] gives:

ϕdilute
p ∝ N

3

2
+g

B exp (−3

2
NA) (4.16)

where the exponential decay of the CMC with the end-block length NA is similar

to that of ordinary surfactants, but twice as strong because there are 2 hydrophobic

moieties attached to a single chain. The factor Ng
B is the dependency of the CMC

on the length of the hydrophilic block for equivalent diblock copolymers (in these

calculations g ≈ 2), and the factor N
3/2
B accounts for the entropy loss due to loop

formation of non-interacting telechelic chains in isolated flowerlike micelles [31].

Using the scaling relations for both branches of the binodal in Eqns 4.15 and

4.16 we can also derive expressions for the point where these branches meet. This

intersection point can be considered to be an upper limit for the critical value of
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Figure 4.8: a) fraction of the total chains in the micelle that have formed a bridge

α = nb/nagg as a function of polymer volume fraction ϕp for various values of NB (100,

200, 400, 1000, 2000) in systems of A20-BN -A20 polymers. b): same results as in a)

plotted as α versus ϕpN
2/3

B .

NB or a lower limit for the value of NA at the critical point. For example, to find

the upper limit for the critical backbone length (N∗
B), for a given end-block length

NA, we start with ϕdense
p = ϕdilute

p . Rewriting then gives:

N∗
B ∝ N

1

10g

A exp (
3

4g
NA) (4.17)

As the latter, exponential, term grows much faster than the first, power-law, term,

we can neglect the first term and find; N∗
B ∝ exp ( 3

4gNA). Here g ≈ 2, giving;

N∗
B ∝ exp (3

8NA) This gives a quasi-Traube’s rule [32] for the minimal length

of a middle block, for a given end-block length, that assures that the system is

homogeneous at all concentrations, which could be used as a design rule, e.g., for

the development of novel associative thickeners, where the occurrence of demixing

is undesired.

In the explanation of the approach to compute biphase coexistence, we have

mentioned that the model can be expected to be only valid far enough away from

the critical point. As explained in more detail in the Discussion-section of this

Chapter, we expect all data points shown in Fig.4.7 to lie within the validity of our

model.

4.5 Transient network threshold

From the self-consistent field cell model we have also obtained the number of

bridges, nb, formed by the central micelle with its neighbors. As stated in the
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introduction we expect bridging to be an entropic phenomenon, driven by the gain

in conformational freedom when chains have the possibility to form bridges in ad-

dition to forming loops. For a chain, of which at least one segment is located at

the symmetry plane, the probability to form a loop and the probability to form a

bridge are equal. As a result, we expect that at high concentrations exactly half

of all chains have formed a bridge, whereas the other half is present in loops. In

Fig.4.8a the fraction of chains that have formed a bridge α = nb/nagg is plotted

versus polymer concentration. It shows that in the limit of high concentrations

this value indeed levels off at a plateau value of 1
2 . From the same plot we can also

conclude that the onset and saturation of bridging occurs at lower volume fractions

for chains with larger middle blocks.

Now that we have obtained the number of bridges as a function of polymer

concentration we can estimate at what concentration a macroscopic association

cluster of micelles is formed. Above this concentration, where we have a percolated

structure in our system, we can expect the mechanical properties of the system to

change from fluid-like to viscoelastic. The concentration ϕnet
p where this transition

occurs is denoted the transient network threshold

To find the network threshold we need to define a criterion for the average

number of bridges per micelle that are required for the formation of a macroscopic

network (nnet
b ). Here we will consider two estimates for this transition. The first is

the so-called Flory gel point criterion [22], that takes into account the functionality

nagg of the nodes;

αnet =
nnet

b

nagg
=

1

nagg − 1
(4.18)

where αnet = nb/nagg is the fraction of the total number of possible bridges that

must form to obtain a macroscopic network. In these systems nagg >> 1, hence

nnet
b goes to unity. The Flory criterion does not take into account non-effective

bridges, e.g. the formation of rings of nodes (micelles) connected by bridges.

The second criterion is derived from classical bond percolation theory. For a

3-dimensional cubic lattice, Monte Carlo simulations have shown that the fraction

of bonds formed should equal 0.25 to reach the bond percolation threshold [33]. As

the functionality of the nodes in a 3D cubic lattice is 6 by definition, on average 1.5

bonds/node are required for percolation. In our model we can use this same value

for nnet
b . This percolation approach does not take into account the functionality of

the nodes, rather assumes a fixed value (6 for a 3D cubic lattice), but does account

for the formation of non-effective bonds.

The two different criteria are compared in Fig.4.9. We see, as expected from the
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Figure 4.9: Comparison between transient network threshold ϕnet
p ,as predicted by the

Flory-criterion and the bond percolation criterion by Stauffer et al. [33] as a function of

central block length NB , for A20-BN -A20 polymers.

definitions of the two criteria, that the predicted transient network thresholds are

very close, with the bond percolation criterion giving a slightly higher predicted

threshold concentration.

As for the other properties discussed in previous sections, we can investigate

how the network threshold changes with variations in the molecular architecture.

For the proportionality of ϕnet
p with the backbone length NB, we can take a closer

look at Fig.4.9. The solid lines are power-law fits to the results from the self-

consistent field calculations. We empirically find that ϕnet
p ∝ N

−2/3
B . Using this

relation to rescale the volume fraction-axis of Fig.4.8a, as is done in Fig.4.8b, we see

superposition of all curves of the fraction of bridging chains versus concentration.

This indicates again that the quantity N
−2/3
B , for a given NA, determines the bridge

formation throughout the concentration range.

Qualitatively we can understand that the transient network is formed at lower

concentrations when the middle block is longer. First of all, the minimal distance

required between micelles to allow bridge formation, is larger for larger middle

blocks, as the chains can reach over longer distances compared to smaller values

of NB. Secondly, we know from [25] and Fig.4.5b that the aggregation number is

a decreasing function of NB. If we distribute the same amount of polymer mate-

rial over many micelles, with a smaller aggregation number, the typical distance

between the micelles will be smaller than when we have few micelles with a large

aggregation number. Both effects will contribute to the observed scaling of ϕnet
p

with NB. At this time however, we do not have a more quantitative explanation

for this dependency.
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The proportionality of the concentration where a network is formed with the

end-block length NA is more complicated. From our calculations we find that

ϕnet
p ∝ Nk

A, where the scaling exponent k itself is a function of NB. For the

current choice of parameters k ∝ N0.7
B . The increase in ϕnet

p with increasing NA

is again attributed to effect that a change in associative block length has on the

aggregation number, as we know that nagg ∝ N
4/5
A . How this translates into the

intricate relation that is found, is not clear at present.

In classical transient network theories, such as the generalized Green-Tobolsky

theory of Tanaka and Edwards [34], rheological parameters such as the zero-shear

viscosity and plateau modulus are related directly to the number of elastically ac-

tive chains per unit volume. In these theories a linear relation is expected between

the overall polymer concentration and the plateau modulus. Experimental results

however, predict a much stronger increase. According to Annable et al. this must

be attributed to the fact that not only the number of micelles increases with con-

centration, but that also the fraction of chains per micelle that forms a bridge (i.e.

α) is a strong function of concentration [35]. This is exactly what we see in Fig.4.8.

4.6 Discussion

With the predictions for the critical micelle concentrations [18], the coexistence

curves, and the transient network thresholds, we can construct phase diagrams for

our telechelic associative polymers. In Fig.4.10 we show two examples of phase

diagrams, for two values of the end-block length NA.

In comparing the phase diagrams for NA = 20 and NA = 16, the depression of

the upper limit of the critical value of NB (Eqn.4.17) and the shift in the micel-

lization threshold are clearly distinguishable. The volume fractions, corresponding

to either the CMC (line 1) or the dilute branch of the binodal (line 2), decrease

exponentially with a change in the end-block length NA (Eqns 4.16 and 4.17),

explaining the large effect for a relatively small change in NA. For the network

formation threshold (line 3), that is proportional to a power-law of NA, the change

is hardly visible.

From Fig.4.10 and the discussion of the various scaling arguments above, it

is clear that there are large differences in how volume fractions, at which the

various transitions occur, depend on the molecular architecture. As a result it is

not possible to superimpose these phase diagrams by rescaling the volume fraction

axis with respect to the volume fraction at the critical point, which is a technique

commonly employed when studying phase diagrams.
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Figure 4.10: Phase diagram for A20-BN -A20 (a) and for A16-BN -A16 polymers (b).

Indicated transitions are; 1) micellization threshold, 2) the binodal for biphase coexistence

and 3) the transient network threshold. Note that the intersect of the two binodal branches

is not the actual critical point, it is an upper limit for the actual critical point.

There is a regime, above the intersection of the micellization threshold with

the transient network threshold, where any micelle formation of the associative

polymers immediately leads to the formation of a network. This is the case when

the middle B block is very long and as a result nagg will typically be very low

and the CMC relatively high. As the corona chains can span large distances, any

self-assembly will then be accompanied by formation of bridges, leading to a dilute

network with nodes, i.e. micelles, of low functionality.

As discussed above, we cannot obtain the true critical point in our approach,

due to the approximations that were needed to determine coexistence. Of course

the binodal should be continuous at the critical point; the true binodal will have

a different shape around the critical point compared to what is shown in Fig.4.10.

We can roughly estimate where our approach is no longer valid. Phase separation

no longer occurs when the depth of the attractive minimum in ∆Fm(h) becomes

smaller than the thermal energy kBT . In other words, conditions where the depth

of the attraction is of order kBT must be close to the critical point. Due to technical

issues, it is difficult, in this SF-SCF model, to calculate points close to the critical

point. For all points that we have calculated, as shown in Fig.4.7, we find that

the attraction is at least several kBT . This indicates that for all these results our

approach is valid.

In-depth comparison of our results with existing experimental data, such as

in [12, 16], is difficult as the experimentally studied range and number of block

lengths is too limited to verify the scaling behavior that we predict here. This
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calls for a systematic experimental investigation of the properties discussed in this

Chapter, over a larger range of both end- and middle block lengths. On a more

qualitative level, we find that the experimental studies [12, 16] show the tendency

for phase separation to increase when the hydrophobic blocks become longer and/or

the hydrophilic blocks smaller. This agrees with our model, e.g. see Eqn.4.17 and

Fig.4.10.

4.7 Conclusions

Using a self-consistent field cell model, and explicitly accounting for the self-

assembled character of the interacting objects, we have mapped out the self-

assembly and phase behavior of telechelic associative polymers with their soluble

blocks at θ-conditions. Based on the calculations of intermicellar interactions, co-

existence curves were predicted. From the numerical results, the concentration

where a transient network is formed, was also predicted. Together with the results

for the micellization threshold, phase diagrams were constructed.

Nearly all trends found from the numerical results could be rationalized using

relatively simple scaling arguments. With these scaling arguments, a quantitative

understanding of how the phase behavior depends on the molecular architecture of

the telechelic associative polymers is easily accessible.
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Chapter 5

Equilibrium capillary forces with

Colloid Probe AFM

In this Chapter, measurements of equilibrium forces resulting from cap-

illary condensation are presented. The results give access to the ultralow

interfacial tensions between the capillary bridge and the coexisting bulk

phase. We demonstrate this with solutions of associative polymers and

an aqueous mixture of gelatin and dextran, with interfacial tensions

around 10 µN/m. The equilibrium nature of the capillary forces is at-

tributed to the combination of a low interfacial tension and a microscopic

confinement geometry, based on nucleation and growth arguments.

This chapter was published as:

J. Sprakel, N.A.M. Besseling, F.A.M. Leermakers and M.A. Cohen Stuart: Equilib-

rium capillary forces with atomic force microscopy, Phys. Rev. Letters 99 (2007),

104504.
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Figure 5.1: a) Artist impression of a capillary bridge between a spherical probe with

radius R and a flat substrate, where r1 and r2 are the principal radii of curvature at the

minimal thickness of the bridge, θ is the contact angle at the three-phase boundary and

h is the separation between the two surfaces. b) SEM image of a colloidal probe particle

(R = 3 µm) glued to a standard contact mode AFM cantilever.

5.1 Introduction

Interfaces are ubiquitous in soft matter and biological systems. The corresponding

phase equilibria are often characterized by weak, tunable interactions and large

length scales ξ. As a result, the interfacial tensions, γ ∝ kBT/ξ2, are typically

ultralow (i.e. ≪ 1 mN m−1).

Measurement of ultralow interfacial tensions is notoriously difficult. Many avail-

able techniques, such as drop shape [1] or interfacial profile analysis [2], rely on

optical visualization. However, in weakly segregated and near-critical systems, the

optical contrast between the phases is generally small. Moreover, density differ-

ences are also small, because of which it is difficult to obtain accurate information

from drop shape analysis under normal gravity. To induce larger deformations, the

spinning drop method is commonly used [3]. However, it was recently reported

that the centrifugal field that is applied in this method, significantly affects the

compositions of coexisting liquid phases. Demixed systems can even be brought

into the one-phase regime [4].

The method that is presented in this Chapter does not rely on optical contrast,

density differences or strong external fields. We use Colloidal Probe Atomic Force

Microscopy (CP-AFM), introduced independently by Ducker et al. [5] and Butt

[6], to measure equilibrium forces originating from capillary, liquid bridges between

two surfaces. We analyze the resulting force-separation profiles to extract ultralow
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interfacial tensions. In Fig.5.1a we show a schematic representation of a capillary

liquid bridge between a sphere and a flat substrate, the characteristic configuration

in the CP-AFM experiment.

When a homogeneous phase, in which one of the components is near its satura-

tion point, is confined between two surfaces, a new phase can be formed by either

condensation or evaporation. It is well known that, e.g., water condenses between

hydrophilic surfaces in humid air [7]. Between hydrophobic surfaces at close sep-

aration, immersed in pure water, a capillary bridge of water vapor is formed, a

process known as capillary evaporation or cavitation [8]. Capillary condensation is

also reported for systems that show liquid-liquid coexistence, e.g., demixed ternary

polymer-solvent systems [9]. Because the curvature of the capillary bridge is nega-

tive with respect to the inner phase, a negative pressure difference is present across

the interface, leading to an attractive force between the surfaces. In almost all

experimental studies on capillary forces, non-equilibrium behavior is observed, i.e.

there is hysteresis in the measured forces in a cycle of decreasing (approach) and

increasing (retract) the separation between the surfaces.

5.2 Materials & Methods

In this Chapter we consider aqueous solutions of telechelic associative polymers

(hydrophilic polymers end-modified with hydrophobic tails); we use poly(ethylene

oxide) (PEO) of various sizes that has been modified at both ends of the chain

with C12, C14, C16 or C18 alkyl tails. In bulk, these systems weakly segregate into

a dilute micellar phase (typically ∼0.1 wt% polymer) and a phase relatively rich

in polymer consisting of interacting micelles that are connected through bridges

(typically ∼3 wt%) [10], of which the latter wets the hydrophobic surfaces used

in this study. The demixing is the result of an entropic attraction between the

flowerlike micelles, due to bridge formation. Upon decreasing the distance between

two hydrophobic surfaces immersed in a dilute, and homogeneous, solution of these

polymers, we expect the formation of a condensed, polymer-rich capillary bridge.

For the CP-AFM measurements a silica sphere (R = 3.0 µm) is glued to the tip

of a triangular AFM cantilever (see Fig.5.1b). The spherical probe, attached to the

cantilever, and an oxidized silicon wafer (i.e. the flat substrate) are hydrophobized

in the vapor of hexamethyl disilazane [11]. In a liquid cell, filled with aqueous

solutions of the telechelic polymers, the distance between the hydrophobic probe

particle and hydrophobic substrate (h) is varied. The deflection of the cantilever

∆x at a given h can be converted into an interaction force F using Hooke’s law
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Figure 5.2: Interaction force, in picoNewtons, between hydrophobic surfaces immersed

in a 50 mg L−1 solution of C18 end-modified PEO of 33 kg mol−1 (750 EO-units, MW /MN

= 1.1). Inset: absolute values of the force-distance curve plotted on a double logarithmic

scale.

F = k ·∆x, where k is the spring constant of the cantilever. We use cantilevers with

a spring constant between 0.07 and 0.12 N m−1 as determined using the thermal

fluctuations method of Hutter and Bechhoefer [12].

5.3 Results & Discussion

A typical force-distance curve is given in Fig.5.2. It shows a long ranged and weak

attractive force, coming in at approximately 200 nm, and increasing in strength

with decreasing h. The force curves we observe, share two remarkable features: i)

approach and retract curves coincide (no hysteresis), and ii) there is no dependence

on the approach and retract velocity (in the range of 100 - 1000 nm s−1).

Various possible origins of this attraction can be considered, but most of them

must be rejected. Depletion interactions are not a viable explanation, as we observe

adsorption of the polymers onto these surfaces in optical reflectometry experiments

and because the range of the attraction is many times larger than what is expected

for depletion interactions [13]. For polymeric, i.e. molecular, bridging one would

expect the range of the interactions to depend on the chain length of the polymer,

which is not found in our experiments at all. We find the same range of attraction

(≈ 200 nm) for a C12 end-capped PEO of 5 kg mol−1 (110 EO-units) with a contour

length of only 40 nm. For van der Waals interactions, the attractive force between

a sphere and a flat surface should decay with h−2 [14]. The inset in Fig.5.2 shows

a force curve plotted on a double logarithmic scale, showing that we do not find
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the power-law behavior as expected for van der Waals interactions. We note that

van der Waals forces are almost never found in AFM force measurements between

silica surfaces in water, e.g. [15]. In the absence of polymers, the expected strong

and long-ranged hydrophobic attraction [8] between the surfaces is observed (not

shown). In the presence of associative polymer however, cavitation cannot occur

because of the wetting layer that effectively changes the polarity of the surfaces.

We therefore attribute the observed attractive forces to the action of a liquid bridge

formed from a ’dense’ polymer phase.

The hysteresis-free nature of the force-distance measurements allows us to use

equilibrium thermodynamics to analyze the results. The total capillary force can be

divided into two components. The first contribution originates from the pressure

difference across the interface, given by the Laplace equation; ∆P = γ(r−1
1 +

r−1
2 ), where γ is the interfacial tension and r1 and r2 are the principle radii of

curvature of the interface between the capillary bridge and the reservoir. The

second contribution is due to the component of the interfacial tension normal to

the substrate. To predict the capillary force as a function of distance for the

sphere-plate geometry, one must find the optimal radii of curvature for given h.

The solution should obey the constraint that the mean curvature J = (r−1
1 +r−1

2 ) is

constant for all positions along the hyperboloid shape, as the Laplace pressure must

be homogeneous within the capillary bridge. A well-known approximate solution

to this problem is F ≈ 4πRγ cos θ (see e.g. [14]), where R is the radius of the

spherical particle and θ is the contact angle at the three-phase boundary. The

accuracy of this expression is however limited due to the many approximations in

the derivation.

Instead, we prefer to use the more accurate solution of Willett and co-workers

[16], who developed a solution to the Laplace equation for the sphere-plate geometry

in the toroidal approximation, i.e. assuming that the shape of the capillary bridge

matches the void in the centre of a torus. The critical assumption in their work

is that the volume of the liquid bridge Vb remains constant at all h, which could

become less accurate when the systems are very close to their critical point. We

numerically fit Willett’s model to our experimental data, by inserting the known

values for h and F and assuming a small contact angle (θ < 10◦), to find both Vb

and the interfacial tension between the phase relatively rich in polymer and the

dilute micellar phase. In Fig.5.3a we compare the experimental results with the best

fit to the theoretical model for two different telechelic polymers. The agreement

between model and experiment is good. The slight, yet systematic, deviations

that are observed between the prediction by Willett et al. and our experimental

data can be attributed to the non-exact nature of this theoretical description of
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Figure 5.3: a) Experimental force curves between hydrophobic surfaces in 50 mg L−1

aqueous solutions of C12- and C18-modified PEO of 33 kg mol−1 (750 EO-units) (symbols),

and curve fits to the model by Willett et al. [16] (drawn lines). b) Interfacial tensions

versus the number of carbon atoms n in the hydrophobic alkyl tails at both ends of the

PEO chain, for PEO of 33 kg mol−1 (750 EO-units). Each point, with indicated error, is

the average of at least 5 measurements.

equilibrium capillary forces, as implied by the approximations that were discussed

above.

The interfacial tensions obtained for the associative polymer systems are plotted

in Fig.5.3b as a function of the number of carbon atoms n in the alkyl tails at both

ends of the PEO chains. From the indicated error we can conclude that the accuracy

of the present method is excellent.

Experimental results on the bulk phase behavior of these polymers indicate

that decreasing the size of the hydrophobic tails, at a given PEO length and con-

centration, moves the weakly segregated system towards the critical point [10].

In Fig.5.3b we see that γ decreases with decreasing n as expected. However, we

must note that the experimentally accessible n-range is too small to investigate the

expected scaling behavior of the interfacial tension.

Often, capillary condensation phenomena are accompanied by hysteresis. It

is therefore remarkable that we find no hysteresis in the force-distance curves, as

shown in Fig.5.2. This may be explained as follows: the formation of a capillary

bridge consists of two steps; nucleation and growth. For heterogeneous nucleation,

the energy barrier (∆G∗) associated with the formation of a nucleus of critical

dimensions, is proportional to γ [17]. The rate of nucleation is proportional to

exp(−∆G∗/kBT ) ∝ exp(−γA∗/kBT ), where A∗ is the surface area of the critical

nucleus. For systems with ultralow interfacial tensions, nucleation is very fast, as
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the nucleation rate increases exponentially with decreasing interfacial tension. This

explains why capillary condensation of water, or cavitation of water vapor, does

gives rise to pronounced hysteresis [7, 8], as the interfacial tension (between water

and vapor) is a factor of 104 higher than that of the system considered here.

The rate of growth of the condensate is determined by the diffusion of polymer

chains towards the capillary bridge. We can define a characteristic diffusion time

(τD) as τD ≈ L2/D, where D is the diffusion coefficient and L the mean diffusive

path. From the Stokes-Einstein relation we estimate that the diffusion constant of a

poly(ethylene oxide) chain of 750 EO-units, which is the largest polymer considered

in this Chapter, is 4·10−11 m2 s−1 in water at room temperature. The value of L

depends strongly on the geometry of the experimental set-up. From fitting the

experimental data we have, in addition to the interfacial tension, also obtained the

volume of the the capillary bridge, which was consistently found to be in the order

of 0.1 µm3. Hence, the diameter of the capillary bridge is of the order of 0.1 µm

at the onset of the capillary attraction (h = 200 nm). If we take 10 times this

value as a rough estimate of the mean diffusive path (i.e. L = 1 µm), we find that

τD = 25 ms, whereas the experimental timescale is of the order of seconds. This

may explain why transport towards the condensed phase is also not rate limiting,

in this specific geometry.

Experiments in the Surface Force Apparatus (SFA) on other demixed poly-

meric systems show pronounced non-equilibrium behavior, even when experimental

timescales are many times larger than in our experiments [9]. In these experiments

the interfacial tensions are of the same order of magnitude, hence the nucleation

rate is expected to be similar to our case. However, the geometry in the SFA, i.e.

crossed cylinders with a curvature of the order of millimeters, gives a much larger

characteristic timescale of diffusion. If the size of the capillary bridge is also of

the order of millimeters in the SFA set-up, τD increases from milliseconds in the

CP-AFM experiment to several hours in the SFA geometry.

Clearly it is the specific combination of a microscopic geometry and a weakly

segregated system that leads to the observation of equilibrium capillary forces.

This implies that we should find equilibrium forces for many systems with ultralow

interfacial tensions. As a further test we have therefore carried out measurements

on a biphasic system of which the interfacial tension is reported in literature. We

use a demixed mixture of fish gelatin and dextran in water, for which the interfacial

tension has been reported to be 9 ± 3 µN m−1 [18]. After formation of two

macroscopic phases, one enriched in gelatin, the other in dextran, we fill the liquid

cell of the AFM set-up with the dextran-rich phase and repeat the experiment

as described above with hydrophilic silica surfaces. It is known that the gelatin-
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Figure 5.4: Experimental force curve between hydrophilic surfaces in the dextran-rich

phase of the demixed aqueous mixture of fish gelatin and dextran (overall polymer con-

centration of 9 wt%) (symbols), and curve fits to Willett’s model (drawn line).

enriched phase preferentially wets the silica surface (with θ = 0) [19], we therefore

expect condensation of a gelatin-rich phase between the silica sphere and substrate.

The resulting force curve is shown in Fig.5.4; the result is very similar to what is

observed for the associative polymers. After fitting the data in the same manner

as above, we find an interfacial tension of 15 ± 3 µN m−1, which is in agreement

with the value reported in literature.

For the gelatin-dextran system we observe a repulsion coming in at approx-

imately 25 nm, for the associative polymers this did not show until h = 5 nm

(Fig.5.3a). We must realize that the primary requirement for capillary condensa-

tion to occur, is the presence of a wetting layer. For polymeric systems this entails

adsorption of the polymer, forming various structures at the solid surface. At small

h compression of these surface layers will result in a repulsion, that precedes the

hard-wall repulsion at h = 0. For every experimental systems the details of this

phenomenon are different, as well as the timescales on which these effects are re-

versible. The short-ranged repulsion, found for both experimental systems, is thus

fundamentally linked to the capillary condensation that causes the long-ranged

attraction.

Finally, we have attempted to visualize the capillary bridges, for the associative

polymer system, using confocal microscopy. The same methylated silica particles

used as colloidal probe in the CP-AFM experiments where placed on a glass cover

slip, and subsequently immersed in a 50 mg/L solution of a C18 modified telechelic

polymer, dyed by solubilizing Nile Red in the hydrophobic cores of the flowerlike

micelles. In Fig.5.5 we show an image, in which a capillary bridge (with an increased



5.4 CONCLUSIONS 87

Figure 5.5: Fluorescence micrograph of two methylated silica particles immersed in a

50 mg/L solution of a C18-modified PEO, in which the micellar cores are dyed with Nile

Red.

density of polymer thus increased fluorescence intensity) seems to appear between

two neighboring particles. We can roughly identify the characteristic pendular

shape as sketched in Fig.5.1. Note the clearly observable adsorbed/wetting layer

around the entire circumference of the particles.

5.4 Conclusions

We have measured equilibrium capillary forces between a microscopic spherical

probe and a flat substrate. This was possible due to a combination of a very small

interfacial tension between condensate and the bulk phase and a sufficiently small

geometry. By analysis of the resulting force-separation profiles we have directly

obtained the ultralow interfacial tensions between the weakly segregated phases.

In the next Chapter we will derive a simple thermodynamic argument for the

capillary adhesion force and compare this to calculations using the self-consistent

field theory of Scheutjens and Fleer.
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Chapter 6

Capillary adhesion in the limit of

saturation

We introduce a simple thermodynamic argument for capillary adhesion

forces, for various geometries, in the limit of saturation of the bulk

phase. For one specific geometry, i.e. the sphere-plate geometry such as

found in the Colloidal Probe AFM technique, we evidence the validity

of our model by comparison with experiment and self-consistent field

calculations. With this latter, numerical technique, we also discuss de-

viations from the macroscopic argument both when the system is moved

away from saturation or when the capillary bridge becomes so small that

macroscopic thermodynamics are no longer accurate.

This chapter was published as:

J. Sprakel, N.A.M. Besseling, M.A. Cohen Stuart and F.A.M. Leermakers: Cap-

illary adhesion in the limit of saturation: Thermodynamics, self-consistent field

modeling and experiment, Langmuir 24 (2008), 1308.
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6.1 Introduction

The adhesion between particles mediated by liquid bridges, commonly known as

capillary adhesion, is of significant technological and scientific interest. In some

cases capillary adhesion is undesired, such as when it causes dry powders to ag-

glomerate when stored in humid environments, or when it causes dispersions to

phase separate [1]. In other cases the adhesion forces are specifically employed,

e.g., for micro-manipulation [2] or to create larger structures, such as in granula-

tion of pharmaceutical powder formulations before tabletting [3] and in creating

the appropriate mixture of sand and water for building sand-castles [4]. Capillary

adhesion is even debated to be partly responsible for the strong adhesion of some

types of geckos with walls, enabling them to walk up-side-down [5]. These are just

a few examples of the wide variety of cases where capillary adhesion is important.

Recently, we have shown that it is possible to measure fully equilibrated cap-

illary forces using Colloidal Probe Atomic Force Microscopy (CP-AFM) [6]. The

absence of hysteresis in these experiments, which is a rare feature in this type of

measurements, could be attributed to the combination of having a system with an

ultralow interfacial tension (fast nucleation) and a microscopic geometry (limited

diffusion lengths). Because of the equilibrium nature of the capillary condensation

that leads to these forces, the results can be used to determine thermodynamic

properties such as the interfacial tension between the phase that forms the capil-

lary bridge and the outer bulk phase it coexists with. To do so, one needs to have

a relation that describes the capillary force for that specific geometry as a function

of, e.g., the interfacial tension and the contact angle. In the CP-AFM method a

solid sphere interacts with a planar wall. We will refer to this situation as the

sphere-plate geometry. Several options exists for analyzing the capillary forces in

the sphere-plate geometry. A well known solution is that derived by Orr et al.

[7, 8], who gave a simple expression for the pull-off force, i.e. the adhesion force

at contact of the sphere with the flat wall. The result is often stated to be valid

only for large spheres and far enough from saturation of the outer bulk phase, or

in terms of water-vapor coexistence at not too high relative humidities. Another

solution is that of Willett et al. [9], who predicted the full force-separation curve for

this geometry, again with some significant approximations. In the previous work

[6] we have shown that this latter model agrees well with our experimental data,

and when used to extract the interfacial tension from the force-distance curves re-

turns approximately the same interfacial tension as measured independently with

another technique.

In this Chapter we will introduce a simple thermodynamic approach to find
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the capillary adhesion force at zero separation (i.e. pull-off force), which has its

validity close to saturation (high relative humidity). Although this Chapter will

focus mainly on the sphere-plate geometry, we will extend the argumentation to

the geometry of two spheres. The final results of this approach look similar to what

can be found in literature (e.g. [7, 8]) but differ fundamentally in their physical

background. Subsequently we will compare the theoretical considerations with a

recent experimental result, and show that the experimental data corresponds very

well with the thermodynamic model. Finally, we will present numerical results

from self-consistent field calculations to evidence our reasoning and to discuss what

happens when we move away from saturation and away from the macroscopic limit

where the theoretical argumentation is valid.

6.2 Macroscopic model

In this section we will discuss some thermodynamic arguments that can be used to

predict capillary adhesion forces, based on macroscopic considerations. Hence the

width of the interface is negligible compared to the size of capillary bridge, therefore

the position of the interface is unambiguously defined. This also implies that the

interfacial tension is a constant and that curvature corrections to the interfacial

tension are negligible. Self-consistent field calculations, using a similar technique

as we will use in a following part of this Chapter, have revealed that curvature

corrections to the interfacial tension are very small, both for binary systems of

simple liquids [10] and for ternary polymer/polymer/solvent mixtures [11].

We consider two solid surfaces, one of which is a flat wall and the other a

solid sphere with radius R, separated by a distance h (see Fig.6.1). When these

surfaces are immersed in a fluid mixture having a miscibility gap, a new phase can

be formed between the two surfaces that is thermodynamically stable, even when

the liquid mixture is undersaturated. When the bulk phase is not saturated, the

condensate cannot be stable in absence of these surfaces. This process of formation

of a new and stable phase between two surfaces is called capillary condensation.

Capillary condensation only occurs when the condensing phase preferentially wets

the surfaces, i.e. a contact angle θ measured through the condensed phase of less

than 90◦, and when the separation distance between the surfaces h is small enough.

The phenomenon of capillary condensation is in essence captured by the Kelvin

equation [12]:

µ − µ∗ = vm∆P (6.1)
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h

r2

r1

R

Figure 6.1: Schematic representation of a capillary bridge between a sphere of radius R

and a flat wall, indicated are the principal radii of curvature r1 and r2, chosen at the waist

of the capillary bridge, and the surface separation h. The entire system is rotationally

symmetric around the central axis. The situation shown here is for the case of complete

wetting, i.e. the contact angle θ = 0 and an undersaturated bulk phase.

that relates the relative under- or oversaturation of the outer bulk phase, given

by the difference in the actual chemical potential µ and the chemical potential at

saturation µ∗, to the pressure difference between the bulk phase and the condensate,

∆P . The coefficient vm is the molecular volume. The difference in pressure between

the condensate and the outer bulk phase is given by the Young-Laplace equation

[12]:

∆P = γJ = γ

(

1

r1
+

1

r2

)

(6.2)

where γ is the interfacial tension between the condensate and the bulk phase and

J = (r−1
1 + r−1

2 ) is the mean curvature, defined by the two principal radii of cur-

vature r1 and r2, as indicated in Fig.6.1. With these two basic thermodynamic

equations we can already derive the main premises of capillary condensation. If we

have a condensed liquid in a bulk phase below its saturation point we can see from

the Kelvin equation that this would require a negative Laplace pressure to meet

equilibrium. From the Laplace equation we can deduce that a spherical droplet of

the condensed phase, in which r1 is equal to r2 by definition, cannot have a nega-

tive Laplace pressure. In other words, this situation will not be thermodynamically

stable. For a capillary condensate however, which in a sphere-plate geometry has

a characteristic hyperboloid shape, the two radii of curvature are not equal. By
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definition r1 is always positive and r2 is negative, hence when −1/r2 is larger than

then 1/r1 a net negative curvature results and the condensed phase can be ther-

modynamically stable. Note that, as the Laplace pressure must be homogeneous

within the capillary condensate, the mean curvature J must be constant over the

entire surface of the capillary bridge, r1 and r2 however may vary from point to

point along the interface. In the following we conveniently choose r1 and r2 at

the waist of the capillary bridge, i.e. the point where the bridge has its smallest

diameter, because this is the only position where the interfacial tension acts in the

same direction as the total adhesion force between the two surfaces.

In a grand-canonical ensemble, that is when the total system volume V , the

temperature T and the chemical potentials µ are fixed, the interaction energy

between the two surfaces (Gint) in presence of a capillary condensate is given by:

Gint(h) = γAc(h) − ∆PVc(h) (6.3)

where Ac and Vc are the surface area and the volume of the capillary bridge, respec-

tively. The interaction force F (h) between the surfaces is found by differentiating

with respect to the separation distance h

F (h) =
−∂Gint(h)

∂h
= −γLb(h) + ∆PAb(h) (6.4)

where Lb is the circumference of the capillary bridge at its waist and Ab is the

surface area of the cross-section at this same position. As the capillary bridge is

rotationally symmetric, we find Lb = 2πr1 and Ab = πr1
2. With Eqn.6.2, we can

rewrite Eqn.6.4 as

F = −2πr1γ + πr1
2

(

1

r1
+

1

r2

)

γ (6.5)

For capillary condensation, in full thermodynamic equilibrium, the Laplace pres-

sure is smaller than or equal to zero, hence both terms in the above equation give

a zero or negative contribution to the force; in other words capillary condensation

necessarily leads to attraction between the two surfaces. Although the result in

Eqn.6.5 for the adhesion force seems fairly simple, the difficulty is in predicting the

values of r1 and r2 for a given situation. For certain specific situations this can be

dealt with exactly, as we will we will show below.

One frequently used solution has been given by Orr et al. [7], who derived the

adhesion force between and sphere and a flat wall at contact (h = 0) due to the

presence of a capillary bridge. Their result F (0) = −4πRγ cos θ is found after some

severe approximations [7, 8]. The derivation starts by neglecting the γA term in
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the interaction energy (given in Eqn.6.3), leaving only the ∆PV term. The second

main step in their derivation is a geometric approximation, i.e. −r2 ≪ r1, to

eliminate one of the two radii of curvature from the equations, which only holds

for large enough spheres. Finally, the result as stated above is obtained. However,

if we consider Kelvin’s law (Eqn.6.1), we must realize that this approach is invalid

in the limit of saturation, where the chemical potential of the component that

wets the surfaces µ becomes equal to the chemical potential of that component at

saturation µ∗, as the Laplace pressure should vanish exactly at saturation;

lim
µ→µ∗

∆P = 0 (6.6)

Hence, the assumption that the γA term becomes negligible compared to the

Laplace pressure term is fundamentally incorrect when the bulk phase is close

to saturation. Of course this is recognized by other researchers in the field (see,

e.g., [13]).

Here we will introduce a simple thermodynamic approach to describe the cap-

illary adhesion force at contact in the limit of saturation, which does not contain

severe approximations. Starting from Eqn.6.2 and Eqn.6.6 we easily find that in

the limit of saturation the mean curvature must be zero, hence

lim
µ→µ∗

r1 = −r2 (6.7)

For the capillary bridge, the condition in Eqn.6.7 can be satisfied due to the hy-

perboloid shape of the condensate. In this limit the interaction force between the

surfaces can be simplified to

lim
µ→µ∗

F = −2πr1γ (6.8)

as the Laplace pressure term in Eqn.6.5 must vanish at saturation.

Now let us focus on the adhesion force, which is the force that holds the sphere

and the wall together when they are at contact, i.e. at h = 0. For this condition

in the limit of saturation, a schematic representation is given in Fig.6.2.

For the case of complete wetting in the limit of saturation, the minimal width

of the neck is found at the meridian of the sphere, as this is the only solution for

which r1 equals −r2 while satisfying the boundary condition θ = 0. This means

that in the limit of saturation and for the case of complete wetting r1 = −r2 = R.

For non-zero contact angles, smaller that 90◦, r1 = −r2 = R cos θ, which follows

from simple geometric arguments, as illustrated in Fig.6.2. Combining this result

with Eqn.6.8, we find an exact expression for the capillary adhesion force between

a sphere and a plate in the limit of saturation:
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Figure 6.2: Schematic representation of a capillary bridge between a sphere of radius

R and a flat wall at contact (h = 0) at saturation of the surrounding bulk phase and

with a finite contact angle θ. In this specific conditions the Laplace pressure must be zero

(Eqn.6.6), hence r1 = −r2. From geometric arguments we derive that r1 = R cos θ.

lim
µ→µ∗

F (h = 0) = −2πRγ cos θ sphere-plate (6.9)

Note that our result differs only by a factor of 2 from the well known result of Orr

et al., as discussed above, yet the derivation of our result is significantly different

and contains no severe approximations.

The result in Eqn.6.9 is analogous to the expression used in the Wilhelmy plate

method for measuring interfacial tensions [14]. The underlying physical arguments

are different however; in the Wilhelmy-plate equation the hydrostatic pressure in

the capillary bridge balances the finite Laplace pressure, whereas here we neglect

gravitational effects and have a vanishing Laplace pressure. An assessment of the

effect of gravity on these types of capillary bridges is given in [15]. One way of

estimating the relative importance of gravity is by means of the dimensionless Bond

number, which is the ratio of the body forces (gravity) to the interfacial tension

forces:

Bo =
∆ρgl2

γ
(6.10)

For our problem ∆ρ is the difference in density between the phase forming the

capillary bridge and the surrounding bulk phase, g the gravitational acceleration

and l the characteristic dimension of the capillary bridge. For large Bond numbers
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(≫ 1) the body forces dominate and for small Bond numbers (≪ 1) the surface

tension forces are most important. In the CP-AFM set-up, where the sphere is

typically micrometers large, l will also be of order µm or smaller. For a capillary

bridge of water, in coexistence with its vapor, the Bond number is of order 10−7, and

for the system discussed in the experimental part of this Chapter, which demixes

into two liquid phases with only minor density differences and an ultralow interfacial

tension, we find a Bond number of around 10−4. This means that in both cases

gravitational effects are completely negligible.

For complete wetting (θ = 0) and at saturation, the wetting layers on the flat

surface can grow infinitely large and a macroscopic bulk phase that swallows the

particle will be formed in stead of the mesoscopic capillary bridge between the two

surfaces. For systems with a non-zero contact angle this is not the case, as the

adsorption layers will always have finite, microscopic, dimensions even exactly at

saturation. This implies that defining capillary forces at saturation for the latter

type of wetting is useful, but it has no meaning when we are dealing with complete

wetting. As a consequence, we formulate our results in the limit of saturation such

that the analysis is valid both for complete and partial wetting situations.

In the introduction we mentioned the model of Willett and co-workers [9], who

gave a numerical solution for the capillary force as a function of the separation

distance h in the toroidal approximation, i.e. assuming that the shape of the

capillary bridge matches the void in the center of a torus, and by assuming that

the volume of the liquid bridge remains constant at all h. If we numerically take the

limit to zero separation of the adhesion force predicted with the model of Willett et

al., we find a pull-off force that approximately, within 5%, equals −2πγR, which is

in accordance with Eqn.6.9. We must note that Willett’s model does not account at

all for the relative undersaturation under which the capillary condensation occurs.

The fact that the limit of Willett’s model to h = 0 gives approximately the same

result as Eqn.6.9, seems to indicate that it is valid in the limit of saturation,

although this does not become apparent from the derivation of their model.

We can extend the model for the adhesion force in the limit of saturation towards

the case of two spheres of equal radius R. For this case again Eqns 6.7 and 6.8

must apply. However, the geometry of the capillary bridge is different, see Fig.6.3.

With the triangle drawn between the center of one of the solid spheres, the point

of contact between the spheres and the center of the circle that describes the outer

radius of curvature, we find r1 = −r2 = 2
3R using Pythagoras’ theorem. This is

valid for complete wetting, and for the same reasons as above we can extend this

to partial wetting by correcting with the cosine of the contact angle. The adhesion

force between two spheres of equal size in the limit of saturation is thus given by



6.2 MACROSCOPIC MODEL 97

r2

R

r1

R + r
1

2   r1

Figure 6.3: Schematic representation of a capillary bridge between two spheres of equal

radius R, at contact (h = 0) and at saturation of the surrounding bulk phase. At satura-

tion r1 = −r2, as the Laplace pressure must be zero (Eqn6.6). Using Pythagoras’ theorem

we find that r1 = 2

3
R cos θ.

lim
µ→µ∗

F (h = 0) = −4

3
πRγ cos θ equal spheres (6.11)

Also for this geometry an approximate argument is given in [8], based on the

same reasoning as explained above, i.e. neglecting the γA term in the interaction

energy and with significant geometric approximations. As in the previous case for

the sphere-plate geometry, the result again differs from our Eqn.6.11 by a numerical

constant; in this case the difference is a factor of 2
3 .

We can also derive a more general geometric argument that is not limited to the

two specific cases (sphere-plate and equal spheres) discussed above. For the case

of two spheres, with arbitrary radii R1 and R2 we can construct a geometry, an

example of which is shown in Fig.6.4. The following considerations are only valid

for the case of complete wetting, i.e. a zero contact angle. Again we start with the

fact that r1 = −r2 (Eqn.6.7). Below we express all radii of curvature in terms of

r1.

First we must define the quantity f that represents the fraction of the vertical

line, which connects the two centers of the spheres, belonging to the upper triangle.

Hence, (1 − f) is the fraction of that same vertical line that belongs to the lower

of the two adjacent triangles. The total length of this vertical line is R1 + R2.

Using Pythagoras’ theorem we find the following relations:
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r2

R1

R2

R1
 + r1

R
2  +

 r
1

r1

I = f  (R1 + R2)

II = (1−f )  (R1 + R2)

2 r1
I

II

Figure 6.4: Schematic representation of a capillary bridge between two spheres with

arbitrary radii R1 and R2 respectively, at zero separation (h = 0), at saturation of the

surrounding bulk phase (µ = µ∗) and for complete wetting (θ = 0). Eqn.6.7 dictates that

r1 = −r2, as the Laplace pressure must be zero at saturation (Eqn6.6). The quantity f

is the fraction of the vertical line between the centers of the spheres that is part of the

upper triangle, hence (1-f) is the fraction of the line that is part of the lower adjacent

triangle.

f2(R1 + R2)
2 + (2r1)

2 = (R1 + r1)
2 (6.12)

for the upper triangle, that is linked to the sphere with radius R1, and

(1 − f)2(R1 + R2)
2 + (2r1)

2 = (R2 + r1)
2 (6.13)

for the lower triangle, linked to the sphere with radius R2. Combining these two

equations leads to the following expression for f :

f =
1

2

(

(R1 + r1)
2 − (R2 + r1)

2

(R1 + R2)2
+ 1

)

(6.14)

For the two specific geometries that we have discussed above, we can find numerical

values for f . For the case of two spheres of equal radius f = 1
2 . This value reflects

the symmetry of the system with respect to the plane of contact between the two

spheres. For the sphere-plate geometry, in which R2 → ∞, we find that f = 0. This

latter case of course is the strongest case of asymmetry as one of the surfaces has

lost its curvature. To use these considerations in predicting the capillary adhesion

force, based on Eqn.6.8, we need to express r1 as a function of f , R1 and R2. We
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can do so, e.g., by solving Eqn.6.12. This gives a quadratic equation in terms of

r1, which logically leads to two possible solutions. With the boundary condition

r1 > 0, we find the proper solution:

r1 =
1

3
R1 +

1

3

√

4R2
1 − 3f2(R1 + R2)2 (6.15)

For the geometry of two equal spheres (R1 = R2 = R), for which f = 1
2 , we can

show that Eqn.6.15 returns r1 = 2
3R, which is the same result that we have derived

above, leading to Eqn.6.11. For the sphere-plate geometry (R1 = R, R2 → ∞ and

f = 0) Eqn.6.15 returns r1 = R, which is again exactly the same as the result

leading to Eqn.6.9.

6.3 Measurements with CP-AFM

In the previous Chapter we have shown that it is possible to measure fully equi-

librated forces using the Colloidal Probe AFM technique developed by Ducker et

al. [16], in systems with ultralow interfacial tensions. Here we show one example

of such an experiment, in a system for which an independent experimental result

for the interfacial tension is available.

Silica spheres with a radius of 3 µm (gift from Philips Laboratories, the Nether-

lands) are attached to large narrow-legged AFM contact-mode cantilevers, using

the method of Giesbers [17], and oxidized silicon wafers (WaferNet, Germany)

are used as the flat substrate. The attached probes and substrates are washed

with water and ethanol and cleaned in a plasma-cleaner (Harrick PDC-32G). The

spring constant of the cantilever was determined to be 0.07 ± 0.005 N/m, using

the method of Hutter and Bechhoefer [18].

The force measurements are performed on a Nanoscope 4 instrument equipped

with with a PicoForce scanner (Digital Instruments). The separation between the

surfaces is found by determining zero-distance position, i.e. where the slope of

the cantilever deflection versus vertical piezo movement reaches unity (constant

compliance regime). It is known that there is some uncertainty in this method

[19] that is generally of O(1 nm), which is not significant in the context of the

long-ranged forces discussed here.

High molecular weight fish gelatin (Norland Products Inc.) and dextran (500

kDa, Sigma) are dissolved in 50 mM KCl (to suppress electrostatic interactions

between the silica surfaces and to aid dissolution) at an overall polymer concentra-

tion of 100 g/l. Due to the miscibility gap between these biopolymers, two aqueous

macroscopic phases are formed, one enriched in dextran, the other enriched in
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Figure 6.5: Experimental force-separation curve for capillary condensation in a system

of gelatin and dextran between a silica sphere (R = 3 µm) and a silica substrate, measured

with CP-AFM. Symbols are the experimental data, the solid line is a fit to the model of

Willett et al. [9] and the dotted line is a graphical extrapolation of the attractive force

to h = 0.

gelatin. Microscopy has revealed that, when these 2-phase systems are brought in

contact with silica surfaces, the gelatin rich phase completely wets the surface (θ

≈ 0) [20], hence it is expected that when we bring the dextran-rich phase between

two silica surfaces at close separation, a capillary bridge of the gelatin enriched

phase is formed. We fill the liquid cell of the Atomic Force Miscroscope with the

dextran-rich phase at its binodal composition, meaning that this phase is at its

saturation point; ϕb
gelatin/ϕ∗

gelatin = 1.

The force-distance curve that results from bringing together the two surfaces in

the Atomic Force Microscope is shown in Fig.6.5. We see a long-ranged, weak (≈
100 pN) attractive force due to the capillary condensation of a gelatin-rich phase

between the surfaces. Van der Waals forces can be excluded as a possible origin

of the attraction, as the force measured here decays much slower than what is

predicted for van der Waals attraction between a sphere and a flat surface, i.e.

FvdW ∝ h−2. We should also point out that van der Waals forces are almost never

found in CP-AFM measurements between silica surfaces in aqueous systems, e.g.

[21], although theory predicts that it should be possible to measure them in the

CP-AFM set-up. At small separation distances (< 25 nm) we see steric effects

of the material in the gap and of the material adsorbed onto the silica surfaces

that is compressed, which gives rise to a repulsion that precedes the infinitely large

repulsion at h = 0. In order to properly distinguish the weak attractive force, the

y-axis is scaled to small values of the attractive and repulsive surface force, hence
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the large repulsion close to h = 0 cannot be seen in this plot. For a more elaborate

analysis of this and other experiments on capillary forces in systems with ultralow

interfacial tensions as measured with Atomic Force Microscopy we refer to [6].

Interfacial tensions in the same system of fish gelatin and dextran, have been

determined using a method based on the relaxation of droplets, deformed by shear

flow, to their spherical shape after cessation of the flow. For the same overall

composition, i.e. 10 wt% biopolymers and 90 wt% solvent, an interfacial tension

of 9 ± 3 µN/m has been found [22].

The volume of the capillary bridge formed from the gelatin-rich phase, is ex-

tremely small, i.e. of order picoliters, compared to the total volume of the dextran-

rich phase in the liquid cell (≈ 1 ml). Although the bulk phase will be slightly

depleted from gelatin by the formation of a gelatin-rich capillary bridge, we can

still reasonably assume the bulk phase to be at or very close to its saturation point.

This allows application of Eqn.6.9. For this we need to extrapolate the attractive

force to h = 0. Graphical extrapolation of the attractive force, shown as the dotted

line in Fig.6.5, yields F (h = 0) = - 150 ± 20 pN. Using Eqn.6.9 we find an inter-

facial tension of 8 ± 1 µN/m, which is in excellent agreement with the result from

literature.

If we use the model of Willett et al. [9] to fit our experimental data (solid line

in Fig.6.5), using all points on the force-distance curve up to ≈ 25 nm, in a least

sum of squares procedure, we find an interfacial tension of 14 ± 3 µN/m. Above

we have discussed that, for the same parameters, Willett et al. would extrapolate

to the same value of the adhesion force as our result in Eqn.6.9. Here however

we find a different result, which can be explained by the fact that the shape of

the force-distance curve predicted by Willett et al., which was the best fit of the

model to our data, does not accurately match our experimental data. The stronger

downward curvature of the force-distance curve predicted by this model also leads

to a higher extrapolated adhesion force at contact, than is found by graphically

extrapolating the data, which in turn leads to a higher value for the interfacial

tension.

The deviations in the shape of F (h) as predicted by Willett et al. compared

to our experimental results could possibly be explained by the fact that the model

contains several major approximations. It is, e.g., assumed that the shape of the

capillary bridge is that of the void in a torus, i.e. the toroidal approximation.

Another assumption made by Willett and co-workers is that the volume of the

capillary bridge remains constant over all distances at which it is present. This

is also not always accurate, and becomes less reasonable for systems with low

interfacial tensions, i.e. weakly segregated systems. It is possible that for the
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system discussed above, with an ultralow interfacial tension, the volume of the

liquid bridge is not constant during the whole compression and decompression

cycle.

The capillary forces measured in the CP-AFM set-up, for this and other sys-

tems with ultralow interfacial tensions, do not show signs of hysteresis [6]. The

ultralow interfacial tension strongly reduces the nucleation barrier and with that

exponentially increases the nucleation rate, such that nucleation is no longer a

limiting step. It is the microscopic geometry in this experimental technique, and

the resulting microscopic dimensions of the capillary bridge, which ensures that

transport (i.e. diffusion) of material for formation of the bridge is also much faster

than the experimental time scales. Previously we estimated that the characteristic

diffusion time for the polymers is of the order of tens of milliseconds, whereas the

experiment takes place on the scale of several seconds.

6.4 Self-consistent field calculations

The description of the interface between two immiscible fluids was first given by van

der Waals more than a century ago [23]. The famous hyperbolic tangent shape of

the density profiles of both liquids across the interface can be retrieved in a simple

lattice model with monomeric species [24]. Applications of the same procedure to

more complicated geometries are not frequently found in literature, but are at least

in principle straightforward. A unique feature of this method is that the position

and shape of the interface is a result of the free energy minimization. In this

method we can easily, compared to, e.g., experiments, vary parameters such as the

relative undersaturation, size of the sphere, and contact angle, to investigate the

effect these parameters have on the capillary adhesion force. This makes the self-

consistent field method a useful additional tool, next to the thermodynamic model

in the first section and the experiments in the second section of this Chapter.

We use the discretization scheme of Scheutjens and Fleer as the machinery

of this self-consistent field method. The details of this technique are described

elsewhere [25, 26, 27, 28]. Here we will only address the choices made in the

present model. In the calculations two monomeric species A and B are placed

on a two-gradient cylindrical lattice (see Fig.6.6), each monomer filling exactly

one lattice site of volume b3, with b the discretization length. All sites must be

filled by one of the two species, thus the system is fully incompressible. In the

calculations inhomogeneities are allowed in the radial, z-direction as well as in the

x-direction along the length of the cylinder. The system consists of Mz layers
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x = 1

 2

x = Mx

z = Mz z = 12

R

Figure 6.6: Schematic representation of our SCF geometry; a 2-gradient cylindrical

lattice, allowing inhomogeneities in the x- (with Mx layers) and z-direction (with Mz

layers) only. The flat surfaces is placed at x = Mx and the centre of the sphere (with

radius R) is placed at (x, z) = (1, 1). Note that in the calculations Mz >> R.

in the z-direction and Mx layers in the x-direction. The interactions between all

species and the densities of all species are averaged in one direction. As a result,

all properties of the system are rotationally symmetric around the length axis of

the cylinder. A flat, rigid, surface, constructed of segments of type S, is located on

one side of the system (at x = Mx). On the other side of the system a rigid quasi-

hemisphere is constructed of the same segments S. Due to the discrete nature of

our model and the cylindrical geometry of the lattice, this object does not have a

perfectly smooth hemispherical surfaces, rather it is slightly terraced on the scale of

the discretization length b (see Fig.6.8). In all calculations the other length scales

in the problem, such as the interfacial width ξ, are kept several times larger than

the discretization length, so that any roughness effects can be neglected.

In this self-consistent field theory nearest neighbor interactions are accounted

for using a Flory-Huggins interaction energy, which is parameterized by the Flory-

Huggins interaction parameters χ, that must be defined between all pairs of unlike

segment species in the system. Here χBS is set to 0 in all cases. χAB sets the

strength of the segregation between monomers A and B. The critical interaction

parameter for two monomers A and B χc
AB = 2, below which no demixing occurs.

The distance to the critical point ∆χAB is defined here as χAB − χc
AB, and sets

the interfacial tension γ between the A-rich and the B-rich phase and determines
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Figure 6.7: Contact angle θ (in degrees) versus the adsorption energy χAS as a function

of the distance to the critical point, from one-gradient self-consistent field calculations for

flat interfaces. Dotted lines are drawn to guide the eye.

the width ξ of the interface between the two phases. The wetting behavior is set

with χAS . For negative values of χAS , as chosen here, the A-rich phase wets the

surfaces.

The combination of the adsorption energy set by means of χAS (for χBS = 0)

and the distance to the critical point of the A and B mixture (∆χAB) together

determine the contact angle at the three phase contact line between, e.g., an A-rich

droplet on a solid surface (S segments) in coexistence with a bulk phase rich in B.

For this situation we can write Young’s law [12] as:

cos θ =
γsb − γsa

γab
(6.16)

where indices s represents the solid surface, a the phase forming the droplet en-

riched in component A and b the bulk phase rich in species B. Of course, there

is adsorption of component A at the sb-interface. For partial wetting the thick-

ness of this adsorption layer is always microscopic. All three interfacial tensions in

Eqn.6.16 can be easily obtained in one-gradient self-consistent field calculations for

flat interfaces, which allows calculation of the contact angle for a given combination

of χAB and χAS . In Fig.6.7 we show two examples of results for the contact angle

from these simple SCF calculations in a flat geometry. We see that at small adsorp-

tion energies the contact angle goes towards 90◦, which we can logically expect for

the case where neither of the two components shows a preference for the substrate.

At high enough adsorption energies we see the transition from partial to complete

wetting. We also see that the point where this transition occurs depends strongly

on χAB, as this sets the interfacial tension between the liquid phases γab, which is
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Figure 6.8: Volume fraction profile plots of a capillary bridge at contact between a

sphere (R = 40b) and a flat plate in a binary mixture of monomers with ∆χAB = 0.5, θ =

0 (χAS = −2) and the interfacial width ξ ≈ 4b, for two values of relative undersaturation:

a) ϕb
A/ϕ∗

A = 0.95 and b) ϕb
A/ϕ∗

A = 0.85. The greyscale reflects the local volume fraction of

component A, which forms the minority phase that condenses: black indicates the volume

fraction of component A in the A-rich phase at bulk coexistence and white indicates a

volume fraction of component A equal to zero. The two axes are the radial direction z

and the height x of our cylindrical lattice, both in units b.

one of the three ingredients in Eqn.6.16.

The following calculations are conducted in a grand canonical ensemble, i.e.

the free energy is minimized for a given separation between the surfaces while the

chemical potential of monomers (µ), volume of the system (V ) and the temper-

ature (T ) are fixed. Setting the chemical potential of A is equivalent to setting

the relative undersaturation of this component in the bulk phase. From classical

thermodynamics we know that we can write the quantity µA − µ∗
A, which was in-

troduced in the previous section, as the natural logarithm of the ratio of the actual

activity αb
A of component A in the bulk phase to the activity α∗

A of component

A at saturation; µA − µ∗
A = kBT ln(αb

A/α∗
A). For ideal systems the activity may

be replaced by the volume fraction ϕ. Although the system here is clearly not

ideal, we will present some results as a function of ϕb
A/ϕ∗

A, as this quantity is most

closely related to experimentally accessible properties such as the relative humidity

or undersaturation. Of course at saturation ϕb
A/ϕ∗

A = αA/α∗
A = 1.

From the self-consistent field calculations we obtain the volume fraction profiles

of all components. When we plot, e.g., the volume fraction profiles of component

A in a 2 dimensional contour plot, the capillary bridge is visualized. Examples of

such plots at h = 0 are shown in Fig.6.8 for the case of complete wetting (θ = 0),

and in Figures 6.9a and 6.9c, for the case of a contact angle of 32◦. In both plots
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Figure 6.9: Contour plots of the volume fraction profile (a & c) and grand potential

density ω (b & d) of a capillary bridge between a sphere (R = 40b) and a flat plate (h = 0)

in a binary mixture of monomers with ∆χAB = 0.5, θ = 32 ◦ (χAS = −1), at saturation

ϕb
A/ϕ∗

A = 1 (a & b) and with a relative undersaturation of ϕb
A/ϕ∗

A = 0.9 (c & d). a &

c) coloring reflects the local volume fraction ϕA(x, z) of component A: black indicates

the volume fraction of component A in the A-rich phase at bulk coexistence (ϕA = 0.85)

and white indicates ϕA = 0, b & d) coloring reflects the local grand potential density

ω(x, z), where white equals the grand potential density of the bulk phase and black is the

maximum value of the grand potential density in the system (0.13 kBT/b3 for b) and 0.06

kbT/b3 for d)). The two axes are the radial direction z and the height x of our cylindrical

lattice, both in units b.

we see the effects of a slight change in the relative undersaturation on the shape

and total curvature of the capillary bridge.

The density contour plot in Fig.6.9a shows the situation at saturation, where

we would expect the Laplace pressure to be zero (Eqn.6.6). In the context of these

self-consistent field calculations, the Laplace pressure is found from the difference

between the grand potential density ω inside the capillary bridge and that in the

surrounding bulk phase;

∆P = ωbulk − ωbridge (6.17)
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where the grand potential density is the local grand potential Ω per unit volume,

with

Ω = G −
∑

i

µini (6.18)

in which G is the Helmholtz energy of the system and ni the number of molecules of

component i with chemical potential µi. In an incompressible system, where there

is no bulk pressure term, the grand potential is thus closely linked to interfacial

quantities such as the interfacial tension and the Laplace pressure.

The grand potential density profiles, as obtained from the calculations, are

plotted in a similar way as the volume fraction profiles. These 2D contour plots

of ω(x, z) are shown in Figures 6.9b and 6.9d. In these graphs we can see that at

saturation, ϕb
A/ϕ∗

A = 1, the grand potential density is the same in the center of

the capillary bridge as on the outside in the bulk phase (Fig.6.9b), implying a zero

Laplace pressure, whereas they are clearly different for a slight undersaturation,

ϕb
A/ϕ∗

A = 0.9, as shown in Fig.6.9d. This is consistent with classical thermody-

namics, as expressed in Eqn.6.1.

We also see that the Laplace pressure is homogeneous inside the capillary bridge,

as we should expect, but that the grand potential density ω is locally enhanced at

the interface between the capillary neck and adjacent bulk phases, either liquid or

solid. This is consistent with finite values of the interfacial tension that acts there.

In the context of these SCF calculations the interfacial tension is defined as the

integral of the grand potential density per unit area across the interface.

The interaction curves between the hemisphere and plate are calculated by

systematically varying the separation h between the surfaces, while all other prop-

erties (µA, χAB and χAS) are fixed. The free energy of interaction Gint(h) is

defined as the actual free energy of the system with respect to the reference state

which is the free energy of the system at infinite separation of the surfaces; Gint(h)

= G(h) − G(∞).

A few examples of the results for the free energy of interaction versus surface

separation that we obtain in the two-gradient self-consistent field calculations are

given in Fig.6.10. Firstly we must mention that these results were obtained by

systematically decreasing the surface separation h, but that the results were the

same for the calculations in which the surface separation was increased stepwise.

This indicates that at least for these cases hysteresis is absent, or occurs on length

scales that are small or equal to the discretization length. This is in contradiction

with the results that are often found for capillary forces between two parallel walls,

where hysteresis is generally very pronounced [29]. Further investigations using
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Figure 6.10: Interaction free energy Gint(h) in units kBT versus surface separation h

in units of the discretization length b for various values of the relative undersaturation

ϕb
A/ϕ∗

A of component A in the bulk phase, for a system with ∆χAB = 0.5 and χAS = −2

(θ = 0). The geometry is a hemisphere of radius 40b interacting with a planar wall.

our self-consistent field model, for sake of brevity not shown here, indicate that

hysteresis becomes more pronounced when we increase the size of the sphere (going

towards two parallel plates), when we increase the distance to the critical point, i.e.

increase the interfacial tension and when we increase the relative undersaturation

of component A in the bulk phase. A first indication of this latter conclusion can

already be seen in Fig.6.10 as the small overshoot found at h = 9, for the case of

ϕb
A/ϕ∗

A = 0.9, which seems to be a first indication of the presence of hysteresis,

although very limited for the example shown here. In the plots we also see that

both the total adhesive energy due to the capillary bridge and the range of the

attractive interaction increase significantly with moving the bulk phase closer to

saturation. Note that for the case of complete wetting, i.e. zero contact angle, the

calculations cannot be performed exactly at saturation, because the system will

completely fill with the condensed phase, as was also discussed above.

With existing experimental techniques the interaction energy versus surface

separation cannot be determined directly. With the Surface Force Apparatus, the

Atomic Force Microscope or, e.g., optical trapping techniques the force-separation

curve is, in theory, directly accessible. In reality however, non-equilibrium aspects

often make this impossible. In special cases, as we have recently shown, it is possible

to measure force-distance curves in full equilibrium [6]. A experimental measures

that is relatively easily obtained, and which is often used to quantify the strength

of capillary adhesion, is the so-called pull-off force. This is the force needed to pull

apart the surfaces from contact (h = 0). In our calculations this quantity can be
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Figure 6.11: Effect of relative undersaturation ϕb
A/ϕ∗

A on the capillary adhesion force

at contact −F (h = 0), between a sphere (R = 40b) and a flat plate, for a system with a

zero contact angle (χAS = −2), and distance to the critical point ∆χAB of 0.25 (ξ ≈ 7b)

(a) and 0.5 (ξ ≈ 4b) (b), respectively. The value of −F (h = 0) as predicted with Eqn.6.9

is indicated with the dotted line.

found, by taking the forward derivative of the interaction free energy from h = 0,

as stated in Eqn.6.4.

For the system investigated in Fig.6.10 the pull-off forces versus the relative

undersaturation are shown in Fig.6.11b, and are compared to a system closer to

the critical point, i.e. with a lower interfacial tension, in Fig.6.11a. Let us first

focus on the results close to saturation, i.e. where ϕb
A/ϕ∗

A → 1. In this graph

the limiting pull-off force at saturation is indicated by the dotted line. As stated

before, the calculations cannot be carried out exactly at saturation for a system

with zero contact angle. Extrapolation of the numerical results towards saturation

however clearly show that the pull-off force approaches the value predicted by

the macroscopic thermodynamic model, as described in Eqn.6.9, even for these

calculations on mesoscopic length scales. The ratio between the radius of the

sphere and the interfacial width ξ gives a qualitative idea of the importance of

microscopic effects. In the calculations presented here this ratio is approximately

equal to 10. In the real macroscopic limit, where the width of the interface is

negligible compared to the size of the sphere and the size of the capillary bridge,

this ratio is many time larger. Unfortunately, this domain is difficult to access

in these calculation due to divergence of the computational time when scaling up

the system. But even though we are not yet in the true macroscopic domain with

the calculations, we do find a good correspondence between the model in the first

section of this Chapter and the numerical results.
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Figure 6.12: Laplace pressure ∆P and principal radii of curvature r1 and r2 (a) and the

absolute values for the resulting terms in Eqns 6.4 and 6.5 (b) for the same system and

configuration as in Fig.6.11b (h = 0, R = 40b, ∆χAB = 0.5, χAS = −2) as a function of

the relative undersaturation ϕb
A/ϕ∗

A

When moving away from saturation we see the non-monotonous behavior of the

pull-off force. A maximum in the pull-off force as a function of the undersaturation

is also seen in experiments with Atomic Force Microscopy, e.g. [30]. The precise

effect that relative humidity has on the adhesion force is thought to depend very

specifically on the geometry in which the measurements are carried out, such that

the shape of the resulting curve of pull-off force versus relative humidity can be

used to deduce the geometry of the measurements [31]. Very recently, Jang et al.

have proposed that the non-monotonous behavior, for the sphere-plate geometry

such as found in the Colloid Probe AFM technique, can be fully explained by the

susceptibility of the capillary bridge to volume change upon the separation distance

[32]. In that paper two counteracting structural effects on the volume of the liquid

bridge are separately described: i) the liquid bridges tends to increase its volume

upon increasing the surface separation because of the larger height that the bridge

must span, ii) the liquid bridge tends to decrease its volume upon increasing the

separation by narrowing the size of the waist. The specific combination of these

two effects, which are both argued to depend differently on the relative humidity,

gives the type of behavior also seen here.

We can investigate this non-monotonous behavior of the pull-off force in some

more detail using some thermodynamic quantities obtained from the calculations.

Inspection of the expression for the capillary adhesion force in Eqn.6.4 reveals

two terms; the first, −γLb, corresponding to the interfacial work term in the free

energy and the second, ∆PAb, that is derived from the volume term in Eqn.6.3.



6.4 SELF-CONSISTENT FIELD CALCULATIONS 111

As stated above, we can directly obtain the Laplace pressure from the calculations.

To apply Eqn.6.5, we also need to find the value of r1 as a function of the relative

undersaturation. As above, we take the value of r1 at the waist of the capillary

bridge using the density profiles, as shown, e.g., in Fig.6.8. In these systems, where

the interfacial width is significant compared to the width of the capillary bridge, we

position the interface at the plane where the densities of components A and B have

the steepest decay in the direction normal to the interface. This should, in first

order, gives us a realistic estimate of r1. Combination of the values of ∆P , r1 and

a known interfacial tension γ, also leads us to the value of r2, using Eqn.6.2. We

have carried out these steps for the same system and configuration as considered

in Fig.6.11b. Fig.6.12a shows how the Laplace pressure and the principal radii of

curvature of the capillary bridge change with relative undersaturation. First of all,

we note that the Laplace pressure goes to zero with the logarithm of the quantity

ϕb
A/ϕ∗

A →, as is of course dictated by Kelvin’s law (Eqn.6.1). We also see that r1

and r2 diverge when ϕb
A/ϕ∗

A → goes to unity.

We now combine these quantities to calculate the two terms in our thermo-

dynamic model for capillary adhesion forces, as given in Eqn.6.5. The individual

contribution of both terms to the total adhesion force is shown in Fig.6.12b. It

becomes apparent that the γLb becomes increasingly important when approaching

saturation, which was of course our main argument in the derivation of the macro-

scopic model in the limit of saturation. We also see that the non-monotonous

behavior must be attributed to the Laplace pressure term in the adhesion force.

This also becomes clear when looking at the ingredients of both terms. In the γLb-

term there are only constants and one term r1, which we have seen to monotonously

increase when approaching saturation. In the ∆PAb-term we however have r1 and

r2, that both change with the undersaturation, one becoming more positive, the

other more negative with increasing ϕb
A/ϕ∗

A. This leads to the maximum in the

contribution of the Laplace pressure term, and in turn leads to the maximum in

the total pull-off force versus undersaturation.

In the first section of this Chapter we have discussed the approximate model

by Orr et al. [7, 8], in which the γLb-term is considered negligible compared to

the ∆PAb-term, which is exactly the opposite approach as we have chosen here.

In Fig.6.12b we can see that this approximation is only reasonable for relatively

low undersaturations, although extrapolation of the curves seems to indicate that

at very low undersaturations (ϕb
A/ϕ∗

A < 0.2) both terms again become of the same

order of magnitude. We also see that the second assumption by Orr and co-workers,

i.e. −r2 ≪ r1, is not accurate over the entire range of undersaturations, for this

mesoscopic model. This assumption can be expected to be more reasonable for
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Figure 6.13: Effect of contact angle θ on the capillary adhesion force at contact F (h = 0)

(in units kBTb−1) normalized with the sphere radius R in units b, for a system with a

distance to the critical point ∆χAB = 0.5, at saturation (ϕb
A/ϕ∗

A = 1). Symbols are

numerical results from self-consistent field calculations. Drawn line is the prediction from

our macroscopic model, expressed in Eqn.6.9.

macroscopic systems. The values found for the pull-off force between ϕb
A/ϕ∗

A =

0.8 and 0.4 , where the first assumption discussed above is reasonable, are of the

same order of magnitude as what is predicted by Orr et al. (i.e. two times the

value indicated by the dotted line). The deviations between our SCF result and

the approximate predicted are smaller for the system in Fig.6.11b as this system

is closer to the macroscopic limit.

According to our macroscopic model, summation of the two terms in Eqn.6.5,

should give the total adhesion force. However if we add the values found in

Fig.6.12b, we do not return to the exact values found by direct differentiation

of the free energy to h, as given in Fig.6.11b. We must also note that the discrep-

ancy is small for large values of ϕb
A/ϕ∗

A but increases in magnitude when moving

away from saturation. This seems to indicate that the macroscopic considerations

work well close to saturation, but that other effects come into play farther away

from ϕb
A/ϕ∗

A = 1. We attribute this to the fact that the capillary bridge, beyond

some point, becomes of the same dimensions as the width of the interface. For this

specific case ξ = 4b, and in Fig.6.12a we can see that the diameter of the capillary

bridge r1 becomes of this order of magnitude when decreasing ϕb
A/ϕ∗

A to well below

1. In these cases an additional length scale ξ becomes important and we can expect

that the macroscopic considerations are no longer fully accurate.

Finally we want to show some results of calculations exactly at saturation, for

systems with non-zero contact angles. These calculations are technically challeng-
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ing as the systems have the tendency to fill completely with the condensed phase

at saturation, as a result of the reflecting boundary conditions. In Fig.6.13 we

find the comparison between the prediction based on macroscopic thermodynam-

ics (Eqn.6.9) and the results from our mesoscopic self-consistent field calculations.

We see that the numerical results are close to the macroscopic prediction and that

normalization of the adhesion force with the radius of the sphere R has almost

collapsed the numerical data onto one curve. This latter observation indicates that

the linear proportionality of the pull-off force with the sphere radius as predicted,

is retrieved in the SCF results. Although the numerically found pull-off forces are

close to the theoretical prediction, there are deviations, that become more pro-

nounced for larger contact angles. We believe that this must again be attributed

to the mesoscopic dimensions of the system in the calculations, such that we are

not dealing with a truly macroscopic system. The fact that the deviations de-

crease for small contact angles is due to the fact that the width of the capillary

bridge increases with decreasing contact angle, and hence we are approaching the

macroscopic limit for these systems with small contact angles.

6.5 Conclusions

In this Chapter we have introduced a simple and intuitive model for capillary

adhesion in the limit of saturation, that we have worked out in more detail for one

specific and experimentally relevant geometry, i.e. the case of a sphere interacting

with a planar wall. We have shown one example of a measurement of equilibrium

capillary forces using this technique, to further evidence the reasoning deployed

in the thermodynamic model. In the last part of this Chapter we have applied a

numerical self-consistent field method to study capillary condensation and capillary

forces, both in the limit of the validity of our macroscopic model and in cases where

this model can be expected to loose it’s validity. In some cases deviations of the

numerical results with the thermodynamic consideration could be attributed to

finite size effects of the system under consideration.
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Chapter 7

Dynamics of polymer bridge

formation and disruption

In this Chapter we show that the formation and subsequent disruption

of polymer bridges between two solid surfaces is characterized by slow

relaxation times, due to the slowing-down of polymer dynamics near

a surface. For colloidal particles, that are in constant (Brownian) mo-

tion, kinetic aspects should not be overlooked. To understand these

effects, we develop a mean-field model of polymer bridging and bridge

disruption that agrees quantitatively with our experiments.

This chapter was published as:

J. Sprakel, E. Bartscherer, G. Hoffmann, M.A. Cohen Stuart and J. van der Gucht:

Dynamics of polymer bridge formation and disruption, Phys. Rev. E 78 (2008),

040802.
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Figure 7.1: Impression of of the colloidal probe AFM set-up, with adsorbed layers of

flowerlike micelles forming polymer bridges between the solid surfaces.

7.1 Introduction

Polymers can induce attractive interactions between two surfaces [1]. Best known

examples are perhaps the depletion attraction for non-adsorbing polymers [2] and

bridging attraction for adsorbing polymers [3, 4]. Theories of bridging interactions

often focus on thermodynamic equilibrium [1, 5]. However, the dynamics of poly-

mers near surfaces is often very slow [6], so that an equilibrium state may not

be reached in practical cases. This can have great consequence for the interac-

tions between colloidal particles that are in constant motion with respect to each

other. To investigate such effects, we study the kinetics of bridge formation and

disruption with colloidal probe atomic force microscopy. A simple kinetic model

is developed that quantitatively describes the data and elucidates the molecular

processes underlying the observed forces.

7.2 Methods

With the Colloidal Probe AFM technique [7], the interaction force F between a

spherical particle and a planar solid surface is measured as a function of the sep-

aration distance h (Figure 7.1). An oxidized silicon wafer is employed as the flat

substrate and a 3 µm radius silica sphere as the colloidal probe, which is glued to

a standard contact mode cantilever with a nominal spring constant of 0.06 N/m.

The measurements are carried out on the ForceRobot (JPK-Instruments), which is

an automated AFM set-up with built-in active vibration reduction. Actual spring

constants of the cantilevers are measured with the thermal noise method [8]. Mea-

surements consist of three stages: I) compression (approach), II) a contact (surface)
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Figure 7.2: Typical force-separation curve for a full scan, showing the approach (◦)

and retract (•) trace, with v = 500 nm/s, ts = 1s for 0.1 g/L C16-20k. Dotted line shows

an averaged approach trace for measurements in pure solvent (10−2M NaCl).

delay of ts seconds (ranging between 0 and 10s), III) decompression (retract). The

velocity of (de)compression is set to v = ±500 nm/s, unless stated otherwise. For

ts > 0, step II is activated with a repulsive trigger force on approach of 500 pN.

We study the bridging forces between adsorbed layers of telechelic associative

polymers. The equilibrium bridging interactions between such layers have been

predicted theoretically quite extensively, e.g., using the Milner-Witten-Cates self-

consistent field formalism [5]. These telechelic polymers consist of a hydrophilic

polymer (polyethylene oxide, PEO), modified on both ends with an alkyl tail. In

dilute aqueous solutions they form micelles, that are often called flowerlike micelles,

due to the petal-like structure of the looped corona chains. When these micelles are

brought close enough, polymeric bridges between them will be formed (see Chapter

4). We use the following nomenclature for the polymers: Cm-pk, where m is the

number of carbon atoms in the alkyl tails and p is the molecular weight (in kg/mol)

of the water-soluble backbone, e.g., C14-20k is a PEO chain of 20 kg/mol modified

with tetradecyl tails at both ends. The preparation of these polymers has been

described elsewhere [9]. Prior to the measurements, the surfaces are submerged in

a 0.1 g/L polymer solution in 10−2 M NaCl, and left to equilibrate for at least 1h.

During equilibration the PEO corona of the micelles adsorbs onto the surfaces [10].

For these polymeric surfactants, the large headgroup (PEO part) leads to a large

preference for spherically symmetric micelles. We can thus expect this shape to be

retained at the surface [11].
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Figure 7.3: Retract traces with varying surface delay times ts, as indicated in the plots,

recorded at v = 500nm/s for C16-20k (a) and C18-20k (b).

7.3 Results and Discussion

All measured F (h) curves share two common features (Fig.7.2): i) on approach

a purely repulsive force is found and ii) on retract an attractive well appears due

to the formation of polymer bridges between the surface layers. The repulsive

interaction on approach is partly electrostatic and partly steric in origin. In pure

solvent, only the electrostatic component is observed (solid curve in Fig.7.2), for

which the Debye length κ−1 = 3 nm. The additional repulsion in the polymer

solutions is due to compression of the adsorbed polymers. It starts around 20

nm, corresponding to twice the hydrodynamic radius of the flowerlike micelles

Rh = 9.9± 0.5 nm, as found from light scattering. This indicates that the micellar

structure is indeed largely preserved at the surface.

The hysteresis observed between approach and retract in Fig.7.2 already shows

that the bridging process occurs on relatively long timescales. This is further

confirmed when we change the time ts that the surfaces are kept in contact (Fig.7.3).

We see that at the shortest surface delay time of ts = 0, corresponding to an

effective contact time of approximately 40 milliseconds, there is already a significant

bridging attraction. When we increase the contact time, up to 10 s, the bridging

force continues to increase. Longer delay times are not accessible due to physical

limitations of the technique.

In Fig.7.4, we plot the maximum attractive force Fm as a function of the surface

delay time ts. Assuming that the force, at a given surface separation h, is propor-

tional to the number of bridges nb, which we will justify below, Fig.7.4 reflects the

kinetics of bridge formation.
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Figure 7.4: Absolute values of the maximum attractive force Fm versus surface delay

times ts, recorded at v = 500nm/s for a) 20 kg/mol PEO end-capped with alkyl-tails of

increasing length (C14, C16, C18) b) tetradecyl end-capped PEO of varying molar weight

(4, 10 and 20 kg/mol). Drawn lines are fits to Eqn.7.1. Insets shows the corresponding

values of τa as a function of the number of carbon atoms in the alkyl tails (a) and polymer

chain length (b).

Fig.7.4 does not show a single exponential relaxation, hence the bridge forma-

tion is not a first-order process with a single relaxation time. The data can be

fitted with a stretched exponential relaxation (Fig.7.4):

Fm = Fm,∞

(

1 − exp

[

−
(

ts
τa

)β
])

(7.1)

where τa is the average bridging timescale, Fm,∞ is the final plateau in Fm and β

the stretch exponent, here found to be approximately 1/2. The values of τa found

by fitting the data to Eqn.7.1 are shown in the insert in Fig.7.4 and are between

1 and 50 s. This is several decades larger than the bulk relaxation time for these

polymers, which is on the order of a millisecond [12]).

The reason for this slow bridge formation is that the PEO chains are partly

adsorbed onto the silica surface. In order to form a bridge, segments must desorb,

which is a slow process. Moreover, depending on the position of a chain with

respect to the surface, the number of adsorbed segments, and consequently also

the desorption rate, can vary. This would lead to a distribution of relaxation

times, which explains the stretched exponential form (Eqn.7.1).

The typical association timescale increases with polymer length (insert in Fig.7.4b).

For polymer desorption, the energy barrier for desorption scales with the number

of binding sites, which increases approximately as the radius of gyration of the
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polymer. We also find that τa decreases with the length of the alkyl tails (insert

Fig.7.4a). We attribute this to the fact that longer alkyl tails give a stronger driv-

ing force for micelle formation [13], hence the micelles will be less deformed at

the surface. This leads to a reduction of the number of segments per chains that

are adsorbed onto the surface. As a result desorption will be faster for adsorbed

layers formed from telechelic polymers with longer alkyl tails. Note that in bulk

the relaxation time is an increasing function of alkyl length [12].

The total number of bridges formed at very long contact times, represented by

Fm,∞, is found to decrease with polymer length and to increase with alkyl tail

length. This is thought to be caused by changes in the surface coverage. Larger

alkyl tails and shorter polymer backbones, give larger micellar aggregation numbers

[13], leading to increasing number of chains adsorbed per unit area.

Upon increasing the separation between the surfaces (retract phase) the bridges

that are present will be disrupted. To describe this process, we assume that the

dissociation of bridges is a first-order reaction and that pulling on the chains en-

hances dissociation. Assuming that bridge disruption is an activated process, the

dissociation rate is expected to increase exponentially with the pulling force fb:

∂nb

∂t
= −kdnb = −kd,0nb exp

(

fbδ

kBT

)

(7.2)

where kd,0 is the rate constant when there is no force on the polymers and δ is the

length over which the force acts (here the length of the alkyl tails). For the force

per bridge we use a Gaussian spring approach: fb = 3vtkBT/NlK
2, where h = vt

and N is the number of statistical segments in the chain with Kuhn-length lK . The

total force F = fbnb can then be calculated as a function of the distance h:

F =
3kBThnb,0

NlK
2 exp

[

kd,0NlK
2

3vδ

(

1 − exp

(

3δh

NlK
2

))]

(7.3)

where nb,0 is the number of bridges at the beginning of the retraction. This result

implies that the curves shown in Fig.7.3 all have the same shape and differ only in

nb,0. Upon rescaling the curves with Fm, which is directly proportional to nb,0, we

can collapse all curves measured at a given v for various ts, as shown in the insert

in Fig.7.5b for one data set.

To compare Eqn.7.3 with our experiments, we enter realistic parameters in our

model for the Kuhn-length of PEO (lK = 0.9 nm [14]), the number of statistical

segments (N = 225 for PEO20k) and the alkyl contour length (δ ≈ 2 nm, for

C16H33). To describe our data, we have now 2 remaining parameters, i.e. nb,0 and

kd,0. In Fig.7.5a we see that the model describes the experimental data very well.
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Figure 7.5: a) Comparison between the model (drawn line, Eqn.7.3) and experimental

data (◦, as in Fig.7.3a for ts = 1 s). Fixed model parameters: N = 225, lK = 0.9 nm,

δ = 2 nm and v = 500 nm/s. Fitted parameters: nB = 1600 and kd,0 = 20.1 s−1. Dotted

line shows the corresponding change in the number of bridges nb/nb,0. b) Same data as

in Fig.7.3a, with the force F scaled to the maximum attractive force Fm, collapsing F (h)

for various ts onto a single curve.

For this example, i.e. a C16-20k polymer and ts = 1 s, we find nb,0 = 1600 and

kd,0 = 20s−1.

During the retract stage the force per bridge increases, while the number of

bridges decreases (dotted line in Fig.7.5a), giving rise to the minimum in the force.

Note that in the measurements, a short-ranged repulsive force is present, as dis-

cussed above, which is not accounted for in the model. This explains the deviations

between experiment and model for short distances. We also assumed that all chains

are elongated by the same amount; this is an approximation since the bead surface

is curved.

We can estimate the total number of polymer chains between the interacting

surfaces by assuming that bridges can only form in the region where the separation

is < 25 nm (i.e. < 5Rg). The surface area of a spherical cap, with base radius 3µm

and height 25 nm, is approximately 0.5 µm2. From optical reflectometry measure-

ments, we find an adsorbed amount of 1.8 mg/m2. Combining these numbers leads

to a estimated total of 104 polymer chains in the area of interaction. For a contact

time of ts = 1 s, we found that 1600 bridges had been formed, which is roughly 1
5

of the total number of polymer chains.

From Fig.7.3 it can be seen that the range of the bridging attraction is larger

for C18-modified polymers than for those with C16 tails. The reason for this is

that longer alkyl tails dissociate more slowly from the micelles than do short ones
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Figure 7.6: a) Effect of retract velocity v on the force-distance profile, for C16-20k

and ts = 0, b) shows the corresponding prediction of our model (Eqn.7.3), with the same

parameters as in Fig.7.5.

(kd,0 is smaller and δ is larger), so that the chains can be stretched further before

the bridges are disrupted. Similarly, the range is longer for polymers with a longer

PEO spacer, because longer chains can be stretched further (data not shown).

The characteristic disruption timescale for the polymer in the example (C16-

20k, Fig.7.5), τd,0 = 1/kd,0 ≈ 0.05 s, whereas the timescale for association τa

for the same polymer is 11.5 s. In bulk solution, the relaxation times for these

processes are around 1 ms, again showing the large retardation of the polymers

near solid surfaces. There clearly is an asymmetry between the timescales for bridge

formation and disruption. Two reasons for this asymmetry come to mind. First

of all, formation of the bridges takes place in a compressed configuration, leading

to a high density of polymers in the gap between the surfaces that slows down the

chain dynamics. Secondly, it is not hard to imagine that a loop-configuration of the

chain allows more segments to adsorb onto the surfaces than a bridge conformation,

that in principle is directed normal to the surfaces. This also causes the kinetics

of bridge disruption to be faster than that of bridge formation.

In colloidal systems, the velocity with which particles move is governed by their

size and the viscosity of the surrounding medium. The relative velocity between two

particles can therefore vary over many decades. We see that the separation velocity

has a strong influence on the shape of the bridging attraction force (Fig.7.6a).

When the separation velocity is increased, the position of the maximum attraction

shifts to larger separations and the overall range of the bridging force increases.

Both features are also predicted by our model (Eqn.7.3), as shown in Fig.7.6b.
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7.4 Conclusion

We conclude that the dynamics of polymer bridging can be understood with first-

order association/dissociation reactions. Bridge formation is governed by a dis-

tribution of rate constants, while the disruption rate is increased by pulling the

surfaces apart. The slow time constants for these processes indicate that these

kinetic considerations are important for understanding the effect of polymer bridg-

ing on the interactions between ’real’ colloidal particles. Modeling the dynamics

of these systems with a simple argument based on activated sticker extraction is a

very versatile strategy. In Chapter 10, we have shown that it can also predict the

non-linear shear rheology of macroscopic networks of the same polymers.
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Chapter 8

Hierarchical adsorption of

associative polymers

In this Chapter we discuss the adsorption of flowerlike micelles formed

from network-forming associative polymers at an air-water interface.

We propose an interfacial mechanism that involves three distinct steps;

i) adsorption of the micellar coronas at the interface, ii) unfolding of the

micelles to anchor the hydrophobic tails at the interface and iii) forma-

tion of a secondary adsorption layer by bridging between the primary

layer and micelles in the bulk. While the first, transport-limited, pro-

cess is relatively fast, the latter processes are surprisingly slow; it may

take up to 106s for the adsorption to complete.

This chapter is published as:

J. Sprakel: Hierarchical adsorption of network-forming associative polymers, Lang-

muir in press 2009.
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8.1 Introduction

Hierarchical self-assembly is a versatile route to create large structures from small

building blocks. Nature has developed numerous routes to exploit soft and tunable

interactions for the creation of superstructures. One might think of the subsequent

assembly of actin and crosslinker proteins into filaments, bundles and networks [1]

and the assembly of caseins into supermicelles [2]. Through the development of

block copolymers of widely varying architecture, these routes are now also actively

pursued with synthetic building blocks.

A well-studied class of polymers that shows such hierarchical self-assembly is

that of telechelic associative polymers. These macromolecules, consisting of a

water-soluble middle block (the spacer) and associating, hydrophobic stickers at

both chain ends, spontaneously assemble into so-called flowerlike micelles, where

the spacer loops in the micellar corona. These micelles subsequently connect

through intermicellar bridges, leading to the formation of sample-spanning tran-

sient networks [3]. The formation of flowerlike micelles occurs only above a critical

micelle concentration (see Chapter 3). A similar threshold concentration can be

identified for the formation of bridges between the micelles that ultimately drives

the network formation (Chapter 4).

In this Chapter we demonstrate that an air-water interface can trigger a sec-

ondary assembly process, while there are only isolated micelles in the bulk solution.

By means of drop shape tensiometry we study the kinetics of adsorption of flower-

like micelles, their unfolding at the air-water interface and the subsequent formation

of bridges between the adsorbed layer and micelles in the bulk. Interestingly, the

latter two processes are very slow.

Networks formed from telechelic associative polymers are widely used as rhe-

ology modifiers in, e.g., paints and cosmetics. In many of these applications, the

polymer networks are filled with colloidal particles (e.g., the latex and pigment

particles in a paint). For this reason, many experimental studies have set out to

understand the interactions between associative polymers and surfaces [4], and the

effects of these polymers on the interactions between colloids (see [5] and Chapters

5 and 7). The results presented in this Chapter, especially the extremely long times

needed to reach a full adsorption equilibrium, shed new light on the observations

reported so far.
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8.2 Experimental

The polymers under study are polyethylene oxide (PEO) chains of 4, 10 and 20

kg/mol (Fluka), to which tetradecyl (C14H29) tails have been covalently attached

by means of a urethane linker (see Chapter 10 for the synthesis procedure). Samples

are coded based on the molecular weight of the PEO spacer, e.g., C1420k corre-

sponds to the tetradecyl-modified PEO of 20 kg/mol. Solutions of these polymers

are made in MilliQ water. DLS measurements confirm the presence of micelles in

the solutions used here, with hydrodynamic radii of approximately 7-10 nm.

Adsorption is studied by means of tensiometry on an automated drop tensiome-

ter (ITConcept), at 25 ◦C. In this technique the shape of an air bubble, suspended

at the tip of a flat-ended needle in the solution of interest, is analyzed to yield the

interfacial tension. The droplet shape is a balance between buoyancy and interfa-

cial tension forces so that the interfacial tension can be extracted when the density

difference between the two phases is known [6]. The optical cells, syringes and

needles are thoroughly cleaned in a plasma cleaner (Harrick) to remove any traces

of unwanted surface active compounds. The optical cell was covered with parafilm

after insertion of the needle, to prevent evaporation during the measurements.

The main advantage of this technique for the present study is that it has a stable

signal, i.e. no baseline drift, over long times, seen from the constant interfacial ten-

sion of pure water over more than 2·105 s (approximately 2.5 days) (Fig.8.1a). This

allows us to perform long adsorption measurements, revealing very slow adsorption

processes.

8.3 Results and Discussion

In Fig.8.1a we see that the adsorption of the telechelic associative polymers occurs

in 3 distinct steps, indicating three consecutive processes that lead to the interfacial

tension decrease. We can describe the decrease of the interfacial tension in time

with a triple exponential function:

γ(t) = γ0 −
3
∑

i=1

∆Πi

(

1 − exp

[

− t

τi

])

(8.1)

where γ0 is the interfacial tension of the pure air-water interface (72 mN/m), τi is

the characteristic relaxation time of step i =1, 2 or 3, and ∆Πi the corresponding

surface pressure increase. These parameters are also illustrated in Fig.8.1b. The

surface pressure is defined as Π = γ0 − γ. In Fig.8.1b we see that such a triple



130 HIERARCHICAL ADSORPTION OF ASSOCIATIVE POLYMERS 8.3

Figure 8.1: a) Interfacial tension γ versus time t of a newly formed interface between air

and i) water, ii) an aqueous solution of PEO (20 kg/mol at 10 mg/mL) and iii) aqueous

solutions of tetradecyl end-capped PEO of varying molecular weight (20, 10 and 4 kg/mol

at 20 mg/ml). b) Two data sets from a) fitted (drawn lines) with a single exponential for

unmodified PEO of 20 kg/mol, and a triple exponential (Eqn.8.1) for telechelic C1420k.

Illustrated are the three relaxation times τ1, τ2 and τ3 and corresponding surface pressure

differences ∆Π1, ∆Π2 and ∆Π3 for the three stages of telechelic polymer adsorption.

exponential function describes the measured decrease in interfacial tension very

well.

The adsorption of unmodified PEO homopolymer (see Fig.8.1a) shows a single

decay and reaches a steady plateau relatively fast. The adsorption of polymeric

surfactants with a single associating group, which are able to form micelles but

can not form bridges, shows 2 distinct stages before reaching a steady plateau, as

for example discussed in [7]. The 3rd adsorption stage that we observe for the

telechelic polymers, is a new feature likely to be related to the the bridge-forming

nature of these bifunctional polymers. We will now take a closer look at these three

processes separately.

8.3.1 1st stage

Starting from a pristine interface (Fig.8.2a), material needs to be transported to-

wards and along the interface, in order to accomplish an fully covered interface. In

these experiments, with no active flow, transport is necessarily diffusive. Mohrbach

[8] describes two possibilities for the initial kinetics of diffusive adsorption from a

micellar solution. When the transport kinetics in the bulk towards the interface

is rate limiting, the adsorbed amount Γ increases with t1/2, this case is known

as diffusion-limited adsorption (DLA). In the first stage of adsorption, where the
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Figure 8.2: Illustration of the three stages of telechelic polymer adsorption in time.

Starting from a clean, newly formed interface in a solution of flowerlike micelles (a),

micelles diffuse towards the surface and adsorb with their corona chains (step 1, b). Once

the micelles have attached to the surface, they unfold to expose the alkyl tails in the

micellar core to the air-water interface (step 2, c). Finally, the telechelic polymers in the

adsorbed layer form bridges with micelles in the bulk phase, giving rise to a secondary

adsorbed layer (step 3, d).

adsorbed layer is still dilute, we can expect the surface pressure to increase propor-

tional to Γ. For DLA the decrease of the surface tension is thus expected to follow

γ(t) ∝ t−1/2 [9].

When, on the other hand, the kinetics at and near the interface are rate deter-

mining, the adsorbed amount, and thus the surface pressure, approaches its limiting

value exponentially. This is known as kinetically-limited adsorption (KLA). As is

shown in Fig.8.3a, we find a clear exponential decay of the interfacial tension in

time, indicative of KLA.

For both transport-limited regimes (DLA and KLA) of micellar adsorption, it

is predicted that the characteristic relaxation time τ1 scales with polymer bulk

concentration as τ1 ∝ c−2 [8]. In Fig.8.3a, we clearly see the effect of polymer

concentration on the kinetics of the initial adsorption mechanism. Indeed, the
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Figure 8.3: a) Kinetics of the first adsorption stage as a function of the polymer bulk

concentration c (given in mg/L) for aqueous solutions of a C144k telechelic associative

polymer. b) Corresponding relaxation time τ1 of the first adsorption stage, determined

by fitting γ(t) to Eqn.8.1. Drawn line corresponds to τ1 ∝ c−2, as expected for kinetically-

limited adsorption (KLA).

characteristic relaxation time τ1 scales with c−2 (Fig.8.3b).

The surface pressure reached during this first stage is around 12 mN/m (Fig.8.4),

corresponding to the surface pressure of a fully covered PEO layer at the air-water

interface (see Fig.8.1). This indicates that during this first stage, micelles adsorb

onto the interface with their PEO coronas (Fig.8.2b) until the interface is fully

saturated with EO segments. The limiting surface pressure reached after the first

stage does not depend on the polymer bulk concentration as polymers generally

have a very high affinity adsorption isotherm. Moreover, the surface pressure dur-

ing this step is independent of the chain length of the PEO spacer in the telechelic

polymers. This corresponds to what is found for homopolymer adsorption, and is

explained as the formation of a ’semi-dilute’ surface layer whose compressibility no

longer depends on the chain length of the original polymers but only on the mesh

(’blob’) size of the network of interpenetrating coils [10]. Apparently, for this first

stage of the adsorption process, it does not matter that the PEO chain is part of a

micelle, as we find the same behavior as is found for PEO homopolymer adsorption.

8.3.2 2nd stage

The second adsorption stage, also found for polymeric surfactants with only one

associating end-block [7], can be attributed to reorganizations of the adsorption

layer. The micelles ’unfold’ in order to expose their alkyl tails to the air (Fig.8.2c),

allowing more material to be adsorbed onto the interface and further decreasing
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Figure 8.4: Surface pressure versus molecular weight of the telechelic polymer (all for

20 mg/L), after the first (∆Π1, •), the second (∆Π1 + ∆Π2, �) and the third and final

(∆Π1 + ∆Π2 + ∆Π3, N) adsorption stage. Drawn lines are power-law fits and the dotted

horizontal line is to guide the eye.

the interfacial tension.

The ’plateau’ value of the surface pressure after the second step, i.e. ∆Π1+∆Π2,

decreases with the chain length Mw of the polymers (Fig.8.4). The adsorption

into a brush-like layer is, in first order, a balance between the adsorption energy,

determined by the alkyl tails, and the stretching energy in the spacers. Since the

alkyl tails for these polymers are the same, we can assume that the total stretching

energy per chain is also the same for all these polymers. The surface pressure

can be estimated by counting the number of stretching blobs, i.e. chain units for

which the stretching energy is 1 kBT , per unit area. As the stretching energy per

chain is the same, the differences in surface pressure between the various polymers

are proportional to the differences in the number of adsorbed chains per unit area

σ ∝ Π. In the brush model of Milner, Witten and Cates, the stretching energy per

chain scales as Fs ∝ Mwσ2/3 [11]. As Fs is the same for the different polymers, we

can deduce that σ ∝ Π ∝ M
−3/2
w . This argument is only valid for end-adsorbed

chains, i.e. when the alkyl tails adsorb and the PEO spacer does not. In the

opposite case, where only the PEO spacers adsorb and the alkyl tails do not, the

surface pressure does not depend on the molecular weight of the polymer, as we have

seen above. Here we find (Fig.8.4) that (∆Π1 + ∆Π2) ∝ M−0.5
w . Apparently, the

adsorbed layer after the second adsorption step is a mix between adsorbed alkyl tails

and remaining PEO segments. It is possible that, rather than a homogeneous brush

layer as sketched in Fig.8.2c, a inhomogeneous layer of hemimicelles is formed, due

to the highly asymmetric shape of the polymers. A similar scaling of the surface
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Figure 8.5: Molar mass dependence of the characteristic time scales τ2 (a) and τ3 (b) for

the second and third adsorption stage, respectively, obtained by fitting the data shown in

Fig.8.1a with Eqn.8.1. Drawn line in a) illustrates τ2 ∝ exp(Mw), dotted line in b) is to

guide the eye.

pressure of a brush-like layer of telechelics with the length of the spacer is reported

in [4].

This stage is also characterized by an exponentially decaying interfacial tension,

with which a relaxation time τ2 can be associated. In Fig.8.5a we see that this

relaxation time, between 600 and 2000 seconds, increases exponentially with the

length of the PEO spacer.

A likely explanation for this exponential relation is that the dynamics are gov-

erned by an energy barrier (EA) between the initial micellar configuration (Fig.

8.2b) after the first adsorption step and the end-adsorbed configuration (Fig.8.2c)

towards which the layer is transitioning. For a process with first-order kinetics, the

typical timescale follows τ2 ∝ exp(EA/kBT ). For the exposure of the alkyl tails

to the air-water interface, the micellar corona that is in between the core and the

interface, needs to be removed from the interface. An estimation for the free energy

barrier associated with this process is ΠA, with A the area of the part of the layer

that needs to be removed. The pressure Π in the layer of adsorbed corona chains

is independent of chain length, as shown above. The area of the PEO layer that

needs to be removed for a micellar core to reach the interface is approximately the

cross section of the micelle, which is linear in Mw (Chapter 2). This reasoning thus

predicts τ2 ∝ exp(Mw), corresponding to our observations in Fig.8.5.
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8.3.3 3rd stage

The third, and final, stage of the adsorption process is not found for either ho-

mopolymers or monofunctional polymeric surfactants. This suggests that this step

is related to the fact that these telechelic polymers can form bridges between the

adsorbed brush-like layer and micelles in the bulk. The further decrease of the inter-

facial tension during this stage indicates that additional material is collected at the

interfacial layer. We propose that this step reflects the creation of bridges between

the primary layer and free micelles in the bulk solution, leading to a secondary

layer of weakly-bound micelles below the primary adsorbed layer (Fig.8.2d).

In bulk, bridging between micelles assembled from telechelic polymers is purely

driven by entropy. For an isolated micelle, both chain ends must reside in the same

micellar core and the flexible linker is forced to form a loop. When two of these

micelles are close enough, the chains can now choose to form either a loop or a

bridge, for which both chain ends reside in different cores. For symmetry reasons,

there is no free energy difference between the bridge and the loop configuration.

This gives an entropic attraction between micelles of ln 2 = 0.7 kBT per bridge

and a total attraction that is proportional to the aggregation number (Chapter 4).

In the bulk, no clustering was found for the polymer solutions used here. The

fact that clustering does seem to occur at the interface in this third adsorption

stage, suggests that the attractive potential between a bulk micelle and surface

layer is significantly larger than that between two bulk micelles, which is probably

due to the higher local concentration of chains near the interface.

To verify this hypothesis, we have carried out some calculations using the self-

consistent field theory of Scheutjens and Fleer [12, 13, 14]. In Chapters 3 and 4 we

used the same numerical method to study the self-assembly of telechelic polymers

in bulk systems. For the calculations here, polymer chains are placed on a two-

gradient cylindrical lattice (see Fig.8.6), that is divided into isometric lattice sites

with discretization length b. Inhomogeneities in density are only allowed in the ra-

dial (x-) direction and along the length of the cylinder (y-direction). As a result, all

properties of the system are rotationally symmetric around the axis of the cylinder.

Here we define three segment types: S, a monomeric solvent, segments A, represent-

ing the insoluble (hydrophobic) tail segments and species B, for the segments of the

soluble (PEO) backbone. The system is fully incompressible, i.e. all lattice sites

must be filled with one of the segments species. The A14B100A14 telechelic polymer

in these calculations mimics the C1410k polymer used in the experiments, which

consists of a water-soluble PEO chain of approximately 100 statistical segments

[15], capped on both ends with an alkyl tail of 14 carbon atoms. The calculations
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Figure 8.6: Top: illustration of the two scenarios in the SCF calculations on a 2-gradient

cylindrical lattice, i.e. micelle-micelle (left) and micelle-adsorbed layer (right) interaction.

Bottom: corresponding density profiles (at a separation of h = 60b) as obtained from the

SCF calculations for the 2 scenarios, showing the volume fraction ϕPEO of the soluble

polymeric backbone in a cross-section of the lattice (x and y in units b). The surface is

located at y = 60 in the left image. The pixelated appearance of these density profiles is

due to the discretization the SCF approach.

are carried out in a grand canonical ensemble (µ, V, T constant), for which the char-

acteristic thermodynamic potential is the grand potential. All results correspond

to thermodynamic equilibrium. The dynamics of the self-assembly process are not

accessible.

Interactions between the segments are accounted for, on a nearest-neighbor

level, with a Flory-Huggins interaction energy that is parameterized by the inter-
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Figure 8.7: a) Free energy of interaction Fint versus separation distance h between

two micelles in bulk (◦) and between a bulk micelle and an adsorbed layer of telechelic

polymers (�). b) Fint(h) between a bulk micelle and the surface layer as in a) (�) and

corresponding response of the adsorbed amount in the primary surface layer (�) given as

the number of polymer chains np per unit area.

action parameters χij between any pair of unlike segments in the system. Here we

use the same parameters as defined in Chapter 4, i.e. χAS = 1.9 (strong segrega-

tion of the tails with the solvent), χBS = 0.5 (theta conditions for the backbone)

and χAB = 1 (insolubility of the PEO chain in the hydrocarbon micellar core).

For the calculations with the adsorbed layer, an adsorption energy χads = −2 was

set between the A-segments and the surface (placed at the upper boundary of the

cylindrical lattice), giving a homogeneous layer of end-adsorbed polymers, and an

adsorbed amount that is equivalent to approximately 1 mg/m2.

We considered two situations: the pair interaction between two bulk micelles

and the interaction between a bulk micelle and a layer of telechelic polymers ad-

sorbed onto a hydrophobic surface. A cross-section of the density profile (of the

PEO chains) for both configurations is shown in Fig.8.6, together with an illustra-

tion of these scenarios.

The resulting free energy of interaction Fint, as a function of the separation dis-

tance h between the two micelles, or between the micelle and the surface, is shown

in Fig.8.7a. Indeed we observe that already for moderate adsorbed amounts, the

attractive potential between a bulk micelle and an adsorbed layer is significantly,

i.e. several kBT , larger than that between two identical micelles. This explains

the interface-triggered clustering observed in our experiments, while clustering is

absent in the bulk.

The kinetics of the interfacial bridging process is remarkably slow; irrespective
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of the chain length of the PEO spacer we find τ3 ≈ 6 · 104 s. In bulk networks of

these polymers, where each micelle is surrounded by many others, the kinetics of

the bridging process is governed by the energy barrier of transferring a hydrophobic

sticker from one micellar core to another through the aqueous phase, leading to

relaxation times of order 1 millisecond [16]. Note that this relaxation time is also

relatively insensitive to the length of the spacer.

Clearly, the situation is very different for the interfacial bridging process as it

is more than 107 times slower. The main difference between these two cases is in

finding a micellar core once a sticker has escaped from its original position. In a bulk

network, micelles are in close contact, and finding a neighboring micelle is thus not

rate limiting. The polymer concentration in the present study (20 mg/mL for the

data in Fig.8.5b) is a factor 1000 lower than a typical concentration where these

polymers form networks (≈ 20 g/L). This significantly decreases the probability

that an escaped sticker finds a micelle with which it can form a bridge. Forming a

bridge thus requires the simultaneous release of a sticker from the interface and the

nearness of a bulk micelle. This could explain the extremely slow kinetics observed

here. Moreover, the crowding at the interface might also slow down the sticker

escape.

Since both the sticker length, determining the escape frequency, and the poly-

mer concentration, determining the probability that an escaped sticker finds a

micelle to bridge with, are equal for the cases investigated here, we should not see

any big difference in τ3 with changes in spacer length, which is the case as shown

in Fig.8.5b. Investigating these effects in more detail is subject for future study.

A weakly bound layer of micelles will not cause large changes in the surface

pressure, as this dilute second layer is highly compressible. Nevertheless, we observe

a further increase in surface pressure (∆Π3) during this third stage of 6 - 8 mN/m

(Fig.8.4). The formation of bridges releases some of the stretching energy in the

primary adsorbed layer, so that new chains can be added to the primary layer

in order to restore the balance between adsorption energy and stretching energy.

The adsorbed amount increases only slightly due to bridging (Fig.8.7b), but as the

adsorbed layer is already rather dense, small changes in the number of adsorbed

chains per unit area, can have a relatively large effect on the compressibility of this

layer.
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8.4 Conclusions

In this Chapter we have shown that the adsorption of telechelic, network-forming,

polymers can be very slow. In all of the experimental studies, including previous

work of the present author, on the interactions between colloidal particles in solu-

tions of these polymers (see Chapters 5 and 7 and, e.g., [5]) such long equilibration

times have not been accomplished. When the adsorption of the PEO corona (i.e.

our step 1) is the final state, expected, e.g., for hydrophilic silica surfaces that have

a high affinity for PEO (Chapter 7), this is probably irrelevant. However, for those

experiments on hydrophobic surfaces [5] and Chapter 5, the slow adsorption kinet-

ics might have resulted in non-equilibrated surface layers. Therefore, special care

should be taken that a true equilibrium is reached when working with adsorbed

layers of polymeric micelles.
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Chapter 9

Brownian particles in transient

polymer networks

We discuss the thermal motion of colloidal particles in transient polymer

networks. For particles that are physically bound to the surrounding

chains, light scattering experiments reveal that the sub-millisecond dy-

namics changes from diffusive to Rouse-like upon crossing the network

formation threshold. Particles that are not bound, do not show such

a transition. The typical Rouse scaling of the MSD with the square

root of time, as found in the experiments at short time scales, is ex-

plained by developing a bead-spring model of a large colloidal particle

connected to several polymer chains. The resulting analytical expres-

sions for the MSD of the colloidal particle are shown to be consistent

with experimental findings.

This chapter was published as:

J. Sprakel, J. van der Gucht, M.A. Cohen Stuart and N.A.M. Besseling: Brownian

particles in transient polymer networks, Phys. Rev. E 77 (2008), 061502 and

as J. Sprakel, J. van der Gucht, M.A. Cohen Stuart and N.A.M. Besseling Rouse

dynamics of colloids bound to polymer networks, Phys. Rev. Letters 99 (2007),

208301.
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9.1 Introduction

Microrheology is a growing field of science, founded on the pioneering work of

researchers such as Weitz and Mason [1, 2] and MacKintosh and Schmidt [3, 4]. In

microrheology, the thermal motion of probe particles is interpreted in terms of the

mechanical properties of the medium in which they are suspended. The motion

of the particles can be quantified with a variety of techniques, such as diffusing

wave spectroscopy [5], dynamic light scattering [6], and various microscopy-based

techniques [7] often in combination with tools such as optical tweezers [8]. Besides

the study of synthetic model systems, such as polymer solutions [9], associative

polymer networks [10] and living polymer systems [6], the field has found connection

with biology, in the numerous publications on biological materials such as actin

networks [11], microtubule solutions [12] and membranes [13].

In order to relate measurements of particle dynamics to the macroscopic vis-

coelastic moduli, Mason and Weitz assumed that the Stokes drag for viscous fluids

can be extended to describe the viscoelastic drag at all frequencies [1]. The gen-

eralized Stokes-Einstein relation that they proposed assumes furthermore that the

medium is homogeneous around the particle and that it can be considered as a

viscoelastic continuum. This seems justified if the particle radius R is much larger

than the bulk correlation length ξ of the medium. Nevertheless, significant differ-

ences between bulk rheology and microrheology have been observed even for R > ξ

[10, 6]. It has been argued that such discrepancies could be related to depletion

layers around the particles [14, 15, 16]. The occurrence of depletion should be very

sensitive to specific interactions between the particles and the medium. In this

Chapter we analyze in detail how such interactions affect the dynamics of colloidal

particles embedded in transient polymer networks, in particular at short times.

Since Einstein’s famous paper on Brownian motion [17], it is known that the

mean square displacement 〈∆r2〉 of colloidal particles in purely viscous fluids in-

creases linearly with time, the diffusion coefficient being the proportionality con-

stant. The motion of colloids in viscoelastic media however, is more complex. Most

types of motion show scaling behavior,

〈∆r2〉 ∝ tα (9.1)

For diffusion α = 1. All dynamics for which the exponent α is smaller than unity,

are denoted subdiffusive. According to the generalized Stokes-Einstein relation

used in microrheology, such subdiffusive behavior can be related to the viscoelastic

response of the medium at the corresponding frequencies [1]. For example, for

particles in elastic media with G∗(ω) = G0, caging is observed (α = 0), i.e. the
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particles are restricted to displacements for which the elastic deformation energy

of the surrounding matrix is smaller than the thermal energy kBT , leading to a

plateau in the mean square displacement [18]. Another example of subdiffusive

behavior was observed for particles in solutions of F-actin, where α = 0.75 is

found at short times. This can be related to the G∗(ω) ∝ ω3/4 behavior predicted

for semi-flexible polymers at high frequencies [11]. For beads covalently bound

to microtubules, α was found to depend on the flexibility of the chains; ’relaxed’

chains yield α = 0.8, whereas pre-stretched, hence more rigid, microtubules gave

significantly lower values of α [12]. Finally, subdiffusive behavior may also be

caused by local structural inhomogeneities in the medium, unrelated to the bulk

rheology. For example, particles in F-actin networks were seen to ’hop’ between

distinct pores in the network, giving 0 < α < 1 depending on the ratio R/ξ [19].

In this chapter we report evidence of a Rouse-like motion (α = 1
2 ) of colloidal

particles that are physically bound to flexible polymer networks. We present a

detailed analysis of this type of submillisecond dynamics of colloids in transient

polymer networks. The experimental results are rationalized by constructing an

analytical model for the motion of a large colloidal particle connected to a sur-

rounding polymer network. We also discuss the motion of the probe particles at

intermediate (milliseconds) and longer (seconds) time scales, and compare these to

predictions based on the bulk rheological behavior of the solutions.

9.2 Experimental

9.2.1 Materials

Hydroxyl-terminated polyethylene oxide (PEO), with a nominal MW of 35 kg/mol

and MW /MN = 1.2, was used as purchased from Fluka. Part of it was converted

into a telechelic associative polymer by attaching hexadecyl (C16H33) groups at the

chain ends, as follows. The PEO was reacted in toluene with hexadecyl isocyanate

(Sigma) in presence of DBTDL (Sigma), at 60◦C for 12h. After 3 cycles of dis-

solution in toluene and precipitation in heptane, the polymer was further purified

by dissolution in ethyl acetate, filtration over 0.2 µm syringe filters, evaporation

of the solvent and drying. Critical chromatography indicated that approximately

85% of all chain ends have been modified with a hexadecyl tail, i.e. on average 1.7

hydrophobic groups are attached per chain.

Silica particles (Monospher M100, Merck) with a hydrodynamic radius of 70

nm are used either without further treatment (denoted plain silica particles), and

after a pre-adsorption step with a high molecular weight PEO (referred to as PEO-
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Figure 9.1: Schematic representation of the two types of networks that are discussed in

this Chapter. On the left a solution of flexible polymers above the overlap concentration,

in which the junction points are formed by entanglements. On the right a micellar,

associative network of telechelic polymers. In these associative networks the junction

points are formed by flowerlike micelles, that are interconnected by polymer bridges.

covered silica in the remainder of this Chapter). This treatment involved diluting

the silica particles to a 1 wt% dispersion, adding 10 mg/L of polyethylene oxide

(Polymer Source) with a molecular weight of 1000 kg/mol, and stirring for 72h.

Highly monodisperse, charge stabilized core-shell latex particles (Rh = 110nm),

polymerized from styrene and some acidic acrylate monomers, where kindly sup-

plied by Akzo Nobel Coatings (Sassenheim, the Netherlands). The silica particles

(plain and PEO-covered) are used at a volume fraction of 10−4 and the latex

particles at a volume fraction of 10−5, such that particle-particle interactions are

negligible and multiple scattering is avoided.

The dynamic light scattering experiments are carried out on 3 different set-ups;

1) a home-built set-up equipped with a solid-state (DPSS) laser (λ = 532nm),

a PMT detector and hardware correlator, with a fixed detection angle of 90◦, 2)

an ALV5000, equipped with an argon laser (λ = 514.5nm), ALV/SO-SIPD fiber

detector mounted on a goniometer and a hardware correlator and 3) a Malvern

Nano-S, with a He-Ne laser (λ = 632.8 nm), an avalanche photodetector at a

detection angle of 173◦. In all experiments the temperature was controlled at 20
◦C.

Rheological measurements are conducted on a Paar Physica MCR301 rheome-

ter. The viscosity measurements are carried out in a couette (concentric cylinder)

geometry, at shear rates well within the Newtonian regime of the corresponding

system. The viscoelastic properties of the networks are characterized in oscillatory

experiments, in a cone-plate set-up, with a cone diameter of 75 mm. In these ex-

periments the frequency of deformation is varied, at a fixed strain of 0.1%, which
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Figure 9.2: Schematic illustration of the two types of particle-network interactions. On

the left the ”nonstick” situation, in which no chains of the matrix adsorb onto the particle.

This situation also applies when adsorbed chains are not entangled or associated with the

matrix. On the right ”sticking” between particle and matrix as a result of adsorption

of polymer chains onto the particle surface. These adsorbed chains are connected to the

transient network, either through entanglements or through associative interactions.

was checked to be in the linear regime. For both geometries the temperature was

kept at 20 ◦C with integrated peltier elements.

9.2.2 Classification of systems

We study the motion of colloidal particles in two classes of transient polymer net-

works, see Fig.9.1. The first are entangled systems of flexible homopolymers. We

use aqueous solutions of polyethylene oxide (PEO). The second class of networks

are associative networks formed from the C16H33-modified telechelic associative

polymers described above. These types of polymers are known to form transient

networks, in which the nodes are flowerlike micelles, interconnected by polymer

bridges [20].

In this study we distinguish two types of particle-matrix interactions, as il-

lustrated in Fig.9.2. i) Sticking particles; the polymer chains in the network can

adsorb onto the particle surface. In this study we use plain silica particles; it is

well-known that PEO strongly adsorbs onto silica surfaces [21]. ii) Nonsticking

particles; when the polymer chains in the network cannot adsorb onto the particles

surface. For the entangled polymer networks these are the latex particles, and in

the associative networks these are the PEO-covered silica particles, in this case

the high molecular weight PEO layer adsorbed onto the particles ensures that the

chains in the network cannot adsorb [22]. The high molecular weight polymers that

are adsorbed onto these particles can however participate in entanglements, that
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Figure 9.3: Angular dependence of the MSD of plain silica particles (Rh = 70nm) in

a 80 g/L aqueous solution of PEO (MW = 35kg/mol) at a given correlation time t. The

angle of detection was varied between 50◦ and 140◦ and is expressed here as the scattering

vector q. Shown are t = 10−2 ms (◦), t = 10−1 ms (N), t = 1 ms (▽) and t = 2 ms (�).

will also become important in the associative networks at higher concentrations.

9.2.3 Dynamic Light Scattering

The mean square displacement 〈∆r2〉 (MSD) of monodisperse spherical particles

can be measured directly with Dynamic Light Scattering (DLS) [23]. The intensity

correlation function g(2)(t) evaluates fluctuations in the intensity I of light scattered

by the particles;

g(2)(t) =
〈I(τ)I(τ + t)〉

〈I(τ)〉2 (9.2)

From g(2)(t) one obtains the normalized field autocorrelation function g(1)(t) from

g(2)(t) = 1 + A(g(1)(t))2 (9.3)

where 0 < A ≤ 1 is an instrumental constant. Assuming Gaussian statistics, g(1)(t)

gives direct access to the mean square displacement (MSD) of the particles using

〈∆r2(t)〉 =
−6

q2
ln
[

g(1)(t)
]

(9.4)

where q = 4πnm sin(θ/2)/λ is the length of the scattering vector, with θ the angle

of detection measured with respect to the incident beam, nm the refractive index

of the medium and λ the wavelength of the light in vacuum. Use of Eqn.9.4 is

justified when the scattering of the polymer matrix is negligible with respect to
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that of the particles and when particle-particle interactions can be ignored. The

particle concentrations in our experiments are chosen such that both requirements

are obeyed.

In Fig.9.3 we have plotted the MSD, at several fixed times, versus the mea-

surement angle in the light scattering set-up, expressed as the scattering vector q.

We see that the MSD (Eqn.9.4) is almost constant over the investigated q-range,

which indicates that non-gaussian contributions to the particle displacement are

small. The small deviations from the dotted horizontal lines, as seen in Fig.9.3,

must be attributed to minor errors in the alignment of the optical train in the light

scattering set-up. These errors however do not influence the results shown below,

as these are obtained at fixed scattering angles.

In the set-ups used here, the shortest available correlation time is 200 ns. Our

data, which was recorded during 2h or more per sample, starts at 10 µs and ends

at 100s, hence well within the borders of the accessible range of correlation times.

The accuracy of the normalized correlation function g(2)(t)−1/A can be estimated

using an approximation given by Berne and Pecora [24]. For a measurement of 2h,

which is the minimum here, the standard deviation in the correlation function is

approximately 1·10−5 % for τ = 10µs and 0.1 % for τ = 100s. Hence, the data

presented here is accurate over the entire time range investigated. Note that this

DLS technique offers a significantly higher short-time resolution than video-based

particle tracking methods [25].

9.3 Results and Discussion

9.3.1 Linear rheology of polymer solutions

For both polymer classes we have measured the low shear viscosity η as a function

of polymer concentration in the absence of particles. The results are shown in

Fig.9.4. At low polymer concentrations the viscosity increases very weakly with

polymer concentration. At a certain concentration, the increase in viscosity be-

comes much stronger. We will loosely denote this concentration as the network

formation threshold (where the network can be formed by micellar junction points

in the case of the telechelic polymers or by entanglements in the case of unmod-

ified PEO). For the unmodified PEO, this occurs at approximately 25 g/L, and

the cross-over from the dilute to the entangled regime is rather gradual. For the

associative polymers this occurs at a significantly lower concentration of 5 g/L and

the transition is much sharper. Fig.9.4 also shows that the viscosity increase be-

yond this network threshold is stronger for the associative networks than for the
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Figure 9.4: Low shear viscosities of aqueous solutions of PEO (MW = 35kg/mol, N)

and aqueous solutions of hexadecyl (C16H33)-modified PEO of the same molecular weight

( ◦).

entangled systems. This is due to the difference in network structure and strength

of the junction points.

In rheological oscillation measurements the viscoelastic properties of a system

can be determined. In these measurements, the storage (G′) and loss (G′′) moduli

are determined as a function of the angular deformation frequency ω. For the

associative system, a typical result is show in Fig.9.5a. The simplest description of

a viscoelastic fluid is the spring-dashpot model, or so-called Maxwell model, that

is governed by a single relaxation time τ0 [26]. The Maxwell model leads to the

following expressions for the storage modulus

G′ =
G0τ

2
0 ω2

1 + ω2τ2
0

(9.5)

and loss modulus

G′′ =
G0τ0ω

1 + ω2τ2
0

(9.6)

where G0 is the plateau modulus. The mechanical response of the associative

networks is described well by the Maxwell model, as seen from the fit to Eqns 9.5

and 9.6 in Fig.9.5a. The Maxwell behavior of associative polymer systems has been

established extensively in literature [27].

The values of G0 and τ0, obtained in this manner for the associative polymer

system, are plotted in Fig.9.5b as a function of polymer concentration. In classi-

cal transient network theories, such as the generalized Green-Tobolsky theory of

Tanaka and Edwards [28], the plateau modulus is linearly proportional to the num-
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Figure 9.5: a) Frequency dependence of storage (G′, •) and loss modulus (G′′, ◦) of

a 50 g/L aqueous solution of associative polymers. Drawn lines are fits to the Maxwell

model (Eqns 9.5 and 9.6. b) Plateau modulus (G0, �) and relaxation time (τ0, �)

versus associative polymer concentration. Drawn lines are powerlaw fits to the data, with

G0 ∝ c2.3 and τ0 ∝ c0.75.

ber of elastically active chains. When the fraction of all chains that is elastically

active is constant, we would also expect a linear relation between plateau modulus

and concentration. We observe a much stronger increase in G0 with concentration

however; G0 ∝ c2.3. Annable et al. gave an explanation in terms of structural

changes of the network, i.e. not only the total number of chains in the system in-

creases with concentration but also the fraction of those chains that is mechanically

active.

9.3.2 Motion of particles in polymer solutions

The primary result of the light scattering experiments are the intensity correlation

functions (Eqn.9.2). In Fig.9.6 we show a set of such correlation functions for plain

silica particles in associative networks. For particles in pure water, we see a mono-

exponential decay, which is indicative of purely diffusive motion of monodisperse

particles. With increasing polymer concentration the main relaxation time shifts

to higher values, as a result of the increasing viscosity of the medium (as shown

in Fig.9.4). At higher polymer concentrations the correlation functions start to

deviate from a simple mono-exponential decay. This complex behavior will be-

come more apparent when the results are converted into the MSD 〈∆r2(t)〉, using

Eqn.9.4.

In Fig.9.7 some typical results are shown. For particles in pure water, here
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Figure 9.6: Normalized intensity correlation functions, as obtained with DLS, for plain

silica particles (Rh = 70nm) in aqueous solutions of associative polymers as a function of

polymer concentration; 0 g/L (◦), 9.6 g/L (N), 30.1 g/L (▽), 49.5 g/L (�) and 77.1 g/L

(△). Each curve consists of approximately 250 datapoints.

shown for both plain silica particles (Fig.9.7a) and for PEO-covered silica particles

(Fig.9.7b), the mono-exponential decay in the correlation curves corresponds with

a linear relation between the MSD and time. This is the sign of pure diffusion,

where the exponent α in Eqn.9.1 is 1. The proportionality constant in this relation

is 6D, where D is the diffusion coefficient [17].

When the pure water that surrounds the particles is replaced by a polymer net-

work, the behavior becomes more complex. For nonsticking particles in a polymer

solution that has formed a transient network, as shown in Fig.9.7b, we see at short

times a diffusive behavior, again with α = 1. At intermediate time scales we see the

appearance of a plateau in the MSD (α ≈ 0). At a certain MSD, the energy asso-

ciated with elastic deformation of the network becomes of the order of the thermal

energy. As a result the particles will be restricted to motion within this typical

length scale, resulting in the plateau in the MSD. At longer time scales, due to

the non-permanent nature of the crosslinks in these transient networks, we find a

diffusive motion again. Similar experiments in covalently cross-linked polymer net-

works showed a plateau persisting up to the highest correlation times investigated

(106 s) [29]. For sticking particles, as shown in Fig.9.7a, the same changes in the

MSD at intermediate and long time scales are observed when the medium crosses

the network formation threshold. However, we see an additional effect occurring at

short correlation times (< 0.1 ms). For these short times and for sticking particles

we do not find diffusive motion, but a subdiffusive dynamics with 〈∆r2〉 ∝ t1/2.

In the following sections we separately discuss the behavior in the three different
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Figure 9.7: MSD of colloids in associative networks, as measured with DLS (Eqn.9.4).

a) Sticking conditions: plain silica particles (Rh = 70nm) in associative polymer solutions

of 0 (◦), 20.0 g/L (N), 30.1 g/L (▽), 49.9 g/L (�) and 60.2 g/L (△), b) nonstick

conditions; silica particles pre-treated with a high molecular weight PEO in associative

polymer solutions of 0 (◦), 10.0 g/L (N), 19.9 g/L (▽), 30.1 g/L (�) and 40.0 g/L (△).

regimes that can be distinguished in the dynamics of colloidal particles in transient

networks; i) the diffusive (nonsticking) and subdiffusive (sticking) motion at short

time scales (t < 10−4 s), ii) the caging plateau at intermediate time scales (10−4 s

< t < 10−1 s) and iii) the long time diffusive behavior (t > 1s).

9.3.3 Short time scales

In Fig.9.8 we have plotted the exponent α, for the short time (t < 10−4 s) dynamics

of various combinations of particles and networks, as a function of polymer con-

centration. We see that under sticking conditions (for plain silica particles) there

is a transition from diffusive (α = 1) to subdiffusive motion with α = 1
2 . This

transition is found, both for the unmodified and the associative polymer systems,

at approximately twice the threshold concentration for network formation. For

particles that are not bound to the surrounding network this transition is absent.

This is shown in Fig.9.8 for the nonstick latex particles in entangled networks. For

these particles the short-time motion remains diffusive over the entire concentration

regime. These results strongly suggest that the typical exponent of 1
2 , is related to

the binding of particles to the surrounding matrix and the presence of a network.

One special situation is also shown in Fig.9.8 (squares), for particles with a

preadsorbed layer of a high molecular weight PEO in associative networks. The

associative polymer chains forming the network cannot adsorb onto these parti-

cles, so that we expect the particle not to show signs of the subdiffusive behavior.
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Figure 9.8: Effect of polymer concentration c on the exponent α (Eqn.9.1) for the short-

time motion of particles in polymer networks. 4 different combinations of probe particles

and polymer are shown: silica particles (sticking) in solutions of unmodified PEO (△),

silica particles (sticking) in solutions of hydrophobically modified, associative, polymer

(◦), PEO-covered silica particles (special conditions, see text) in associative polymer

solutions (H) and nonstick latex particles in regular PEO solutions (�). The dotted line

indicates α = 0.5, for Rouse-like motion.

However, at higher concentrations entanglements also become important in the

associative networks, in addition to the associative ”crosslinks”(i.e. micelles) be-

tween the chains. The adsorbed layer at the surface of the particle, can probably

take part in entanglements, and as a result we see that the transition from dif-

fusive to subdiffusive motion is delayed from twice the network threshold of the

associative system (≈ 20 g/L) to a higher concentration where entanglements also

become important (≈ 60 g/L). The transition for this special situation is found

close to that of sticking particles in unmodified polymer solution. This indicates

that entanglements become important at roughly the same concentration in the

unmodified and in the modified systems.

A similar transition from diffusive to subdiffusive behavior upon changing the

surface chemistry has been observed for particles in F-actin solutions by Chae et

al. [14]. These authors observed diffusive motion for non-sticky polystyrene probes

pre-adsorbed with bovine serum albumin, while bare polystyrene beads displayed

a mean square displacement proportional to t3/4. The exponent of 3/4 is related

to the bending (or Rouse) modes of the semi-flexible actin polymers. As we will

show in the next section, the analogous Rouse modes for flexible chains lead to the

t1/2 scaling in the present work.

A physical interpretation of the short time diffusive motion observed for non-
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Figure 9.9: Illustration of the proposed model of a colloidal particle (the large central

bead) bound to several surrounding polymer chains (the bead-spring chains attached to

the particle) that are part of a polymer network through the crosslinks, here represented

by the gray beads at the ends of the chains. In this illustration the number of adsorbed

chains f is equal to 4, and the length of each chain part N = 4.

sticking particles over the entire concentration range, even when there is a transient

network surrounding the particles, is for example given in [6]. The nonsticking

particles are surrounded by a depletion layer. At short times, when the particle

displaces over small distances, the particles do not feel the surrounding network

and exhibit a diffusive motion, with a corresponding diffusion coefficient that is of

the same order of magnitude as the diffusion coefficient of these particles in the

pure solvent. The short time diffusion coefficient is slightly smaller than its pure

solvent counterpart, though, because the flow field arising from the particle’s Brow-

nian motion is weakly perturbed by the surrounding network. A detailed analysis

of such effects has been given by others [15, 16, 30, 31].

In the following section we will develop a model, that gives a physical inter-

pretation of the subdiffusive short-time dynamics observed for sticking particles in

transient networks.

9.3.4 Rouse model for colloids bound to polymer networks

The exponent α = 1
2 found for the short-time motion of sticking particles is indica-

tive of Rouse-like behavior. Here we propose a bead-spring model for the motion

of a large particle anchored to a set of polymer chains to explain this scaling.
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We consider a particle connected to f adsorbed polymer chains that are elasti-

cally active, i.e. connected to both the particle and a junction point in the polymer

network (Fig.9.9). The first segment in every chain m is connected to the particle,

and the last segment Nm is fixed in a cross-link. For simplicity, we assume that

Nm = N is the same for all chains. The equation of motion for a polymer segment

in one of the adsorbed chains reads, neglecting inertia [32]:

ζ0
drm,n

dt
= −k (2rm,n − rm,n−1 − rm,n+1) + Fm,n (9.7)

where ζ0 is the friction coefficient of a polymer segment, k is the spring constant of

a bond between two monomers (related to the Kuhn length lK by k = 3kBT/l2K),

rm,n denotes the position of segment n in chain m, and Fm,n is the random force

acting on that segment due to collisions with the solvent molecules. The colloidal

particle is connected to f chains, so that its motion is described by:

ζP
drP

dt
= −k

f
∑

m=1

(rP − rm,1) + Fp (9.8)

where ζP ≫ ζ0 is the friction coefficient of the particle and rP its position. We

assume that the chain ends can be considered fixed in space at the short time scales

that we are interested in here: drm,N/dt = 0. The random forces acting on the

polymer segments and on the particle are assumed to be Gaussian and uncorre-

lated in time: 〈Fm,n(t)〉 = 0 and 〈Fm,n(t)Fm′,n′(t′)〉 = 2kBTζm,nδmm′δnn′δ(t − t′)

according to the fluctuation dissipation theorem [32]. Equations 9.7 and 9.8 con-

stitute a set of coupled differential equations that can be written in matrix form:

Ṙ = −A · R + F. The solution is obtained by determining the eigenvalues and

eigenvectors of the Rouse connectivity matrix A [33]. These can be obtained nu-

merically, but for sufficiently long chains we can also obtain analytical expressions

by taking a continuum limit. In [34], we derived the mean square displacement of

the particle:

〈∆r2(t)〉 =
12kBTχ2f

k

N
∑

p=1

1 − exp
(

−(ω2
pk/ζ0)t

)

ω2
p(Nω2

p + Nχ2f2 + χf)
(9.9)

where χ = ζ0/ζP ≪ 1 is the size ratio between a polymer segment and the probe

particle and where ωp is determined by the characteristic equation ωp tan(ωpN) =

χf . For very weakly coupled particles, Nχf ≪ 1, the motion is dominated by

the particle friction and the motion is diffusive until a plateau is reached. On the

other hand, for Nχf > 1, the connection with the polymer becomes important,

and the particle mean square displacement shows three different regimes. At very
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Figure 9.10: Comparison of the effect of polymer concentration on the MSD in the

Rouse regime (at t = 10−5s, N) and at the caging plateau where α(t) (Eqn.9.1) is minimal

(◦) for plain silica particles in associative networks. Dotted lines are drawn to guide the

eye.

short times (t < ζ2
P /ζ0kf2) the particle friction dominates and the mean square

displacement is diffusive: 〈∆r2(t)〉 = 6DP t with DP = kBT/ζP . Interestingly,

at short time scales the particle motion is indeed Rouse-like, as observed in the

experiments:

〈∆r2(t)〉 =
12kBT

f(ζ0kπ)1/2
t1/2 (9.10)

In this limit the prefactor does not depend on the friction coefficient of the particle.

Hence, the bead just follows the motion of the polymer segments. Note that the

mean square displacement still depends on the particle radius R in this regime,

as the number of adsorbed chains f is a function of R. At longer time scales

t ≫ NζP /fk, the mean square displacement reaches a plateau, which depends on

the number of adsorbed chains f and their length N :

δ2 = lim
t→∞

〈∆r2(t)〉 =
6kBTN

fk
(9.11)

This expression for the mean square plateau displacement δ2, is a balance between

the thermal energy kBT of the probe particle and the elastic energy in the sur-

rounding network of polymer chains. Note that in our model the cross-links were

assumed to be fixed, so that the long-time diffusive regime observed experimentally

is not accounted for in this model.

The model above gives a microscopic explanation of both the short time Rouse

dynamics and the caging plateau at intermediate time scales. Relating these equa-

tions to measurable quantities is however somewhat troublesome due to the ingre-
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dients that were used, such as the number of elastically active adsorbed chains f

and their length N . From Eqns 9.10 and 9.11 we can see however, that for a given

system, the mean square displacement for a given time t in the Rouse regime, and

for the mean square plateau displacement, should both scale with 1/f .

In Fig.9.10 we compare the MSD in the Rouse regime and at the caging plateau

as a function of polymer concentration. We see that both quantities show approx-

imately the same dependence on concentration. This implies that Eqns 9.10 and

9.11 are consistent with our experimental data, when we assume that all parame-

ters in the model except f remain constant. The decrease in MSD with polymer

concentration then indicates that the number of adsorbed chains that are active

in the network f increases with polymer concentration, which is expected. When

the total number of chains in the system, as well as the number of junction points,

increases, the number of chains that are connected to both a particle and a junction

point in the network will also increase.

9.3.5 Intermediate time scales

The previous section gave a microscopic explanation of the short and intermediate

time dynamics of colloidal particles in polymer networks. A more macroscopic

consideration is derived by Mason and Weitz [1], who derived a generalized Stokes-

Einstein equation that relates the mean square displacement of a particle to the

viscoelastic modulus G∗(ω) of the surrounding medium . In the plateau region,

where G∗(ω) = G0, this gives for the plateau MSD δ2:

δ2 =
kBT

6πRG0
(9.12)

This expression is a macroscopic analogue to Eqn.9.11.

The comparison between the true plateau displacement measured with DLS

and the value predicted by Eqn.9.12, using the bulk plateau modulus as plotted

in Fig.9.5b, is given in Fig.9.11. We clearly see that the correspondence is very

poor. The predicted value of δ2 is a much stronger function of concentration

(δ2 ∝ c−2.2) than the measured plateau displacement of the colloids (δ2 ∝ c−0.6).

This was also observed previously for living polymer networks [6], where it was

tentatively attributed to the existence of a depletion layer around the particle, that

increases the actual cage size as experienced by the particles. Levine and Lubensky

[30] developed a shell model that takes into account the presence of a depletion

layer consisiting of pure solvent, which was successfully applied to actin and DNA

solutions [14, 15, 16]. In the present case, however, depletion effects can not explain

the deviations observed, as we find exactly the same plateau displacement for
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Figure 9.11: Effect of polymer concentration on the mean square plateau displacement

δ2 from the DLS measurements, for plain silica particles (◦) and PEO-pretreated silica

particles (N) in associative networks, and as obtained from Eqn.9.12 with the bulk plateau

modulus shown in Fig.9.5b (�). Drawn lines are power-law fits to the data.

particles which stick to the network (and therefore should not have a depletion

layer) and for particles that do not (which do have a depletion layer around them)

(see Fig.9.11).

Several other causes may be suggested to explain the strong deviations. First

of all, as stated in the Introduction, it is the ratio of the dominant length scales

R/ξ, that is believed to determine whether the particle experiences a homogeneous

medium. For the systems studied here, R was either 70 or 110 nm. For polymer so-

lutions above the overlap concentration (as used here), the correlation length must

be smaller than the radius of gyration of the polymer coils, which is approximately

5 nm in this case. We therefore estimate R/ξ ≥ 10. However, it is possible that

the system shows structural and/or mechanical inhomogeneities on length scales

larger than the particle size and/or particle displacement. If this is the case, the

particles will preferentially probe the elastically weaker areas in the network, as

there they are less restricted in their motion. The average elasticity that is experi-

enced by the particles is then significantly smaller than the macroscopic elasticity,

yielding a larger value of δ2 than expected from Eqn. 9.12. This is exactly what we

observe in Fig.9.11. Strangely, one would expect, when the bulk correlation length

becomes smaller, i.e. with increasing polymer concentration, that the correspon-

dence between the macroscopic prediction and the experimental results would also

increase. However we see that the deviation between the two grows with increasing

concentration. This has also been observed by van der Gucht et al. [6].

The deviations might also originate from our assumption of a Maxwellian fluid.
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Figure 9.12: Stokes-Einstein diffusion coefficient DSE
l , calculated with Eqn.9.14 and

the bulk viscosity, versus the long time diffusion coefficient obtained from the DLS exper-

iments DDLS
l . For systems of 1) plain silica particles in entangled networks of unmodified

PEO (◦), 2) plain silica particles in associative networks (△) and 3) silica particles,

pre-treated with a high molecular weight PEO, in associative networks (�). Drawn line

represents a perfect agreement, i.e. DSE
l = DDLS

l .

In Fig.9.5a, we can see that the Maxwell model does not accurately describe the

viscoelastic response of the system at high frequencies. The frequency range that

corresponds to the time scales of the caging plateau is not accessible at all with con-

ventional bulk rheometry. As a result we have to assume that the same parameters

(G0 and τ0) that describe the experimentally accessible frequency range, describe

the behavior at higher frequencies. It is conceivable that this assumption is not

valid in this case, and as a result could explain why Eqn. 9.12 fails to describe our

experimental data.

9.3.6 Long time scales

For the long time diffusive motion, at time scales beyond the caging dynamics

(t > 1s), we define a diffusion coefficient Dl, given by [17]

Dl =
d〈∆r2(t)〉

6dt
(9.13)

The Stokes-Einstein equation predicts the diffusion coefficient of a spherical parti-

cles in a homogeneous liquid with viscosity η:

D =
kBT

6πηR
(9.14)
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In Fig.9.12 we have plotted, for various combinations of particles and networks, the

diffusion coefficient calculated with Eqn.9.14, using the bulk viscosity (as shown in

Fig.9.4) versus the directly measured value of Dl (Eqn.9.13). Both approaches give,

within the experimental uncertainty, the same value for the diffusion coefficient.

This indicates that at these longer time scales the macroscopic properties of the

networks dominate the particle dynamics.

9.4 Conclusions

The thermal displacement of colloidal particles in transient polymer networks shows

3 distinct regimes; a slow diffusive motion at long time scales, an elastic caging

plateau at intermediate time scales and at short time scales either a fast diffusive

motion for particles that do not stick to the surrounding network, or Rouse-like

dynamics for particles that are physically bound to the surrounding network. We

conclude that for short times, hence small displacements, the microscopic details

of the medium and the interactions between medium and particles are very im-

portant, whereas at very long time scales the motion seems governed by the bulk

viscosity. For the short time Rouse dynamics of particles bound to their surround-

ing polymer network we have proposed an analytical model, which is found to be

at least qualitatively consistent with the experimental results. The findings in this

Chapter indicate that both of the central assumptions often made in microrheol-

ogy, i.e. that particle-matrix interactions can be neglected and that the particles

displace through a homogeneous medium, must be made with caution.
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Chapter 10

Shear banding in associative

polymer networks

In this chapter, experimental evidence of an instability in the shear

flow of transient networks formed by telechelic associative polymers is

presented. Velocimetry experiments show the formation of shear bands,

following a complex pattern upon increasing the overall shear rate. The

occurrence of shear banding is explained on the basis of a microscopic

constitutive equation following classical transient network theory.

This chapter was published as:

J. Sprakel, E. Spruijt, M.A. Cohen Stuart, N.A.M. Besseling, M.P. Lettinga and J.

van der Gucht: Shear banding and rheochaos in associative polymer networks, Soft

Matter 4 (2008), 1696.
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10.1 Introduction

Physically crosslinked, micellar networks formed by telechelic associative polymers

are popular model systems for studying the rheology of transient networks [1,

2, 3]. In dilute aqueous solutions these hydrophilic polymers, modified with a

hydrophobic moiety at both chain ends, self-assemble into spherical, unconnected,

micelles. The associative blocks (stickers) at both chain ends reside in the same

micellar core, while the middle block (spacer) forms a loop in the corona. At higher

concentrations (typically 0.1 - 1 wt%) bridging between the micelles leads to the

formation of a sample-spanning network, where the spherical cores of the micelles

form the junction points. This results in solutions that are characterized by a

Maxwellian viscoelastic response with a single mechanical (zero-shear) relaxation

time [1]. The reversible character of these systems can be tuned with the length

and chemistry of the hydrophobic end blocks (stickers); the zero-shear relaxation

time τ0 can vary from tenths of milliseconds for small hydrocarbon tails to several

hundreds of seconds for larger fluorocarbon tails [4].

At low shear rates, solutions of associative polymers show Newtonian behavior.

When the reciprocal shear rate is on the order of the relaxation time or beyond, a

rich variety of non-Newtonian responses is found. At moderate shear rates, shear

thickening is observed, which is attributed to stretching of the polymer chains

(bridges) due to the applied flow. At higher shear rates, strong shear thinning

is found. This shear thinning is often explained as a decrease in the number of

elastically active chains (bridges) in favor of the number of loops that do not

contribute directly to the network [5].

Berret and co-workers have shown that, in systems of fluorocarbon end-capped

poly(ethylene oxide) with relaxation times many decades larger than those of the

systems employed here, the first region of the shear thinning regime is characterised

by an inhomogeneous flow, that appeared to resemble the planar fracture of solids

[6]. Others have suggested that the rheology of similar transient networks, formed

by adding telechelic polymers to microemulsions, shows the sign of shear banding

[5], but, so far, these conjectures have remained unsubstantiated. In this Chap-

ter we present direct experimental evidence of such a shear banding transition in

networks of telechelic associative polymers.

Shear induced inhomogeneities are found in a variety of soft materials, such as

linear aggregates of small surfactants (wormlike micelles) [7, 8], linear supramolec-

ular polymers [9], rod-shaped colloids [10], entangled polymers [11] and structures

suspensions of spherical colloids [12]. The unstable flow in these systems leads to

the formation of banded structures, either in the gradient direction (shear banding)
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or in the vorticity direction (vorticity banding). Three-dimensional inhomogeneities

can also occur in certain cases [13, 14]. Using model transient networks, consisting

of physically crosslinked spherical micelles, we will argue that shear banding can be

expected to be a common phenomenon in all networks with non-permanent cross

links.

In rest, a phase transition driven by the entropy gain of bridge formation, can

be found in some systems of telechelic polymers. Depending on the length of the

stickers, the length of the spacer and the degree of functionalization, solutions

of telechelic polymers can demix into a viscous (network) phase rich in polymer

and a dilute phase [15]. Computer simulations [16, 17] and experiments [2, 18]

have shown that shear can induce anisotropy in transient micellar networks, as the

bridges perpendicular to the flow direction will be disrupted more strongly than

those in the flow direction. This is expected to lead to the formation of strings

and/or sheets of micelles that are aligned in the flow direction and held together

by bridges. Recent simulations show that shear banding can occur in systems of

spherical particles with soft interactions [19], which in essence is very similar to the

systems used in this Chapter.

This Chapter focusses on the shear banding transition in networks of telechelic

associative polymers, for which we present direct evidence using laser Doppler

velocimetry. In connection we will address the transient response of these systems

in the shear banding regime. Stress relaxation mechanisms are observed on time

scales many decades larger than the zero-shear relaxation time. In some cases the

stress, rather than reaching a steady value, is found to show erratic fluctuations.

This phenomenon, often named rheochaos, is shown to be related to spatiotemporal

fluctuations in the banded flow. Following Tanaka and Edwards [20] and Michel et

al. [5] , we will explain the occurrence of the inhomogeneous flow as a direct result of

the reduction of the relaxation time of stickers in the micellar cores, due to shear-

induced stretching of the spacers. This approach leads to a simple constitutive

equation specific to the microstructure of these systems that is experimentally

evidenced based on results from superposition rheometry.

10.2 Experimental

10.2.1 Materials

The telechelic associative polymers that are studied here consist of a polyethylene

oxide (PEO) spacer with a nominal MW of 20 kg/mol and an octadecyl end group at

both chain ends connected by urethane linkers. The PEO (Fluka) was dissolved in
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Figure 10.1: Schematic outline of the heterodyne dynamic light scattering set-up used

to measure local fluid velocity profiles. Illustration courtesy of H. Kriegs and P. Lettinga.

dry toluene (Sigma-Aldrich) and reacted with octadecyl isocyanate (Sigma-Aldrich)

for 40h at 80 ◦C in presence of dibutyl tindilaurate (Sigma-Aldrich) as a catalyst.

The modified polymers were isolated during three cycles of dissolution in toluene

and precipitation in low-boiling petroleum-ether. Further purification comprised

dissolution in demineralized water, double filtration over paper and 450 nm cellulose

acetate membrane filters and removal of the solvent through freeze drying. It was

found with 1H-NMR that on average 1.9 alkyl tails (i.e. 95% conversion) were

attached to each PEO chain. All samples were prepared by dissolving the polymer

in demineralized water yielding optically transparent solutions. By studying the

excimer formation of pyrene with fluorescence spectroscopy [21], the critical micelle

concentration for these polymers in water, was found to be approximately 1· 10−5

g/L.

10.2.2 Rheology

Rheological experiments were conducted on MCR300 and MCR301 rheometers

(Paar Physica). Shear flow measurements were conducted in a couette (concentric

cylinder) geometry with an inner diameter of 16.66 mm and a gap width of 0.71

mm. Samples where left for at least 30 mins after loading to equilibrate. Flow

curves where recorded in various ways: i) fast scans from low (γ̇ = 0.1 s−1) to

high shear rate ((γ̇ = 300 s−1)), recorded with 25, 50 and 200 data points, with a

measurement time of 1 s per point and ii) slow scan from high (γ̇ = 300 s−1) to low

(γ̇ = 1 s−1) shear rate, consisting of 50 data points in which the measured stress is

averaged over 100 s. For the transient flow measurements, a fixed shear rate was
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imposed at t = 0, without any pre-shear treatment. Oscillatory measurements, to

determine the viscoelastic properties of the transient networks, were conducted in

a cone-plate set-up with a cone diameter of 50 mm, and tilt angle of 1◦. Frequency

sweeps were performed between 1 and 600 rad/s. These frequency sweeps were

fitted with a single relaxation time Maxwell model [1], to obtain the mechanical

relaxation times τ and plateau moduli G. For the zero-shear properties, the strain

was fixed at 5%, which was checked to be in the regime of linear response, giving

access to the zero-shear relaxation time τ0 and plateau modulus G0.

Standard rotational and oscillatory experiments were carried out under strain-

controlled settings, which is realized with a feedback-loop in the rheometer hard-

ware. Parallel superposition measurements, in which the oscillating frequency

sweeps are superimposed on rotational shear flow, were carried out at controlled

stress of 10 Pa for the oscillatory motion and a varying controlled stress to accom-

plish the desired average shear rate.

10.2.3 Laser-Doppler Velocimetry

Local velocity profiles of the shear flow of associative polymer networks were mea-

sured using heterodyne dynamic light scattering in combination with a differential

Laser-Doppler velocimeter (see Fig.10.1). Note that these experiments are con-

ducted on a different set-up as the rheometry measurements described above. The

couette cell had an inner diameter of 44 mm and a gap width of 2 mm. The optical

part of the setup consisted of a Kr laser beam (647 nm), split into two beams of

equal intensity. These beams were focussed in a small volume of the gap of the

transparent Couette cell. Scattered light was detected in the forward direction of

the laser beam. The light scattered from each of the two beams, has a different

Doppler shift and the resulting interference can be analyzed to yield a local velocity

of the sheared liquid.

Wall positions were determined by measuring a velocity profile at a low shear

rate, where the solutions are Newtonian and no slip or non-linear flow phenomena

are expected. The size of the focal point of the two laser beams can be estimated

from the diameter and divergence of the laser beam and the crossing angle at the

focal point, resulting in a lower limit of about 100 µm. The temporal resolution

is determined by the minimal time needed to measure an intensity autocorrela-

tion function and was found to be on the order of 1 s, comparable to the limit

found by Salmon et al. [23]. In these experiments the inherent scattering of the

micellar networks was used, hence no probe particles where added. Each velocity

profile consists of 18 points across the gap, each of which has been averaged over 3
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Figure 10.2: Low-shear viscosity of aqueous solutions of C18H37-end capped PEO (MW

= 20 kg/mol) versus polymer concentration. 4 structural regimes are distuinghuised [22]:

I) unimers, II) flowerlike micelles, III) associative network of micelles connected through

bridges IV) associative network with entanglements. Drawn lines are power-law fits to

the experimental data, exponents are indicated in the graph.

measurements of 10 s per datapoint.

10.3 Results and Discussion

The structure of solutions of telechelic associative polymers develops in 4 stages

with increasing concentration, each with their own effect on the low-shear viscosity

(Fig.10.2) [22]. At low concentrations the chains exist as unimers (stage I), and

the viscosity is approximately that of the solvent (here water). Above the crit-

ical micelle concentration (here found at 1 · 10−5 g/L) the chains associate into

flowerlike micelles (stage II), and the viscosity increases slightly due to the added

hydrodynamic volume of the micelles. Above a certain threshold the flowerlike mi-

celles will form bridges, which leads to a sample-spanning transient network, with

associative connections between the micellar cores (stage III). This is indicated by

the sudden and steep increase in viscosity. The concentration threshold for network

formation is found here at 6 g/L. All experiments are carried out well above this

concentration. The dependence of the viscosity on concentration in this regime is

discussed by Annable et al. [1]. At higher concentrations, entanglements of the

flexible polymer spacer also become important (regime IV). We see this regime

starting at roughly 20 g/L, which is around the overlap concentration for the un-

modified analogue of the PEO spacer used here. Similar observations as shown in

Fig.10.2 were made in [22].
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Figure 10.3: Zero-shear relaxation times τ0 (�) and plateau moduli G0 (N) as a function

of polymer concentration, as obtained from fitting frequency sweeps to a single element

Maxwell model.

10.3.1 Steady-state rheology

The zero-shear viscoelasticity of these systems is known to be Maxwellian [1], thus

characterized by a single mechanical zero-shear relaxation time τ0 and plateau

modulus. For the systems investigated, the relaxation times are between 2 and 7

milliseconds, and plateau moduli range from 10 Pa (10 g/L) up to 104 Pa (90 g/L)

(Fig.10.3).

The results just mentioned are all recorded well within the regime of linear

response. In this Chapter we focus however on the non-linear rheology of these

transient networks. With increasing overall shear rate, 4 different regimes can be

distinguished (Fig.10.4); at low shear rates the flow is Newtonian (regime A). At

somewhat higher shear rates a modest shear thickening is found (regime B). This

shear thickening has been studied in detail by others [24, 25], and is attributed

to the stretching of the PEO middle blocks, without decreasing the number of

bridges between micelles. At higher shear rates the flow curves reveal shear thinning

behaviour, which is the main focus of this Chapter. We will show that in the first

part of the shear thinning, in regime C, the flow becomes inhomogeneous. In regime

D, even though still shear thinning, the flow becomes homogeneous again.

In Fig.10.5a we can see that the shape of the flow curve depends strongly on

how it is obtained. Fast scans from low to high shear rate, reveal a characteristic

loop-like structure in the shear thinning regime, which becomes more pronounced if

the scan is carried out faster, i.e. when d ln(γ̇)/dt is increased. This non-monotonic

behaviour is an indication that the flow can become inhomogeneous. In classical
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Figure 10.4: Static viscosity versus imposed shear rate for a 30 g/L associative polymer

solution, showing 4 different flow regimes with increasing shear rate: A) Newtonian, B)

shear thickening, C) and D) shear thinning. Recorded at a scan rate of ∂ ln(γ̇)/∂t = 0.16

shear banding theory, this loop, in analogy with a van der Waals loop for equilib-

rium phase transitions, is a metastable path which can lead to the flow decomposing

into a banded structure with a high shear rate band at the inner rotating wall and

a low shear rate band at the outer stationary wall. This would, in the ideal case,

give a plateau in the stress through this metastable loop. The physical interpre-

tation of this ideal plateau, with d ln σ/d ln γ̇ = 0 is similar to tie-lines in classical

fluid coexistence, as it connects the two conditions (here shear rates) that coexist

with each other. If the imposed shear rate is changed within this plateau, both the

compositions and the shear rates in the bands stay constant, only the widths of

the bands adjust (similar to a lever rule for classical fluid coexistence).

Two procedures for obtaining the flow curve have been attempted, see section

10.2.2. The first is to start at high shear rates, and slowly decrease the shear rate

into the Newtonian regime. This is shown as the thick drawn line in Fig.10.5a.

Another approach is to look at the transient (i.e. time resolved) behaviour of the

stress at a given imposed shear rate. It is expected that some time after switching

on the shear flow, a stable stress value is obtained. The value of the stress at

that point would correspond to the steady-state value. In our system however the

stress does not reach a steady value, but continuously fluctuates after some initial

relaxation. The magnitude of these fluctuations is indicated with the vertical bars

in Fig.10.5a. We see that the transient points and the slow scan give approximately

the same flow curve, in which the Newtonian regime is followed by strong shear

thinning with d ln σ/d ln γ̇ = 0.1 (Fig.10.5b), which we will show to be the sign of

a shear banding transition.
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Figure 10.5: a) Flow curve (c = 30 g/L) obtained in various manners. Thin lines are

scans from low to high shear rate with different scan speeds: ∂ ln(γ̇)/∂t = 0.32 (solid),

0.16 (dashed) and 0.04 (dotted). Thick drawn line is a slow scan from high to low shear

rate (∂ ln(γ̇)/∂t = 0.01). Vertical bars show the amplitude of the stress fluctuations, after

the initial stress relaxation, during transient flow. b) Dimensionless stress σ/G0 versus

dimensionless shear rate γ̇τ0 as a function of telechelic polymer concentration c: ⋄ 15 g/L,

� 20 g/L, ◦ 25 g/L, × 30 g/L, △ 35 g/L, � 40 g/L, • 50 g/L and � 60 g/L.

In experiments on wormlike micelles, that also show a banding transition, a

truly horizontal stress plateau is often found. Here we find a pseudo-plateau, with

d ln σ/d ln γ̇ = 0.1. Two possible explanations for such a positive slope have been

given. The first is that there is a coupling between concentration and flow, i.e. that

the concentration of the two coexisting bands is not constant. Another explanations

is found in the finite curvature of the Couette cell, leading to an inhomogeneous

stress field across the gap [26]. The effect of cell curvature on the expected slope

can be estimated with d ln σ/d ln γ̇ ≈ 2l/R1 [27], with l the gap width and R1 the

radius of the inner, rotating, cylinder. For the geometry in these experiments we

find a predicted slope of 0.17. This suggests strongly that the finite slope of the

shear banding plateau is caused by cell curvature effect. After this quasi-plateau,

another shear thinning regime with d ln σ/d ln γ̇ ≈ 0.5 is found, in which the flow

becomes homogeneous again.

For Maxwellian fluids, which the systems under investigation here are, flow

curves can be made to coincide by rescaling them with two parameters only: the

zero-shear relaxation time τ0 and the plateau modulus G0. We see that this ap-

proach works for low shear rates (Fig.10.5a), where the flow is Newtonian, but

starts to deviate as soon as non-linear effects, such as the shear banding transition,

come into play. This suggests that in the banded regime, secondary parameters

become important such as the actual relaxation time(s) of the system rather than
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τ0. We will discuss this in more detail in a following section. The minor deviations

between the rescaled flow curves in the Newtonian regime might be explained by

the experimental error associated with the determination of both G0 and τ0 and

the fact that these parameters where measured in a different geometry (cone-plate)

than the set-up used to determine the flow curves (couette).

10.3.2 Stationary velocity profiles

Previously there has been speculation that the flow curves discussed in the previous

section, reveal signs of an inhomogeneous flow [5]. With laser Doppler velocimetry

we can show directly that this is indeed the case (Fig.10.6a). At low shear rates,

in the Newtonian regime, the velocity profiles are linear as expected for simple

Couette flow. When we enter the shear thinning regime, for which the quasi-

plateau is found in Fig.10.5, we see that the steady-state velocity profiles are no

longer linear, but show a banded structure, with bands of different shear rates

coexisting with each-other.

When the overall shear rate is further increased to the regime where d ln σ/d ln γ̇

≈ 0.5, the banded flow disappears. We note that the velocity profiles in this

regime are approximately linear. Strong shear thinning leads to curved profiles in

couette flow [27], but for the present geometry this occurs for values of d ln σ/d ln γ̇

significantly smaller than 0.5.

A closer view on the banded flow is given in Fig.10.6c-f, in a sequence of in-

creasing overall shear raters. The banding regime starts with a decomposition of

the sample into two bands (10.6c and d), as expected in the classical picture. At

somewhat higher shear there is a transition to an apparent 3 banded flow (10.6e).

When the shear rate is further increased, the slowest band disappears and again two

bands coexist with each other (10.6f). This process is also visualized in Fig.10.7,

where we see how the width of the three bands and their actual shear rates change

throughout the shear banding regime. It is obvious that this complex progression

of the banding is not in line with the classical picture, described in the previous

section, where only the relative width of the bands changes with shear rate.

In Fig.10.7a we can also see that no significant wall slip occurs at all shear rates,

as the overall measured shear rate and the applied shear rate are consistent.

For transient networks of telechelic polymers with fluorocarbon stickers, Berret

and Séréro have shown a solid-like fracture zone in the flow profile [6]. In these

fluorocarbon-modified systems the zero-shear relaxation times are many decades

larger (up to a factor 106). It is conceivable that this fracture behavior and our

shear banding observations are of similar origin, but differ in manifestation due to
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Figure 10.6: a) Overview of the velocity profiles for a 20 g/L telechelic polymer solution

as a function of shear rate γ̇ = 30 ◦, 41 �, 51 ⋄, 81 △, 101 •, 127 �, 152 �, 177 N and

203 s−1 ⊙. b) evolution of the velocity profile (γ̇ = 30 s−1, C = 30g/L) in time: 5 min

N, 15 min �, 35 min • and 85 min × after start of the shear flow. c)-f) same data as in

a), shown separately for clarity.

this large difference in relaxation time.

10.3.3 Simple constitutive equation

Following Tanaka en Edwards [20, 28], Michel et al. [5] developed a simple model to

rationalize the non-monotonic flow curves found for transient networks of physically

crosslinked micro-emulsions. This model is based on the reduction of the residence
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Figure 10.7: a) Average shear rate γ̇band in the slow (△), intermediate (•) and the fast

(⋄) band as a function of the applied shear rate γ̇. The solid line indicates Newtonian

flow. b) Fraction of the gap (ǫ) occupied by the different shear bands as a function of

the overall shear rate, showing the progression of the shear banded flow. Both for a 30

g/L telechelic polymer solution. The disappearance of the shear bands is found to occur

suddenly, as indicated by the dashed vertical line. Solid lines are drawn to guide the eye.

time of a hydrophobic sticker in a junction point due to flow induced chain (spacer)

stretching. In the following we describe a similar approach, that gives a microscopic

view on why these transient networks show shear banding.

As stated in the introduction, the transient networks we study are formed from

spherical micelles that are connected through polymeric bridges, i.e. the two stick-

ers attached to a chain reside in different micellar cores. The chains that do not

form a bridge are expected to form loops, i.e. both stickers are in the same micelle.

In rest, the dynamics of the bridges can be described with a simple association-

dissociation equilibrium:

∂nb

∂t
= kanl − kdnb (10.1)

where t is time, nb the number of bridges, nl the number of loops and n = nb + nl

is the total number of chains. The two reaction constants reflect the formation

of bridges (ka) and the dissociation of bridges (kd). It is convenient to define an

overall reaction constant as K = ka/kd At steady-state the total number of bridges

must be constant, ∂nb/∂t = 0, so

nb =
Kn

1 + K
(10.2)

Under shear deformation, the chains that form the bridges are continuously stretched,

which gives rise to an elastic restoring force that pulls on the stickers. This force
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Figure 10.8: Flow curve predicted by Equations 10.5 and 10.7, for τ0 = 0.017 s, δ = 1.8

nm, ξ = 5 nm, ka increasing: 0.1, 1, 5 and 10 s−1 (for ηeff = 0.1 Pa s) and ηeff increasing:

0.1, 0.5, 2 and 10 Pa s (for ka = 10 s−1).

will enhance sticker dissociation. Here we assume an exponential relation between

the lifetime of a bridge and the force [28]:

τ = τ0 exp

(−fδ

kBT

)

(10.3)

where τ0 is the zero-shear residence time of the stickers, f the force acting on the

chain ends associated with the stretching of the spacers and δ the length of the

stickers. To calculate the force on the stickers, we assume that the chains are

Gaussian; f = r3kBT/Na2, where r is the elongation of the chain and Na2 is the

square of the end-to-end distance of the undisturbed chain, with N the number of

statistical segments and a their Kuhn length. In a time ∆t at an imposed shear rate

of γ̇, the elongation is on the order of r ≈ ξ∆tγ̇, where ξ = a
√

N is the end-to-end

distance of the chain. During the lifetime of a bridge, the force then increases to

approximately

f ≈ 3kBT

ξ
∆tγ̇ (10.4)

By combining Equations 10.3 and 10.4, we can write for the average residence time

〈τ〉 = τ0 exp

(

−3γ̇〈τ〉δ
ξ

)

(10.5)

The local stress, neglecting the contribution of the solvent, can be written as

σ =
f

ξ2

nb

n
(10.6)

where nb/n is the fraction of chains that is involved in a bridge. This gives
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Figure 10.9: Frequency sweeps for various superimposed shear rates, for a 25 g/L

associative polymer solution. Experimentally obtained storage (G′, �) and loss (G′, •)

moduli and fits to a single Maxwell model (drawn lines).

〈σ〉 =
3kBT γ̇〈τ〉

ξ3

ka〈τ〉
1 + ka〈τ〉

+ ηeff γ̇ (10.7)

where we have added the viscous contribution of the solvent ηeff γ̇.

This constitutive equation predicts a non-monotonic flow curve (Fig.10.8), which

is indicative of a mechanical instability leading to shear banding. Although this

approach does not give any specific details about banded flow, it does offer a quali-

tative explanation on a microstructural level. For these systems the inhomogeneous

flow is the result of the increased breakdown rate of bridges in favor of loops (that

are not significantly stressed by the flow), leading to a more than proportional

decrease in the number of ”elastically active” chains.

10.3.4 Parallel superposition rheology

The model proposed in the previous section links the occurrence of inhomogeneous

flow to the reduction of the ’relaxation’ time of the stickers due to the applied shear

flow. Using parallel superposition rheology, in which an oscillatory motion of the

cone is superimposed on rotation, we can test this hypothesis.

In Fig.10.9 three frequency sweeps performed at various imposed shear rates are
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Figure 10.10: Mechanical relaxation time versus superimposed shear rate, from parallel

superposition measurements on a 25 g/L polymer solution. Horizontal drawn line indicates

the value of the zero-shear relaxation time τ0, curved drawn line is the decay of the

relaxation time with shear rate as predicted by Eqn.10.5 for δ = 1.8 nm, ξ = 5 nm and

τ0 = 0.017 s. Dotted line is a power-law fit to the decay of the relaxation time with

τ ∝ γ̇−1.

given. As expected from the model, we see that the frequency where the storage and

loss modulus intersect, which is equal to the reciprocal of the mechanical relaxation

time τ , shifts to higher values with increasing shear rate. In other words, we indeed

observe that the relaxation time decreases with increasing shear rate. For other

types of associative polymer networks, similar observations have been made by

Mewis et al. [29].

At low shear rates the relaxation times are of the same order as the zero-shear

relaxation time τ0, but at shear rates where we also find the onset of shear banding

they start to decrease significantly (Fig.10.10). In the same Fig.10.10 the prediction

by our model (Eqn.10.5) is shown, for which we have entered realistic estimates

for the input parameters, such as ξ = 5 nm, which is the radius of gyration of the

PEO spacer for which a = 0.7nm [30], δ = 1.8 nm which is the contour length of a

C18H37 alkyl tail and τ0 = 0.017 s as obtained from rheology measurements.

Qualitatively, the model predicts a similar behaviour as found in the experi-

ments, which supports the hypothesis posed above, that indeed reduction of the

relaxation time due to shear flow is responsible for the inhomogeneous flow. On a

quantitative level the model is not very accurate and predicts a weaker decrease of

the relaxation time τ(γ̇) than what is measured. We propose three explanations

for this difference. First of all, the 〈τ〉, that is obtained with Eqn.10.5, is the av-

erage residence time of a sticker in a micellar junction point. This is of course not
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necessarily the same as the mechanical relaxation time obtained with rheometry.

Secondly, the model only contains few parameters and is intended for a qualitative

explanation of the observed phenomena. It therefore might lack some important

contributions, such as the effects of shear-induced structural changes in the network

[16], non-Gaussian chain stretching due to the flow [18] and the directionality in

the breaking of bridges, which will be stronger in the direction perpendicular to the

flow. Perhaps the most important explanation is that the predictions of Eqn.10.5

assume the flow to remain homogeneous (i.e. follow the predicted, non-monotonic

flow curve), whereas in the experiments the banding has most-likely already taken

place, even in the cone-plate geometry used for these measurements.

10.3.5 Transient rheology

In a shear start-up experiment, a constant shear rate is imposed on the sample,

starting at time t = 0, and the development of the stress, i.e. the transient stress

response, is followed in time. For homogeneous flow it is expected that relaxation

of the stress occurs on times scales on the order of the mechanical (Maxwell)

relaxation time, here milliseconds. In the shear rate regime where shear banding

is observed, in contrast, it can take tens of minutes for the stress to reach a steady

plateau.

Various start-up stress responses are found when one goes through the shear

banding regime. In some cases we find a classical stretched exponential decay

(Fig.10.11a), with a characteristic time of 18 s, i.e. approximately 1000 · τ0, and a

stretch exponent of 0.5. This type of stress decay, as studied in detail for wormlike

micelles by Decruppe et al. [31], is explained as a nucleation process followed by

a one-dimensional growth of the fast band from the slow band. This is consistent

with the evolution of the banded structure in transient flow, as shown in Fig.10.6b.

It starts with the formation of a thin band at the fast wall, which grows in width

over approximately 90 minutes. Similar results are reported for systems of wormlike

micelles [7].

These slow dynamics might be explained by transport of material across the gap,

by a coupling between the banded flow and local polymer concentration. Fielding

and Olmsted have shown that such a coupling results in a non-horizontal stress

plateau in the flow curve [26], however curvature effects can also cause this same

effect, as we discussed above.

In attempts to quantify the concentration of polymers in the coexisting bands,

using confocal microscopy on fluorescently stained samples, we did not find any

measurable difference in polymer concentration between the shear bands. This
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Figure 10.11: Typical examples of transient stress responses in shear start-up experi-

ments: a) c = 30 g/L γ̇τ0 = 0.36 b)c = 20 g/L γ̇τ0 = 3.09 c)c = 20 g/L γ̇τ0 = 1.86. In a)

the drawn line shows a fit to a stretched exponential decay, with a characteristic time of

18 s (≈1000τ0) and a stretch factor of 0.5.

suggests that concentration differences between the bands, if any, are small. We

therefore might speculate that it is transport of structure that is time limiting,

rather than mass transport being the origin of the long relaxation times.

In the shear banding regime we find that after some initial relaxation of the

stress, often no steady plateau is reached at all. The stress continuously fluctuates

around a certain average (Fig.10.11c). These fluctuations are also indicated in the

flow curves (Fig.10.5a). A true steady-state flow does not exist in this regime.

These apparently erratic fluctuations are often coined rheochaos. One explana-

tion for rheochaos is a spatiotemporal dynamics of the structure of the banded flow

and the resulting fluctuations in the shape and position of the interface between

the bands. Instead of the ‘ideal’ picture of 2 concentric bands, with an interface

parallel to the wall, now more and more evidence is being presented, both experi-

mentally [13, 14] and theoretically [32, 33], of the occurrence a complex structure

that changes in time.
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Figure 10.12: Time evolution of the local velocity (c = 30 g/L, γ̇ = 30 s−1). The

corresponding positions in the Couette gap are denoted on the right side of the figure.

Note that the absolute fluctuations near the moving and stationary wall (1.9 and 0.4 mm

respectively) are much smaller than the fluctuations in the slow band (1.2 mm) and near

the interface between the two bands (1.6 mm).

Transient velocimetry experiments conducted at various positions in the gap

of the Couette geometry (Fig.10.12) show that such a scenario might be the case

here. In the centre of the gap, at and near the interface between the bands (x = 1.2

and 1.6 mm), there are significant fluctuations in the measured velocity, whereas

the velocity is practically constant close to the stationary wall (x = 0.4 mm) or

the rotating wall (x = 1.9mm), with deviations on the order of the experimental

accuracy of the technique,

These results suggest that the fluctuating stress is caused by the mechanical

instability of the the interface between the coexisting bands. Note that we do

not observe any signs of wall slip in the stationary velocity profiles, such that a

boundary phenomenon (e.g. stick-slip at the couette walls) is not the origin of

the fluctuating stresses. In Chapter 11 we analyze these anomalous fluctuations in

more detail.

10.3.6 Rheological diagram of states

With the observations of shear banding we can draw the diagram of states of the

complex rheology of these types of associative networks (Fig.10.13). It shows what

type of behavior is found as a function of both polymer concentration and imposed

shear rate. It had already been established that the Newtonian regime at low

shear rates is followed by shear thickening, and subsequently changes into strong

shear thinning. We have now shown directly, that the onset of the shear thinning
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Figure 10.13: Rheological diagram of states for a C18 end-capped PEO of 20 kg/mol,

indicating the type of rheological behavior as a function of concentration and imposed

shear rate, as determined experimentally.

regime is characterised by a shear banding transition. As we could see in Fig.10.7,

the upper and lower shear rate where shear banding occurs was experimentally

accessible for this system. When we exit the shear banding regime by increasing

the shear rate beyond this upper limit, the flow becomes homogeneous again, yet

is still shear thinning (see also Fig.10.5).

However, at even higher shear rates the flow becomes macroscopically unstable

and is accompanied by the sample being expelled from the measurement geometry.

Visual inspection of the set-up under these conditions (Fig.10.14), reveals that

the liquid climbs up the rotating axis of the rheometer. This rod-climbing, or

Weissenberg, effect is often attributed to the development of large normal stress

differences. This behavior is indicated in Fig.10.13 as ‘unstable’.

Other instabilities can be excluded here [34]. The inertial Couette-Taylor in-

stability occurs at Taylor numbers larger than the critical value of 1712. This

dimensionless Taylor number is defined as

Ta =
l

R1
Re2 =

ρ2γ̇2l5

η2R1
(10.8)

where Re is the Reynolds number, R1 the radius of the inner cylinder (8.33 mm),

l the gap width (0.71 mm) and ρ the density of the liquid (≈ 1000 kg/m3). For a

50 g/L solution of associative polymers, we find the instability to occur at γ̇ = 60

s−1 at a viscosity of 21 Pa · s. This gives Ta = 4 · 10−8, hence inertial effects are

completely negligible.

The purely elastic instability described for other shear banding systems [34],
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Figure 10.14: Photograph of a telechelic polymer solution in the Couette geometry in

rest (left) and during shear (right), showing the Weissenberg effect

can also be excluded. It is expected to occur at a critical shear rate equal to

γ̇c =
5.9

τ0

(

l

R2

)− 1

2

(10.9)

where R2 is the radius of the outer cylinder (9.04 mm). For the same sample (50

g/L), with a zero-shear relaxation time of 25 ms, γ̇c = 842 s−1. The instability we

observe appears at 60 s−1 and is therefore expected to be neither inertial nor elastic

in origin, rather caused by normal stress differences, leading to a Weissenberg effect

[35].

10.4 Conclusions

In this work we have shown direct evidence for a shear banding transition in tran-

sient networks of associative polymers under shear flow. Our results indicate that

the banded flow does not obey the ’ideal’ picture of shear banding. Deviations

are found in the non-horizontal plateau, chaotic transient stress response and the

unusual progression of the banded structure, as illustrated in Fig.10.7. A possi-

ble explanation can be found in the fact that there seems to be a time-limiting

transport process, most likely being the transport of structure to form the final

bands. We have also observed that the structure of the banded flow is strongly

non-stationary both in time and in space, with structure fluctuations extending

over macroscopic dimensions. As a result, no steady stress is reached in transient

flow; the stress continuously fluctuates in a chaotic or intermittent manner.

The explanation of the observed banding transition, found in the facilitation of

breaking elastically active junctions in the network due to the applied shear, has

been verified experimentally using parallel superposition rheometry. We pose that

shear banding is, in principle, the direct result of the influence of shear forces on
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the lifetime of junction points in reversible networks, and can therefore be expected

to occur in (almost) all transient networks.

With the direct evidence for complex shear banding in these model transient

networks, new opportunities for investigating this phenomenon arise. With these

systems the internal interactions, and hence the tendency for phase separation in

rest, can be tuned by changing the molecular architecture, i.e. the length and

chemistry of the hydrophobic stickers or soluble middle block. The importance of

hydrodynamic and/or thermodynamic contributions to the observed flow-induced

transition might be investigated systematically in this way [36]. Changing the end-

blocks also drastically alters the mechanical relaxation time, which depends expo-

nentially on the length of the stickers. This flexibility in designing these molecules,

and their well-defined and understood structure, makes these model networks in-

teresting alternatives to wormlike micelles for studying shear induced transitions.
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Chapter 11

Intermittent dynamics in

shear-banded networks

In this Chapter we show an unusual behavior in the shear banded flow

of a viscoelastic fluid. We report on an intermittent fracture and self-

healing process in an apparently fluid material undergoing steady de-

formation, which causes large fluctuations in the measured stress. The

statistical pattern of the fluctuations is indicative of self-organized crit-

icality. We use a microscopic constitutive model to interpret the mag-

nitude of these fluctuations.

This chapter was submitted as:

J. Sprakel, E. Spruijt. M.A.J. Michels, M.A. Cohen Stuart and J. van der Gucht:

Intermittent fracture and self-healing in a visco-elastic fluid, (2009).

185



186 INTERMITTENT DYNAMICS IN SHEAR-BANDED NETWORKS 11.3

11.1 Introduction

Visco-elastic materials are ubiquitous; both natural, such as the biopolymer net-

works that constitute the cellular cortex, as well as man-made, for example rheology

modifiers found in foods, pharmaceuticals and coatings. When such materials are

deformed at rates faster than they can structurally adapt, part of the structure

in the quiescent state is broken down, which in most cases leads to shear thin-

ning. Shear thinning can, when strong enough, make the flow macroscopically

unstable, leading to the formation of two, or more, bands of differing shear rate; a

phenomenon called shear banding [1, 2]. In the previous Chapter we have shown

experimental evidence for such a transition in the shear flow of transient networks

formed from telechelic associative polymers. In this Chapter we will show an in-

termittent fracture - healing process taking place around the interface between two

shear bands in these visco-elastic fluids under steady deformation. A statistical

analysis of the resulting stress fluctuations reveals a pattern that is characteristic

of self-organized criticality [3], indicating that the system spontaneously reaches a

critical point where its dynamics become scale invariant. Moreover, we can directly

link the magnitude of the stress fluctuations to the size of the metastable loop in

the constitutive relation underlying the flow instability.

11.2 Experimental

The rheological measurements are carried out on under strain rate control on an

Anton Paar MCR501 rheometer, in a concentric cylinder geometry. The velocime-

try measurements, with laser Doppler velocimetry, and rheological protocols are

described in Chapter 10. The material under study is a water-soluble polymer

(PEO, of 20 kg/mol) with a hydrophobic sticker (an octadecyl alkane) covalently

attached to both chain-ends (see [1] for preparation procedure). Dissolved in wa-

ter at sufficient concentration (in this letter at 25 g/L unless stated otherwise), it

spontaneously associates into a transient network [4]. The network is composed

of self-assembled micellar nodes, with a finite lifetime, interconnected by flexible

polymer chains. These systems behave as visco-elastic Maxwell fluids, character-

ized by a single microscopic relaxation time τ0. This relaxation time represents the

average lifetime of a polymer bridge between two nodes, and can be tuned with

temperature [5].
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Figure 11.1: a) Shear stress σ versus dimensionless shear rate γ̇τ0 for a transient

polymer network at 25 g/L and 10◦C (τ0 = 36 ms). The vertical bars indicate the range

of stress fluctuations for a given shear rate. Drawn line is the flow curve predicted by

the constitutive equation (Eqn.11.5). At shear rates beyond the dotted line another flow

instability, a Weissenberg effect, occurs (see Chapter 10). b) Local fluid velocity v (�)

and standard deviation ∆v of the time-averaged velocity (•) as a function of the position

x across the gap of the couette geometry, measured at T = 20◦C and γ̇τ0 = 0.54, for a 30

g/L associative polymer solution (τ0 = 18 ms).

11.3 Results & Discussion

Under constant shear, the tension on the stickers reduces the average lifetime of

the polymer bridges, thus disrupting the network structure and producing a severe

shear thinning, i.e. a viscosity that decreases strongly with applied shear rate. This

makes the flow mechanically unstable [1, 6]. The result is that bands of different

shear rate are spontaneously formed parallel to the flow direction (Figure 11.1b);

a phenomenon known as shear banding [1, 2]. In the low-shear band the viscosity

is high and there are still many junctions, while in the high-shear band many

junctions are broken, resulting in a lower viscosity. A stress-plateau (see Fig.11.1a),

the rheological signature for shear banding, has been observed before for similar

telechelic polymers [6, 7], and in a recent paper we showed direct evidence for a

shear-banded flow [1]. Such behavior is not unique to this material; it is observed

in a wide variety of soft materials, such as solutions of wormlike micelles, colloidal

suspensions and entangled polymer solutions [2]. For our system, this plateau

occurs at shear rates γ̇ on the order of the reciprocal relaxation time τ−1
0 . Velocity

profiles measured in this regime (Figure 11.1b) indeed show bands of different shear

rate. The flow is homogenous at lower shear rates, where the network can easily

adjust to the deformation, and at high shear rates, where the network structure is
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Figure 11.2: Typical transient stress response in the banded regime, at a steady shear

rate of γ̇τ = 1, measured at T = 10◦C (τ0 = 36 ms). Arrows in the right panel indicate the

2 different events constituting the fracture-healing behavior; healing (ց) and fractures

(ր). Note that at short time scales O(τ0), at the start-up of the shear flow, the stress

shows an overshoot, which is not visible here due to the longer sampling interval of 1 s

(≈ 30 · τ0).

almost entirely disrupted [1].

When the stress is measured as a function of time at a constant applied shear

rate in the shear banding regime, it becomes clear that a true steady state is never

reached: the stress keeps undergoing persistent fluctuations (top panel Fig.11.2)

The magnitude of these stress fluctuations, indicated by the vertical bars in Fig.

11.1a, is on the order of 10 Pa, much larger than the experimental error (< 0.1

Pa). Such large fluctuations are only observed in the shear banding regime. At

first glance, the signal may appear to be chaotic. Indeed the power spectrum

(Fig.11.3a) shows no dominant frequencies. Chaotic stress responses have been

studied in detail for solutions of wormlike micelles [8, 9].

In our case however, a distinct pattern appears when we zoom in on the sig-

nal (bottom panel Fig.11.2). Periods of more or less linear increase of the stress

alternate with periods of rapid decrease of the stress. This pattern is reminiscent

of the stick-slip motion of two bodies sliding past each other [10]. During a ’stick

phase’ an elastic force builds up, which is spontaneously released by a fracture that

propagates between the two bodies, giving rise to a slip motion. After a fracture

event, the bodies reconnect to start the stick motion again. A well-known example

of stick-slip motion is the movement of tectonic plates in the earth’s crust, where

intermittent stress drops at the fault lines are responsible for earthquakes [11].

Velocimetry measurements (Fig.11.1b) in our system showed no slip at either
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wall; the velocity close to both cylinder walls is constant and equal to the velocity

of the wall. In the middle of the gap, however, we do observe significant velocity

fluctuations (see Chapter 10). We argue therefore that the ’stick-slip-like’ behavior

that we observe in the stress response is due to repeated fracture-healing events

in the material in the region around the interface between the two shear bands.

During a healing stage structure builds up near the interface, which leads to an

effective growth of the low-shear band and an increase of the stress. When the stress

increases above a certain level, the low-shear band may become unstable, leading to

a fracture and a break-down of the structure that was built up, with an associated

drop in the stress. The repeated growth and shrinkage of the low-shear band leads

to the large velocity fluctuations observed in the interfacial region (Fig.11.1b).

Note that the localized fractures that we observe should not be confused with the

macroscopic fracture observed by Berret and Séréro [12] for fluorocarbon telechelics.

In contrast to what we find, these materials do not heal after a microscopic fracture

so that the fracture can grow to macroscopic dimensions. This might be due to

their much longer microscopic relaxation time, i.e. up to 170 times larger than τ0

of our material.

While chaos may seem to reign, the dynamics of stick-slip processes are charac-

terized by an underlying statistical pattern [10, 13]. In seismology, the Gutenberg-

Richter law predicts the cumulative probability distribution P (> mo) of earth-

quakes larger than a given seismic moment mo as P (> mo) ∝ m−b
o [13]. For

earthquakes the exponent b is between 0.5 and 1.2 [14]. In our soft material we

find the same power-law behavior for the distribution of the total stress drop ∆σ

during a fracture (Fig.11.3b), although over a much smaller range, limited for small

∆σ by experimental noise. The exponent b = 0.85 we find is close to the value

of 0.8 reported for pure stick-slip motion [10]. Attempts to explain such scaling

behavior often involve the concept of self-organized criticality [3]. According to this

theory, driven dissipative dynamical systems spontaneously reach a critical state

that is characterized by a power-law distribution of events and power-law behavior

in the power spectrum of the fluctuations. Our material obeys the same statistics.

The power-law behavior in the distribution of fracture moments is lost beyond

amplitudes of roughly 10 Pa. For larger amplitudes the distribution decays very

rapidly. The existence of such a cut-off implies that there is an upper limit to

the stress fluctuations, which is obviously related to the bandwidth of the stress

fluctuations in Fig.11.2. In Fig.11.4b, the difference S between the maximum and

minimum stress, relative to the average stress σ̄, is plotted as a function of the

microscopic relaxation time. We see that the ’bandwidth’ of the stress fluctuations

increases with relaxation time.
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Figure 11.3: a) Power spectra obtained by Fourier transformation of the raw stress

signal. b) Cumulative distributions of the stress-drop ∆σ of fractures. c) Cumulative

distributions of the intervals ∆t between fractures, drawn lines are fits to Poisson distri-

butions. All for various shear rates and relaxation times: γ̇τ0 = 1.0 and τ0 = 37 ms (i.e.

T = 10◦C, •), γ̇τ0 = 1.6 and τ0 = 37 ms (N), γ̇τ0 = 2.0 and τ0 = 37 ms (�), γ̇τ0 = 1.0 and

τ0 = 96 ms (i.e. T = 3◦C, ◦), γ̇τ0 = 1.0 and τ0 = 107 ms (i.e. T = 2◦C, ×) Insert in c)

shows the dependence of the decay time τi for the interval distribution between fractures

as a function of applied shear rate.

The limits on the stress fluctuations can be explained on the basis of the con-

stitutive relation that underlies the shear banding behavior, which we presented

in Chapter 10. The principal ingredient in this mean-field model is that flow en-

hances dissociation of the junctions. The reason for this is that the shear flow

leads to elongation of the bridging chains, resulting in an elastic pulling force on

the junctions:

f ≃ kBT

ξ
τγ̇ (11.1)

Here ξ is the typical dimension of a chain in the flow gradient direction (we use

ξ = 2.5 nm, estimated from the plateau modulus), so that the stretching rate is
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roughly γ̇ξ, while the entropic spring constant is kBT/ξ2. τ is the average lifetime

of a junction, i.e. the typical time during which the chains are stretched before they

dissociate. The lifetime τ is a function of the shear rate. Assuming that junction

dissociation is an activated process [15], we can write

τ = τ0 exp

(

− fδ

kBT

)

= τ0 exp

(

− γ̇τδ

ξ

)

(11.2)

giving an implicit equation for τ , in which δ is the length over which the force acts,

i.e. the length of the alkyl tail (here δ = 1.8nm). We simplify this by expanding

the exponential, which gives:

τ =
τ0

1 + δγ̇τ0/ξ
(11.3)

For small shear rates, γ̇τ0 ≪ 1, sticker dissociation is unaffected by the shear rate,

τ ≈ τ0. For high shear rates, γ̇τ0 ≫ 1, the average lifetime is equal to the time it

takes to stretch the chain so far that the force becomes kBT/δ, i.e. τ ≈ ξ/δγ̇.

As derived in Chapter 10, the steady-state concentration of bridges can be

written as

nb =
Kn

1 + K
(11.4)

where n is the total concentration of chains (loops and bridges) and K = ka/kd =

kaτ , with ka and kd the association and dissociation rate respectively. We assume

that the equilibrium constant K0 in rest is constant when τ0 is varied (ka = K0/τ0),

with K0 = 0.1 found from the experimentally determined ratio of bridges to loops

(results not shown). The shear stress is determined by the number of active bridges

and the average force per bridge, which both depend on the shear rate:

σ = ξnbf + ηeff γ̇ =

(

kanτ2kBT

1 + kaτ

)

+ ηeff γ̇ (11.5)

with ηeff the high-shear viscosity, corresponding to the disrupted network (here

ηeff ≈ 0.5 Pa s) and τ given by Eqn.11.3. In Fig.11.1a, this equation is plotted

together with the experimental flow curve.

The decreasing part of this curve is mechanically unstable and corresponds to

the regime where shear banding and the stress fluctuations are observed. Clearly,

no matter how the two shear bands arrange themselves, the stress in this region

is bounded by the maximum and the minimum in the stress-shear rate curve.

Our microscopic model predicts that the loop becomes more pronounced if the

microscopic relaxation time τ0 increases (Fig.11.4a), which is in good agreement

with the experimentally observed bandwidths of the stress fluctuations (Fig.11.4b).
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Figure 11.4: a) Flow curves predicted by the microscopic constitutive relation, Eqn.11.5,

for various relaxation times τ0 (given in ms). Inset illustrates the metastable loop (dotted

line), the steady-state tie-line (horizontal plateau) and the definition of the predicted

bandwidth S. b) Experimentally determined bandwidth of the stress fluctuations, given

as the difference between maximum and minimum stress, relative to the average stress σ̄.

Drawn line is the prediction of our model. Note that the loop in the flow curve, and with

that the shear banding behavior, disappears for τ0 ≪ 0.02s.

The ’quiescent’ intervals between two events show exponential (Poisson) distri-

butions (Fig.11.3c) and display a cut-off at long interval times that is related to the

cut-off in fracture magnitudes discussed above. The Poisson behavior implies that

the intermittent fracture events occurring at different times are not correlated, in

other words there is no memory of past fracture events. The reason for this lack

of memory could be that the material quickly ’heals’ once a fracture is terminated,

since the microscopic relaxation time of the material is between 30-100 ms in this

study, much shorter than the typical time between fracture events.

The average interval time τi between two fracture events is on the order of

10-100 seconds. This is roughly a thousand times longer than the microscopic

relaxation time of the material, suggesting that the stress build-up is a process

that involves the creation of many junctions. As seen in Fig.11.3c, an increase of

the microscopic relaxation time (from 36 to 107 ms) leads to an increase in τi (from

40 to 170 s): as the formation of single connections is slowed down, the collective

build-up process is also slower. Moreover, it can be seen that the interval time

increases approximately linearly with the applied shear rate (inset of Fig.11.3c).

The scenario that we propose is that the formation of new connections (association)

across the gap is hindered by the velocity gradient between two neighboring fluid

elements, as the average contact time between two nodes decreases.
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11.4 Conclusion

In this Chapter we have presented a simple physical interpretation of a seemingly

complex behavior in the banded flow of a transient polymer network. Previously,

the apparently chaotic rheological responses of shear-banded soft materials were

attributed to mechanical instabilities at or near the interface between the two

bands [9, 16]. In this Letter we have shown that these fluctuating stresses can

also be seen as the tell-tale of critical fluctuations, of a system in a self-organized

critical state. This opens up new possibilities, as concepts known from the study

of equilibrium critical phenomena now can be employed to understand these non-

equilibrium phase transitions.
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Chapter 12

MR velocimetry of telechelic

polymer networks

In this Chapter we discuss the construction of a home-built rheo-NMR

set-up for studying the flow of fluids under controlled shear with Mag-

netic Resonance techniques. We also present some initial, non-trivial re-

sults for the flow profiles of a shear-banded telechelic polymer network.

The rheometer consists of a highly-concentric couette geometry that is

mounted in a low-field (0.7 T = 30.7 MHz) NMR device. Velocity pro-

files measured with a Pulsed Field Gradient Spin Echo (PFGSE) imaging

sequence in shear-banded telechelic polymer networks show good agree-

ment with results from laser Doppler velocimetry measurements on the

same material (as shown in Chapter 10), confirming that the current

set-up works properly. Moreover, as our MRI sequence gives access to

absolute fluid velocities, we can unequivocally measure the amount of

wall slip in these inhomogeneous flows.

The work presented in this Chapter is a collaboration with Frank Vergeldt, Henk

van As & John Philippi of the Wageningen NMR Centre:
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In the previous Chapters we have discussed the shear banding transition in asso-

ciative thickener networks. Studying these types of shear-induced phase transitions

relies mainly on two different approaches. The first is rheometry, in which the me-

chanical properties of the sample (e.g. viscosity) can be monitored as a function

of the applied deformation rate or stress. Rheological data can give strong evi-

dence for the occurrence of a mechanical instability, for example a plateau in the

stress versus shear rate indicates shear banding. The second technique is velocime-

try, which is the spatially-resolved measurement of the local fluid velocity, across

the sample in the direction(s) of interest. Since shear banding is the formation

of 2 (or more) zones in the sample that differ in shear rate (i.e., velocity gradi-

ent), velocimetry measurements are essential to prove the occurrence of such a flow

instability.

A variety of velocimetry techniques is currently available for measuring fluid ve-

locity profiles under controlled shear, such as Laser Doppler Velocimetry (LDV, see

Chapter 10), Particle Imaging/Tracking Velocimetry (PIV/PTV) [1] and ultrasonic

velocimetry (USV) [2]. Each of these techniques has its own merits and drawbacks

in terms of spatial and temporal resolution and sample demands. While the optical

techniques (LDV, PIV, PTV) generally have a very good spatial resolution, they

require completely transparent samples. PIV and USV can record velocity profiles

very quickly, allowing great temporal detail in, for example, start-up experiments,

yet both techniques require the addition of probe particles, often several to tens of

micron in diameter. This could seriously alter the local flow field, and in this way

affect the manifestation of the instability of interest. For a comprehensive overview

of velocimetry techniques, and other experimental probes of shear banding, we refer

to a recent paper by Sebastien Manneville [3].

An alternative to these methods is Magnetic Resonance Velocimetry (MRV),

in which NMR imaging (NMRi or MRI) techniques are used to measure velocity

profiles of samples that are subjected to shear flow inside an NMR magnet [4, 5]. In

a rheo-NMR set-up, in addition to performing velocimetry experiments, many other

NMR techniques (spectral NMR, spin-relaxation measurements) may be employed

to study for example inhomogeneities in density (spin-relaxation measurements)

or changes in molecular structure (spectral NMR) in the sample of interest under

shear. Moreover, the technique is non-invasive (no probe particles required), allows

the analysis of even the most turbid samples and can be used to build up 2D or

even 3D images of the flow field, while the velocimetry techniques discussed above

are limited to 1 (LDV, ultrasonic velocimetry) or 2 dimensional (PIV) flow field

visualization.

In this Chapter we discuss the development of, and preliminary results on, a
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home-built rheo-NMR set-up. The main motivation for this venture is the fact

that much of the rheological research carried out within Wageningen University

concerns ’real’ systems, such as paints and foods. Rheo-NMR offers a versatile new

tool for the study of these very complex, and often opaque, systems.

The first report of performing NMR measurements on a sample under controlled

shear flow, dates from 1990, when Nakatani, Polliks and Samulski [6] investigated

broadening of the 1H spectrum of a polymer melt subjected to shear flow in a

cone-plate geometry. A year later, Xia and Callaghan [7] demonstrated that NMR

imaging techniques could also be used to study the flow of complex fluids. In their

experiments they related shear-thinning effects of an entangled polymer solution

to deviations from Poiseuille flow when the sample was pumped through a narrow

capillary. The MR velocimetry approach used in that paper formed the basis for

a wide range of pioneering publications by the group of Paul Callaghan over the

past 15 years, on a wide variety of systems, such as wormlike micelles [8], lamellar

surfactant phases [9], suspensions of hard-spheres [10] and colloidal glasses [11].

In more recent years, several research groups have started participating in rheo-

NMR research, leading to an ever-expanding range of NMR techniques and flow

geometries for studying the flow of complex fluids under well-defined conditions.

An overview of the (current) developments in this field can be found in [4, 5, 12].

12.1 Rheo-NMR set-up

The rheometer (see Figs. 12.1 and 12.2) consists of a concentric cylinder (couette)

measuring cell, a driving shaft and a motor. Both the measuring cell and the

driving shaft are constructed from PEEK (polyetheretherketon), which was chosen

because of its high strength and durability, resistivity to almost any solvent and

NMR transparency. The measuring cell consists of a solid inner cylinder with a

diameter of 27.0 mm and a double-walled cup, with an inner diameter of 29.8 mm

(gap size = 1.4 mm). The inner cylinder is driven by means of a driving shaft

that is connected to the motor (Maxon RE30) via a gearbox. With the current

combination of motor and gearbox, speeds between 1 and 1000 rpm are accessible,

corresponding to a shear rate range of approximately 1-1000 s−1.

To prevent interference of the main magnetic field of the NMR set-up with

the motor operation, it needs to be placed at a sufficient distance (in this case

approximately 1 meter) from the center of the magnet. To accomplish a high

concentricity of the couette cell with this long transfer distance, the driving shaft is

guided by bearings of glass beads coated with a teflon layer on 4 positions along the
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Figure 12.1: Schematic depiction of the rheo-MRI set-up (left) and detail image of the

measuring cell (right); 1) teflon-coated glass ball bearing, 2) motor, 3) gearbox, 4) position

fine-tuning, 5) bob (R = 13.5 mm, gap size = 1.4 mm), 6) RF unit, 7) RF connector,

8) inlet/outlet cooling system, 9) fill tube, 10) thermocouple, 11) RF coil, 12) sample

overflow.
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Figure 12.2: Photographs of a) the rheometer mounted in the NMR magnet and b)

close-up of the measuring cell.

length of the rheometer. The concentricity of the Couette cell was measured to be 5

micrometers, which is similar to (or better than) the concentricity of commercially

available rheometer cells.

The radio frequency (RF-) coil is wrapped around the outer wall of the couette

cell, i.e. housed in the cavity in the double-walled measuring cup. It consists of 9

turns of a silver wire (d = 1 mm), over a length of 18 mm and with a total diameter

of 32 mm. The RF-coil is connected to a control unit, for tuning and matching the

RF-field to the resonance frequency of 1H-nuclei.

To cool the sample, dried compressed air is guided through a heat exchanger

immersed in a water bath at 2 ◦C and subsequently flushed through the hollow-

walled measuring cup. As this cup also houses the RF-coil, no liquid cooling agents

could be used. By adjusting the flux of cold air, the temperature of the sample

could be controlled between 20 and 35 ◦C. The temperature of the sample can be

monitored with a thermocouple, inserted through the bottom of the measuring cell.

The entire rheometer is mounted in the NMR magnet, by means of brackets

attached to the NMR housing and a mounting system fixed to the rheometer shaft.

Micro-manipulators in this mounting system allow accurate positioning of the cell

to the center of the magnetic field. The rheometer set-up was constructed by
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Figure 12.3: Two MRI cross-sections of the measuring cell, filled with water, in the

flow-gradient (left) and vorticity-gradient (right) plane. In the schematic drawing of the

measuring cell (center), the axes of the flow (f), gradient (g) and vorticity (v) direction

are indicated.

Ontwikkelwerkplaats AFSG (Wageningen).

All MRI measurements were conducted on a 0.7 T, resulting in a Lamor reso-

nance frequency for protons of 30.7 MHz, home-built NMR system consisting of a

Bruker Avance console (Bruker BioSpin, Karlsruhe, Germany), a Bruker electro-

magnet stabilized by an external 19F lock unit, and an actively shielded 1 T/m

gradient set with planar geometry (Resonance Instruments Ltd, Witney, UK), pro-

viding a gap of 5 cm between the plates for housing the rheometer.

12.2 MR velocimetry

For NMR flow imaging a PFG-SE-TSE sequence is used. This sequence is a combi-

nation of a Pulsed Field Gradient (PFG) Spin Echo (SE) sequence for flow encoding

(q-space imaging) and a Turbo Spin Echo sequence for fast imaging [13]. Typical

parameters for flow encoding were gradient pulses of 1 ms, varied in 32 steps from

-0.243 T/m to 0.228 T/m to sample the inverse displacement space (q-space), and

a flow encoding time of 5 ms. Typical imaging parameters were a field-of-view of

2.6 x 32 mm2 of 32 x 32 pixels resulting in an in-plane resolution of 0.081 x 1.0

mm2 with the highest resolution in the gradient and the lower resolution in the

vorticity direction (see Fig.12.3). A 1 mm slice was selected in the flow direction.

Further relevant parameters are the turbo factor of 4, the echo time of 2.96 ms,

the spectral width of 25 kHz, the number of averages of 4, and the repetition time
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Figure 12.4: Shear stress σ, normalized by the plateau modulus G0, versus shear rate γ̇

for a 25 g/L solution of C1820k associative polymer in water at T = 25 ◦C. Drawn lines

indicate the two main flow regimes; at low shear rates (< 25 s−1) the flow is Newtonian

(σ ∝ γ̇), at higher shear rates (> 50 s−1) the system is strongly shear thinning (σ ∝ γ̇0.1),

indicative of a shear banding transition. The dotted line indicates where the Weissenberg

instability (see Chapter 10) occurs.

of 3 s, resulting in a total experiment time of approximately 51 minutes.

For more information on the PFG-SE-TSE method, we refer to [13], and for

more general information on NMR microscopy and rheo-NMR methods see [4, 14].

12.3 Experimental details

For the measurements presented below we have used the same material as in Chap-

ter 11, i.e. a 25 g/L aqueous solution of an octadecyl-modified PEO of 20 kg/mol

(abbreviated as C1820k. The cell was filled with 8 ml of the sample and left to equi-

librate for 1h. For each new measurement another 45 minutes where taken after

setting the rheometer to the appropriate speed and before commencing the mea-

surement, to allow the sample to reach a steady state. The flow curve was measured

in a couette geometry on an Anton Paar MCR501 rheometer. All measurements

are carried out at a temperature of 25 ◦C.

12.4 Preliminary Results

In Fig.12.3 two MRI cross-sections of the measuring cell are shown. The MRI image

in the flow-gradient plane, taken in the center of the vorticity direction shows the

circular shape of the couette geometry. In the MRI image of the vorticity-gradient
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Figure 12.5: Examples of pixel propagators, the main output from the MRV mea-

surements, showing the distribution of measured velocities in 3 pixels along the gradient

direction, i.e. one close to the stationary wall (pixel 24), one in the center of the gap

(pixel 14) and one close to the rotating bob (pixel 5), obtained at γ̇ = 65 s−1.

plane we can see the limits of the RF-coil, i.e. where the image quality starts to

decrease at the top and bottom of the image. As the coil (L = 18 mm) does not

encase the entire length of the measuring cell (58 mm), accurate imaging is limited

to a portion of the gap in the vorticity direction.

A flow curve, i.e. shear stress versus shear rate, for a telechelic polymer network

at 25 ◦C is shown in Fig.12.4. We can distinguish the two main flow regimes,

discussed in more detail in Chapter 10, i.e. a Newtonian flow at low shear rates

and strong shear thinning at higher shear rates. In the shear thinning regime

we find that σ ∝ γ̇0.1, rather than a true plateau in the stress as expected for

shear banding. This is attributed to the curvature of the couette cell, giving a

slightly inhomogeneous stress field across the gap. At even higher shear rates, a

Weissenberg instability occurs (see Chapter 10).

The main output from the PFGSE-TSE velocimetry experiments are the so-

called pixel propagators, i.e. the distribution of measured displacements over the

sampling interval ∆ for a given pixel in the field-of-view. Some examples of pixel

propagators are shown in Fig.12.5, where the displacements have already been

transformed into actual fluid velocities, for three different positions along the gap

of the couette cell.

From the propagators, the fluid velocity profiles can be calculated. Here we

take the average velocity from a pixel propagator at a given position along the gap,

after proper baseline correction, and average this over 8 pixels (i.e. 8 mm) in the

vorticity direction. In this approach, together with the chosen slice selection of 1
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Figure 12.6: Local fluid velocity v, with respect to the applied wall velocity vwall, versus

position x across the gap of a couette cell, as measured with MR velocimetry. The sample

is a 25 g/L solution of C1820k associative polymers in water (T = 25 ◦C), at various shear

rates; a) 40 s−1, b) 70 s−1, c) 90 s−1 and d) 120 s−1. Lines are drawn to guide the eye.

mm in the flow direction and the measurement time of approximately 50 minutes,

we obtain spatially and temporally averaged velocity profiles. This results in a

good signal-to-noise ratio on the velocity profiles, but information on microscopic

spatiotemporal dynamics (as discussed in Chapter 11) is lost.

Some velocity profiles measured with MRV on our associative polymer system,

are shown in Fig.12.6. In agreement with the flow curve, we observe linear veloc-

ity profiles, indicative of Newtonian flow, at all shear rates <50 s−1 (Fig.12.6a),

and kinked velocity profiles, the sign of shear banding, for shear rates ≥50 s−1

(Fig.12.6b-d), which is the regime where we also observe the (quasi)plateau in the

flow curve (Fig.12.4). The progression of the banded flow with increasing shear

rate, which is analyzed in more detail in Fig.12.7, looks very similar to what we

measured with laser Doppler velocimetry, as discussed in Chapter 10. The banding

starts with the decomposition of the flow into two bands (Fig.12.6b). At higher

shear rates there is a transition to a 3-banded flow (Fig.12.6c) and when the shear

rates is further increased, the high-shear band increases in size and shear rate
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Figure 12.7: Applied shear rate γ̇a versus measured shear rate(s) γ̇b across the gap.

Drawn line indicates γ̇a = γ̇b as expected for homogeneous flows with stick boundary

conditions. The dotted line indicates where the Weissenberg instability (see Chapter 10)

occurs.

(Fig.12.6d).

With MR velocimetry absolute fluid velocities are measured. This allows us to

unambiguously measure the amount of wall slip near the rotating inner wall. The

velocity profiles show that the fluid velocity near the inner cylinder is a 100% of the

applied wall velocity (stick boundary conditions) for Newtonian flows (Fig.12.6a),

but decreases to approximately 80 - 90% (moderate slip) for the non-linear flows

(Fig.12.6b-d). Other techniques, such as Laser Doppler Velocimetry, calibrate the

fluid velocity to settings in which no slip is expected, yet are not able to given an

absolute measure for the amount of wall slip, as is possible with MR velocimetry.

Note that the observation of wall slip in shear-banded flows is not uncommon

[15, 16].

12.5 Conclusion and Outlook

The initial results on our home-built rheo-NMR set-up look promising. Velocity

profiles in shear-banded polymer networks, measured with MR velocimetry, show

good agreement with velocity profiles on the same sample with laser Doppler ve-

locimetry (see Chapter 10). Moreover, MR velocimetry measures the absolute

magnitude of the local fluid velocities, which allows for more detailed studies of

phenomena such as wall slip that often accompany shear-induced transitions.
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Summary & General Discussion

In this final Chapter a summary of this dissertation is presented, high-

lighting the main results. Moreover, connections between the various

subjects discussed in the previous chapters are drawn. Progress can only

in part be measured by the questions answered. Perhaps equally impor-

tant are the new questions posed. Some of these will also be addressed

and we will speculate how they should or could be answered.
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Coatings, although not always directly observable, play an important role in

everyday life. They extend the lifetime of materials by protecting them against, e.g.,

corrosion, microbial attack and weathering, provide surfaces with specific properties

(repellency, anti-fouling, etc.) and literally add color to our lives. The process of

administering coatings often involves liquid carriers that allow transfer of coating-

forming materials from a volume to a surface; such carriers are commonly known

as paints.

In recent years, there has been a strong effort to replace traditional solvent-

based coatings with water-based systems. Whereas solvent-based paints are (still)

superior in performance compared to waterborne paints, they pose a serious threat

to the environment and the health of the consumers using these product. The

problem is the release of large amounts of volatile organic compounds (VOCs) into

the atmosphere during the drying of such paints. The development of water-based

paints with the same performance as solvent-based products is an important step

towards accomplishing the further phasing-out of VOC-rich coatings.

One of the key ingredients in modern waterborne latex paints are associative

thickeners, which are added as flow modifiers to establish the desired flow properties

of such formulations. For this reason, industry has developed a strong interest in

a thorough understanding and control of aqueous associative thickener systems.

Water-based paints typically are even more complex systems. In addition to

water and thickeners they contain various particulate components, such as pigments

and latex (binder) particles, and a wide range of additives, such as surfactants and

co-solvents. With so many ingredients, the number of interaction pairs is very

large. To accomplish a fundamental understanding of associative thickeners in

these systems, we have adopted a bottom-up approach in this thesis. We started

from pure thickener solutions in thermal and mechanical equilibrium, and along

the way increased the complexity by bringing solid surfaces and non-equilibrium

circumstances into play. In this way we have tackled some of the questions that

emerged from industry. Moreover, we have tried to show that these systems are a

true playground for soft matter1 scientists, with interesting physics occurring on

many time and length scales.

1soft matter: a variety of states (for example colloidal suspensions or polymer solutions and

gels) that are easily deformed by thermal stresses or fluctuations, with predominant physical

behavior occurring on energy scales on the order of the thermal energy kBT (≈ 4 · 10−21 Joules

at room temperature).
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Associative Polymer Self-Assembly

The first part of this thesis dealt with the equilibrium supramolecular assembly of

polymeric surfactants in general and telechelic polymers2 in particular.

In Chapter 2 we proposed a comprehensive analytical model for the self-assembly

of polymeric surfactants. This conceptually simple model consists of a driving force

for micelle formation that comes from classical nucleation theory and an opposing

force that hinders the same process described by polymer brush theory. A subtle

balance between these two forces governs the micellization. With this model we are

able to predict various properties such as critical micelle concentrations (i.e. the

concentration at which micelles first start to appear), micellar aggregation num-

bers (i.e. the number of molecules per micelle) and their distributions. The main

advantage of this analytical approach is that the physics behind the self-assembly

remain transparent.

In Chapters 3 and 4 we turned to a numerical technique, the self-consistent field

theory (SCFT) of Scheutjens and Fleer 3, to solve the more complex problem of the

self-assembly of telechelic polymers into micelles and networks, and to predict the

phase separation boundaries in the regime in between these two states (see Figure

12.6 and section 1.2 for more details).

Once the phase behavior of these associative polymers was unravelled using

this numerical tool, we developed several scaling arguments to further clarify the

physics underlying the phase behavior of associative polymer systems. The essential

features of the phase diagram of telechelic polymers were mapped out in this way.

This enabled us to define design rules that can be employed to synthesize thickeners

with a desired percolation threshold while being free of phase separation.

Interpreting the results obtained with self-consistent field models for self-assembly

can be troublesome in the sense that the underlying physics are not always trans-

parent. In Chapter 2 we have shown how the thermodynamic quantities found

from self-consistent field calculations map onto the total free energy landscape,

elucidating the thermodynamics behind SCFT for micellar systems. Several cri-

teria that are often used in self-consistent field modeling, such as the ’stability

constraint’ used to predict the cmc and the use of the curvature of the free energy

saddle points versus aggregation number to asses micelle polydispersity [1], could

be justified in this way.

2telechelic associative polymer: water-soluble linear macromolecule with a water-insoluble,

associating, block at both ends of the main polymer chain.
3Scheutjens-Fleer theory: a mean-field lattice-based method, developed in Wageningen in the

1980’s by Jan Scheutjens and Gerard Fleer, in which thermodynamic properties are computed by

numerically solving the governing statistical mechanical equations.
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Figure S1: Illustration of the possible mechanisms in which monofunctional chains pre-

vent phase separation in telechelic polymer solutions. a) the monofunctional chains enter

the flowerlike micelles, and due to their extension outside the flowerlike corona they cause

an additional repulsion between micelles that hinders phase separation. b) small domains

of a demixed, condensed phase are stabilized on the outside by the monofunctional chains,

forming supermicelles similar to casein micelles present in milk.

When micelles formed by the telechelic polymers are close enough together

they will interact. Whereas simple surfactant micelles only experience a repulsive

force arising from the compression of the micellar coronas4, micelles from telechelic

polymers display a significant attraction. This attraction is the result of an increase

in conformational entropy of the corona chains when they have the additional

possibility to form bridges between the two micelles in addition to forming loops

in the corona. When this attraction is strong enough, i.e. more than several kBT ,

it can lead to a liquid-liquid phase separation (see Chapter 4).

Strangely, in experimental systems phase separation is much more rare than

one might expect based on our calculations. Moreover, even different batches of

the same polymer can vary in behavior whether phase separation is found or not.

This raises the question what is causing these discrepancies. In our modeling,

we assumed that all chains had exactly two hydrophobic stickers at their chain

ends. In practice, the functionalization is never perfect and there is a distribution

of di-, mono- and unfunctionalized chains present in each sample. We can think

of two mechanisms in which the presence of monofunctional polymers prevents

macroscopic phase separation, see Fig.S1.

First of all, the monofunctional chains might be part of individual flowerlike

4micelles are generally divided into two compartments: i) the core, that contains the insoluble

blocks in the center of the micelle and ii) the corona, the outer layer of the micelle, that contains

the soluble parts of the surfactants.
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micelles and extend outside the flowerlike corona, as they are not able to form a

loop (Fig.S1a). These extended arms give rise to an additional repulsive barrier

between two micelles, hindering the micelles to cluster and eventually demix.

Another explanation, as illustrated in Fig.S1b, is that the combination of mono-

and difunctional polymers leads to the formation of higher order assemblies. Fi-

nite sized domains of a phase-separated network structure might be stabilized on

the outside by protruding chains of monofunctional polymers. A similar behavior

is found in milk, where mixtures of various caseins (also diblocks and triblocks)

spontaneously form supermicelles [2]. The size of these objects will depend on the

ratio of mono- and difunctional chains. At high contents of monofunctional chains,

one might find the structure illustrated in Fig.S1a.

Associative Polymers at Surfaces

In industry associative thickeners are often used as flow modifiers in products that

also contain colloidal particles. This brings up the question, what effect telechelic

polymers have on the stability of such colloidal suspensions. In practice, mixtures

of associative polymers and colloids tend to be unstable, indicating the induction

of attractive forces between the particles by the polymers. This is often attributed

to bridging effects. In this thesis we have shown that, in dilute solutions of the

polymers, indeed attractive interactions can be induced between two solid surfaces.

However, the nature of this attractive force depends on the interactions between

polymer and surface.

In Chapter 5 we demonstrated, with Colloid Probe (CP) -AFM experiments5,

that the phase separation boundary for solutions of telechelic polymers can be

shifted when they are confined between two very hydrophobic surfaces, leading

to capillary condensation6. The attractive force resulting from this confinement-

induced phase transition is due to the interfacial tension between the condensate

and the dilute bulk liquid. The interfacial tension between the polymer-rich con-

densate and the polymer-poor bulk phase could be extracted from the experimental

5Colloid Probe AFM: a technique in which a micrometer-sized particle is glued onto an Atomic

Force Microscopy (AFM) cantilever and is brought in vicinity of a flat surface, both immersed in

the solution of interest. In the AFM, changes in the reflected light from a laser beam aimed at

the top of the cantilever reveal small deflections of the cantilever. Because the cantilever acts as

a spring, this deflection can be transformed into the interaction force between the particle and

the flat surface.
6capillary condensation: the spontaneous condensation of a phase from an (under)saturated

bulk phase, e.g., water from water vapor, induced by confining the bulk phase between two

surfaces.
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Figure S2: Illustration of the effect of polymer-particle interactions on the colloidal

interactions induced by associative polymers. Weakly adsorbing associative polymer form

a micellar layer on the particle surface (a), inducing a bridging attraction between two

particles at close proximity (b). Associative polymers that strongly adsorb with their

hydrophobic stickers form a wetting layer at the surface (c) causing a long-ranged capillary

attraction between two of these particles (d). A particle dispersed in a network phase

of the associative polymers (e), experiences repulsion due to hydrodynamic effects when

a second particle approaches (f), and could also feel a short-ranged attraction due to

depletion or bridging effects.

force curves and was found to be ultralow, i.e. 104 times smaller than the interfacial

tension between water and air. Due to a combination of this ultralow interfacial

tension and the small geometry of the experiments, we were able to measure cap-

illary forces in full thermodynamic equilibrium for the first time.

Motivated by these experiments, we proposed a thermodynamic argument for

capillary forces at saturation (i.e. 100% relative humidity in terms of water vapor)
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in Chapter 6. The final expressions look very similar to what was derived by others

previously [3], yet differ fundamentally in the arguments on which the derivation

is based. In our approach, we simplified the thermodynamics by realizing that

the Laplace pressure7 vanishes close to saturation. This was confirmed by SCF

calculations and by a comparison with our earlier experiments.

This capillary effect is notably different from the molecular bridging attraction

that we observed between hydrophilic surfaces in Chapter 7 of this thesis, and

that has also been demonstrated for mildly hydrophobic surfaces by others [4].

A bridging attraction occurs when polymers are partly adsorbed on both of the

opposing surfaces, which can only occur when the surfaces are close enough. Pulling

the surfaces apart causes the polymer bridges to stretch out like springs, giving

rise to a force that opposes the further increase of the separation between the

surfaces. Since adsorption strongly decreases the dynamics of the polymers, these

bridging processes were found to be significantly slower than the dynamics of bridge

formation between two micelles in bulk solution, and also much slower than the

capillary phenomena discussed above. With a simple kinetic model, we were able

to describe the dynamics of bridge formation and disruption quantitatively, taking

into account both molecular detail (size of the polymer backbone and length of

the stickers) and macroscopic variables (the velocity with which the surfaces move

with respect to each other).

The two types of attraction that we have studied in this dissertation have a

significantly different manifestation. While the capillary forces are relatively weak,

O(10 pN), and long ranged (200-300 nm), the bridging forces are stronger, O(1

nN), but significantly shorter ranged (10-50 nm).

So why do we observe capillary forces in one case and bridging forces in another?

We believe that the answer lies in the differences in structure of the adsorbed

polymer layer on different solid surfaces (see Fig.S2). As elaborated by Ligoure [5],

the adsorption of micelles onto a surface can be considered as a wetting problem,

which is modified by the presence of the micellar corona.

In general, these associative polymers have a strong tendency to form micelles

with a spherical morphology, due to their highly asymmetric shape (small stickers

and a long soluble backbone). When the interaction between the polymer and

the surface is not particularly strong, the adsorbed layer will consist of admicelles

(when the corona chains adsorb, Fig.S2a) or hemimicelles (when the hydrophobic

tails adsorb). However, when the adsorption energy between the stickers and the

surface is large enough, e.g., for the very hydrophobic surfaces used in Chapter 5,

7Laplace pressure: the pressure difference between the inside and the outside of a droplet

caused by the interfacial tension acting between the two phases.
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a flat brush-like layer may be formed by the telechelic polymers (Fig.S2c). Prelim-

inary calculations using the self-consistent field theory (also used in Chapters 3, 4

and 6), show that such a transition between an inhomogeneous layer of adsorbed

micelles and a homogeneous flat adsorption layer is indeed found already for small

differences in adsorption energy between the alkyl tails and the solid surface.

For the brush-like layer formed on very hydrophobic surfaces, the local concen-

tration of polymer chains at the interface can be high enough to induce clustering

between the adsorbed layer and micelles in the bulk. In this way the formation

of bridges between the surface layer and free micelles can result in a secondary

adsorption layer (see Fig.S2c). Experimental evidence for such a process was given

in Chapter 8. In other words, we can expect the local density of micelles to be

enhanced close to a hydrophobic surface with respect to the bulk density. Such an

increase in density extending out from the surface is called a (pre)wetting layer.

When two of these wetting layers are brought in proximity, capillary condensation

is inevitable (Fig.S2d and Chapter 5.).

On the other hand, when adsorption occurs in a micellar configuration (Fig.S2a),

as is expected for the silica surfaces used in Chapter 7, the local concentration of

telechelic polymer sticking out in the solution is not so strongly enhanced. As a

result, the formation of a secondary layer of weakly bound micelles is less likely

and capillary condensation does not occur. In this case we only observed the short-

ranged bridging attraction (Fig.S2b).

In Chapter 8 we have studied the adsorption mechanism of telechelic polymer

micelles from dilute solution onto an air-water interface, mimicking the adsorption

of these polymers onto a very hydrophobic substrate. Kinetic tensiometry exper-

iments showed three distinct stages of adsorption. In the first transport-limited

process, flowerlike micelles diffuse towards and along the newly formed interface,

while attaching onto the interface with their polymeric coronas. In the second,

desorption-limited, step the micelles unfold and the micellar core spreads onto the

interface. In the final stage, bridges between the adsorbed layer and bulk micelles

are formed, leading to a secondary adsorption layer (see Fig.S2c). From dilute so-

lution, this latter process is extremely slow (with a characteristic relaxation time of

60,000 seconds) as bridging requires the simultaneous release of a sticker from the

adsorbed layer and the nearby presence of a bulk micelle. These experiments sug-

gest that, as speculated above, a secondary adsorption layer can indeed be formed

on very hydrophobic surfaces.

The above mentioned results apply to dilute polymer solutions, i.e. well be-

low the threshold for network formation. In practical systems, such as paints, the

polymer is always present in concentrations above this threshold. This makes one
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wonder how results obtained in dilute polymer solutions translate into effects in

a more concentrated regime. Unfortunately, performing CP-AFM measurements

in concentrated systems is difficult, as the high viscosity of the associative thick-

ener networks induce large drag forces on the cantilever that obscure the forces of

interest. As a result, we must turn to other ways to study colloidal interactions.

A classical way to assess interactions between colloidal particles is viscosimetry.

For a suspension of undeformable and impenetrable spheres, the relative viscosity

ηr, i.e. the actual viscosity of the sample over that of the suspending medium can

be written as a virial expansion8:

ηr = 1 + 2.5φ + k2φ
2 + ... (12.1)

where the term linear in the volume fraction φ is a single particle term that is due

to the deformation of the flow field around the particle, as derived by Einstein.

The higher order terms are due to particle-particle interactions. For hard spheres,

the second virial coefficient k2, according to Batchelor, is equal to 6.3, accounting

for hydrodynamic interactions between two particles in a Newtonian medium [6].

When other interactions come into play, the value of k2 will change; repulsive

interactions lead to increased excluded volume, thus higher values of k2 and weak

attractive interactions result in the opposite. Strong attractive interactions that

lead to clustering of the particles also tend to increase the viscosity of the sample,

as the effective volume fraction of aggregates, which entrap part of the solvent, is

larger than the volume fraction of these particles prior to aggregation.

Now let’s look at the results from a relatively simple experiment (Figure S3),

where we compare the increase in relative viscosity of latex particles suspended

in water and in a solution of associative polymers that has formed a transient

network. The latex particles in pure water, already show some additional electro-

static repulsion. When the medium is changed to the transient polymer network,

rather than observing a decrease in virial coefficient due to bridging interactions,

we see that the polymer matrix creates a significantly larger repulsion between the

particles. We can rescale the measurements onto the classical Einstein-Batchelor

prediction for hard spheres to extract the effective hard sphere volume fraction,

and the corresponding effective particle radius. In this specific case, we find an

increase in effective radius, between the latex particles suspended in water and in

a telechelic polymer solution, of approximately 30 nm, which is much larger than a

single adsorbed layer of these polymers. This might be explained by the fact that

8virial expansion: expressing a property (e.g., pressure or viscosity) of an ensemble of particles

as a power series in the density. The proportionality constants of the various terms, the virial

coefficients, are related to interactions between the particles.
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Figure S3: Relative viscosity ηr of 100 nm polystyrene latex particles, thoroughly

cleaned by dialysis, dispersed in either water (open symbols) or in an associative polymer

network (filled symbols). Solid line is the prediction by the classical Einstein-Batchelor

equation for hard spheres.

hydrodynamic interactions are relatively long ranged in viscoelastic fluids, com-

pared to hydrodynamic interactions in purely viscous fluids. Note that we did not

observe any aggregation in these samples, even after several weeks.

Although AFM measurements by Courvoisier et al. [4] indicate that telechelic

polymers induce a significant bridging attraction between polystyrene surfaces in

dilute solutions, we find that this effect is absent, or at least dominated by the

hydrodynamic repulsion discussed above, in concentrated solutions of the same

telechelic polymers.

A similar conclusion follows from microscopy experiments (Fig.S4). Fluores-

cently labelled polystyrene particles suspended in a dilute (i.e. 0.5 g/L, well below

the network threshold) solution of an associative thickener, tend to cluster and

sediment rapidly to the bottom of the sample (Fig.S4a and c). The same particles

suspended in a concentrated solution of the same polymer (Fig.S4b and d) remain

homogeneously dispersed and do not show any signs of clustering, even after sev-

eral days. Both simple experiments illustrate the limited applicability of the study

of colloidal interactions in dilute solutions of telechelic polymers to those in more

concentrated polymer solutions.

Nevertheless, phase separation is observed in many practical cases. One man-

ifestation is the separation of a layer of clear liquid on top of a latex paint (clear

liquid separation or paint syneresis). To find out what is driving this demixing one

should analyze both phases to distinguish between the two main types of phase

separation mechanisms. The first is segregative demixing, in which the two in-
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Figure S4: Confocal microscopy images of 10 µm fluorescent polystyrene particles

suspended in aqueous solutions of an octadecyl-modified PEO of 35 kg/mol at 0.5 g/L (a

and c) or 50 g/L (b and d). Images a and b are 2D slices, images c and d are 3D images

from z-stacks.

teracting species (in this case the thickeners and the latex/pigment particles) are

incompatible and will segregate into the two coexisting phases. A well-known ex-

ample of such a mechanism is depletion, which occurs when polymers do not adsorb

onto the surfaces of particles that are suspended in the polymer solution. In real

paints such a scenario might be induced when surfactants, often present in large

quantities, preferentially adsorb onto the particles, causing the polymer to desorb.

The second general phase separation mechanism is that of associative demixing,

in which the two interacting species have a strong attraction to each-other, and

expel excess water to reach an optimum density. In this case both thickener and

particles will be in the same phase, while the coexisting phase contains mainly

water and possibly some other components (e.g., surfactants). Such a scenario

might result from a capillary effect [7] or from weak bridging interactions.

One thing both scenarios have in common is that the strength of the attrac-
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tion depends on the difference in surface and bulk concentration of the polymer.

In general, the larger the difference, the larger the attractive forces between the

particles. In dilute solutions of thickeners it is quite clear that adsorption leads to

a higher surface concentration than in bulk, while depletion gives a negative excess

concentration at the surface. In a concentrated system these effects are naturally

more subtle. Nevertheless, the experiment proposed above (i.e. analyzing the two

phases in a demixed paint), seems vital as both scenarios require different measures

to prevent the undesired demixing. While a depletion-driven demixing can be pre-

vented by improving the adsorption of the polymers onto the particles, preventing

an associative phase separation requires just the opposite.

(Micro)Rheology9

In the formulation of associative thickeners for commercial products, the strive is

to accomplish an optimal interplay of all ingredients. One of the main efforts is

to have a synergistic effect between colloidal particles and the polymer networks.

When particles become part of the polymer network, e.g. by adsorption of the

micellar nodes of polymeric chains onto the particle surface, they act as multifunc-

tional junction points, thus increasing the modulus and viscosity of the formulation

(active fillers). On the other hand, when adsorption of the network onto the par-

ticles is prevented (passive fillers), e.g., by the preferential adsorption of available

surfactants onto the surfaces, this synergy is lost and particles might even act as

’flaws’ in the network accomplishing an opposite effect [8, 9].

In Chapter 9 we have shown that we can distinguish between the active and

passive fillers with Dynamic Light Scattering10, by analyzing the motion of the

particles at short time scales. Connected, i.e. active, fillers follow the motion of

the polymer chains at short time scales, whereas unconnected, i.e. passive, fillers

show ’normal’ diffusive motion. The polymer-like (Rouse-) dynamics of the colloids

that we encountered in these experiments could be rationalized by constructing an

analytical bead-spring model of a large particle connected to a set of polymer

chains. With these results we are able to connect macroscopic observations of

9rheology: the study of the flow and deformation of matter. (Passive) microrheology: the

mechanical properties of a material are deduced from the thermal motion of probe particles that

are embedded in the matrix of interest.
10Dynamic Light Scattering: laser light is passed through the sample of interest. When the

photons encounter a scattering object, e.g., a colloidal particle, they are scattered in all directions.

A photodetector records the intensity of the light scattered by the sample. Fluctuations in the

intensity of this scattered light are analyzed to give information on the internal dynamics of the

sample.
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synergistic effects for certain particles, to their behavior on a single particle level.

In the remainder of Part 3 we focussed on the rheology of associative thickeners

under large deformation. In Chapter 10 we have shown that, due to strong shear

thinning 11, the flow can become mechanically unstable. This instability, known

as shear banding, decomposes the sample into two (or sometime three) zones that

differ in internal structure, viscosity and possibly density. Once the flow is stopped,

the sample regains its quiescent state. With a variety of rheometry techniques we

analyzed the shear banding transition in associative polymer networks and we

showed that it is the direct result of an enhancement of the microscopic relaxation

kinetics in these networks caused by the shear forces on the associating stickers.

The traditional picture of shear banding in soft materials predicts the formation

of 2 bands separated by a flat interface, with which a single steady-state stress is

associated. In telechelic polymer systems, such a steady state is often not reached.

Under transient flow at a fixed imposed shear rate, the measured stress endlessly

fluctuates. Other authors have studied such behavior in different systems [10, 11]

and coined these fluctuations ’rheochaos’, due to the apparent chaotic nature of

these fluctuations. In Chapter 11 we have shown that in our case these apparently

chaotic dynamics are characterized by an underlying statistical pattern. The sta-

tistical signature of these fluctuations reveals signs of self-organized criticality, i.e.

a robust critical state reached spontaneously when highly non-linear systems are

actively driven (in this case by means of shear flow) from equilibrium. Interestingly,

the fluctuations associated with this self-driven critical state can be understood in

the same way as critical fluctuations in liquid-fluid coexistence. This illustrates that

concepts from equilibrium phase coexistence theories can be employed to under-

stand this apparently more complex non-equilibrium, mechanically-induced phase

transition.

The main feature of associative thickeners that makes them useful rheology

modifiers for paints, is their shear thinning behavior. During application of the

paint, which occurs at high shear rates (the estimated maximum shear rate accom-

plished during brushing is approximately 104 s−1), it should have a low viscosity to

facilitate the brushing. Immediately after application, the viscosity should increase

to prevent sagging and dripping. As we have shown, shear thinning can be accom-

panied by a mechanical instability. It is also known that shear banding can induce

partitioning of either the polymer [12] or the particles [13] in one of the bands.

This might lead to undesirable inhomogeneities in the coating after application.

Many available techniques to study such mechanical instabilities under con-

11shear thinning: a viscosity that decreases with increasing rate of deformation.
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trolled shear rely on optics for visualization of the flow or for measuring the local

fluid velocity across a sample. As most ’real’ systems are highly opaque, these

techniques cannot be employed. However, with the rheo-MRI technique, a com-

bination of rheometry and Magnetic Resonance Imaging, sample turbidity is not

an issue. Rheo-MRI, as pioneered by Paul Callaghan [14], was implemented in

Wageningen during this PhD project (see Chapter 12) in a cooperation with the

Wageningen NMR Centre. In addition to velocimetry experiments, rheo-MRI offers

the possibility to measure local proton densities and spin relaxation times to study

inhomogeneities in density. In a strong enough magnetic field one can even perform

accurate and spatially resolved spectral NMR for studying structural transitions

under shear on a molecular scale. This makes rheo-MRI a highly suitable technique

to investigate flow instabilities in complex systems. The first results on this set-up,

discussed in Chapter 12, look promising. Nonetheless, still significant efforts must

be made in order to reach the full potential of the technique in the current set-up.

Outlook

Over the course of the past 4 years we have made some significant steps in under-

standing network-forming polymers in our study of model associative thickeners.

With the lessons learned, new variables can be added to the equation, in a strive for

novel materials with increased responsiveness to environmental parameters, that

are biocompatible for use in drug delivery systems, that can replace food thicken-

ers from potentially hazardous origin (e.g. gelatin) or that can act as cell-growth

scaffolds. Several new projects within the Laboratory of Physical Chemistry and

Colloid Science have set out in this direction.

An interesting example is the project that studies telechelic polymer systems

that assemble by means of electrostatic interactions, rather than relying on hy-

drophobic interactions. The resulting materials should be highly responsive to

environmental triggers such as ionic strength and pH, allowing more flexibility in

achieving the desired properties without the need to design and synthesize new

polymers, as is the case with traditional thickeners.

Another fascinating perspective lies in the development of self-associating de-

signer proteins, now available through advanced bioengineering techniques [15].

These protein polymers use natural protein association motifs (e.g., β-sheets or

collagen-like triple helices) to create biomimetic materials. The high selectivity of

these natural association mechanisms, compared to ’crude’ hydrophobic interac-

tions, offers new tunability to these materials, e.g. the preparation of networks
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with nodes of perfectly defined and monodisperse multiplicity [16].

I can only modestly hope that the ideas put forward in this thesis might form

some sort of basis for these exciting developments.
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Samenvatting

Traditionele verven en lakken bevatten grote hoeveelheden vluchtige organische

verbindingen (VOCs = volatile organic compounds), die als oplosmiddel dienen

voor de filmvormende component (hars of ’binder’) en die tijdens het droogpro-

ces in de lucht vrijkomen. In recente jaren is vast komen te staan dat langdurige

blootstelling aan een VOC-rijke atmosfeer tot ernstige gezondheidsklachten kan lei-

den, waarvan de zogenaamde schildersziekte de meest beruchte is. Daarnaast leidt

VOC uitstoot tot ozonvorming in de troposfeer, waarvan wordt gedacht dat het tot

opwarming van de aarde leidt. Als op één na grootste bron van VOC emmissie dra-

gen verven, lakken en lijmen significant bij aan de huidige milieuproblematiek. Om

deze redenen heeft de EU richtlijnen aangenomen voor het geleidelijk terugdringen,

en uiteindelijk uitbannen, van VOC rijke coatingsproducten, en maken soortgelijke

aanbevelingen deel uit van internationale verdragen zoals het Kyoto-protocol.

Bij het bereiken van VOC reductie spelen watergedragen verven, waarin (bi-

jna) alle organische oplosmiddelen vervangen zijn door water, een belangrijke rol.

Hoewel watergedragen verven het milieu en gebruikers nagenoeg niet belasten,

kunnen de coatings die ze opleveren nog niet in alle opzichten concureren met

de kwaliteit van de traditionele oplosmiddelgedragen verven. Een aantal van de

problemen met watergedragen verven die tot een verminderde kwaliteit van de

uiteindelijke coating leiden zijn gëıllustreerd in Figuur 1. Voor een verdere ver-

dringing van VOC-rijke producten is het van belang dat deze kwaliteitsproblemen

worden onderzocht en opgelost. Het onderzoek beschreven in dit proefschrift levert

daar een bijdrage aan.

Watergedragen verven zijn eigenlijk dispersies van kleine polymeerdeeltjes in

water; men noemt zo’n dispersie ook wel een latex. Zonder toevoeging van een

verdikkingsmiddel zouden latexverven een viscositeit (’stroperigheid’) hebben als

die van melk. Direct na het aanbrengen zou zo’n verf uitzakken onder invloed

van de zwaartekracht (zie Figuur 1 rechtsonderaan). Om dat te voorkomen en te

zorgen dat de verf in een voldoende dikke laag kan worden aangebracht, worden
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Figuur 1: Illustratie van een aantal van de problemen die tot een slechte kwaliteit van een

coating kunnen leiden. Een ideale deklaag (boven) is een vlakke homogene laag van uni-

forme dikte. Complicaties zijn onder andere: 1) slechte uitvloeiing; borstelstreken blijven

zichtbaar in de coating. 2) inhomogene film: een gebrek aan coalescentie (samenvloeien)

van de latexdeeltjes geeft een onregelmatige en poreuze laag. 3) uitzakken: onder invloed

van de zwaartekracht stroomt/druipt de verf naar beneden.

verdikkers toegevoegd aan moderne watergedragen verven.

Als verdikkingsmiddel worden associërende polymeren gebruikt. Dit zijn grote

moleculen (macromoleculen of polymeren) die bestaan uit een lang waterminnend

middenstuk en twee korte watervrezende uiteinden (Figuur 2a). Opgelost in water

vormen deze moleculen uit zichzelf (spontaan) kleine objecten, bestaand uit een

aantal polymeermoleculen, in een proces dat zelf-assemblage of zelf-associatie wordt

genoemd. De watervrezende delen plakken aan elkaar (associëren) om het contact

met water zoveel mogelijk te beperken, terwijl de waterminnende delen elkaar juist

afstoten om zoveel mogelijk contact met het water te hebben. Een subtiele balans

tussen deze twee tegengestelde krachten zorgt voor de vorming van nanoscopisch

kleine deeltjes, die micellen worden genoemd (Figuur 2b). Vervolgens associëren

deze micellen weer met elkaar totdat er uiteindelijk een netwerk van aan elkaar

verbonden micellen wordt gevormd dat de gehele vloeistof overspant (Figuur 2d).

Het zijn deze netwerken die de gewenste eigenschappen hebben voor toepassing

als verdikkingsmiddel, niet alleen verven en cosmetica, maar ook in bijvoorbeeld

boorvloeistoffen voor de extractie van aardolie.

In het eerste deel van dit proefschrift hebben we het zelf-assemblage proces

van associatieve verdikkers in detail bestudeerd. We hebben een relatief simpele

beschrijving gemaakt van dit proces, in de vorm van analytische formules, waarin

we ons geconcentreerd hebben op de hoofdlijnen. Hierdoor hebben we een goed

beeld kunnen vormen van de belangrijkste fysische aspecten. Daarnaast hebben



SAMENVATTING 227

a) b)

c) d)

Figuur 2: Illustratie van de 4 stadia in de zelf-assemblage van associatieve verdikkers bij

toenemende concentratie van a) naar d;. a) bij hele lage concentraties zijn de ketens niet

geassocieerd, b) boven een bepaalde drempel concentratie assembleren de polymeren in

micellen, c) soms leidt de opeenvolgende associatie van micellen tot ontmenging van het

systeem in een polymeer-rijke en een polymeer-arme fase, d) als de polymeerconcentratie

hoog genoeg is (typisch ongeveer 1 gewichtsprocent) vormen de geassocieerde micellen een

macroscopisch netwerk.

we meer gedetailleerde (en complexere) computerberekeningen uitgevoerd welke in

goede overeenstemming bleken met het simpele model. Op deze manier hebben we

een compleet beeld van de zelf-assemblage van associatieve polymeren verkregen.

Dit heeft formules opgeleverd die als ontwerpregels kunnen worden toegepast bij

het maken van nieuwe verdikkers.

In het tweede deel van dit boekje staat beschreven hoe associatieve verdikkers

wisselwerken met oppervlakken. Verven bestaan voor een groot deel uit kleine

deeltjes of druppeltjes, die gezamenlijk een zeer groot oppervlak vertegenwoordigen.

Het totale beschikbare oppervlak in een liter latexverf, die typisch voor ongeveer

40 % bestaat uit deeltjes van 100 nanometer groot, is zo’n 12.000 vierkante meter

(meer dan 2 voetbalvelden!). De vraag hoe associatieve polymeren wisselwerken

met oppervlakken is daarom een centraal thema in het onderzoek naar waterge-

dragen verven. Het vermoeden bestond dat deze verdikkers aantrekkingskrachten

tussen deeltjes kunnen veroorzaken, waardoor de deeltjes de neiging hebben om

samen te klonteren in plaats van homogeen over de verf verspreid te blijven. In dit



228 SAMENVATTING

deel van mijn onderzoek hebben we 2 verschillende mechanismen blootgelegd die

tot zulke aantrekkingskrachten kunnen leiden. Het eerste mechanisme, waarover al

veelvuldig in de literatuur werd gesproken, is de vorming van zogenaamde bruggen

tussen de oppervlakken doordat polymeerketens tegelijkertijd aan beide opper-

vlakken gebonden zijn. Omdat de polymeerketens als kleine veertjes werken, leidt

het trekken aan deze bruggen tot een kracht in tegengestelde richting als waarin

de ketens zijn uitgerekt (net als bij een gewone veer). Het tweede mechanisme,

dat tot op dit punt over het hoofd was gezien, speelt zich op grotere schaal af,

dat wil zeggen dat het niet door enkele moleculen wordt veroorzaakt maar door

een groot aantal polymeerketens tezamen. Ingeperkt tussen twee oppervlakken kan

zich uit een oplossing van deze verdikkers spontaan een onoplosbare druppel van

een polymeer-rijke fase vormen; een verschijnsel dat capillaire condensatie heet.

Het uitrekken van zijn druppel die aan beide oppervlakken kleeft, leidt eveneens

tot een kracht in tegengestelde richting. Dit soort krachten, capillaire krachten

genoemd, zijn ook de reden dat zandkorrels bij elkaar worden gehouden (in dit

geval door kleine waterdruppels) in een zandkasteel. Het water werkt als een lijm

die de zandkorrels bij elkaar houdt. Zonder deze kleine hoeveelheid water, dus

met kurkdroog zand, kan je dan ook geen zandkasteel bouwen omdat de capillaire

adhesiekracht afwezig is. Naast theoretische bestudering van deze mechanismen,

hebben we beide soorten aantrekkingskrachten ook direct kunnen meten met een

zogenaamde atoomkrachtmicroscoop (AFM = Atomic Force Microscope), waarmee

krachten tot 10 picoNewton (= 1 hondermiljardste Newton) gemeten kunnen wor-

den (zie Figuur 3). Omdat klontering van de deeltjes veelal ongewenst is, proberen

verfproducenten dit soort aantrekkingskrachten te onderdrukken. Een gestruc-

tureerde aanpak hiervan vereist een fundamenteel begrip van de onderliggende

mechanismen, waaraan we in dit deel van het proefschrift hebben bijgedragen.

In het derde, en laatste deel van dit proefschrift zijn de stromingseigenschap-

pen van associatieve verdikkers onderzocht. Naast hun directe praktische nut fun-

geren deze netwerken als een geschikt modelsysteem voor een veel grotere verzamel-

ing aan visco-elastische materialen. Visco-elastische materialen, zoals silly putty,

gedragen zich bij een snelle, abrupte vervorming als een vaste stof, maar als je

ze de tijd geeft om zich aan een opgelegde kracht aan te passen gedragen ze zich

als een vloeistof. Visco-elasticiteit is een veelvoorkomende materiaaleigenschap,

denk hierbij naast verven ook aan tal van half-vloeibare levensmiddelen (sauzen,

zuivelproducten, desserts), bloed, biologische weefsels, shampoo, etc. Hoewel de

mechanische basiskarakteristieken van deze associatieve verdikkers zeer eenvoudig

lijken te zijn, hebben wij laten zien dat het stromingsgedrag allesbehalve eenvoudig

te noemen is. Kleine breukjes en zelfherstelmechanismen in het materiaal zorgen
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Figuur 3: Links: Schematisch tekening van de atoomkrachtmicroscoop. Een laser schijnt

op een reflecterende cantilever (veer) en het gereflecteerde licht valt op een detector.

Doorbuiging van de cantilever, door duw- of trekkrachten tussen het oppervlak en een

bolvormige deeltje, wordt waargenomen door de verplaatsing van de laser op de detector te

volgen. Het oppervlak is gemonteerd op plateau waarmee het oppervlak op de nanometer

nauwkeurig ten opzichte van de probe bewogen kan worden. Op deze manier kan de kracht

tussen oppervlak en deeltje als functie van de onderlinge afstand worden gemeten. Rechts:

Electronenmicroscopische foto van een kolloidale probe bevestigd op een standaard AFM

cantilever.

voor een zeer onverwacht verschijnsel, namelijk hele grote en continue fluctuaties

in de kracht benodigd om het materiaal met een constante snelheid te vervormen.

Deze fluctuaties hebben nog het meest weg van hele zwakke aardbevingen (met een

grootte van −6 op de schaal van Richter), dat wil zeggen de door ons gemeten fluc-

tuaties voldoen aan dezelfde statistische wetmatigheden die ook voor aardbevingen

gelden. Uit onze analyse bleek bovendien dat dit soort stromingsverschijnselen, die

voorheen als zeer exotisch werden beschouwd, in feite veel algemener zijn en voor

een veelvoud aan materialen verwacht mogen worden.

Veel van de resultaten die in dit boekje staan beschreven zijn van generieke aard,

dat wil zeggen niet alleen toepasbaar op deze specifieke moleculen maar ook bruik-

baar voor het beschrijven van andere typen zelf-assemblerende polymeren. Nieuwe

projecten binnen het laboratorium voor Fysische Chemie en Kolloidkunde hebben

koers gezet naar de ontwikkeling van nieuwe, slimmere materialen, gebaseerd op

gelijksoortige moleculen. Deze materialen moeten bijvoorbeeld toegang geven tot

nieuwe mogelijkheden om de eigenschappen van het materiaal te sturen, bv. gevoe-

ligheid voor de omgevingsomstandigheden, of betere biocompatibiliteit (voor ge-

bruik in geneesmiddelen of als matrix voor weefselkweek). Hopelijk vormen de

stappen die tijdens dit project zijn gezet een basis voor deze spannende ontwikke-

lingen.





List of Publications

THIS DISSERTATION:

• J. Sprakel, P. Skrzeszewska, J. van der Gucht, F.A.M. Leermakers and M.A.

Cohen Stuart: Physics of transient network-forming associative poly-

mers, in preparation. (review article)

• J. Sprakel, E. Spruijt, M.A. Cohen Stuart, M.A.J. Michels and J. van der

Gucht: Intermittent fracture and self-healing in a viscoelastic fluid,

submitted. (Chapter 11)

• J. Sprakel: Hierarchical adsorption of network-forming associative

polymers. Langmuir in press (2009). (Chapter 8)

• J. Sprakel, E. Bartscherer, G. Hoffmann, M.A. Cohen Stuart and J. van

der Gucht: Dynamics of polymer bridge formation and disruption

Physical Review E 78, 040802 (2008). (Chapter 7)

• J. Sprakel, F.A.M. Leermakers, M.A. Cohen Stuart and N.A.M. Besseling:

Comprehensive theory for star-like polymer micelles; combining

classical nucleation and polymer brush theory Physical Chemistry

Chemical Physics 10, 5308-5316 (2008). (Chapter 2)

• J. Sprakel, E. Sprujt, M.A. Cohen Stuart, N.A.M. Besseling, M.P. Lettinga

and J. van der Gucht: Shear banding and rheochaos in associative

polymer networks Soft Matter 4, 1696-1705 (2008). (Chapter 10)

• J. Sprakel, J. van der Gucht, M.A. Cohen Stuart and N.A.M. Besseling:

Brownian particles in transient polymer networks. Physical Review

E 77, 061502 (2008). (Chapter 9)

• J. Sprakel, N.A.M. Besseling, M.A. Cohen Stuart and F.A.M. Leermakers:

Phase behavior of flowerlike micelles in a SCF cell model. European

Physical Journal E 25, 163-173 (2008). (Chapter 4)

• J. Sprakel, N.A.M. Besseling, M.A. Cohen Stuart and, F.A.M. Leermakers:

Capillary adhesion in the limit of saturation: thermodynamics, self-

consistent field modeling and experiment. Langmuir 24, 1308-1317



(2008). (Chapter 6)

• J. Sprakel, J. van der Gucht, M. A. Cohen Stuart and N.A.M. Besseling:

Rouse dynamics of colloids bound to polymer networks. Physical

Review Letters 99, 208301 (2007). (Chapter 9)

• J. Sprakel, N.A.M. Besseling, F.A.M. Leermakers and M.A. Cohen Stuart:

Equilibrium capillary forces with atomic force microscopy Physical

Review Letters 99, 104504 (2007). (Chapter 5)

• J. Sprakel, N.A.M. Besseling, F.A.M. Leermakers and M.A. Cohen Stuart:

Micellization of telechelic associative polymers: self-consistent field

modelling and comparison with scaling concepts. Journal of Physical

Chemistry B 111, 2903-2909 (2007). (Chapter 3)

OTHER WORK:

• I.K. Voets, R. de Vries, R. Fokking, J. Sprakel, R. May, A. de Keizer and

M.A. Cohen Stuart: On the structure of spherical complex coacervate

core micelles. submitted.

• L.E. Riemsdijk, J. Sprakel, A.J. van der Goot and R.J. Hamer: Protein

micro-particle networks; controlling the rheology of high protein

products through mesostructural ordering. submitted.

• M.W.T. Werten, H. Teles, A.P.H.A. Moers, E.J.H. Wolbert, J. Sprakel, G.

Eggink and F.A. de Wolf: Precision gels from collagen-inspired tri-

block copolymers accepted for publication Biomacromolecules (2009).

• F.A.M. Leermakers, J. Sprakel, N.A.M. Besseling and P.A. Barneveld: On

the curvature dependence of the interfacial tension in a symmetric

three-component interface. Physical Chemistry Chemical Physics 9, 167-

179 (2007).

• F.A.M. Leermakers, P.A. Barneveld, J. Sprakel and N.A.M. Besseling: Sym-

metric liquid-liquid interface with a non-zero spontaneous curva-

ture. Physical Review Letters 97, 066103 (2006).

• E. Scholten, J. Sprakel, L.M.C. Sagis and E. van der Linden: Effect of

interfacial permeability on droplet relaxation in biopolymer-based

water-in-water emulsions. Biomacromolecules 7, 339-346 (2006).

• B. Moorthaemer and J. Sprakel: Improving the stability of a suspen-

sion. Pharmaceutical Technology Europe 18, 30-34 (2006).



Dankwoord

Het is u wellicht opgevallen dat er in de voorgaande hoofdstukken steeds wordt

gesproken vanuit de 1e persoon meervoud (wij ), terwijl er slechts 1 naam op de

omslag prijkt. Dit is niet wegens grootheidswaan (pluralis majestatis) of een meer-

voudige persoonlijkheidsstoornis (me, myself and I ), maar omdat het gepresen-

teerde werk een teaminspanning is. Bij deze krijgt het beestje dan ook een naam!

Martien, ik vind het heel bijzonder hoe jij, ondanks je drukke agenda, van al

de (vele) projecten binnen onze groep precies weet wat er gebeurt en dat je altijd

op het juiste moment de juiste suggesties doet. Ik ben je dankbaar dat ik onder

jouw hoede mijn promotieonderzoek heb mogen doen en dat je me het vertrouwen

hebt gegeven hierin mijn eigen weg te ontdekken.

Frans, het was jouw enthousiasme op het praktikum kolloidkunde tijdens mijn

studie, dat me deed kiezen voor de fysische chemie. Dit onuitputtelijke enthou-

siasme en optimisme, je scherpe geest en je onorthodoxe, soms wat verwarrende

maar effectieve motiveringstechnieken (”dat is allemaal ruis”) maken je tot een

fantastische begeleider.

Klaas, tijdens de eerste helft van dit project hebben we prettig samengewerkt,

en ik heb in deze periode veel van je geleerd, met name het analytisch benaderen

van lastige problemen en het belang van zorgvuldigheid en precisie, waarvoor ik je

dankbaar ben.

Jasper, ik kan niet anders zeggen dan dat ik heb genoten van onze samen-

werking. De schijnbare moeiteloosheid waarmee jij ingewikkelde vraagstukken tot

heldere en begrijpbare concepten weet te ontleden is onnavolgbaar en zeer inspir-

erend. Je bent een hele relaxte, stimulerende en behulpzame begeleider, die zijn

AIO’s echt boven zich uit kan laten stijgen. Ik hoop dat dit project slechts het

begin van onze samenwerking is, want ik denk dat we een goed team vormen.

Naast dit team van begeleiders waren er vele anderen die direct of indirect

een bijdrage hebben geleverd aan dit proefschrift. Evan, ik weet dat je niet van

grote complimenten houdt, maar eerlijk is eerlijk, ik had natuurlijk geen betere

233



234 DANKWOORD

afstudeervakker kunnen treffen dan jij. Je bent een ontzettend slimme kerel, en

nog gezellig ook. Het was echt een plezier met je te werken. Anouk, je onderzoek

viel niet direct binnen mijn promotieonderzoek, maar ik had toch het genoegen je

samen met Jasper te mogen begeleiden. De samenwerking was erg leuk en je hebt

het heel goed gedaan.

During these 4 years I had the opportunity to collaborate with a variety of

scientists from various places and backgrounds, which has enormously enriched my

PhD experience. I am very thankful to Anthonie Stuiver & Karel van Streun (Akzo

Nobel Coatings Research), Soren Hvidt (Roskilde University), Thijs Michels (Eind-

hoven University of Technology), Pavlik Lettinga (Forschungszentrum Jüelich) and
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