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Abstract
The research described in this thesis deals with the self-organizing properties

of systems of biomolecules. Biomolecules exhibit two properties that guarantee a
large ‘design space’ for creating order through interactions. First, they often consist
of a large number of subunits that can be connected many different ways. In the
case of DNA this is the nucleotide base-pair sequence, in proteins the sequence of
amino acids and in filamentous protein aggregates, like microtubules, the varying
number of subunits and the dynamical state of the aggregate. Second, biomolecular
interactions often have a high degree of specificity, allowing selective engineering
of molecular contacts and the targeted modulation of properties. In this thesis we
explore these possibilities, using two concrete examples.

The first system under study is the microtubule cytoskeleton of the interphase
plant cell, which is organized into the highly ordered transverse cortical array. Micro-
tubules are long, dynamical protein aggregates that form a major component of all
eukaryotic cells. Each individual microtubule is a dynamical system that stochasti-
cally switches between periods of growth and shrinkage, with frequencies that can
be modulated by other biomolecular interactions. The cortical microtubules in plant
cells are thought to be rigidly attached to the inside of the cell membrane, thereby
effectively forming a two-dimensional system in which their intrinsic dynamics are
modulated by motion through treadmilling and direct collisions. Recent experiments
have suggested that simple collision rules with three possible outcomes - cross-over,
induced catastrophe and re-alignment - underlie the observed self-organization.
These observations naturally lead to a stochastic many-parameter model that has
been studied using both analytical and simulation methods. The theoretical ap-
proach has led to the identification of control parameters for the alignment of the
cortical array, and to predictions regarding the alignment that agree qualitatively, and
in some cases quantitatively, with the simulation results. The combined approach
has made it possible to isolate the alignment potential that results from the vari-
ous interaction mechanisms. Furthermore, the simulations have been extended to
three-dimensional cell shapes and spatially varying parameters to investigate the
orientation mechanism of the cortical array.

The second system under consideration is the man-made model system of DNA-
coated colloids, for which the interactions can be tuned by a suitable choice of
the DNA-linkers between individual beads. These systems promise the creation of
designer colloidal crystals in which specific local arrangements of distinct particles
can be extended over macroscopic distances. Here we address the fundamental
question of what patterns are designable given isotropic pair-wise interactions. We
investigate this question for two-dimensional finite range interactions on lattices of
a given symmetry. It is shown that a periodic ground state of arbitrary size can be
designed if the interaction range satisfies a minimum criterion, depending on the
lattice type. In addition, a recipe is presented that guarantees the existence of such
a unique ground state. The recipe is extended to periodic patterns with non-trivial
unit cells and illustrated using simulation results.
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Introduction 1
Looking at the world around us, we find ourselves surrounded by complex structures
on all scales: machines, buildings, social groups, and on a smaller level organisms,
cells and proteins. The inquisitive mind naturally wonders how all of this is being
produced. For man-made objects, this process often involves the gathering of mate-
rials, assembly and verification of the result. Needless to say, all of this is done by a
person – or factory robot – overseeing the production process.

It immediately becomes clear that this picture of assembly cannot apply to all
objects. There is no building plan for organizations and societies, nor are cells
assembled piece by piece by an outside constructor. Even the basic crystal of kitchen
salt is not constructed by careful placement of each individual ion. Rather, these and
many other structures emerge from the collective interactions of their constituents:
they are self-organizing systems.

Through the cooperative behavior of their constituents, such systems eliminate
the need for an external constructor. Such a non-hierarchial organization can be
very efficient, especially as the systems get larger. Most importantly, even though
there is no central control, it is not necessary for the individual components to ‘know’
what the completed design should look like, but only the (small) part they should
be playing. In this way, complicated behavior or structures can emerge from simple
components.

This thesis is concerned with two particular self-organizing systems that consist
of biomolecules. In the first chapters, we take a look at how cortical microtubules in
plant cells align spontaneously to form the ordered structure that is known as the
cortical array, a question that is of basic importance in the understanding of plant
morphology. Later, in chapter 6, we turn to the possible application of self-organizing
principles to man-made materials, specifically systems consisting of DNA-coated
colloids. For this model system we address the fundamental question how much
knowledge individual particles should have about the final product for them to
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assemble it from scratch. Our approach to these questions starts from a detailed
understanding of the components that make up these self-organizing systems.

1.1 A quantitative approach to biology

Over the past decades, many techniques and technologies have been developed that
allow us to study the inner workings of the cell with an ever increasing resolution.
The discovery, cloning and fusion of green fluorescent protein (GFP) has triggered a
revolution through its ability to tag specific proteins in live cells, so that they can be
observed directly through the microscope (Tsien, 1998). Also, the development of the
optical tweezers (Ashkin, 1970) has opened up a new world of micro-manipulation.
Taken together, these types of innovations have produced large amounts of detailed
and quantitative data on the inner workings of the cell. This has made intracellular
processes amenable to the types of quantitative questions that are often asked by
physicists: how much, how fast and to what extent? In recent years, this has caused a
rapid expansion of the field of biophysics.

The work that is described in this thesis involves mathematical models and
simulations. The common aspect of these two methods is that they both make
use of an explicit quantitative model. To write down a set of equations or to run a
simulation you not only need to specify which interactions take place, but you also
need to provide an exact description of the strength of these interactions. This is
in stark contrast to more qualitative models that usually only specify the existence
and the generic type of interactions. These qualitative models form an essential
initial step in the understanding of a system, especially when detailed experimental
data are hard to obtain. As such, many models of biological systems are primarily
qualitative. However, now that experimental observations with sufficient accuracy
are within reach, these qualitative models can, and should, be further specified to
yield testable quantitative models.

In the following sections we will introduce a number of basic properties of the
self-organizing systems that will be studied in the context of this thesis: cortical
microtubules and DNA-coated colloids.

1.2 Microtubules

Every eukaryotic cell has an internal network of filaments know as the cytoskeleton,
consisting of microtubules, actin and (in some species) intermediate filaments (Al-
berts et al., 2002). Microtubules, the stiffest of the three structural elements, are the
topic of much of the work in this thesis. The basic building block of a microtubule
is a heterodimer consisting of two subunits, α- and β-tubulin. These heterodimers
assemble head to tail to form long protofilaments that, in turn, associate laterally to
create the hollow tube that is the microtubule. In vivo, a microtubule usually consists
of 13 protofilaments (Desai and Mitchison, 1997). Due to its fairly large diameter



1.2 Microtubules 3

( 25nm), microtubules are extremely rigid on a cellular scale, with a persistence length
between 0.08 and 8 mm (Van den Heuvel et al., 2008).

DYNAMIC INSTABILITY

Microtubules extend by polymerization, the incorporation of new tubulin dimers
into the microtubule lattice at either one of the ends. Each of the α and β subunits
need to bind to GTP molecule before they can become part of the microtubule. The
β-tubulin-associated GTP is hydrolyzed to GDP soon after the polymerization step
and remains in that state as long as it is part of the microtubule (Desai and Mitchison,
1997). The polymerization process thus leads to the maintenance of a GTP-tubulin
ring (cap) on a polymerizing microtubule end.

Microtubules have been observed to switch spontaneously from periods of rel-
atively steady polymerization to periods of rapid depolymerization. This so-called
‘catastrophe’ is thought to be caused by fluctuations that cause the GTP-tubulin
cap to disappear. The switch from the polymerizing to a depolymerizing state and
the persistence of this state is likely to be enhanced by the intrinsic curvature of
the protofilaments, especially in the GDP state (Desai and Mitchison, 1997). After a
period of rapid depolymerization, microtubules can switch back to the growing state
in a process called a ‘rescue’ event. The existence of alternating periods of growth
and shrinkage has been dubbed dynamic instability (Mitchison and Kirschner, 1984).

The asymmetry of the microtubule building blocks, the tubulin dimers, means
that the microtubules themselves are also polar molecules. This asymmetry is ex-
ploited by various motor proteins that are able to walk along the microtubules uni-
directionally. In addition, the asymmetry results in differences in dynamics at each
microtubule end. The direction in which the β-tubulin subunits are pointed is called
the plus end and is the most dynamic of the two. The dynamics of the opposite minus
end are much less well studied. (Desai and Mitchison, 1997). Although the minus
end is capable of showing dynamic instability in in vitro conditions, it seems to be
more regulated inside the cell. In many cases, the minus end remains attached to a
nucleation site (Burk et al., 2007), or is found to undergo (relatively) steady depoly-
merization (Shaw et al., 2003). The combination of net addition of dimers at and a
net removal at the minus end leads to an effective transport of dimers from the plus
to the minus end, and an apparent forward motion of the microtubule in a process
called treadmilling (Rodionov and Borisy, 1997).

On a mesoscopic level, the dynamics of the plus end has been described by a
model in which the plus end of a microtubule is in either a growing or a shrinking
state, with associated effective growth and shrinkage speeds. The switching between
these two states occurs stochastically, according to two independent switching rates
(Mitchison and Kirschner, 1984; Hill, 1984; Dogterom and Leibler, 1993). This model
works surprisingly well (Verde et al., 1992) and the necessary parameters have been
measured in many systems, including plant cells (Vos et al., 2004; Ishida et al., 2007).

Over the years, many models have been introduced that describe the dynamics
of microtubules starting in a more detailed fashion, such as the GTP cap models by
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Flyvbjerg et al. (1994) and Antal et al. (2007) and explicit elasticity models by Jánosi
et al. (2002) and VanBuren et al. (2005). However, in the context of this thesis we will
make use of the mesoscopic two-state model of microtubule dynamics, both because
of its simplicity and because it allows for better comparisons with experimental
observations on the cellular scale.

NUCLEATION

At cellular tubulin concentrations, there exists a prohibitive barrier for the sponta-
neous self-assembly of microtubules. This barrier is overcome with the help of the
γ-tubulin protein that is the main component of the γ-tubulin ring complex (γ-TuRC)
(Zheng et al., 1995). These ring-shaped complexes are thought to provide a ‘mould’
for the initial polymerization of tubulin dimers. In addition, they serve to stabilize
and hold the microtubule minus end. The controlled release of minus ends from the
γ-TuRCs is thought to have biological relevance (Desai and Mitchison, 1997).

SEVERING

It was noted by Vale (1991) that apparently stable microtubules could be severed in
mitotic extracts of Xenopus eggs. This activity was traced back to a protein that is able
to use ATP hydrolysis to sever microtubules. The protein was identified only later
and given the name katanin after the katana, the Japanese Samurai sword (McNally
and Vale, 1993). Katanin is a heterodimer, consisting of the p60 and p80 subunits.
The p80 subunit is thought to be responsible for the targeting of the protein, whereas
p60 is involved in the actual severing as part of a hexameric ring (Hartman and Vale,
1999). The hexameric form of katanin appears to remove individual dimers from the
microtubule lattice, thereby compromising the structural integrity of the microtubule.
It is not currently clear whether katanin acts uniformly along the microtubule, or
whether it is attracted by pre-existing lattice defects (Davis et al., 2002).

Katanin homologs have since been discovered across the animal and plant king-
doms (Burk et al., 2007). Also, another severing protein by the name of spastin has
been identified. Like katanin, it also assembles in a hexameric ring, suggesting a
severing mechanism similar to that of katanin (Roll-Mecak and Vale, 2008). Severing
proteins can be used by the cell to assist in the regulation of the cytoskeleton, for
example in the mitotic and meiotic spindles (McNally et al., 2006). Generally, the
activity of severing proteins leads to a decrease in the average microtubule length, but
an increase in their number (Roll-Mecak and Vale, 2006). Surprisingly, this increase
in number can sometimes more than offset the loss of microtubule length due to the
average length decrease (Srayko et al., 2006).

Earlier theoretical studies have assessed the effect of severing on actin filament
length distributions (Edelstein-Keshet and Ermentrout, 1998; Roland et al., 2008).
In chapter 2 we investigate the length distribution of microtubules in the presence
of severing proteins by extending the dynamic instability model for microtubule
dynamics.
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Figure 1.1: Schematic overview of microtubule nucleation, dynamic
instability and severing, indicating the tubulin dimers and their α- and
β-subunits.
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1.3 The plant cell cortical array

Plant cells have a basic organization that is different from many other eukaryotic cells.
Because the individual cells must contribute to the structural integrity of the plant
as a whole, they have rigid cell walls and contain large pressure-regulating vacuoles
that keep the cell under constant tension (Wasteneys, 2002).

cell wall

cell growth

cortical 
microtubules

membrane linker

microtubulecell membrane

vacuole

cortical array

Figure 1.2: Schematic picture of a plant cell (left) alongside an image
of an interphase BY-2 cell with fluorescently labelled tubulin (center;
courtesy of Jan Vos, Wageningen University). The enlargement illustrates
the connections of aligned microtubules with the plasma membrane.

This configuration presents the plant cell with a unique morphological problem.
To construct the plant’s body plan, cells need to expand and divide in well-defined
directions. How can this be coordinated with the deposition and maintenance of the
cell wall? The answer is linked to the cellulose microfibrils inside the cell wall. These
are deposited in regular arrays that wrap the cell in more or less parallel orientations.
The cell wall therefore responds anisotropically to stress. Effectively, the microfibrils
form a corset that guides the expansion of the cell in the direction transverse to their
orientation (Lucas and Shaw, 2008).

The existence of ordered microfibrils begs the question of how they are laid
down. Interestingly, the parallel organization of microfibrils – on the outside of the
cellular membrane – has been found to mimic that of the microtubule cytoskeleton
(Paradez et al., 2006). During interphase, most microtubules in plant cells are found
at the cell cortex where they form the cortical array, a structure that is also oriented
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transversely to the direction of cell growth. It has long been speculated that the
cortical microtubules serve as rails for the deposition of the cellulose microfibrils,
an interpretation that has been strengthened by the experimental observations of
Paredez et al. (2006). However, recent experiments have suggested that the causality
may not be so clear-cut (Paredez et al., 2008).

The question of cellular growth in plants therefore leads to the basic question
how the cortical microtubules form the cortical array, and how its orientation is
established. In contrast to animal cells, in which most microtubule arrays are radially
attached to a centrosome, there is no obvious microtubule organizing center in plant
cells (Pastuglia and Bouchez, 2007). Instead, the cortical array is a self-organizing
structure that emerges from the interactions between the constituent microtubules,
mediated by microtubule-associated proteins. The intriguing question how the
cortical array is established forms the basis of the majority of the work in this thesis:
chapters 3–5.

1.3.1 Microtubule-associated proteins

Microtubule-associated proteins (MAPs) perform a large variety of functions related
to the cytoskeleton, and a number of these have been identified to play a role in the
regulation of the plant cytoskeleton, and the formation of the cortical array in partic-
ular (Lloyd and Hussey, 2001; Sedbrook and Kaloriti, 2008). In the theoretical and
simulation work in this thesis, we restrict ourselves to three particular types of MAP
activity: nucleation (γ-tubulin), severing (katanin) and cell membrane anchoring.
Each of these is discussed in more detail below. The arguably important class of plus
end associated proteins (+TIPS) will not be discussed in detail, because their activity
can likely be absorbed into the four parameters of the dynamic instability model of
the plus end.

CELL MEMBRANE ADHESION

Electron microscopy images first hinted at the existence of a link between the corti-
cal microtubules and the plasma membrane (Hardham and Gunning, 1978; Barton
et al., 2008). The resulting idea that cortical microtubules are stably anchored to the
plasma membrane (and perhaps the cell wall) has been reinforced by subsequent
observations. Tracking of GFP-labelled microtubules has clearly demonstrated that
the cortical microtubules do not move laterally, and any axial motion is only due to
treadmilling (Shaw et al., 2003; Vos et al., 2004). Finally, although the polymerizing
plus end is moving because of the cytoplasmic streaming, the body of the micro-
tubule remains firmly in place (Sainsbury et al., 2008). Although the adhesion of
microtubules to the plasma membrane is now widely accepted, its nature remains
unclear. Phospholipase D is thought to be involved in this connection, and has been
observed to aggregate in a punctate pattern along microtubules (Gardiner et al., 2001).
A similar pattern occurs in the distribution of CLASP, a plus end binding protein (Kirik
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et al., 2007). The evidence points to the existence of more or less regularly spaced
attachment points that involve more than a single protein.

Despite the uncertainty regarding the mechanism of attachment, the qualitative
observation that cortical microtubules are anchored to the membrane has important
consequences. Firstly, it implies that there is no rotational or translational movement
of existing microtubules. The dynamics of the system are therefore a product of
the movement of the microtubule plus and minus ends. Secondly, the anchoring
combines with the stiffness of the microtubules to confine the system to a quasi
two-dimensional space: all interactions occur in the close vicinity of the plasma
membrane.

γ-TUBULIN

Also in plant cells, the nucleation of new microtubules involves γ-tubulin. However,
unlike most other eukaryotes, the γ-tubulin is not part of a microtubule organizing
center like a centrosome. Rather, it is mostly found adhered to existing microtubules,
nucleating new microtubules that ‘branch off’ at an angle of approximately 40◦ (Mu-
rata et al., 2005). Nucleation along the direction of existing microtubules (especially
in bundles) has also been reported (Ehrhardt, 2008).

Although these microtubule-associated nucleation mechanisms are thought to
be the dominant modes of nucleation once the cortical array has been established,
another type of nucleation is necessary to explain the initial creation of microtubules
after cell division. Just after cytokinesis, microtubules grow towards the cortex from
the nuclear periphery (Bartolini and Gundersen, 2006). Also, microtubules are seen
to nucleate at random positions and in random directions during interphase (Chan
et al., 2003; Shaw et al., 2003). These mechanism are likely to lead to a random
orientation of nucleated microtubules, but recent experiments1 suggest a transient
preference for diagonal orientations of these early microtubules.

KATANIN

Studies of the microtubule severing protein katanin2 in plant cells have indicated
that it colocalizes with the cortical microtubules (Burk et al., 2007). Mutations in the
Arabidopsis katanin gene have been shown to cause a breakdown or decrease of the
alignment of the cortical microtubules (Bichet et al., 2001; Burk et al., 2001). The
disordered cortical array in these mutants is reflected by the aberrant orientations
of the cellulose microfibrils in the cell wall, resulting in reduced cell elongation
and an overall decrease in size of the organism (Burk et al., 2007). On the other
hand, overexpression of katanin in Arabidopsis and the resulting increase in severing
events initially leads to the formation of bundles (Stoppin-Mellet et al., 2006). The

1Lindeboom et al., in preparation
2Homologs of the microtubule severing protein katanin have been discovered in plant cells under many

different names (Burk et al., 2007), but for reasons of clarity we will use the common name katanin in the
context of this thesis.
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mechanism behind this is likely twofold. First, severing creates shorter microtubule
fragments that are free to move by treadmilling, so that they can align with other
fragments through the zippering process that is explained in the next section. Second,
if both fragments of a single severed microtubule start growing, they effectively form
a bundle. The same authors have reported that a further increase in the severing rate
leads to a disorganized array of very short microtubules, as is to be expected.

Where on the microtubule does the severing take place? Three different scenarios
have been reported in the literature. Firstly, katanin is thought to be responsible for
the release of microtubules from their nucleation sites and therefore enables tread-
milling (Wasteneys, 2002). Secondly, it is unclear whether any significant amount of
severing takes place along the length of the microtubules. In katanin-overexpression
experiments by Burk et al. (2007) no fragmentation of microtubules was observed.
However, in the study by Stoppin-Mellet et al. (2006), severing along the length of
microtubules was observed. The factors influencing unbiased microtubule fragmen-
tation and their relevance are still largely unknown. Finally, Wightman and Turner
(2007) have observed in Arabidopsis cotyledons that severing events in ordered arrays
occurred almost exclusively at the locations where two microtubules cross. This
suppression of intersections can be a powerful ordering agent by itself, as we will see
in section 4.4.2.

1.3.2 Microtubule collisions

The effective confinement of the cortical microtubules to a two-dimensional surface
leads to a unique property of the plant cell’s cortical array: frequent collisions of
polymerizing microtubule plus ends with existing microtubules. Such a collision
leads to one of three outcomes (sometimes after a short pause): (1) zippering, the
bending of the microtubule plus end and its continued polymerization in the direc-
tion of the encountered microtubule; (2) induced catastrophe, a collision-induced
switch to the depolymerizing state; (3) cross-over, the continued polymerization in
the original growth direction (Shaw et al., 2003; Dixit and Cyr, 2004; Wightman and
Turner, 2007; Barton et al., 2008). The probability of each outcome is highly depen-
dent on the angle of incidence between the two microtubules. Generally, zippering is
likely to occur for small incidence angles, and is not observed at all for angles larger
than approximately 40◦ (tobacco BY-2) or 30◦ (Tradescantia virginiana) (Dixit and
Cyr, 2004; Barton et al., 2008). Conversely, the probability for an induced catastro-
phe increases with the angle. For experimental observations of the probabilities of
zippering, induced catastrophe and cross-over in tobacco BY-2 cells, see figure 3.2.
Measurements on Arabidopsis indicate a similar propensity for zippering, but a less
frequent occurrence of induced catastrophes, resulting in more cross-over events
(Wightman and Turner, 2007).
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induced

catastrophe

zippering

crossover

Figure 1.3: The possible outcomes of a microtubule collision event.

1.3.3 Array dynamics

When the first microtubules appear at the cell cortex, shortly after cell division, they
are short and disorganized. In a period of approximately one hour they grow, interact
and align to form the cortical array. In the final state, the microtubules have a length
of approximately 1/8 the cell circumference (Hardham and Gunning, 1978; Barton
et al., 2008), corresponding to approximately 10 µm and the mean distance between
microtubules (equivalent to the inverse density) is approximately 1 µm (Ambrose
et al., 2007)3. The degree of order is best expressed in terms of the order parameter
S2 (see equation (3.72)), which attains values in the range 0.6-0.8 (out of a range [0,1])
(Tanase, 2004). It has been reported that the array as a whole has a net polarity (Dixit
et al., 2006), but due to the low number of microtubules that has been measured
per cell, the effect may not be very significant. Chapters 3 and 4 address, both
theoretically and using simulations, the question how such an ordered system can
emerge from the interactions between microtubules.

In interphase growing cells, the cortical array is oriented transversely to the
growth direction. As cells mature and growth slows, the cortical array reorients
towards the long axis or becomes less organized. Cells have also been observed to
reorient the cortical array in response to light (Paredez et al., 2006) or cell wall stress
(Hamant et al., 2008). Finally, there are reports of cells in which the microtubules
are not aligned globally, but have ordered domains that are continuously evolving
(Chan et al., 2007). Not much is known about the physical or biological mechanisms

3Also observed in Lindeboom et al., in preparation.
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determining the orientation and reorientation of the cortical array, but it has been
suggested that biochemical signals can locally change the microtubule dynamics,
thereby creating a preferred direction (Ehrhardt and Shaw, 2006). This possibility,
and the potential effect of geometry, is addressed in chapter 5.

1.4 Harnessing DNA for self-assembly

The sections above have highlighted a selection of the many processes in plant
cells that have evolved over the course of millions of years to allow for the reliable
creation of the microtubule cortical array. In this section we switch to the area of
man-made self-assembling materials, the design elements of which are up to us
to decide on. There are many promising applications of complex materials with
features on the micrometer scale, such as photonic crystals, micro-arrays and electric
circuits. Unfortunately, the direct production of such materials, especially in three
dimensions, is often difficult, requiring an assembly process that is accurate over
several orders of magnitude, from the smallest scale of the pattern to the size of the
final product. Therefore it is an attractive option to look into alternative production
methods, such as the use of smaller components that can self-assemble into larger
structures. This way, the sampling power of thermodynamics can be harnessed to
allow the components to ‘search’ for their target position in the final material.

This leads us to the question of how these self-assembling components and their
interactions should be designed. Biomolecules are obvious candidates for the design
of interactions, due to their large variety and the specificity of their interactions. One
of the most promising approaches to the design of interactions between components
has been the use of DNA hybridization. Each single DNA strand consist of a series
of bases, commonly denoted by the letters A, T, C and G. Because there is a strong
preferential binding between A and T, and between C and G, every strand has a unique
complementary strand to which it can bind with maximum affinity. The range of
possible binding sequences provided by DNA’s four-letter alphabet combined with
the specificity of base pair binding means that the binding affinity can be precisely
manipulated, and this can not only be done for a single pair of DNA strands, but
orthogonal interactions can be defined simultaneously for a large number of strands
in the same solution. These properties of DNA make it an ideal candidate for the
biochemical ‘glue’ of designed interactions, and it has been successfully used to
create many intriguing structures, such as rigid tetrahedrons (Goodman et al., 2005),
functionalized 2D lattices (Zheng et al., 2006) and nearly arbitrary 2D objects, such
as smiley faces (Rothemund, 2006).

1.4.1 DNA-coated colloids

In chapter 6, we focus on a specific case of a DNA-mediated self-assembling system
that was first proposed by Mirkin et al. (1996). In this system, the DNA is grafted onto
micrometer-sized beads. The two strands forming the DNA are of slightly different
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A

B

A
B

10 µm

Figure 1.4: Depiction of a DNA-mediated specific connection between
two bead types, indicated by A and B. The bottom image is a recon-
structed image based on experiments with a similar system (Geerts et al.,
2008, reproduced with permission).

lengths, so that a short stretch of single stranded DNA is exposed at the far end of the
strand. This creates what is called a ‘sticky’ end, to which another single DNA strand
can bind through hybridization of the DNA strands, provided the binding affinity
is high enough. The sticky ends of two different beads can either bind directly (see
figure 1.4), or mediated by a piece of linker DNA, that has preferential affinities for
the sticky ends of both types of beads. The latter provides more flexible control over
the possible interactions in the system, especially when many beads with different
sticky ends are involved. In principle, it is therefore possible to create a system with
many different types of beads, each of which has tunable interactions with every
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other type of bead. The holy grail of the research on DNA-coated colloids is to design
colloidal materials that will, in the proper circumstances, self-assemble from their
constituents (the DNA-coated beads).

In spite of the theoretical possibilities, it has proven difficult to experimentally
create the predicted self-assembling crystals, due in part to the sensitivity of the
system to the strength of binding and the length of the DNA strands (Schmatko
et al., 2007; Geerts et al., 2008). Furthermore, in those cases where macroscopic
crystal structures have been created, this has been done for a single bead species
(Biancaniello et al., 2005; Hill et al., 2008) or two species of beads (Nykypanchuk et al.,
2008; Park et al., 2008). However, theoretical work suggests that more complicated
patterns are worth investigating (Tkachenko, 2002; Licata and Tkachenko, 2006;
Lukatsky et al., 2006).

1.5 Outline

Following this introduction, the research presented in this thesis starts with two theo-
retical chapters. In chapter 2, we construct a model for the severing of non-interacting
microtubules by severing proteins and how this affects the length distribution of
microtubules. Following this, in chapter 3 we formulate a model for the alignment of
microtubules in the cortical array, taking into account their dynamic instability and
collisions between microtubules.

The theory proposed in chapter 3 is constructed as a coarse-grained model
derived from an underlying microscopic picture. This abstraction is put to the test in
chapter 4, which describes an efficient simulation method to explicitly evaluate the
dynamics of the underlying microscopic models. Furthermore, these simulations
are used to probe parameter regimes that were not accessible to the theory. Taken
together, the theory and simulations provide insight into the mechanisms leading to
microtubule alignment. Chapter 5 addresses the poignant question what determines
the direction in which the microtubules align, focusing on geometry and protein
activity as possible orientational cues.

Switching from the naturally evolved structure in plants, chapter 6 explores the
limits of man-made self-organizing materials. Using the model system of DNA-
coated colloids as a paradigm for self-assembly, a simple 2D lattice model for self-
assembling materials is introduced. For this model, a minimal recipe is derived for
the required particle-particle interactions that are needed for the system to assemble
into a predetermined ground state.

The most relevant result of preceding chapters are collected in chapter 7 and
placed into their biological and physical context. In addition, interesting avenues for
future research are indicated.





The effect of severing on
microtubule length 2
Many different cell types have been shown to exhibit severing of microtubules by the
ATPases katanin and spastin (Roll-Mecak and Vale, 2006) and mutation experiments
suggest that this severing process plays an important, and sometimes crucial, role in
the regulation of the cytoskeleton (McNally et al., 2006; Burk et al., 2001). Generally,
the activity of severing proteins has been linked to a decrease in the average length
of the microtubules, accompanied by an increase in their number (Roll-Mecak and
Vale, 2006).

Three distinct types of severing by katanin have been reported. Firstly, in plant
cells it is thought to be responsible for the release of microtubules from their nucle-
ation sites, thereby enabling treadmilling motion (Wasteneys, 2002). Secondly, in
Arabidopsis cotyledons, Wightman and Turner (2007) have observed severing specifi-
cally at the intersections of cortical microtubules. Finally, both katanin and spastin
are capable of severing microtubules at seemingly random locations (Roll-Mecak
and Vale, 2006).

In this chapter, we investigate theoretically how the occurrence of microtubule
severing affects the average length distribution and the total number of microtubules.
Previous studies have assessed the effect of severing on actin filaments (Edelstein-
Keshet and Ermentrout, 1998; Roland et al., 2008). However, whereas actin dynamics
can be described well by a single growth mode with constant polymerization and de-
polymerization rates, microtubules have a plus end that switches between prolonged
periods of growth (polymerization) and shrinkage (depolymerization).

2.1 Model

In modelling this problem, we start from the basic dynamic instability model that
was introduced by Dogterom and Leibler (1993). In this model, microtubules exist
in either the growing or the shrinking state, and switch between these states with
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fixed ‘catastrophe’ and ‘rescue’ rates rc and rr . In the growing state, the microtubule
extends with an effective speed v+, and in the shrinking state it recedes with an
effective speed v−. New microtubules are being nucleated with a steady nucleation
rate rn . This set of constraints gives rise to an ensemble length distribution that
evolves over time.

Microtubule severing is modelled by a constant severing rate per unit length. This
is a valid approximation if we assume that microtubule severing occurs on a time
scale that is much shorter than the time in which a microtubule grows significantly
(tsev ¿ l/v+, where l is the average microtubule length). By taking a constant sev-
ering rate, we also implicitly assume that severing is limited by the availability of
microtubules, i.e. severing protein is available in abundance. However, because we
focus on steady-state results, where the total amount of microtubules is constant, the
possible invalidity of this assumption will not qualitatively affect the results.

rn

Nucleation Dynamic instability

rs

Severing

rcrr

v+

v-

rescue catastrophe

Figure 2.1: Schematic representation of the elements of the model. A list
of parameters is given in table 2.1.

Following the approach by Dogterom and Leibler (1993), we construct a set of
master equations for the length distributions of growing and shrinking microtubules.
Denoting the growing and shrinking microtubule length distributions by m+(l , t)
and m−(l , t ), respectively, the equations can be written as

∂t m+(l , t ) =−Φcatastrophe +Φrescue +Φgrowth +Φ+
severing (2.1a)

∂t m−(l , t ) =+Φcatastrophe −Φrescue +Φshrinkage +Φ−
severing , (2.1b)

where each term stands for the contribution from a specific process, the explicit form
of which is explained below. These equations are supplemented by the boundary
conditions

m+(0, t ) = rn

v+ , (2.2)

specifying the nucleation of new microtubules with rate rn , and

lim
l→∞

m+(l , t ) = 0 (2.3)

lim
l→∞

m−(l , t ) = 0. (2.4)
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Parameters
v+ growth speed
v− shrinkage speed
rc catastrophe rate
rr rescue rate
rn nucleation rate
rs severing rate
Dependent variables
m+(l ) length distribution of growing microtubules
m−(l ) length distribution of shrinking microtubules

Table 2.1: Overview of all parameters and variables in natural dimensions

The latter two represent the physically motivated constraint that there are no in-
finitely long microtubules.

2.1.1 Dynamic instability

Φgrowth in equation (2.1a) corresponds to the length increase of the growing segments.
For segment growth in isolation, the length increase in a small time interval δt is
given by v+δt , where v+ is the growth velocity, and we have m+(l + v+δt ,θ, t +δt ) =
m+(l ,θ, t ). By expanding the left hand term to first order in δt , we find

∂t m+
i (l , t ) =−v+∂l m+

i (l , t ) ≡Φgrowth (2.5)

A similar derivation yields that

∂t m−
i (l , t ) = v−∂l m−

i (l , t ) ≡Φshrink (2.6)

where v− is the shrinking velocity.
Φrescue and Φcatastrophe in equations (2.1) correspond to the fluxes due to the

spontaneous rescues and catastrophe events. These events occur with a constant
rate rr and rc per microtubule, leading to

Φrescue =rr m−
i (li ,θi , t ) (2.7)

Φspont. cat. =rc m+
i (li ,θi , t ) (2.8)

The contributions that have been discussed up to this point (the first three terms
of equations (2.1)) together constitute the dynamic instability model that was intro-
duced by Dogterom and Leibler (1993). These equations have been studied in great
detail by Bicout (1997) (see also Bicout and Rubin, 1999).

2.1.2 Microtubule severing

Extending the basic dynamic instability model, we proceed to add the effect of
microtubule severing. A similar contribution was derived by Edelstein-Keshet and
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Ermentrout (1998) as the continuous limit of a discrete monomer addition and
severing model for actin filaments.

The inclusion of severing events leads to two specific contributions to the length
distributions: the disappearance flux φout(l , t) of microtubules of a certain length
l and the appearance flux φin(l ′, t) of two new microtubules with a total length
that is equal to l . In addition, the newly created microtubules can be created from
microtubules that were initially growing (+) or shrinking (-). Symbolically, we write

Φ+
severing =−φ+

out(l , t )+φ+
in,+(l , t )+φ+

in,−(l , t ) (2.9)

Φ−
severing =−φ−

out(l , t )+φ−
in,+(l , t )+φ−

in,−(l , t ) (2.10)

These contributions will be discussed individually below.

The process of severing is controlled by the severing rate rs that is given as a rate
per unit of length. Thus we find that the fluxes of disappearing microtubulesφ+

out(l , t )
(growing) and φ−

out(l , t ) (shrinking) are given by

φ+
out(l , t ) = rs lm+(l , t ) (2.11)

φ−
out(l , t ) = rs lm−(l , t ) (2.12)

Moving on to the influx terms φ±
in,±, it is necessary to specify the process of

severing in more detail. We will assume that the action of the severing protein is
local, thus having no effect on the remote plus and minus ends of the microtubule it
severs. This implies that the plus end fragment of a severed microtubule remains in
the same state. However, we must make an explicit assumption regarding the state of
the newly created plus end. In line with biological observations (Quarmby, 2000), we
assume that the plus end starts out in the shrinking state. If necessary, the model can
easily be extended to handle (a fraction of) severing-created plus ends that start out
in the growing state.

Defining P (l |l ′) = 1/l ′, l ∈ [0, l ′] as the uniform probability distribution of se-
lecting a severing location l on a microtubule of length l ′ we can then derive the
influx φ+

in,+(l , t ) of growing microtubules of length l that results from the severing of
growing microtubules.

φ+
in,+(l , t ) =

∫ ∞

0
φ+

out(l ′, t )P (l ′− l |l ′)dl ′ (2.13)

= rs

∫ ∞

0
l ′m+(l ′)θ(l ′− l )

1

l ′
dl ′ (2.14)

= rs

∫ ∞

l
m+(l ′)dl ′, (2.15)

where θ(x) is the Heaviside step function. In a similar way, and taking account the



2.1 Model 19

fact that the minus end fragment is always in a shrinking state, we also derive

φ+
in,−(l , t ) = 0 (2.16)

φ−
in,+(l , t ) = rs

∫ ∞

l
m+(l ′)dl ′ (2.17)

φ−
in,−(l , t ) = 2rs

∫ ∞

l
m−(l ′)dl ′. (2.18)

By taking the appropriate integrals, it can be shown that these terms conserve the
total microtubule length, and that a new microtubule is created by each severing
event. Furthermore, note that we do not need to keep track of the correlations
between the lengths of the individual microtubules that are created from a single
cutting event, because we are looking only at ensemble-averaged length distributions.

2.1.3 Reducing the complexity of the equations

We are now in the position to combine all the elements of the master equations (2.1),
yielding

∂t m+(l , t ) =− rc m+(l , t )+ rr m−(l , t )− v+∂l m+(l , t )

− rs lm+(l , t )+ rs

∫ ∞

l
m+(l ′, t )dl ′ (2.19)

∂t m−(l , t ) =+ rc m+(l , t )− rr m−(l , t )+ v−∂l m−(l , t )

− rs lm−(l )+ rs

∫ ∞

l
[m+(l ′)+2m−(l ′)]dl ′. (2.20)

We can further simplify these equations by introducing common length and time
scales in order to reduce the number of free parameters. As a length scale we will
use the free run length l0 = v+/rc and as a time scale the associated catastrophe time
tc = 1/rc . This leads to the definition of the dimensionless units

x = rc

v+ l , (2.21)

τ= rc t . (2.22)

Furthermore, we rescale the distributions to absorb the nucleation rate and we drop
the explicit time dependence of the variables in anticipation of our steady state
analysis. Explicitly, we define

f +(x) ≡ v+

rn
m+(l (x), t (τ)) (2.23)

f −(x) ≡ v+

rn
m−(l (x), t (τ)) (2.24)

v ≡ v+/v− (2.25)

r ≡ rr /rc (2.26)

s ≡ rs v+/r 2
c , (2.27)
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producing the set of dimensionless equations

∂τ f +(x) =− f +(x)+ r f −(x)−∂x f +(x)− sx f +(x)+ s
∫ ∞

x
f +(x ′)dx ′ (2.28)

∂τ f −(x) =+ f +(x)− r f −(x)+ 1

v
∂x f −(x)− sx f −(x)+ s

∫ ∞

x
[ f +(x ′)+2 f −(x ′)]dx ′,

(2.29)

with the boundary conditions

f +(0) = 1 (2.30)

lim
x→∞ f +(x) = 0 (2.31)

lim
x→∞ f −(x) = 0. (2.32)

Looking at the structure of these equations, we see that they constitute a coupled
set of transport equations, with boundary conditions on the ‘entry points’ (0 for the
growing microtubules, ∞ for the shrinking ones). The constraint on the growing
microtubules at ∞ is not a strictly independent constraint, but we will include it for
clarity’s sake. In the steady state, the time derivatives vanish and we arrive at the final
set of equations.

∂x f +(x) =− f +(x)+ r f −(x)− sx f +(x)+ s
∫ ∞

x
f +(x ′)dx ′ (2.33a)

1

v
∂x f −(x) =− f +(x)+ r f −(x)+ sx f −(x)− s

∫ ∞

x
[ f +(x ′)+2 f −(x ′)]dx ′, (2.33b)

with the boundary conditions

f +(0) = 1 ; lim
x→∞ f +(x) = 0 ; lim

x→∞ f −(x) = 0. (2.33c)

2.2 Results

We will proceed to analyze the steady state equations (2.33) in a number of steps.
Initially, we determine a number of global properties of the length distributions.
Subsequently, we obtain explicit expressions for the microtubule length distributions
in two special cases: very small amounts of severing (s ¿ (1−r v)2) and in the absence
of rescues (r = 0). We conclude with a numerical method with which the distribution
can be calculated for arbitrary parameter values.

2.2.1 Integral relations

Let us define the nth moment of the functions f +(x), f −(x) as

M±(n) ≡
∫ ∞

0
xn f ±(x)dx. (2.34)
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To obtain the relations between the moments, we multiply equations (2.33a) and
(2.33b) by xn and integrate from 0 to ∞. This yields the relations

−nM+(n−1) =−M+(n) + r M−(n) +δn0 − s
n

n +1
M+(n+1) (2.35)

−n
1

v
M−(n−1) =−M+(n) + r M−(n) +δn0

f −(0)

v
− s

1

n +1
M+(n+1) + s

n −1

n +1
M−(n+1).

(2.36)

Subtracting equation (2.36) from (2.35) and evaluating the result for n = 1 gives

v M+(0) = M−(0), (2.37)

and for n = 0 we get

M+(1) +M−(1) = 1

s

(
f −(0)

v
−1

)
. (2.38)

This expression gives us the integrated microtubule length present in the system.
The quantity f −(0)/v is the ratio of the microtubule flux out of the system by total
catastrophes and the nucleation rate. Each severing event creates a new microtubule,
so in the steady state this number will be larger than one.

If we use (2.37) to simplify the equation (2.35) for n = 0, we obtain expressions
for the total number of growing and shrinking microtubules.

M+(0) =
∫ ∞

0
f +(x)dx = 1

1− r v
(2.39a)

M−(0) =
∫ ∞

0
f −(x)dx = v

1− r v
. (2.39b)

This leads to the surprising result that the total number of microtubules in the system
does not depend on the rate of microtubule severing.

2.2.2 Small severing rates

The results of the model in the absence of severing are exponential functions with
the length scale (1− r v)−1. To investigate the changes that occur for very limited
severing activity s, we introduce the perturbation

f +(x) = e−(1−r v)x (1+ s f̂ +(x))+O(s2) (2.40)

f −(x) = ve−(1−r v)x (1+ s f̂ −(x))+O(s2). (2.41)

Inserting these expressions into equations (2.33) and dropping all higher order terms
gives a set of equations that can be solved to yield

f +(x) = e−(1−r v)x
(
1+ s

[
1+ r v2

(1− r v)2 x − 1+ r v2

2(1− r v)
x2

])
+O(s2) (2.42)

f −(x) = ve−(1−r v)x
(
1+ s

[
1+ v

(1− r v)2 + −v + r v +2r v2

(1− r v)2 x − 1+ r v2

2(1− r v)
x2

])
+O(s2).

(2.43)
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Both solutions will become negative for large values of x. However, even though this
is decidedly unphysical, we expect the effect on measurable parameters such as the
average microtubule length to be small, because of the rapid decay of | f +(x)| and
| f −(x)|. The properties of the resulting distributions, such as the average length, will
therefore still remain valid.

The first-order distributions in s satisfy the total microtubule number constraint∫ ∞
0 [ f +(x)+ f −(x)]dx = (1+ v)/(1− r v)+O(s2), consistent with the general result

(2.39). For the average length we obtain (to first order in s)

< x >= 1

1− r v
− s

1+ v

(1− r v)4 +O(s2). (2.44)

For r = 0, this result is consistent with the exact result that is derived below (section
2.2.3). Finally, we also determine the variation

σ2
x =< (x−< x >)2 >= 1

(1− r v)2 −k
2(2+ v + r v2)

(1− r v)5 +O(s2) (2.45)

and, from that, the coefficient of variation (σx / < x >)

σx / < x >= 1−k
1+ r v2

(1− r v)3 +O(s2). (2.46)

This number provides a measure for the relative width of the distribution. From the
results (2.44) and (2.46) we conclude that severing decreases both the width and the
relative width of the length distribution.

RANGE OF VALIDITY

The results above have been obtained under the assumption that s is very small.
To make an a priori estimate for the validity range of s, we estimate the relative
importance of the terms on the right-hand side in equations (2.33a) and (2.33b).
Using the results in the absence of severing as a benchmark, the terms not involving
s give contributions of the order (1− r v)e−(1−r v)x . Comparing the integral term
(evaluated for the s = 0 situation) with this term gives s ¿ (1− r v)2. The term that
is proportional to sx will dominate the other terms for large x, but this does not
significantly affect the results if it only occurs for lengths that are much longer than
the average length. Evaluating the terms at x = n/(1− r v), where n is the number of
average lengths, we obtain the constraint s ¿ (1− r v)2/n. Because n is of the order 1,
we simply state that the approximation is accurate for

s ¿ (1− r v)2. (2.47)

2.2.3 In the absence of rescues

In the limit r = 0 (no rescues), equation (2.33a) for f +(x) decouples from (2.33b) and
can be solved analytically. This solution can then be used to obtain an expression for
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f −(x). We introduce the primitive functions F±(x) =−∫ ∞
x f ±(x ′)dx ′, allowing us to

rewrite equations (2.33) as

∂x (∂x F+(x)+ (1+ sx)F+(x)) = 0 (2.48)

∂2
x F−(x)

v
=−∂x F+(x)+ sx∂x F−(x)+ sF+(x)+2sF−(x). (2.49)

Using the boundary conditions F+(0) =−1 (from (2.39a)) and ∂x F+(0) = f +(0) = 1
we can solve the first of these equations and obtain the solution

F+(x) =−exp

(
−x − 1

2
sx2

)
. (2.50)

Inserting this solution into equation (2.49), it can be solved using the boundary
conditions F−(0) =−v (from (2.39b)) and limx→∞ F−(0) = 0 to give

F−(x) =− v exp

(
−x − 1

2
sv2

)
×[

1−
√
π

2

√
s(1+ v)x exp

(
(1+ s(1+ v)x)2

2s(1+ v)

)(
1−erf

(
1+ s(1+ v)xp

2s(1+ v)

))]
, (2.51)

where erf(z) is the error function

erf(z) = 2p
π

∫ z

0
e−t 2

dt . (2.52)

The expressions for f +(x) and f −(x) follow by differentiation of (2.51). The resulting
distribution for v = 1/2 and various values of s is shown in figure 2.2.

Looking at the derivative of the combined distribution f +(x)+ f −(x), we find that
for x = 0

∂x ( f +(x)+ f −(x))|x=0 =−(1+ v)(1− s(1−2v)). (2.53)

The perhaps surprising implication is that if v < 1/2, sufficiently high severing rates
can lead to a positive slope of the distribution at x = 0. In other words, in that case
the length distribution no longer decreases monotonically with length. Finally, we
compute the average microtubule length as

< x >=
∫ ∞

0 x( f +(x)+ f −(x))dx∫ ∞
0 ( f +(x)+ f −(x))dx

(2.54)

=− 1

1+ v

∫ ∞

0

(
F+(x)+F−(x)

)
dx (2.55)

=
p
π

z
e1/z2

(
1−erf

(
1

z

))
, with z = s(1+ v). (2.56)

As expected, the average length decreases with increasing severing activity. Also, this
result matches with the small-s expansion (2.44).
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Figure 2.2: Results in the absence of rescues (v = 1/2, r = 0). a) Length distributions
for three different values of the severing rate: s = 0 (black), s = 1 (dark gray) and s = 3
(light gray). The inset shows the same distributions on a logarithmic scale. b) Average
length as a function of the severing parameter s. The squares indicate the parameter
values of the distributions in (a). The dashed line is the small-s approximation (2.44).
Based on the in-vivo measurements reported by Vos et al. (2004, interphase cells), an
indicative value of v = 1/2 has been used for all calculations. Length distributions
have been calculated from (2.50) and (2.51); the average length from (2.56).
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Figure 2.3: Numerically computed length distributions (v = 1/2, r = 1) and com-
parison with simulation data. a) Length distributions for three different values of
the severing rate: s = 0 (black), s = 1 (dark gray) and s = 3 (light gray). The inset
shows the same distributions on a logarithmic scale. Also shown is simulation data
(see chapter 4) for s = 1, matching the predicted distribution. Simulation parame-
ters were [v+ = 0.1µm s−1, v− = 0.2µm s−1, rc = 0.01s−1, rr = 0.01s−1, rn = 10s−1,
rs = 0.001µm−1s−1]. Length data was distributed into 500 bins and sampled 1000
times at 50 second intervals after an initial equilibration period of 50,000 seconds.
b) Average length as a function of the severing parameter s. The squares indicate
the parameter values of the distributions in (a). The dashed line is the small-s ap-
proximation (2.44) The light gray curve, which converges for large s, is the result for
r = 0 (figure 2.2). Based on the in-vivo measurements reported by Vos et al. (2004,
interphase cells), an approximate value of v = v+/v− = 1/2 has been used for all
graphs. Length distributions have been calculated from (2.63).
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2.2.4 Numerical evaluation of the length distribution

In order to numerically solve the distributions for arbitrary parameters, we introduce
a different parametrization. Inspired by the results (2.37) and (2.39) we define

p(x) = f +(x)+ f −(x) (2.57)

q(x) = v f +(x)− f −(x). (2.58)

Hence, p(x) is a (dimensionless) measure of the total microtubule density and q(x)
is proportional to the imbalance between polymerization and depolymerization of
the microtubules with a given length x. In the steady state, such an imbalance can
be produced only by severing (otherwise, q(x) = 0), causing microtubules to ‘jump’
from one location in the distribution to another, and q(x) must satisfy

∫ ∞
0 q(x) = 0.

In terms of p(x) and q(x), the steady state equations (2.33) are written as

∂x q(x) = sv

[
−xp(x)+2

∫ ∞

x
p(x ′)dx ′

]
(2.59)

∂x p(x) = −(1− r v)p(x)− (1+ r )q(x)− s(1− v)xp(x)− sxq(x)+
s
∫ ∞

x

[
q(x ′)+ (1−2v)p(x ′)

]
dx ′ (2.60)

Equation (2.59) can be formally solved to give

q(x) = sv
∫ ∞

x

[
x ′p(x ′)−2

∫ ∞

x′
p(x ′′)dx ′′

]
dx ′ (2.61)

= sv
∫ ∞

x

[
(2x −x ′)p(x ′)

]
dx ′. (2.62)

By inserting this equation in equation (2.60), we transform the problem into a single
integral equation. We can subsequently remove the integrals by differentiating three
times and obtain the linear fourth-order ODE

p(4)(x) =(−1+ r v − s(1− v)x)p(3)(x)+ s(−4+ v(5+x(1+ r + sx)))p(2)(x)+
4sv(1+ r +2sx)p(1)(x)+12v s2p(x), (2.63)

where p(n)(x) stands for (d/dx)n p(x). To derive the boundary conditions for this
problem we will make use of (2.39) and (2.30), from which we can derive∫ ∞

0
p(x)dx = 1+ v

1− r v
, (2.64)∫ ∞

0
q(x)dx = 0, (2.65)

q(0) =−p(0)+1+ v. (2.66)
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By repeated application of these equalities and differentiation of equations (2.59)
and (2.60) we obtain the boundary conditions

p(1)(0) =(1+ v)r p(0)− (1+ v)(1+ r )+ s(1+ v)

(
1−2v

1− r v

)
(2.67)

p(2)(0) = [−r (1+ v)(1− r v)+3sv] p(0)+ (1+ v)

[
(1+ r )(1− r v)− s

(
3− r v +2r v2

1− r v

)]
(2.68)

p(3)(0) =r (1+ v)
[
(1− r v)2 + sr (−3+7v)

]
p(0)− (1+ v)(1+ r )(1− r v)2+

s(1+ v)
[
6+3r −4v −5r v +2r v2]− s2

(
1+ v

1− r v

)
(3−4v +8v2) (2.69)

We note that these boundary equations are of the form


p(0)

p(1)(0)
p(2)(0)
p(3)(0)

= P1p(0)+P2 (2.70)

with a single undetermined parameter p(0). Because equation (2.63) is a homo-
geneous linear ODE, we can evaluate it independently using either P1 or P2 as a
boundary condition. We generally find that both solutions diverge, with opposite
signs. The value of p(0) can be determined from the constraint limx→∞ p(x) = 0.

To this end, both solutions should be evaluated over a range that is as high as
possible, whilst maintaining a very high numerical accuracy, because the final result
is obtained by subtracting the two diverging functions. In our calculations, we have
evaluated the differential equation with sufficient precision to achieve an accuracy
of 13 significant digits and the integration range was limited to a range of 10 decay
lengths (x = 10(1− r v)−1) or to the point at which the first solution exceeded the
value 108.

Figure 2.3 shows the numerically computed distributions for v = 1/2, r = 1 and
various values of s. It is interesting to note the total distribution is no longer mono-
tonically decreasing for s = 1 and higher. Figure 2.4 shows that this is solely due
to the contribution from the growing microtubules. We also note that the average
length decreases rapidly for relatively small severing rates. As the severing rate in-
creases, the average length converges to that of the system without rescue events
(r = 0). In other words, if severing events occur very frequently, rescue events are
no longer significant, presumably because the microtubule become so short that
they disappear before they can be rescued. This statement is summarized by the
condition 1/rr À〈l〉/v−, where 〈l〉 is the average length of the microtubules, or in
dimensionless units r v 〈x〉¿ 1.
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Figure 2.4: Length distributions for growing and shrinking microtubules
separately (v = 1/2, r = 1, s = 1). The total distribution function p(x) =
f +(x)+ f −(x) has been computed numerically using (2.63); f +(x) and
f −(x) have been computed using (2.62) and (2.58).

2.3 Discussion

In this chapter we have constructed a model that describes the dynamic instability
of microtubules in combination with their severing. This model takes the form of
two coupled integro-differential equations that are a function of three parameters: v ,
the ratio of polymerization and depolymerization speeds, r , the ratio of the rescue
and catastrophe rates, and the dimensionless severing rate s. We have analyzed
these equations, searching for steady state solutions and their properties: notably
the number of microtubules and their average length. For the special cases of small
severing rates (s ¿ (1− r v)2) and the case without rescues (r = 0), we have presented
analytical solutions. The generic case has been addressed by transforming the cou-
pled integro-differential equations into a single fourth order differential equation
that can be solved numerically. The resulting microtubule length distributions have
a number of interesting properties.

COMPACT LENGTH DISTRIBUTION

As was to be expected, an increase in the severing rate always leads to a shortening
of the average length of the microtubules. In addition, we have found that the
distributions became more compact, meaning that the microtubules become more
similar in length. This can be appreciated from the fact that the rate of severing is
proportional to the length of each microtubule, so the number of long microtubules is
strongly reduced. Furthermore, in contrast to the dynamic instability model without
severing, the length distributions are no longer always monotonically decreasing with
increasing length. A ‘bump’ can sometimes be created in the length distribution of
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growing microtubules, originating in the steady supply of short growing microtubules
that are created by severing events. If these microtubules do not rapidly undergo a
catastrophe, the continuous ‘nucleation’ profile can lead to an increasing number
density as a function of x.

CONSERVATION OF MICROTUBULE NUMBER

Finally, we have shown that the total number of microtubules does not depend on
the severing rate, even though the average length of each microtubule decreases. For
a system without severing in the steady state, the following relation holds: population
size = nucleation rate × average lifetime. Obviously, the shorter microtubules that
are created through severing have a shorter expected lifetime, however, this effect
is apparently compensated exactly by the fact that every severing event ‘nucleates’
an extra microtubule. For this cancelation to occur, the sum of the two fragments
of a severed microtubule should equal the expected lifetime of the microtubule if
severing had not occurred.

rescue

event

(rate rr)

le
n
g
th

time

l(0)

t1

t2

t3
E(ti)=T0

intrinsic dynamics

Figure 2.5: Schematic depiction of the life history of a shrinking micro-
tubule with an initial length l (0).

That this is indeed the case can be shown using a simple argument. First, we
know that the dynamics of the microtubule tip are independent of its length. This
implies that the average time it takes for a growing microtubule of length l to return
to the same length in the form of a shrinking microtubule is independent of the value
of l , and therefore equal to the average microtubule lifetime T0 (obtained by starting
from l = 0). The remaining contribution to the lifetime is given by the time it takes for
the shrinking microtubule of length l to disappear. In the absence of rescue events,
this takes a time l/v−. However, each rescue event switches the microtubule back



30 2. The effect of severing on microtubule length

to the growing state, extending the microtubule’s expected lifetime by T0 before it
returns to the same position in the shrinking state. The expected number of such
rescue events is therefore equal to rr l/v−. This argument is illustrated in figure 2.5.
Putting the pieces together, we obtain the following expression for the microtubule
lifetime T (l ,σ) of a microtubule of length l and state σ ∈−,+:

T (l ,σ) = T0δσ,++ l

v− (1+ rr T0) . (2.71)

The same relation, including an expression for T0, has been derived analytically by
Bicout (1997). This expression for the microtubule lifetime proves that the severing of
a microtubule into two fragments with the same total length therefore indeed leaves
the sum of the lifetimes intact, assuming that the ‘trailing’ fragment immediately
undergoes a catastrophe.

It is important to note that this argument holds regardless of the frequency and
location of severing events. This implies that any distribution of severing events –
provided they lead to a catastrophe of the trailing end – conserves the total number
of microtubules. Specifically, this also applies to severing at the position where
microtubules of different orientations cross (Wightman and Turner, 2007). In chapter
4 we will investigate the effects of both random severing and severing at intersections
on the ability of the cortical microtubules to align.

The conservation of microtubule number in the presence of severing is in appar-
ent contradiction with the experimentally reported increase in microtubule numbers
(Roll-Mecak and Vale, 2006). However, this is readily explained by the fact that our
result is based on constant parameter values. In a living cell, the decrease in average
microtubule length that is the result of severing will lead to an increased availability of
free tubulin dimers. In turn, this is likely to increase the polymerization rate (growth
speed) and nucleation rate, both of which indeed cause an increase in the number of
microtubules.

TREADMILLING

The model as described in this chapter has not explicitly taken into account the
depolymerization of microtubules at their minus ends that leads to treadmilling.
However, this case is easily addressed through a renormalization of the growth and
shrinkage speeds. Denoting the shrinkage speed at the minus end by v tm , this is
achieved by the substitutions v+ → v+− v tm and v− → v−+ v tm . Qualitatively, none
of the results in this chapter are affected by this change.

Unfortunately, a quantitative comparison of the results from this chapter with
experimental observations is not possible, as we are not aware of experiments in
which the required parameters have been observed. However, using known values
for the dynamic instability parameters we can estimate which values of the severing
rate are significant. From the data summarized by Vos et al. (2004), we find that
s = 1 corresponds to dimensional values in the range rs = r 2

c /v+ = 3 ·10−4µm−1s−1 to
3 ·10−2µm−1s−1.



A model for the alignment
of cortical microtubules 3
In the previous chapter, we treated the microtubules in isolation, investigating the
effects of severing in combination with the intrinsic microtubule dynamics. However,
in the plant cell cortex, the microtubules also interact with one another. Their non-
trivial interactions are thought to be essential for the alignment of the microtubules
within the cortical array (Dixit and Cyr, 2004). In this chapter we will model the
collective dynamics of cortical microtubules in order to gain a deeper understanding
of the factors responsible for microtubule alignment.

In vivo imaging of microtubules labelled with fluorescent proteins in plant cells
by several groups has shown how the cortical array is established both following cell
division and after microtubule depolymerizing drug (oryzalin) treatment (Wasteneys
and Williamson, 1989; Kumagai et al., 2001; Shaw et al., 2003; Vos et al., 2003; Paradez
et al., 2006; Ehrhardt and Shaw, 2006). In these studies microtubules are seen to
nucleate at the cortex and then develop from an initially disorganized state into the
transverse ordered array over a time period on the order of one hour. The nature of the
self-organization process by which the specific spatial and orientational patterning
of this cytoskeletal structure is achieved is as yet only partially understood and forms
the subject of this chapter.

An important aspect of the problem is the nature of localization of the micro-
tubules to the cortical region. Fluorescence recovery after photo-bleaching (FRAP)
experiments by Shaw et al. (2003) showed that the microtubules are fixed in space, so
any apparent mobility of microtubules is due to ‘treadmilling’, the process of simulta-
neous polymerization at one end and depolymerization at the other end. Therefore,
cortical microtubules do not translate or rotate as a whole. The same authors also
did not detect detachment or (re)attachment of microtubules to the cell cortex, apart
from some growing ends of single microtubules moving out of focus and found no
evidence for motors working in the cortical array. These experiments indicate that
the microtubules in the cortical array are fixed to the inside of the cell membrane.
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Electron microscopy has also shown cross-bridges between cortical microtubules
and the membrane (Hardham and Gunning, 1978; Barton et al., 2008). It is therefore
widely assumed that there exist linker proteins that anchor the microtubules through
the plasma membrane to the rigid cell wall, although their molecular identity is
under debate (Dhonukshe and Gadella, 2003; Gardiner et al., 2001; Hashimoto and
Kato, 2006; Hamada, 2007; Kirik et al., 2007). Since the cortical microtubules are thus
effectively confined to a 2D surface, they can interact through ‘collisions’ that occur
when the polymerizing tip of a growing microtubule encounters an pre-existing
microtubule. The resulting dynamical interaction events were first characterized
by Dixit and Cyr (2004) in tobacco Bright Yellow-2 (BY-2) cells. They observed three
different possible outcomes: (i) zippering: a growing microtubule bending towards
the direction of the microtubule encountered, which occurs only when the angle
of incidence is relatively small (. 40◦) (ii) induced catastrophe: an initially growing
microtubule switching to a shrinking state and retracting after the collision, an effect
predominant at larger angles of incidence and (iii) cross-over: a growing microtubule
‘slipping over’ the other and continuing to grow in its original direction.

There are clearly many coupled mechanisms at work, contributing to the assem-
bly and maintenance of this microtubule cortical array structure. We are interested in
understanding what are the main contributing factors and how their interplay leads
to the observed orientational ordering. With this aim we develop a coarse-grained
model, incorporating all the effects discussed above. Our emphasis on the plant-
specific biological mechanism of the ordering in the cortical array distinguishes our
approach from earlier work.

Over the years, various models for self-organization of cytoskeletal filaments
(and polar rods in general) have been proposed (Geigant et al., 1998; Kruse et al.,
2005; Aranson and Tsimring, 2006; Rühle et al., 2008), and the model by Zumdieck
et al. (2005) was applied to the plant cortex. However, in each of these models the
filaments are assumed to have rotational and, in most cases, translational freedom.
This is inconsistent with the experimental finding that the plant cortical microtubules
are stably anchored. Inspired by the experimental results of Dixit and Cyr (2004),
Baulin et al. (2007) were the first to report on a two dimensional dynamical system
of treadmilling and colliding microtubules. Their focus was on establishing the
minimal interactions needed to generate dynamical alignment. Using stochastic
simulations they showed that a pausing mechanism, whereby a growing microtubule
stalls against another microtubule until the latter moves away, can indeed lead to
ordering. Stalling, however, is not often observed in the cortical array. Moreover their
model lacks dynamic instabilities, i.e. catastrophes, both spontaneous and induced,
and rescues, and employs a form of deterministic microtubule motion, which is
arguably unrealistic in view of the observed dynamics.

The outline of the chapter is as follows. In the following section we formulate
our course-grained model starting from a description of the dynamics of individual
microtubules. We then construct the continuity equations that couple the densities
of growing, shrinking and inactive microtubule segments due to the intrinsic and
collisional dynamics. In the steady state we can reduce the initial set of equations to
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four coupled non-linear integral relations. We then perform a dimensional analysis to
identify the relevant control parameter of the system. We also discuss the collisional
interactions in the light of the experimental data. In section 3.2 we present the results
of our model. We first solve the model analytically in the isotropic stationary state.
Using a bifurcation analysis we then determine the critical values of the control
parameter at which the system develops ordered solutions. We interpret these results
in terms of the physical parameters of microtubule segment length and mesh size.
Finally, we formulate a minimal model with realistic interaction parameters that
we can solve numerically to obtain all stationary ordered solutions. In addition, we
investigate the potential stabilizing effect of a finite amount of tubulin. The results
and their consequences are summarized in the discussion section.

3.1 Model

3.1.1 Description of individual microtubules

As described in the introduction we confine the configuration of the microtubules to
a 2D plane. Since collision-induced zippering events can cause microtubules to bend
along the direction of pre-existing ones, we divide each microtubule into distinct
segments with a fixed orientation. We treat these segments as straight rigid rods. This
is justifiable since the persistence length lp of microtubules is long (∼ mm) compared
to the average length of a microtubule (∼ 10µm) and, as mentioned above, adhesion
to the plasma membrane further inhibits thermal motion.

Microtubules are known to be dynamic in that they are continually growing or
shrinking by (de)polymerization. We use the standard two-state dynamic instability
model of Dogterom and Leibler (1993), which assumes that every microtubule has a
‘plus’ end, located on the final segment of each microtubule, which is either growing
(labelled by +) with speed v+ or shrinking (labelled by −) with speed v−. This plus
end can switch stochastically from growing to shrinking (a so-called ‘catastrophe’)
with rate rc , or from shrinking to growing (a so-called ‘rescue’) with rate rr in a
process known as dynamic instability.

We model the creation of new microtubules with a constant, homogeneous,
isotropic nucleation rate rn in the plane of the 2D model. In vivo nucleation ap-
pears to occur at the cortex and has been observed to occur in random orientations
unattached to pre-existing microtubules (Shaw et al., 2003). Although microtubules
have also been observed to also nucleate from γ-tubulin complexes binding to pre-
existing microtubules (Murata et al., 2005; Murata and Hasebe, 2007; Ehrhardt and
Shaw, 2006) we ignore this possibility for simplicity’s sake. By the same token we
disregard the possibility of the shrinking of microtubules at their less active ‘minus’
end, leading to motion through the ‘treadmilling’ mechanism (Margolis and Wilson,
1998). The initial segment of each microtubule therefore remains attached to the
nucleation point in our model.

We call the final segment of a microtubule, which contains the growing or shrink-
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Figure 3.1: Schematic representation of the model interaction. The
microtubule of interest is drawn in black and other microtubules that
it encounters are in grey. The active segments of the black microtubule
have an arrow head indicating growth or shrinkage whereas inactive
segments end in the junction with the following segment depicted by a
dot. See also the description of the parameters in table 3.1.

ing tip active and all the remaining ones, that do not change their length, inactive
(labelled by 0). A cartoon of an individual microtubule according to these definitions
is depicted in figure 3.1. When a microtubule collides with another microtubule and
experiences a zippering event, its active segment is converted into an inactive seg-
ment, and a new active segment is created alongside the encountered microtubule.
The inverse can also occur: if the active segment shrinks to zero length, a previously
inactive segment in another direction can be reactivated. An induced catastrophe
event simply causes the growing active segment to become a shrinking one, as is the
case for spontaneous catastrophes. Finally, a crossover results in the growing active
segment continuing to grow unperturbed.

In figure 3.2 we present the relative probabilities for zippering, induced catas-
trophes and crossovers as a result of collisions between microtubules, based on the
data provided by Dixit and Cyr (2004). We assume that there are no microtubule
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polarity effects, as they were not reported. The probabilities Pz(θ−θ′), Px(θ−θ′)
and Pc(θ−θ′) for zippering, cross-overs and induced catastrophes respectively are
therefore even functions of the angle difference θ−θ′ defined by their values on the
interval [0, π2 ]. In this article we will use only the following minimal set of proper-
ties, which are qualitatively supported by the data. Firstly, zippering becomes less
likely for increasing angle of incidence, and is effectively zero at θ−θ′ = π

2 , which is
reasonable as the energy associated with bending the microtubule increases with
angle. Secondly, the probability for induced catastrophes monotonically increases
with increasing angle of incidence, reaching a maximum at θ−θ′ = π

2 , consistent with
observations that indicate that a microtubule which is hindered in its growth will
undergo a catastrophe at a rate that depends inversely on its growth speed (Janson
et al., 2003).

3.1.2 Continuum model

Since there are many (≈ 102 - 103) microtubules, each of which can have multiple
segments, in the cortical array of a typical interphase plant cell we treat the system
using a coarse-grained description. In this approach, instead of individual micro-
tubules, we consider local densities of microtubule segments. This approximation is
reasonable as long as the length scale of an individual microtubule segment is small
compared to the linear dimensions of the cell. From the outset we assume that the
system is (and remains) spatially homogeneous. In order to deal with the memory
effect caused by the isotropic nucleation, followed by subsequent reorienting zipper-
ing events, we need to keep track of the segment number i , which starts at 1 for the
segments connected to their nucleation site and increases by unity at each zippering
event. Our fundamental variables are thus the areal number densities mσ

i (l ,θ, t ) of
segments in stateσ ∈ {0,−,+} with segment number i having length l and orientation
θ (measured from the long axis of the cell) at time t . These densities obey a set of
evolution equations that can symbolically be written as

∂t m+
i (li ,θi , t ) =Φgrowth +Φrescue −Φspont. cat. −Φinduced cat. −Φzipper (3.1a)

∂t m−
i (li ,θi , t ) =Φshrinkage −Φrescue +Φspont. cat. +Φinduced cat. +Φreactivation (3.1b)

∂t m0
i (li ,θi , t ) =Φzipper −Φreactivation (3.1c)

The flux terms Φevent couple the equations for the growing, shrinking and inactive
segments and between different values of i . Equations (3.1) must be supplemented
by a set of boundary conditions for the growing segments at l = 0. For the initial
segment (i = 1) this reflects the isotropic nucleation of new microtubules, given by

v+m+
1 (l1 = 0,θ, t ) = rn

2π
, (3.2)

where rn is nucleation rate. For the subsequent segments i > 1, this ‘nucleation’
of growing segments is the result of the zippering of segments with index i − 1.
Defining ϕzipper (θi−1 → θi , li−1, t ) as the flux of i -segments with angle θi and length
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li zippering into angle θi+1 at time t (this will be made explicit in equation (3.13)),
we obtain the boundary condition

v+m+
i≥2(li = 0,θi , t ) =

∫
dli−1

∫
dθi−1 ϕzipper (θi−1 → θi , li−1, t ) . (3.3)

Generally, this leads to a qualitatively different boundary condition for every value
of i . The model therefore consists of an infinite set of coupled equations, three for
every value of i . However, in section 3.1.3 we will show that in the steady state, this
can be reduced to a finite set by summing over all segment indices i . In the following,
we derive explicit expressions for each of the flux termsΦevent .

GROWTH AND SHRINKAGE TERMS: ΦGROWTH,ΦSHRINKAGE

Φgrowth in Equation (3.1a) corresponds to the length increase of the growing segments.
For segment growth in isolation, the length increase in a small time interval δt is
given by v+δt , where v+ is the growth velocity, and we have m+(l + v+δt ,θ, t +δt ) =
m+(l ,θ, t ). By expanding the left hand term to first order in δt , we find

∂t m+
i (l ,θ, t ) =−v+∂l m+

i (l ,θ, t ) ≡Φgrowth (3.4)

A similar derivation yields that

∂t m−
i (l ,θ, t ) = v−∂l m−

i (l ,θ, t ) ≡Φshrink (3.5)

where v− is the shrinking velocity.

DYNAMIC INSTABILITY TERMS: ΦRESCUE ,ΦSPONT. CAT.

Φrescue andΦspont. cat. in equations (3.1a) and (3.1b) correspond to the fluxes due to
the spontaneous rescues and spontaneous catastrophe, respectively, and are simply
given by

Φrescue =rr m−
i (li ,θi , t ) (3.6)

Φspont. cat. =rc m+
i (li ,θi , t ) (3.7)

where rr is the spontaneous rescue rate and rc is the spontaneous catastrophe rate.
So far, we have described the first three terms of equations (3.1a) and (3.1b)

(growth, shrinkage and dynamic instability terms). Together, these fully describe
a system of non-interacting microtubules, in which also the boundary condition
(3.3) vanishes due to the absence of zippering. In this special case we recover the
well-known equations introduced by Dogterom and Leibler (1993) (for i = 1).

INTERACTION TERMS: ΦINDUCED CAT. , ΦZIPPER

An interaction can occur when a growing active microtubule segment collides with
another segment, irrespective of the latter’s state and length. This prompts the
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definition of the total length density k(θ, t ) of all microtubule segments in direction
θ at time t , given by:

k(θ, t ) =∑
i

∫
dli li (m+

i (li ,θ, t )+m−
i (li ,θ, t )+m0

i (li ,θ, t )). (3.8)

The density of collisions of a microtubule segment growing in direction θ with other
segments in direction θ′ is determined by the geometrical projection∣∣sin

(
θ−θ′)∣∣k(θ′, t ), (3.9)

where the presence of the sin
(
θ−θ′) factor ensures the correct geometrical weighting

reflecting the fact that parallel segments do not collide. When a collision occurs,
one of the three possible events, induced catastrophe (c) , zippering (z) or cross-
over (x) occurs, with probabilities Pc

(
θ−θ′) , Pz

(
θ−θ′) and Px

(
θ−θ′) respectively.

These probabilities can (and in-vivo do, see figure 3.2) depend on the relative angle
θ−θ′ between the incoming segment and the ‘scatterer’. For convenience sake we
will absorb the geometrical factor

∣∣sin
(
θ−θ′)∣∣ into the probabilities, by defining

f
(
θ−θ′) = ∣∣sin

(
θ−θ′)∣∣P f

(
θ−θ′) for all events f ∈ {c, z, x} . The incoming flux of

growing microtubule segments with given segment number, length and orientation
is given by v+m+

i (l ,θ, t ). With these definitions we can write the interaction terms as

Φinduced cat. = v+m+
i (li ,θi , t )

∫
dθ′ c(θi −θ′)k(θ′, t ) (3.10)

Φzipper = v+m+
i (li ,θi , t )

∫
dθ′ z(θi −θ′)k(θ′, t ) (3.11)

The analogous term for crossovers is not used, because the occurrence of a crossover
event has no effect on the growth of a microtubule.

REACTIVATION TERM: ΦREACTIVATION

The reactivation termΦreactivation corresponds to the flux of active microtubule seg-
ments, with segment number i +1, that, by shrinking to length zero, reactivate a
previously inactive segment, effectively undoing a past zippering event and so create
a new, shrinking, active segment with segment number i . The incoming flux of such
segments coming from a given direction θi+1 is given by v−m−

i+1(li+1 = 0,θi+1, t).
The reactivation flux is given by

Φreactivation =
∫

dθi+1 v−m−
i+1(li+1 = 0,θi+1, t )punzip(θi , li |θi+1, t ), (3.12)

where the ‘unzippering’ distribution punzip(θi , li |θi+1, t ) gives the probability that the
shrinking microtubule reactivates an inactive segment with orientation θi and length
li . This distribution will be determined below.

A microtubule that has zippered will take a certain amount of time τ to undergo
a catastrophe and return to the zippering location, where τ is a stochastic variable.
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Figure 3.2: In vivo microtubule collision data from Dixit and Cyr (2004)
(combined data from MBD-DsRed and YFP-TUA6 labelling), where
Pc (θ), Pz (θ) and Px (θ) are plotted on a cumulative scale. Every data
point is located at the center of the corresponding bin, and the shaded
regions have been extended to the boundaries using horizontal lines.
The corresponding Fourier coefficients of the interaction functions are:
ĉ0 = 0.59, ĉ2 =−0.36, ẑ0 = 0.24 (computed using numerical integration
of the product of |sin(θ)| and a piecewise linear interpolation of the
data).

The unzipppering flux from direction θi+1 at time t consists of microtubules that
had zippered at a range of times t −τ and have now returned to the zippering loca-
tion. This implicitly defines an originating time distribution porigin (t −τ|θi+1, t ) for
the returning microtubules. Furthermore, because the evolution of a microtubule
between the zippering event and its return to the same location does not depend on
the previous segments, the segment that is re-activated by a microtubule returning to
the zippering position after a time τ should be selected proportional to the ‘forward’
zippering flux at time t −τ. The forward flux ϕzipper (θi → θi+1, li , t ) of microtubules
with length li and angle θi zippering into angle θi+1 is defined in accordance with
equation (3.11) as

ϕzipper (θi → θi+1, li , t ) = v+m+
i (li ,θi , t )z(θi −θi+1)k(θi+1, t ). (3.13)

At each of the originating times t −τ, the distribution of microtubules that zipper
into the direction θi+1 with length li and orientation θi is given by

pzip(θi , li |θi+1, t −τ) = ϕzipper (θi → θi+1, li , t −τ)∫
dl ′dθ′ ϕzipper(θ′ → θi+1, l ′, t −τ)

. (3.14)

The probability distributions porigin (t −τ|θi+1, t ) and pzip(θi , li |θi+1, t − τ) can be
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Parameters
v+ growth speed
v− shrinkage speed
rc catastrophe rate
rr rescue rate
rn nucleation rate
Pc (θ) probability of induced catastrophe upon collision
Pz (θ) probability of zippering upon collision
Synthetic parameters
g = rr

v− − rc
v+ growth parameter

u = 1+ v+
v− speed ratio

c(θ) = sin(|θ|)Pc (θ) ←→ {ĉn} effective catastrophic collision probability
z(θ) = sin(|θ|)Pz (θ) ←→ {ẑn} effective zippering probability
Dependent variables
k (θ) microtubule length density
l (θ) average microtubule segment length{
m+

i (l ,θ) ,m−
i (l ,θ) ,m0

i (l ,θ)
}

density of growing/shrinking/inactive segments
with length l and direction θ

Table 3.1: Overview of all parameters and variables in natural dimensions

combined to determine the unzippering distribution

punzip(θi , li |θi+1, t ) =
∫ t

0
dτporigin (t −τ|θi+1, t )× ϕzipper (θi → θi+1, li , t −τ)∫

dl ′dθ′ ϕzipper(θ′ → θi+1, l ′, t −τ)
,

(3.15)
where we assume the system evolved from an initial condition at t0 = 0 in which no
microtubules were present. Clearly all the complicated history dependence of the
system is hidden in the originating time distribution. However, in the steady state
situation we consider below, the time-dependence drops out and the details of this
distribution become irrelevant.

3.1.3 The steady state

We now consider the steady state of the system of equations we have formulated.
Setting the time derivatives to zero, the sum of equations (3.1a) to (3.1c) yields
Φgrowth +Φshrinkage = 0, which together with equation (3.4) and (3.5) implies

∂li

(
v+m+

i (li ,θi )− v−m−
i (li ,θi )

)= 0. (3.16)

Because physically acceptable solutions should be bounded as li →∞, we obtain the
length flux balance equation

v+m+
i (li ,θi ) = v−m−

i (li ,θi ) (3.17)
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showing that the growing and shrinking segments have, up to a constant amplitude,
the same orientational and length distribution. This allows us to eliminate m−

i (li ,θi )
from equation (3.1a) to obtain

∂li m+
i (li ,θi ) = m+

i (li ,θi )

(
g −

∫
dθ′ k(θ′)(c(θi −θ′)+ z(θi −θ′))

)
(3.18)

where the growth parameter

g = rr

v− − rc

v+ . (3.19)

characterizes the behavior of the bare, non-interacting, system in which microtubules
remain bounded in length for g < 0 and become unbounded for g ≥ 0. As the brack-
eted factor on the right hand side of equation (3.18) does not depend on the segment
length nor on the segment number, we immediately obtain that m+

i (li ,θi ) has an
exponential length distribution

m+
i (li ,θi ) = m+

i (θi )e−li /l (θi ) (3.20)

where the average segment length l (θi ) in the direction θi is given by

1

l (θ)
=−g +

∫
dθ′ (c(θ−θ′)+ z(θ−θ′))k(θ′). (3.21)

The nucleation boundary conditions (3.2) and (3.3) are now transformed into the
following nucleation equations, expressed in terms of the amplitudes m+

i (θi )

v+m+
1 (θ) = rn

2π
, (3.22)

m+
i≥2(θ) = k(θ)

∫
dθ′ z(θ′−θ)l (θ′)m+

i−1(θ′). (3.23)

We now note that under these conditions equation (3.1c) is already satisfied,
as can be explicitly checked by considering Φreactivation (3.12) and using that in the
steady state ϕzipper does not depend on time and the integral over porigin is by def-
inition equal to 1. This, in combination with the results (3.17), (3.20) and (3.23),
yields the identity withΦzipper. We therefore need an independent argument to fix
the densities of the inactive segments. To obtain this we use the steady state rule that
population size = nucleation rate × average lifetime. Consider a newly ‘born’ growing
segment, created either by a nucleation or a zippering event. Its average life time is
by definition the average time until it shrinks back to zero length, i.e. the average
return time. Clearly this time only depends on its orientation θ, the steady state
microtubule length density k

(
θ′

)
and the dynamical instability parameters, but not

on the segment number. We therefore denote it by τ (θ) . The steady state density of
inactive segments with length li , orientation θ and segment number i is then given
by

m0
i (li ,θ) =

∫
dθ′ϕzipper

(
θ→ θ′, li

)
τ
(
θ′

)
(3.24)

= v+m+
i (li ,θ)

∫
dθ′ z(θ−θ′)k(θ′)τ

(
θ′

)
, (3.25)
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where ϕzipper is defined by equation (3.13), as inactive segments are created by a
zippering event. Because the only length-dependent term on the right-hand side is
m+(li ,θ), it follows that the length-dependence of the inactive segment distributions
is proportional to those of the active segments, i.e.

m0
i (li ,θ) = m0

i (θ)e−
li

l (θ) (3.26)

At the same time, the total integrated length density of segments, both active and
inactive, with segment number i +1 in the direction θ′ is given by

N total
i+1

(
θ′

)= ∫
dli+1

[
m0

i+1

(
li+1,θ′

)+m+
i+1

(
li+1,θ′

)+m−
i+1

(
li+1,θ′

)]
(3.27)

=
∫

dθ′′
∫

dli ϕzipper
(
θ′′ → θ′, li

)
τ
(
θ′

)
, (3.28)

where the last equality follows from the fact that every segment with index i +1 has
been created by a zippering event of a segment with index i . We solve this for τ

(
θ′

)
and insert the result in (3.25), which, after expanding ϕzipper (3.13), produces the
following expression for m0

i (θ):

m0
i (θ) = m+

i (θ)
∫

dθ′ z(θ−θ′)l (θ′)

{
m0

i+1

(
θ′

)+m+
i+1

(
θ′

)+m−
i+1

(
θ′

)}∫
dθ′′z(θ′−θ′′)l (θ′′)m+

i (θ′′)
. (3.29)

We use the nucleation equation (3.23) to replace the integral in the denominator of
the integrand on the right hand side of this expression. In addition, we define the
quantity Qi (θ) through

m0
i (θ) =Qi (θ)

[
m+

i (θ)+m−
i (θ)

]
=

(
1+ v+

v−

)
Qi (θ)m+

i (θ)

≡ uQi (θ)m+
i (θ) (3.30)

and equation (3.29) leads to the following recursion relation for Qi (θ)

Qi (θ) =
∫

dθ′ z
(
θ−θ′)k

(
θ′

)
l
(
θ′

)(
1+Qi+1

(
θ′

))
. (3.31)

We now argue that the ratio Qi (θ) is in fact independent of the segment number.
Using the fact that the growing, shrinking and inactive segments have an identical
exponential profile, it follows from (3.30) that Qi (θ) is equal to the ratio between
inactive and active segments

Qi (θ) = m0
i (θ)

um+
i (θ)

= N 0
i (θ)

N+
i (θ)+N−

i (θ)
. (3.32)

After a new microtubule segment has been created it will generally spend some
time in an active state and some time in an inactive state. The expected lifetime
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τ(θ) can also be separated into the expected active and inactive lifetimes for any
newly created segment: τ (θ) = τactive (θ)+τinactive (θ). These lifetimes are necessarily
proportional to the total number of active and inactive segments, so that Qi (θ) =
τinactive (θ)/τactive (θ). As we have argued before, these lifetimes do not depend on
the segment number, and, hence, neither does Qi (θ). An alternative route to the
same conclusion follows from expanding out the forward recursion in (3.31) to show
that Qi (θ) can for every i formally be written as the same infinite series of multiple
integrals involving z

(
θ−θ′), k (θ) and l (θ). We therefore write the self-consistency

relationship

Q (θ) =
∫

dθ′ z
(
θ−θ′)k

(
θ′

)
l
(
θ′

)(
1+Q

(
θ′

))
. (3.33)

The final closure of this set of equations is provided by the definition of the length
density (3.8) applied to the steady state

k(θ) =∑
i

∫
dli li

[
m+

i (li ,θ)+m−
i (li ,θ)+m0

i (li ,θ)
]

= ul (θ)2(1+Q(θ))
∑

i
m+

i (θ). (3.34)

3.1.4 Dimensional analysis

In order to simplify our equations for further analysis and to identify the relevant
control parameter we perform a dimensional analysis. We therefore introduce a
common length scale and rescale all lengths with respect to this length scale. For

example, our primary variables m+
i (θ) have dimension

[
length

]−3
[radian]−1. Taking

our cue from (3.22) and (3.34) we adopt the length scale

l0 =
(

1

π

v+

u rn
2π

) 1
3

, (3.35)

where the additional factor ofπ−1 within the parentheses is added to suppress explicit
factors involving π in the final equations. This definition allows us to define the
dimensionless variables

L (θ) = l (θ)/l0 (3.36a)

K (θ) =πk (θ) l0 (3.36b)

M+
i (θ) =πm+

i (θ) l 3
0 (3.36c)

G = g l0. (3.36d)

In the absence of interactions, (3.21) shows that the average length l of the micro-
tubule is given by l =−1/g . This implies G =−l0/l , meaning that, for G < 0, G can be
interpreted as a measure for the non-interacting microtubule length.
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In addition, we adopt the dimensionless operator notation

F [h] (θ) = 1

π

∫ 2π

0
dθ′ f

(
θ−θ′)h

(
θ′

)
, (3.36e)

where F ∈ {C , Z }.
We are now in a position to express the equations in terms of the dimensionless

quantities. Applying (3.36c) to the nucleation equations (3.22) and (3.23) yields

M+
i+1 (θ) = K (θ)Z

[
LM+

i

]
(θ) (3.37)

M+
1 (θ) = 1

u
(3.38)

Furthermore, the M+
i (θ) for the different segment labels can be absorbed into a single

microtubule plus end density (density of active segments), given by

T (θ) = uL (θ)
∞∑

i=1
M+

i (θ) . (3.39)

Performing all substitutions, the final set of dimensionless equations reads

1

L (θ)
=−G +C [K ] (θ)+Z [K ] (θ) Segment length (3.40a)

K (θ) = L(θ)(1+Q(θ))T (θ) Density (3.40b)

Q (θ) = Z [LK (1+Q)] (θ) Inactive-active ratio (3.40c)

T (θ) = L (θ)+L (θ)K (θ)Z [T ] (θ) Plus end density (3.40d)

with

G =
(

2v+v−

rn (v++ v−)

) 1
3 ( rr

v− − rc

v+
)

(3.40e)

Looking at the resulting equations, we see that the segment length L is deter-
mined by the intrinsic growth dynamics (G) and the interactions leading to induced
catastrophes and zippering. The segment length density K is the product of the
plus end density, the ratio of all segments to active segments (1+Q) and the av-
erage segment length. The ratio Q of inactive to active segments is modulated by
the zippering operator, and the plus end density T consists of contributions from
direct nucleation and zippered segments. We only consider parameter regions with
physically realizable solutions that have real and positive values for L, K , Q and T .

Finally, we note that the interaction operators defined by (3.36e) are convolutions
of the operand with the interaction functions c(θ) and z(θ). Both interaction func-
tions are symmetric and π-periodic, and can therefore be written in terms of their
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Fourier coefficients as

f (θ) = f̂0

2
+

∞∑
n=1

f̂2ncos(2nθ) f̂2n = 1

π

∫ 2π

0
f (θ)cos(2nθ)dθ (3.41)

Using the identity cos
(
θ−θ′)= cos(θ)cos

(
θ′

)+ sin(θ)sin
(
θ′

)
we find that the func-

tions cos(2nθ) and sin(2nθ) are eigenfunction of the operators C and Z, with the
Fourier coefficients ĉ2n and ẑ2n , respectively, as eigenvalues:

F [cos(2nθ)] = f̂2ncos(2nθ) (3.42)

This convenient property will often be used in later sections.

MODIFYING THE INTERACTION STRENGTH

We note that two different systems, where the zippering and interaction function
only differ by a constant scaling factor can be mapped onto the same dimensionless
system. Suppose we have

c̃(θ) =αc(θ) (3.43a)

z̃(θ) =αz(θ) (3.43b)

Biologically speaking, for α< 1, this corresponds to a system that has a uniformly
increased probability for crossovers to occur, at the expense of zippering and induced
catastrophe events. We will now see that this does not qualitatively affect the results.
This can be understood by realizing that the set of equations (3.40) is invariant under
the substitutions

C →αC L →α−1/3L

Z →αZ K →α−2/3K

G →α1/3G T →α−1/3T

where the first substitution reflects the presence of α in the rescaling (3.43). The
existence of this scaling relation implies that all functional dependencies between
any of these parameters and variables remain unchanged when subjected to the
inverse scaling. Specifically, the relevant parameters become C/α, Z/α and α−1/3G
and the variables α1/3L, α2/3K and α1/3T .

Because the qualitative aspects of the system are invariant under parameter
changes that leave α−1/3G constant, we see that a uniform change in the interaction
functions can be compensated for by an appropriate scaling of the nucleation rate,
the dynamic instability rates or the velocities. This relation will be exploited in
chapter 4 to investigate the validity of the mean field approximation that forms the
basis of our model.

In the remainder of this chapter, we will generally omit the explicit mention of
this scaling relation, effectively choosing α = 1. However, the appropriate scaling
relation is explicitly indicated on the axes of the figures with results.
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3.2 Results

3.2.1 Isotropic solution

In the isotropic phase all angular dependence drops out. Because C[1](θ) = ĉ0 and
Z[1](θ) = ẑ0 we are left with the equations

1

L̄
=−G + (ĉ0 + ẑ0) K̄ (3.44a)

K̄ = L̄(1+Q̄)T̄ (3.44b)

Q̄ = ẑ0L̄K̄ (1+Q̄) (3.44c)

T̄ = L̄+ ẑ0L̄K̄ T̄ (3.44d)

where the overbar denotes quantities evaluated in the isotropic phase. Solving for Q̄
and T̄ and inserting this into equation (3.44b) readily gives

K̄ = L̄2

(1− ẑ0L̄K̄ )2
, (3.45)

and it follows from equation (3.44a) that

ĉ0K̄ −G = 1− ẑ0L̄K̄

L̄
= 1√

K̄
. (3.46)

This can be combined to yield the following relation between G and the density

K̄
(
ĉ0K̄ −G

)2 = 1 (3.47)

We see that the isotropic density is an increasing function of the microtubule dy-
namics parameter G and does not depend on the amount of zippering. This can
be understood by the fact that zippering only serves to reorient the microtubules,
which has no net effect in the isotropic state. In the absence of induced catastrophes
(ĉ0 = 0), the density K̄ diverges as G ↑ 0, consistent with the result by Dogterom and
Leibler (1993). In the presence of induced catastrophes a stationary isotropic solution
exists for all values of G , although this solution need not actually be stable.

3.2.2 Bifurcation analysis

We now search for a bifurcation point by considering the existence of steady state so-
lutions that are small perturbations away from the isotropic solution. These solutions
are parameterized as follows

L = L̄ (1+λ) (3.48a)

K = K̄ (1+κ) (3.48b)

Q = Q̄
(
1+χ)

(3.48c)

T = T̄ (1+τ) (3.48d)
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Inserting these expressions into (3.40), subtracting the isotropic solutions and ex-
panding to first order in the perturbations gives

λ=−N̄ (C[κ]+Z[κ]) (3.49a)

κ=λ+τ+ ẑ0N̄χ (3.49b)

χ= 1

ẑ0
Z

[
λ+κ+ ẑ0N̄χ

]
(3.49c)

τ=λ+ N̄ (ẑ0κ+Z[τ]) (3.49d)

where N̄ = L̄K̄ . Note that in these equations, N̄ has become the control parameter
instead of G . Using equation (3.49b) and exploiting the linearity of Z, we expand

Z [κ] = Z [τ]+Z
[
λ+κ+ ẑ0N̄χ

]−Z [κ] (3.50)

= 1

N̄
(τ−λ)− ẑ0κ+ ẑ0χ−Z [κ] (3.51)

Solving this for Z [κ] and inserting the result into equation (3.49a), combined with
(3.49b), yields the relation

(1− ẑ0N̄ )κ=−2N̄ C[κ] (3.52)

For this equation to hold, κ(θ) must be an eigenfunction of C. We know that the
family of functions cos(2nθ), n ≥ 1, are eigenfunctions of C with eigenvalues ĉ2n . We
therefore get a set of bifurcation values of N̄ , one for each eigenvalue:

N∗
2n = (−2ĉ2n + ẑ0)−1. (3.53)

In addition, we know that the isotropic solution must be stable as G →−∞, because
in this limit the microtubules have a vanishing length and do not interact. Therefore,
the relevant bifurcation point is that for the lowest value of G , corresponding with the
most negative eigenvalue of C (see also appendix 3.A). Assuming that the induced
catastrophe probability increases monotonically with the collision angle, ĉ2 is always
the most negative eigenvalue, so

N∗ = 1

−2ĉ2 + ẑ0
. (3.54)

We now derive the location of this bifurcation point in terms of the control
parameter G . Denoting N̄ = L̄K̄ , equation (3.45) can be transformed to N̄ (1− ẑ0N̄ )2 =
L̄3, into which we can substitute GL̄ = (ĉ0 + ẑ0)N̄ −1 from equation (3.44a) and solve
for G giving

G3N̄ (1− ẑ0N̄ )2 = [
(ĉ0 + ẑ0)N̄ −1

]3
(3.55)

Combining this with the result (3.54) yields

G∗ = (−2ĉ2)1/3
(

ĉ0

−2ĉ2
−1

)
. (3.56)
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The implication is that the location of the bifurcation point as a function of the control
parameter G is determined entirely by the eigenvalues of the induced catastrophe
function c(θ). Like the density in the isotropic phase, the location of the bifurcation
point, this time perhaps more surprisingly, does not depend on the presence or
amount of zippering.
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Figure 3.3: Graphical representation of the range of possible values of
the Fourier coefficients ĉ0 and ĉ2 of the induced catastrophe function
c(θ) (derived in section 3.B). The gray scale indicates the corresponding
value of the bifurcation point G∗. The points for which the minimum and
maximum values of G∗ are attained, as well as the most extreme point
for which G∗ = 0, are indicated by solid circles. The insets depict the
corresponding profiles of the induced catastrophe probability Pc (θ). The
dashed triangle depicts the range of the simplified interaction functions
(section 3.2.4) for 0 ≤ α ≤ 1. The squares indicate the parameters for
which full numerical solutions are obtained (assuming α= 1). Finally,
the location of the open circle stands for the Fourier coefficients that
follow from the measurements of Dixit and Cyr (2004) (see also figure
3.2). Note that it corresponds to a bifurcation for G∗ < 0.

Figure 3.3 indicates the possible combinations of ĉ0 and ĉ2 (derived in section
3.B) and the corresponding values of G∗. Using the constraints on ĉ0 and ĉ2 we can
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also calculate the extreme values of the bifurcation point G∗:

G∗
mi n =−

(
1119744

(9331351+947399
p

97)π2

) 1
6 ≈−0.43, (3.57)

for PC (θ) = H

(
cos−1

(√
3

11+p
97

))
≈ H(68◦)

G∗
max =

(
1

3π

)1/3

≈ 0.47, for PC (θ) = 1, (3.58)

where H(θ) is the Heaviside step function.

3.2.3 Segment length and mesh size

An attractive interpretation of the microtubule length density K (θ) is that it represents
the density of ‘obstacles’ that are pointing in the direction θ as seen by a microtubule
growing in the perpendicular direction. From the obstacle density we can define a
mesh size ξ(θ) – the average distance between obstacles. Taking into account the
geometrical factor sin(θ), we obtain

ξ(θ) =
(

1

πl0

∫ 2π

0

∣∣sin
(
θ−θ′)∣∣K (θ′)dθ′

)−1

. (3.59)

In the case of the isotropic solution, this simplifies to ξ̄=πl0/(4K̄ ). Using this equality
we can derive an expression for the average microtubule length Λ̄ in the isotropic
phase, expressed in units of the mesh size. The length of each segment is given by L̄
and the number of segments per microtubule is given by (1+Q̄), so using (3.45) we
find

Λ̄= l0L̄(1+Q̄)

ξ̄
= 4K̄ 3/2

π
(3.60)

Inserting this result into (3.47) provides the relationship between Λ̄ and G

G =
(

4

πΛ̄

) 1
3
(
πĉ0Λ̄

4
−1

)
(3.61)

As was the case for the density (equation (3.47)), we see that the microtubule length
as a function of mesh size does not depend on the amount of zippering. However, it
should be noted that the mesh size is defined through the average distance between
single microtubules. In real systems, zippering would naturally lead to bundling,
which in turn produces a system that has a larger mesh size between bundles (see
also the discussion).

Combining equations (3.60) and (3.54), the expression for Λ̄ at the bifurcation
point becomes

Λ̄∗ =− 2

πĉ2
(3.62)
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Assuming a monotonically increasing induced catastrophe probability Pc (θ), we
know that the minimum value for ĉ2 is reached when every collision at an angle
larger than 45◦ leads to a catastrophe. From (3.62), we see that this implies Λ∗ ≥
3/(2

p
2), meaning that for a bifurcation to occur, the microtubules need to be longer

(sometimes much longer) than the mesh size, as is to be expected.
Equation (3.61) can also provide an interpretation of the length scale l0. In the

absence of catastrophic collisions, we find

Λ̄|ĉ0=0 = 4

π
(−G−3) = 4

π

(
l

l0

)3

, (3.63)

where l =−1/g is the average length of the microtubules. l0 is therefore a measure of
the microtubule length that is required to enable a significant number of interactions
(Λ̄ = 4/π for l = l0). If the free microtubule length l is (much) shorter than l0, the
system is dominated by the (isotropic) nucleations, keeping the system in an isotropic
state. On the other hand, when l À l0, the interactions dominate and, depending on
the interaction functions, the system has the potential to align.

3.2.4 Numerical solutions away from the bifurcation point

To find solutions beyond the immediate vicinity of the bifurcation point, we are
hampered by the fact that these solutions are part of an infinite-dimensional solution
space. In this section, we will show that it is possible to restrict the solutions to a
finite-dimensional space by imposing constraints on the interaction operators C and
Z. We start by reformulating the equations (3.40) by replacing L(θ) and T (θ) through
the definitions

S(θ) = 1

L(θ)
, U (θ) = 1

K (θ)

(
T (θ)

L(θ)
−1

)
. (3.64)

Following these substitutions, the interaction operators are all applied at the outer-
most level of the equations, enabling us to make use of their properties in Fourier
space. Explicitly, we obtain

S(θ) =−G +C [K ] (θ)+Z [K ] (θ) (3.65a)

Q (θ) = Z [K (1+Q)/S] (θ) (3.65b)

U (θ) = Z [(1+KU )/S] (θ) (3.65c)

and

K (θ) = 1+Q(θ)

S2(θ)−U (θ)(1+Q(θ))
. (3.65d)

Denoting the Fourier components of S(θ), Q(θ) and U (θ), by ŝn , q̂n and ûn , respec-
tively, the interacting microtubule equations reduce to a (potentially infinite) set of
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scalar integral equations.

ŝ2n =−2δn,0G + ĉ2n + ẑ2n

π

∫ 2π

0
cos(2nθ)K (θ)dθ (3.66a)

q̂2n = ẑ2n

π

∫ 2π

0

cos(2nθ)K (θ) (1+Q(θ))

S(θ)
dθ (3.66b)

û2n = ẑ2n

π

∫ 2π

0

cos(2nθ) (1+K (θ)U (θ))

S(θ)
dθ (3.66c)

SIMPLIFIED INTERACTION FUNCTIONS

From the form of these equations, we immediately see that we can greatly reduce
the dimensionality of the problem by setting a number of Fourier coefficients ĉ2n

and ẑ2n to zero. In other words, by restricting our space of interaction functions
c(θ) and z(θ), the problem can be reduced to a finite number of scalar equations.
In this section, we will define a set of simplified interaction functions by restricting
ourselves to Fourier modes up to and including cos(4θ). These modes provide us
with just enough freedom for the model to exhibit rich behavior, whilst reducing the
model to a set of only 7 scalar equations.

Using the fact that c(0) = z(0) = z(π/2) = 0, we find that ẑ2 = 0 and that both ẑ4

and ĉ4 are determined by the remaining parameters. Furthermore, we introduce an
overall factor ofα in both equations (per equation (3.43)), allowing us to set ĉ2 =−1/2,
so that c(π/2) =α. We thus obtain a system that is fully specified by ĉ0, ẑ0 and α.

c(θ) =α
[

ĉ0

2
− 1

2
cos(2θ)+ 1

2
(1− ĉ0)cos(4θ)

]
(3.67a)

z(θ) =α
[

ẑ0

2
(1−cos(4θ))

]
(3.67b)

For α= 1, ĉ0 and ẑ0 are the actual Fourier coefficients of the interaction functions.
Requiring that Pc (θ) = c(θ)/sin(θ) is monotonically increasing on the interval [0,π/2]
leads to the constraint

3

4
≤ ĉ0 ≤ 9

8
(3.68)

and ẑ0 is a positive real number. Of course, the total probability of zippering and
catastrophe induction may not exceed 1, placing an upper bound on α. In the
absence of zippering, we have α≤ 1. As discussed in section 3.1.4, the value ofα does
not qualitatively affect the bifurcation diagram. Equation (3.56) indicates that – for
the simplified interaction functions – the bifurcation point is located in the range

− 1

4
≤G∗ ≤ 1

8
(3.69)

and from (3.47) and (3.62) we find that K ∗ =α−2/3 andΛ∗ = 4/(απ).
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Figure 3.4: Bifurcation diagrams for the simplified interaction model using three dif-
ferent induced catastrophe parameters. The figures on the left depict the probability
Pc (θ) to induce a catastrophe upon collision, along with the corresponding values
of ĉ0. The center and right columns depict the corresponding bifurcation diagrams
as a function of G , expressed in terms of the total density Ktotal and the 2D nematic
order parameter S2, respectively, where Ktotal =

∫
K (θ)dθ. The isotropic solutions

are by definition disordered, so S2 = 0, and their density is computed from (3.47).
The bifurcation point is determined using (3.56), with ĉ2 =−1/2. For each diagram,
ordered solutions have been computed for ẑ0 = 0 (black), ẑ0 = 1 (slightly lighter) and
ẑ0 = 10 (lightest). The solutions have been computed using the method discussed
in appendix 3.2.4. Solid lines indicate stable solutions and dashed lines indicate
unstable solutions (see also section 3.A). Note that the case of ĉ0 = 1 in the absence
of zippering is a singular case where the stability cannot be determined, because
non-isotropic solutions only exist for G = 0. This has been indicated by a dotted
line. The S2-diagrams include the asymptotic limit point at G = 0 with absolute
ordering (at infinite density). The labels a, b and c indicate the parameter values of
the results depicted in figures 3.5 and 3.6. The fact that the solutions for S2 in the case
ĉ0 = 3

4 do not reach the asymptotic point S2 = 1 is a consequence of the slowdown in
convergence of the path-following method with respect to the G-coordinate as G ↑ 0.
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Figure 3.5: Three stable ordered solutions, the positions of which are in-
dicated by the labels (a), (b) and (c) in figure 3.4. The (unstable) isotropic
solutions for the same parameter values are indicated with a dashed
line. The parameter values for (a) and (b) differ only in the value of G ,
whereas the parameter values for (b) and (c) differ only in the value of ẑ0.
All results have been calculated using the method described in section
3.2.4.

NUMERICAL SOLUTIONS

We will now determine the non-isotropic stationary solutions of the model using the
simplified interaction functions introduced above. Directly solving equations (3.66)
numerically to find the stationary solutions does not yield satisfactory results, hence
we perform a more targeted search for solutions. We know that the sets of stationary
solutions form lines in the 8-dimensional phase spaceΦ spanned by the variables
{ŝ0, ŝ2, ŝ4, q̂0, q̂4, û0, û4} and the parameter G . At least two of such solution lines exist,
one corresponding to the isotropic solution and the other to the ordered solution,
and these lines intersect at the bifurcation point.
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Figure 3.6: Real space representation of the three solutions depicted in
figure 3.5. For the conversion to real coordinates, a value of α= 1/2 has
been used, to ensure that Pc (θ)+Pz (θ) ≤ 1 in all cases. Each plot covers
an area of 5l0×11l0. Note that our use of a coarse-grained homogeneous
model technically precludes the explicit use of a spatial representation,
so these image should be taken as an intuitive visualization tool only.

Within this 8-dimensional space, we have used a numerical path-following
method (Allgower and Georg, 2003; Deuflhard et al., 1987) that follows the ordered
solution branch by searching for a local minimum in the root mean error of the
constituent equations (3.66). We have implemented the algorithm as follows.

1. Define a definite positive error function X (p) :Φ→R that is zero for all station-
ary solutions

2. Select an initial point p0 : {p0 ∈Φ; X (p0) = 0} and an initial direction d.

3. Select a step size δ

4. Starting with i = 1, do...
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(a) Generate trial point p̃ = pi−1 +δ d
||d||

(b) Construct a plane P through p̃ that is perpendicular to d

(c) Calculate pi as the local minimum of X (p), constrained to P

(d) Set d = pi −pi−1

(e) Increase i and go to (a) as long as more points are needed

5. Interpolate the set {pi } to approximate the solution branch

Applying this algorithm to the problem at hand, the error function X is defined
as the root mean square error of the constituent equations (3.66). The initial value of
p0 should be chosen to coincide with the bifurcation point, with coordinates

S∗ = ẑ0 −2ĉ2

(−2ĉ2)2/3
, Q∗ =− ẑ0

2ĉ2
, U∗ = ẑ0

(−2ĉ2)1/3
. (3.70)

so that in the case of our simplified interaction model

{G , ŝ0, ŝ2, ŝ4, q̂0, q̂4, û0, û4} = {c0 −1,2(ẑ0 +1),0,0,2ẑ0,0,2ẑ0,0} (3.71)

The initial instability affects only the cos(2θ) mode. This mode only appears in the
equation for ŝ2 and the other parameters are only affected by higher order corrections.
For this reason we choose the initial direction d of the path to be the unit vector in
the ŝ2-direction and trace it from there.

We have used the numerical procedure described above to determine the ordered
solutions of (3.40), starting from the bifurcation point. This has been done for nine
different parameter values. For the values of ĉ0 we used the extreme values 3/4 and
9/8, as well as 1, the latter corresponding to G∗ = 0. For each of these three cases, we
have varied the zippering parameter ẑ0, choosing values of 0, 1 and 10. Figure 3.4
shows the results, depicting both the total density of the system and the degree of
ordering as a function of G . The degree of ordering is measured by the 2D nematic
order parameter S2, defined as

S2 =
|∫ 2π

0 ei 2θK (θ)dθ|∫ 2π
0 K (θ)dθ

, (3.72)

which yields a value of 0 for a completely disordered system and a value of 1 for a
fully oriented system. Note that this order parameter is insensitive to the polarity
of the segments. Furthermore, figures 3.5 and 3.6 illustrate the properties of three
specific solutions, indicated by the labels a, b and c in figure 3.4.

3.2.5 A finite tubulin pool

So far, the expressions in this chapter have been stated under the implicit assumption
of constant values for the parameters governing the microtubule dynamics. Specif-
ically, we have seen that some combinations of parameters can lead to diverging
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microtubule densities. Of course, this is at odds with biological reality, due to re-
stricted availability of tubulin dimers inside the cell. To determine the effect this
has on the ordering of microtubules, we can assume that there is a tubulin pool of
a fixed size, and the depletion of free tubulin dimers affects the microtubule poly-
merization rate (growth speed). This is sufficient to place an upper bound on the
total density of a system. Assuming a given amount of tubulin to be present in the
system, corresponding to a microtubule density kmax , we take the growth speed to
be proportional to the amount of free tubulin (cf. Mitchison and Kirschner, 1984)

v+(ktot ) = v+
0

(
1− ktot

kmax

)
(3.73)

This dependency will lead to a decrease in the effective value for G (defined
in (3.40e)) as the density of polymerized microtubules increases. Specifically, the
effective value of G at a finite density must always be smaller than its initial value
in the absence of polymerized microtubules: Geff < G0. Accordingly, because the
density increases along the branch of ordered solutions, these solutions correspond
to increasingly large initial values of G0. This is illustrated in figure 3.7 where the
ordered solution curves cross the left-leaning contour lines depicting constant G0-
values. The asymptotic solution for the initial value G0 →∞ is that solution for which
K = Kmax .

We thus find that the biologically motivated inclusion of a finite tubulin pool
provides a mechanism by which a stable solution is created for any value of G0.
Specifically, figure 3.7 shows that also the hitherto singular case of ĉ0 = 1 now gives
rise to stable solutions for any value of the initial parameters, summarized in G0. In a
similar vein, the unstable (in terms of G) solution branch associated with ĉ0 = 9/8 now
turns around to produce stable ordered solutions for values of G0 that are sufficiently
large.

THE LINE GEFF = 0

Both the asymptotic solutions derived in section 3.D and the solutions for the sim-
plified interaction functions with ĉ0 = 1 and ẑ0 = 0 are degenerate sets of solutions
with the property Geff = 0, and therefore geff = 0. Combining this with equation (3.73)
we can deduce the steady state microtubule density of the peaked solution and the
length scale l0 (3.35) from the model parameters, assuming the presence of a tubulin
pool.

ktot = kmax

(
1− rc v−

rr v+
0

)
, (3.74)

l0 =
[

1

2
rn

(
1

v− + 1

v+
0 − (rc /rr )v−

)]−1/3

. (3.75)

The pool thus offers a mechanism through which a solution with a particular density
is selected.
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Figure 3.7: Bifurcation diagrams for the simplified interaction functions
with ẑ0 = 0 (no zippering) and ĉ0 = 4/3;1;9/8. Contour lines have been
added that indicate the corresponding initial values G0, assuming a finite
tubulin pool size. Systems outside of the steady state will evolve along
lines of constant G0. The dotted arrow in the center panel indicates an
example of such an evolution, starting with an empty system and G0 =
0.2 at t = 0. Parameters used to calculate the relation between Geff and
G0 were: v+ = 0.078µm s−1, v− = 0.164µm s−1, rr = 0.068 s−1 (Vos et al.,
2004). For demonstration purposes, we have used kmax = 21µm−1 and
rn = 0.001µm−1. The catastrophe rate rc was varied between 0.028 s−1

and 0.038 s−1 to obtain the different values of G0. Note that for Ktot al = 0,
G0 =G .
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3.3 Discussion

Based on biological observations, we have constructed a model for the alignment
of cortical microtubules. The model has a number of prominent features. First of
all, it allows us to identify a single dimensionless control parameter G , which is fully
determined by the nucleation rate and intrinsic dynamics of individual microtubules.
This control parameter determines the steady state degree of order of the system,
when the probabilities for zippering (Pz (θ)) and catastrophe induction (Pc (θ)) upon
collision are specified. This result by itself may turn out to be very useful in comparing
different in vivo systems. For increasing values of G , the isotropic stationary solutions
to the model show an increase both in density and in abundance of interactions,
as measured by the ratio of microtubule length over the mesh-size. Secondly, the
bifurcation point, i.e. the critical value of G∗ of the control parameter at which the
system develops ordered stationary solutions from the isotropic state is determined
solely by the probability of collisions between microtubules that lead to an induced
catastrophe.

Indeed, from the numerical solutions of the minimal model introduced in section
3.2.4 it appears, perhaps surprisingly, that the co-alignment of microtubules due to
zippering events, if anything, diminishes the degree of order. Together, these results
identify the “weeding out” of misaligned microtubules — by marking them for early
removal by the induced switch to the shrinking state — as the driving force for the
ordering process.

Finally, in spite of not being able to directly assess the stability of the solutions
in the time-domain, we have provided arguments that stable ordered solutions are
possible for the regime G < 0, i.e. where the length of individual microtubules is
intrinsically bounded. For G > 0, stable ordered solutions do not seem to exist, with
the exception of a very small region around G = 0 (see, for example, the solution for
ĉ0 = 1 and ẑ0 = 1). However, the isotropic state may still be locally stable for G > 1,
but only if it is not perturbed too much, as the aligned state is diverging.

The divergence of the ordered solution as G → 0 and the boundless growth of
this state for G ≥ 0 is a consequence of the fact that our model implicitly assumes
that there is an infinite supply of tubulin dimers available for incorporation into
microtubules. In section 3.2.5, we have argued that it is reasonable to assume that
in vivo there is a limit to the size of the free tubulin pool. This pool-size limit feeds
back into the system through the growth speed of the microtubules, ensuring that
the total length of the system remains bounded. Therefore, the system will always
settle into a steady state – even when the initial value of G is larger than 0.

How realistic is the model presented? To that end we need to address several
known factors that have not been included. First of all, microtubules typically can
de-attach from their nucleation sites and then perform so called treadmilling mo-
tion, whereby the minus-end shrinks at a more or less steady pace, which is small
compared to both the growth- and the shrinking speed of the more active plus end.
In the special case that no zippering occurs at all it is relatively easy to show that the
effect of treadmilling simply entails a renormalization of the parameter G and the
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interaction functions c(θ) and z(θ), but leaving the qualitative behavior of the model
identical to the one discussed here (see appendix 3.E).

When zippering does occur in combination with treadmilling, one expects the
treadmilling to enhance the degree ordering in an ordered state, as it serves to over
time “eat-up” the, by definition, less ordered initial segments of each microtubule.
This effect is also consistent with the observation in Figure 3.5c that in the case
with zippering the active tips are on average more strongly aligned than the average
segment. In fact, the comparison between figures 3.5b and 3.5c also shows that,
all else being equal, zippering sharpens the orientational distribution of the active
tips as compared to the case with no zippering. It is therefore conceivable that
the combination of zippering and treadmilling could lead to more strongly ordered
systems for the same value of the control parameter, and possibly the existence of an
ordered state for lower values of G .

Next it is known that in vivo severing proteins, such as katanin are active in, and
crucial to, the formation of the cortical array (Roll-Mecak and Vale, 2006). How-
ever, including the effect of severing proteins explicitly in the model would present
formidable problems in the analysis, and would introduce additional parameters
into the model for which precise data is lacking. In chapter 4 we use simulations to
investigate the effect of severing.

Another effect that has not been taken into account explicitly is microtubule
bundling. Whenever a microtubule zippers alongside another segment, they form
a parallel bundle. However, the coarse-grained homogeneous nature of our model
precludes the formation of bundles and only allows for alignment of the two. This
means that a microtubule that is growing in a different direction encounters both
microtubules separately instead of as a single bundle. It is to be expected that the
catastrophe and zippering rates stemming from N individual collisions will be higher
than those from a single collision with a bundle of N microtubules. Hence, in realistic
systems the event rate is likely to be lower than that predicted by the model. To a first
approximation, this effect can be accounted for by a decrease of the zippering and
induced catastrophe probabilities Pz (θ) and Pc (θ) (at least for the isotropic state).
Bundles are also thought to be more than simply adjacent co-aligned microtubules,
because they may be stabilized through association with bundling proteins that e.g.
decrease the catastrophe rate of individual microtubules within a bundle (see e.g.
Gaillard et al., 2008). This is a non-trivial effect that should be considered separately
and is likely to lead to an increased tendency to form an ordered structure.

To see whether our model, in spite of its approximate nature, makes sense in the
light of the available data we first use the collision event probabilities obtained by
Dixit and Cyr (2004) (see figure 3.2) to obtain an estimate for the bifurcation value of
the control parameter of G∗ =−0.15 for the case of Tobacco BY-2 cells. An ordered
phase of cortical microtubules should therefore be possible provided G >G∗. Given
the available data on the microtubule instability parameters in this same system taken
from Dhonukshe and Gadella (2003) and Vos et al. (2004) we would predict using the
definition (3.40e) that this requires the nucleation rate of new microtubules to be
larger than 0.05 min−1µm−2 (Dhonukshe) and 0.01 min−1µ m−2 (Vos) respectively.
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Both these estimates for a lower bound on the nucleation rate are reasonable as
they imply the nucleation of order 103 microtubules in the whole cortex over the
course of the build-up towards full transversal order, comparable to the number
that is observed. Furthermore, because both studies make no distinction between
spontaneous and collision-induced catastrophes, the spontaneous catastrophe rate
can be significantly lower (approximately half the reported number, see also appendix
3.F). This further decreases the minimum nucleation rate that is required to be in the
ordered state.

Finally, we should point out that our model so far only addresses the question of
what causes cortical microtubules to align with respect to each other. Given that in
growing plant cells the cortical array is invariably oriented transverse to the growth
direction, the question of what determines the direction of the alignment axis with
respect to the cell axes is as, if not more, important from a biological perspective.
With the help of computer simulations, we take some first steps in this direction in
chapter 5.

3.A Symmetries and the stability of solutions

The symmetry structure of the evolution equations (3.1) contains important clues to
the symmetry of its solutions and their stability (Golubitsky et al., 1988; Golubitsky
and Stewart, 2003). We note that the equations are symmetric (by construction)
under arbitrary rotations and reflections. The equations are thus equivariant under
the symmetry group S1 ×Z2

∼= O(2). Clearly, the isotropic solution reflects the full
symmetry of the equations.

The bifurcation equation (3.52) has shown that the space of bifurcating functions
κn is spanned by the functions cos(2nθ) and sin(2nθ) for a given value of n ≥ 1. The
symmetry group O(2) acts irreducibly on the two-dimensional coefficient space of
each pair of functions, so the equivariant branching lemma (Golubitsky et al., 1988,
chap. XIII) predicts that any bifurcating branch will be symmetric with respect to the
maximum isotropy subgroup Z2. In other words, the solutions that branch off from
the isotropic solution are symmetric with respect to an arbitrary axis, which we will
place at θ = 0.

Note that even after the restriction to the symmetry axis there are still two solution
branches emanating from the bifurcation point, differing in the sign of the coefficient
of the perturbation. These branches correspond to solutions peaked around θ = 0
and θ = π/(2n), respectively, that are otherwise identical. The symmetry of these
solutions indicates that the bifurcation is of the pitchfork type.

The presence of a pitchfork bifurcation implies a loss of stability of the originating
branch (Golubitsky and Schaeffer, 1984). In our system, we know that the isotropic
solution must be stable in the limit G → −∞. Therefore, the local stability of the
isotropic solution is lost at the first bifurcation point (for the lowest value of G), cor-
responding to the eigenfunction cos(2θ). Because this eigenfunction is orthogonal
to the eigenfunctions related to the subsequent bifurcation points (cos(2nθ) ,n > 1),
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the stability of the unstable mode cannot be regained at any point along the isotropic
solution and the isotropic solution itself remains unstable. This also means that
the solution branches originating at further pitchfork bifurcations will be unstable
near the isotropic solution. In this chapter we restrict ourselves to the analysis of
the first bifurcation point and the corresponding ordered solution branch. Because
the solutions on this branch already have the lowest symmetry permitted by the
interaction functions, there are no further bifurcation points along this branch.

Typically (Golubitsky and Schaeffer, 1984, chap. IV), the branches of the initial
pitchfork bifurcation are stable for a supercritical bifurcation (branches bending
towards higher values of G) and unstable for a subcritical bifurcation (branches
bending towards lower values of G). In addition, turning points in the bifurcating
branches generally correspond to an exchange of stability (Iooss and Joseph, 1980,
page 22). This analysis allows us to assign stability indicators to the bifurcation
diagrams in figure 3.4, even in the absence of a detailed study of the time-dependent
equations (3.1).

3.B The coefficients of c(θ)

The Fourier coefficients of the induced catastrophe function c(θ) play an important
role in determining the type and shape of the non-isotropic solutions. In this section,
we investigate the range of possible values of these Fourier coefficients, starting from
the physically motivated assumption that the probability Pc (θ) of inducing a catas-
trophe is a monotonically increasing function of the angle θ ∈ [0,π/2]. Naturally, this
implies that c(θ) = |sin(θ)|Pc (θ) is also increasing monotonically. The coefficients ĉn

are defined by

ĉn = 4

π

∫ π/2

0
c(θ)cos(nθ)dθ, for even n (3.76)

Using the fact that c(θ) is differentiable and c(0) = 0, we can rewrite this as follows

ĉn = 4

π

∫ π/2

0
cos(nθ)

∫ θ

0

dc(θ′)
dθ′

dθ′dθ (3.77)

= 4

π

∫ π/2

0

dc(θ′)
dθ′

∫ π/2

θ′
cos(nθ)dθdθ′ (3.78)

=−
∫ π/2

0

dc(θ′)
dθ′

4

πn
sin

(
nθ′

)
dθ′ (3.79)

Because dc(θ)/dθ ≥ 0 it follows that

ĉ2 ≤ 0, ĉ0 ≥ 0 and ĉ2 ≤ ĉn ≤ ĉ0 for even n ≥ 2 (3.80)

This result indicates that all Fourier coefficients of the interaction function c(θ)
are bounded by ĉ2 from below and ĉ0 from above. In addition, we can determine the
bounds of ĉ0 and ĉ2 themselves. To do so, we formally write the interaction function



3.C Discrete angles 61

on the interval [0,π/2] as a weighted integral over an infinite set of Heaviside step
functions H(θ−θ′)

c(θ) = sin(θ)
∫ π/2

0

dPc (θ′)
dθ′

H(θ−θ′)dθ′. (3.81)

Therefore, we can view c(θ) as a linear combination of the infinite set of basis func-
tions

fφ(θ) = sin(θ) H(θ−φ) φ ∈ [0,π/2] (3.82)

Since the calculation of ĉ0 and ĉ2 is linear, their values are also linear combinations
(with only positive weights) of the Fourier coefficients corresponding to the basis
functions fφ(θ). Because the total integrated weight cannot exceed 1, ĉ0 and ĉ2 are
restricted to the area defined by

{ĉ0, ĉ2} =α{ f̂φ,0, f̂φ,2}, α ∈ [0,1], φ ∈ [0,2π] (3.83)

The thus permitted values for ĉ0 and ĉ2 are indicated by the enclosed area in figure
3.3.

3.C Discrete angles

The spectral method discussed in section 3.2.4 transforms the infinite-dimensional
model equations to a finite set of equations for a limited class of models in which the
interaction functions have a finite Fourier representation. Even in the case where
these limitations are met, the integrals in equations (3.66) need to be evaluated nu-
merically, which can be costly. Hence we introduce a second, approximate, method
to reduce the dimensionality of the model equations: discretization of the angu-
lar coordinate θ. Discretizing the angular coordinate into 2N distinct values and
making use of the π-periodicity, the integrals are replaced by sums according to the
substitution ∫ 2π

0
f (θ)dθ→ 2π

N

N−1∑
n=0

f
(nπ

N

)
. (3.84)

Physically, this reduction corresponds to a system in which nucleation only occurs in
specific directions θk = kπ

N , with k = 1, ...,2N . For simplicity, we will assume N to be
even, but this restriction is not strictly necessary.

PROPERTIES OF THE INTERACTION OPERATORS

In the discretized problem, the functions L(θ), Q(θ), T (θ) and K (θ) are replaced by
N -dimensional vectors and the operators C and Z are sampled at discrete intervals
to form the matrix operators C̃ and Z̃. The operator matrices are real, symmetric
matrices that are invariant under rotations (cyclic permutation of the indices). They
are thus guaranteed to have an orthonormal basis of eigenvectors. We will now
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investigate the properties of the interaction matrices and indicate the parallels and
differences between the discretized and continuous models.

Let us define a generic π-periodic function g (θ) with a generic Fourier series
representation

g (θ) = a0

2
+

∞∑
n=1

a2ncos(2nθ)+
∞∑

n=1
b2nsin(2nθ) (3.85)

that is sampled at the set of points

{θk } =
{

kπ

N

}
, k = 0,1, ..., N −1. (3.86)

We now define a function g̃ (θ) that interpolates g (θ) at {θk }. This function has the
Fourier expansion

g̃ (θ) = α0

2
+

N /2−1∑
n=1

α2ncos(2nθ)+
N /2−1∑

n=1
β2nsin(2nθ)+ αN

2
cos(Nθ) (3.87)

Similarly, the discretized interaction function f (θ) – an even function – has the
expansion

f̃ (θ) = γ0

2
+

N /2−1∑
n=1

γ2ncos(2nθ)+ γN

2
cos(Nθ) (3.88)

The Fourier coefficients of the discretized and original functions are related as follows
(Boyd, 2001, page 93), clearly illustrating the aliasing of high-frequency information.

α2n = a2n +
∞∑

j=1
(a2n+2 j N +a−2n+2 j N ) n = 0,1, ...,

N

2
, (3.89a)

β2n = b2n +
∞∑

j=1
(b2n+2 j N +b−2n+2 j N ) n = 1,2, ...,

N

2
−1, (3.89b)

γ2n = f̂2n +
∞∑

j=1
( f̂2n+2 j N + f̂−2n+2 j N ) n = 0,1, ...,

N

2
, (3.89c)

where f̂2n are the Fourier coefficients of the interaction function f (θ).
The function of the discretized operator F̂ can now be rewritten using the identi-

ties from Boyd (2001, eqn. (4.43))

F̃[g ](θk ) = 2

N

N−1∑
j=0

f (θk −θ j )g (θ j ) (3.90)

= 2

N

N−1∑
j=0

[
γ0

2
+

N /2−1∑
n=1

γ2n
(
cos(2nθk )cos

(
2nθ j

)+ sin(2nθk )sin
(
2nθ j

))
+γN

2
cos(Nθk )cos

(
Nθ j

)]
g (θ j ) (3.91)

= γ0α0

2
+

N /2−1∑
n=1

γ2nα2ncos(2nθk )+
N /2−1∑

n=1
γ2nβ2nsin(2nθk )+ γNαN

2
cos(Nθi )

(3.92)
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Comparing this with equation (3.87) we conclude that the eigenfunctions of the
discretized operators are given by the set cos(2nθk ), with n = 0, ..., N /2 and sin(2nθk ),
with n = 1, ..., N /2−1. The corresponding eigenvalues are γ2n .

Specifically, when the interaction functions c(θ) and z(θ) can be represented
exactly by a cosine series up to degree N , we see that the eigenvalues γ2n of the
matrix operators C̃ and Z̃ are simply

γ2n = f̂2n n = 0,1, ...,
N

2
−1 (3.93)

γN = 2 f̂N (3.94)

The simplified interaction functions introduced in section 3.2.4 contains modes
up to cos(4θ), so it can be represented by a discretized model with N = 4, leaving
all eigenmodes intact with the exception of a factor 2 for the highest mode. The
corresponding interaction matrices are

C̃4 = 1

2


0 ĉ0 − 1

2 1 ĉ0 − 1
2

ĉ0 − 1
2 0 ĉ0 − 1

2 1
1 ĉ0 − 1

2 0 ĉ0 − 1
2

ĉ0 − 1
2 1 ĉ0 − 1

2 0

 Z̃4 = ẑ0

2


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 (3.95)

It should be stressed that even though the operators correctly reproduce the mapping
of all low-frequency modes, the operand functions themselves can not generally be
represented exactly using a finite number of modes. This results in aliasing through
equations (3.89). Fundamentally, this problem goes back to the 1/L(θ) term in the
collision equation (3.40a) and can be reduced, but not fully avoided, by increasing N .

BIFURCATION RESULTS

Accepting that the results will not be exact, but realizing that they will improve
with increasing N , we may calculate the bifurcation diagrams for the simplified
interaction functions introduced in section 3.2.4. We do so for increasing values
of N and compare the solutions with the computationally intensive exact results
from section 3.2.4. First of all, because the interaction functions for the minimal
model only have a limited number of Fourier modes, the first two eigenvalues are
conserved for N = 4 or higher, resulting in the location of the bifurcation point G∗
being identical to the continuous case.

However, in the discretized case there are two branches of solutions. Both classes
of solutions have mirror symmetry, but one of them contains solutions that are
symmetric around values θk and the other contains solutions that are symmetric
around the midpoints of two values. Mathematically, the existence of two separate
solution branches is caused by the fact that the Dn symmetry group has two distinct
isotropy subgroups with Z2 symmetry (see also Golubitsky et al., 1988, sec. XIII.5b).
At most one of these branches is stable.

Once again, we employ the numerical methods developed in section 3.2.4 to trace
the solution curves, starting from the bifurcation point. This time, the solutions can
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Figure 3.8: Bifurcation diagrams of the 2D nematic order parameter S2

for solutions of the discretized system. Solutions have been calculated
for the discretized simplified interaction functions with ẑ0 = 1 and ĉ0 =
3/4;1;9/8. Solutions for N = 4 have been indicated in light grey, solutions
for N = 8 in dark grey. For reference, the numerically computed solutions
for the continuous model have been added in black. The solid lines
correspond to the ‘dominant solutions’, symmetric around θ = 0 (one of
the discrete directions). The dashed lines correspond to the solutions
that are symmetric around θ = π/(2N ) (the midpoint of two adjacent
directions).
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be traced directly in the space of the discretized functions L(θk ), Q(θk ), T (θk ) and the
parameter G . The density K (θ) is calculated implicitly through (3.40b). The initial
values at the bifurcation point are

G∗ =−1+ ĉ0 L∗(θk ) = 1

1+ ẑ0
Q∗(θk ) = ẑ0 T ∗(θk ) = 1 (3.96)

The initial perturbation away from the bifurcation corresponds to the one of the
eigenfunctions e(θk ) = cos(θk ) or e(θk ) = cos

(
θk − π

2N

)
. Solving (3.40) for these per-

turbations gives the following expressions for the initial changes of the parameters:

∂G = 0 ∂L(θk ) = e(θk )

1+ ẑ0
∂Q(θk ) = 0 ∂T (θk ) = (1+2ẑ0)e(θk ) (3.97)

As the error function X we select the sum of the absolute differences of the dimen-
sionless equations (3.40). The resulting solutions are depicted in figure 3.8, for N = 4
and N = 8. Note that the solutions rapidly converge to the (numerically computed)
exact solution.

The dominant – and potentially stable – solution branch, we will assume, is the
one that corresponds to the highest density. This branch of solutions has a diverging
density and approaches perfect ordering, analogous to the result obtained in the
continuous case. Not surprisingly, the most peaked solutions (solid lines in figure
3.8) are symmetric around a single preferred direction θk , avoiding the induced
catastrophes within the peak that are a property of the alternate solutions. It is
interesting to note that these solutions appear to show hysteresis, although the size
of the hysteresis loop decreases rapidly as N increases. The appearance of hysteresis
is probably caused by the absence of induced catastrophes at very shallow angles
due to discretization.

The alternate solution branch (dashed lines in 3.8) does not diverge near G = 0,
but continues to exist for arbitrarily large values of G . The reason for this behavior
is that the symmetry of the solutions imposes that a peak should consist of at least
two neighboring directions with equal density. The microtubules in those directions
will have catastrophic collisions with one another, keeping the total density in check.
However, this situation is almost certainly not stable.

3.D No zippering: asymptotic solutions for G = 0

In section 3.2.4, where we traced the ordered branches of solutions for a simplified
model, we observed that these branches always converge to a solution with S2 → 1
and a diverging density. In this appendix we derive the asymptotic form of the ordered
solutions to equations (3.40) in the absence of zippering and assuming that c(θ) is
quadratic around the origin. The equations then reduce to

1

L(θ)
= −G + 1

π

∫ 2π

0
c(θ−θ′)K (θ′)dθ′ (3.98)

K (θ) = L(θ)2 (3.99)
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Because we are searching for peaked (nearly-diverging) solutions, we will assume
that the result of the convolution in equation (3.98) is essentially determined by the
shape of K (θ) (hence of L(θ)) in a small region around the peak. Fixing the arbitrary
location of the peak at θ = 0 we start with the Ansatz

1

L(ε)
= a0 +a2ε

2 +O(ε4), (3.100)

c(ε) = cε2 +O(ε4) (3.101)

where a0 ¿ 1. We expect the higher order terms to become irrelevant as a0 ap-
proaches 0, and the distribution becomes increasingly localized. Note that a0 ≥−G ,
because the microtubules in the interacting system cannot become longer than those
in the non-interacting system.

Assuming that the distribution of L(θ) is sufficiently localized, we can extend the
limits of the integral to infinity (assuming that L(θ)/L(0) decays fast enough). Finally,
we need to add a factor of two to the integral to account for the peaks at both θ = 0
and θ =π. Using these assumptions, we can use equation (3.98) as a self-consistency
equation relating a0, a2 and G . Solving

1

L(θ)
=−G + 2

π

∫ ∞

−∞
c(θ−θ′)2

(a0 +a2θ′2)2 dθ′ (3.102)

=−G + c

a2
p

a0a2
+ c

a0
p

a0a2
θ2 (3.103)

yields a family of solutions satisfying

a0a2 = c2/3, (3.104)

G = 0. (3.105)

Taking a0 and c as parameters, these solutions have the following properties, with
diverging density and perfect alignment as a0 → 0.

Lpeak =
1

a0
(3.106)

Ktotal =
∫ 2π

0
K (θ)dθ = c2/3

a0
= c2/3Lpeak (3.107)

S2 = 1− 2a2
0

c2/3
= 1− 2

c2/3L2
peak

(3.108)

Which particular value of a0 corresponds to the real solution will in biological systems
be determined by the concentration of tubulin dimers (see section 3.2.5).

APPLIED TO THE SIMPLIFIED INTERACTION FUNCTIONS

Applying this to the simplified interaction functions introduced in section 3.2.4, we
see that

c = 4ĉ0 −3 (3.109)
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and obtain the results

Ktotal = (4ĉ0 −3)2/3Lpeak (3.110)

S2 = 1− 2a2
0

c2/3
= 1− 2

(4ĉ0 −3)2/3L2
peak

(3.111)

IN THE PRESENCE OF A FINITE TUBULIN POOL

Finally, we investigate the asymptotic solutions in the presence of a finite supply of
tubulin (section 3.2.5). As G = 0 for the asymptotic solutions, we can use (3.107), and
(3.74) and (3.75) for the density and length scale, to derive

S2 = 1− 2c2/3

K 2
max

(
1− rc v−

rr v+
0

)2 (3.112)

= 1− 2c2/3

π2k2
max l 2

0

(
1− rc v−

rr v+
0

)2 (3.113)

Naturally, it is assumed that the amount of tubulin present in the cell (kmax ) is large
enough so that the solution is sufficiently peaked for the asymptotic approximation
to be valid.

3.E No zippering: the effect of treadmilling

As indicated in the introduction, treadmilling of microtubules is also thought to play
an important role in the cell and could be an important factor in the establishment of
the cortical array. The integration of treadmilling into equations (3.1) is not straight-
forward, so we aim to obtain a qualitative understanding of the effect of treadmilling
by considering the equations in the absence of zippering.

Considering the master equations (3.1), the inclusion of the treadmilling velocity
v tm is reflected in the growth and shrinkage terms

Φg r ow th =−(v+− v tm)∂l m+
i (l ,θ, t ) (3.114)

Φshr i nkag e = (v−+ v tm)∂l m−
i (l ,θ, t ) (3.115)

and the boundary condition

m+
1 (l1 = 0,θ, t ) = rn

2π(v+− v tm)
(3.116)

Retracing the steps leading up to the dimensionless equations (3.40) we see that
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these are reproduced exactly, with the substitutions

v+ → v+− v tm (3.117)

v− → v−+ v tm (3.118)

C[ f ] → v+

v+− v tm C[ f ] (3.119)

and we get the control parameter

G tm =
(

2(v+− v tm)(v−+ v tm)

rn (v++ v−)

) 1
3 ( rr

v−+ v tm − rc

v+− v tm

)
(3.120)

and the length scale

l0 =
(

2(v+− v tm)(v−+ v tm)

rn (v++ v−)

) 1
3

(3.121)

We observe that the results map onto those without treadmilling, with the growth
and shrinkage velocities defined relative to the treadmilling velocity and a higher
induced catastrophe rate. Furthermore, using the scaling relations (3.43), we can map
the increased induced catastrophe and zippering rates back to their non-treadmilling
values, using α= v+/(v+− v tm) ≥ 1.

The existence of this one-to-one correspondence between treadmilling and non-
treadmilling systems with the same relative velocities (v+−v tm = constant; v−+v tm =
constant) has a few interesting consequences. Although the systems are qualitatively
the same, the treadmilling system shows nontrivial behavior over a larger range of
values of G tm . Furthermore, the density of the equivalent treadmilling system is lower
than that of the non-treadmilling system. In fact, the average number of intersections
per microtubule Λ̄∗ at the bifurcation point (3.62) becomes

Λ̄∗ =−2(v+− v tm)

πv+ĉ2
, (3.122)

the value of which can be made arbitrarily small by increasing the treadmilling
velocity. The presence of a bifurcation at low densities can readily be understood
because of the fact that treadmilling microtubules have a higher collision rate for a
given density than non-treadmilling microtubules.

Finally, we may take into account the fact that only a limited amount of tubulin
is present through the modified polymerization velocity expression (3.73). For the
special case of solutions for which G tm = 0, the equivalent of the steady state density
equation (3.74) in the presence of treadmilling becomes

k tm
tot al =

kmax

rr v+
0

(
rr (v+

0 − v tm)− rc (v−+ v tm)
)≤ ktot al . (3.123)

The combination of treadmilling and finite availability of tubulin dimers thus leads
to a lower overall density of microtubules compared to a non-treadmilling system
with the same relative velocities.
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APPLICATION TO THE COLLISION INDUCED ORGANIZATION MODEL BY BAULIN ET AL.

The results obtained in the presence of treadmilling allow us to apply the theory that
has been developed in this chapter to the model described by Baulin et al. (2007).
That model specifies microtubules that grow with a constant velocity v+ at their
plus ends and shrink with a constant velocity v tm at their minus ends. When a
microtubules collides with another one, its plus end remains stationary until the
other microtubule has moved on, freeing the way for continued polymerization.
Nucleation takes place with a constant rate in a random direction and zippering is
not considered.

In this problem, we have Pc (θ) = 1 and Pz (θ) = 0. The stalling of microtubules can
be represented by induced catastrophes to a shrinking state with v− = 0. Note that
spontaneous catastrophes do not occur (rc = 0). Within this model, rescues are no
longer a process that is intrinsic to the microtubules, but their occurrence depends
on the environment. When a microtubule is stalled due to a collision with another
microtubule of length l , the average stalling time will be τl = l /(2v tm). Denoting the
probability distribution of a microtubule in direction θ to collide with a microtubule
in direction θ′ by p(θ→ θ′), and realizing that the steady state density is proportional
to l 2(θ), we obtain the following angle-dependent expression for the rescue rate.

rr (θ) =
∫

2v tm p(θ→ θ′)
l (θ′)

dθ′ (3.124)

= 2v tm

∫
sin

(|θ−θ′|) l 2(θ′)/l (θ′)dθ′∫
sin(|θ−θ′′|) l 2(θ′′)dθ′′

(3.125)

= 2v tm C[l ](θ)

C[l 2](θ)
. (3.126)

Using this expression and the parameter values fixed above, the full set of model
equations (3.40) reduces to

1

L(θ)
=−2

C[L](θ)

C[L2](θ)
+αC[L2](θ) (3.127)

with the only parameter

α= v+

v+− v tm . (3.128)

It follows that the isotropic average length is given by

L̄ =
(

3

αĉ0

)1/3

=
(

3π

4α

)1/3

, (3.129)

or, in dimensional units, by

l̄ =
[

3πv tm(v+− v tm)2

2rn(v+)2

]1/3

, (3.130)
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conform equation (C.5) from Baulin et al. (2007).
Applying the bifurcation analysis from section 3.2.2 to equation (3.127) yields the

bifurcation condition

L∗ =
[

1

α

(
− 1

2ĉ2
− 1

ĉ0

)]1/3

=
( π

8α

)1/3
(3.131)

for the lowest mode. Comparing this with the isotropic length L̄ shows us that L̄ > L∗,
for any value of α. Because the steady state length is always longer than the critical
length, the isotropic state cannot be stable. Also, although no firm conclusions can
be drawn without a detailed study of equation (3.127), it is well possible that no
bounded ordered solution exists, given the structure of the bifurcation diagrams in
figure 3.4. Both conclusions are in agreement with the observations from simulations
that were reported by Baulin et al. Naturally, restricting the available amount of
tubulin through the introduction of a tubulin pool would suffice to stabilize the
diverging ordered solutions to this model.

3.F Comparing spontaneous and induced catastrophes

z0 0

z0 1

isotropic

0.4 0.2 0.2

0.5

1

Ic α
1 3
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Figure 3.9: Plot of the ratio of the effective induced catastrophe rate per
microtubule and the spontaneous catastrophe rate. The results have
been calculated for the minimal model with ĉ0 = 3/4 and both ẑ0 = 0
and ẑ0 = 1.

There are two processes that cause a microtubule to switch from a growing to
a shrinking state. The first is the occurrence of a spontaneous catastrophe, which
we have modelled by a constant catastrophe rate rc . The second is the induction
of a catastrophe, triggered by a collision with another microtubule. Whereas the
spontaneous catastrophe rate rc is a model parameter, the induced catastrophes are
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an emergent property of the system. This discrepancy causes some difficulties in the
comparison of the theory (and simulations in later chapters) with experiments.

In experimental measurements of the catastrophe rate (for example in Vos et al.,
2004), the distinction between spontaneous and induced catastrophes is usually
not made. The measured value is therefore effectively an upper bound for the spon-
taneous catastrophe rate, the input parameter in our model. In this section, we
will determine the ratio between induced and spontaneous catastrophes within the
context of our model. The results can be used to make an educated guess of the
spontaneous catastrophe rates from measured data of the total catastrophe rate.

The spontaneous catastrophe rate density is given by

Cs = rc
∑

i

∫
dθ

∫
dlm+

i (θ, l ) (3.132)

= rc

uπl 2
0

∫
dθT (θ) (3.133)

and the induced catastrophe rate density by

Ci = v+∑
i

∫
dθ

∫
dlm+

i (θ, l )
∫

dθ′c(θ−θ′)k(θ′) (3.134)

= v+

rcπl 3
0

∫
dθT (θ)C[K ](θ). (3.135)

Hence the ratio of induced to spontaneous catastrophes is given by

Ci

Cs
=

(
v+

rc l0

) ∫
dθT (θ)C[K ](θ)∫

dθT (θ)
≡

(
v+

rc l0

)
Ic . (3.136)

We note that the scale is set by the ratio of the free run length v+/rc to the length
scale l0. In the isotropic case, this expression simplifies to

C̄i

C̄s
= v+ĉ0K̄

rc l0
. (3.137)

In order to get a sense for the scale of the resulting number, we evaluate K̄ at G = 0,
yielding ĉ−2/3

0 , which is a reasonable assumption for G ≈ 0. Using this assumption,
we get the following expression for the relation between the spontaneous catastrophe
rate rc and the total measured catastrophe rate r tot al

c :

rc = r tot al
c − v+ĉ1/3

0

l0
. (3.138)

Of course, this estimate is only approximately valid for measurements done in
the isotropic state. For ordered solutions, we must evaluate Ic in (3.136) explicitly.
Figure 3.9 shows the value of Ic for the simplified model with ĉ0 = 3/4, for both the
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isotropic and the ordered solutions with ẑ0 = 0 and ẑ0 = 1. We note that ordered
solutions generally correspond to a value of Ic ≈α1/3/2. This can be combined with
the generic expression

rc = r tot al
c − v+

l0
Ic , (3.139)

to estimate the true value of rc from experimental data. Using the data summa-
rized in Vos et al. (2004), we see that r tot al

c = 0.6 ± 0.1 min−1 and v+/l0 = 2.3 ±
0.2(µm/s)2/3r 1/3

n (interphase; raw data across studies). Assuming a nucleation rate
of rn = 10−2min−1µm−2 and Ic = 0.4 we obtain rc = 0.4±0.1min−1, approximately
two-thirds of the measured catastrophe rate.



Simulating the cortical
array: alignment 4
In chapters 2 and 3 we have used analytical methods for the analysis of microtubule
dynamics and the formation of the cortical array. When possible, this is the preferred
approach because it allows one to make generic statements about a system’s behavior
and discover connections that may otherwise have remained hidden. An example of
the latter is the extraction of the parameter G in the previous chapter.

However, there are limits to the applicability of the theoretical model, due to two
intrinsic difficulties. Firstly, the translation of the conceptual model for interacting
microtubules to an analytical model involves an inevitable coarse-graining step that
should be justified a posteriori. Secondly, many (combinations of) additional relevant
mechanisms cannot be included without resulting in a practically unsolvable model.

For these reasons, this and the following chapter focus on explicit simulations
of the cortical array model consisting of individual microtubules. The simulation
results are first compared to the theoretical predictions from the previous chapter.
Furthermore, we investigate the effect of combinations of processes that have been
studied in isolation in the previous chapters, namely the combination of microtubule
zippering and treadmilling and the effect of microtubule severing on interacting
microtubules.

Simulations of the microtubule cytoskeleton have traditionally focused on the
more common case of animal cells, in which the microtubules are relatively free
to move in three dimensions, controlled by the actions of motor proteins (Karsenti
et al., 2006). In plant cells, however, the microtubules are mostly confined to the
two-dimensional inner surface of the cell membrane, thought to be held in place by
protein complexes (Barton et al., 2008; Sainsbury et al., 2008). The result of this plant-
specific constraint is that microtubule locomotion is controlled only by polymeriza-
tion and depolymerization. Baulin et al. (2007) have presented a two-dimensional
simulation model for treadmilling rods that displays a collision-induced ordered
phase, but this model does not incorporate the intrinsic dynamic instability of the
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microtubules, and microtubule collisions only lead to pausing. These mechanisms
have been included in the simulations by Dixit and Cyr (2004), but unfortunately
those simulations were hampered by biased initial conditions, small microtubule
numbers and short run times. In this chapter we present a simulation method that
is specific to the plant cell cortical microtubules and has the speed and accuracy
that is required to make substantiated statistical statements about the ability of the
microtubules to form an ordered array for a given set of parameters.

4.1 Simulation model

The model that is used for the simulations is similar to that introduced in chapter 3.
Microtubules are confined to a two-dimensional surface that, in the context of this
chapter, is a flat square surface with periodic boundary conditions. The microtubules
themselves are modelled as rigid rods, or, in the presence of zippering, series of
connected rigid rods. New microtubules of infinitesimal length are nucleated at
random locations with random directions at a fixed rate rn per unit of area.

Collision dynamicsNucleation

Dynamic instability

rcrr

v+vtm

vtm v-

rn

Pc(θ)

1-Pz(θ)-Pc(θ)

Pz(θ)

θ

zippering

induced
catastrophe

rescue catastrophe
crossover

θrs rx

Severing

N

M

Pz(θ) = Pz(θ,Μ,Ν)

Pc(θ) = Pc(θ,Μ,Ν)

Collisions in bundles

Figure 4.1: Schematic representation of the elements of the model. See
also the description of the parameters in table 4.1.
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Each microtubule has two distinct ends. The so-called plus end exhibits dynamic
instability, alternating between growing and shrinking states. In the growing state, it
extends with a speed v+ and in the shrinking state it shrinks with a speed v−. The
spontaneous switch from the growing to the shrinking state is called a catastrophe
and occurs with a fixed rate rc ; the switch back to the growing state, the rescue, occurs
with a rescue rate rr . The other end of the microtubule depolymerizes steadily with
a fixed speed v tm . For an overview of the parameter values that are used in the
simulations, see table 4.1.

In cells, there is a limited supply of the tubulin dimers that can be used to con-
struct microtubules. The depletion of free tubulin will primarily affect the rate at
which tubulin dimers polymerize on growing microtubule tips, and is linear to a
first approximation (Mitchison and Kirschner, 1984). To model the effect of a finite
tubulin pool we include the option to use a length-dependent growth rate, defined by

v+(t ) = v+
0

(
1− L(t )

Lmax

)
, (4.1)

where L is the total length of the microtubules in the system, and Lmax is the length-
equivalent of the total amount of tubulin in the system1. This way, the total micro-
tubule length is bounded by Lmax.

MICROTUBULE INTERACTIONS

The adherence of the cortical microtubules to the cell membrane ensures that there
are frequent collisions of growing (polymerizing) microtubule ends with other micro-
tubules, something that would be a rare occurrence for microtubules that are free
to move in three dimensions. Such collisions have been found to result in one of
three possible outcomes: (i) zippering, a reorientation of the growing tip alongside
the other microtubule; (ii) induced catastrophe, a collision-induced switch to the
shrinking state; (iii) cross-over, leading to a continuation of the growth in the original
direction. Which of these outcomes is selected is a stochastic process that depends
on the angle between the two microtubules involved. Figure 4.8 depicts experimental
data on the relative occurrence of these outcomes, along with the approximation that
is used for many of the simulations in this and the following chapter.

The possibility for microtubules to zipper alongside each other naturally leads
to the formation of microtubule bundles. In vivo, bundling is speculated to involve
microtubule-associated proteins, that could possibly influence the microtubule
dynamics (Gaillard et al., 2008). For the sake of simplicity, we assume that the

1Something to watch out for in the case of a finite tubulin pool is that in the absence of shrinking
microtubules the plus end growth speed will asymptotically approach the treadmilling velocity. In this
case, the depolymerization rate at the minus end eventually equals the polymerization rate at the plus
end. If additional microtubules are nucleated in this limit, it will lead to the unrealistic situation where the
system becomes populated with treadmilling microtubules of vanishing length. Currently, this exception
is explicitly handled by the simulation code, but a more extensive treatment of the tubulin pool would
have to address the effects of tubulin availability on the nucleation rate.
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formation of a bundle does not influence the dynamic instability parameters of
the microtubules within the bundle. However, we should nevertheless address the
question of how single-microtubule collision probabilities translate to the situation
where one or both of the microtubules involved are part of a bundle. For instance,
does a microtubule that collides with a bundle of three microtubules have the same
probability to undergo a catastrophe as one that collides with a single microtubule at
the same angle of incidence? We will consider four different scenarios, described in
more detail below.

single collision In this case, microtubules ignore the presence of other microtubules
in the same bundle, and collisions with another bundle are treated as a single
collision with a solitary microtubule.

sticky bundles This scenario assumes that microtubules have a strong affinity for
other microtubules in the same bundle, resulting in microtubules always cross-
ing over another (bundle of) microtubule(s) if a microtubule from the same
bundle has already crossed it. In other situations, the ‘single collision’ scheme
is used.

no zippering from bundles In a variation of the sticky bundle scheme, microtubules
that are part of a bundle will not zipper alongside other microtubules, but they
can still undergo an induced catastrophe. Every encountered bundle is treated
as a single collision.

bundle multi-collisions In an attempt to approximate the coarse-grained dynamics
of the analytical model presented in chapter 3 we introduce a final interaction
mode that aims to nullify the effect of bundles. Collisions between bundles
are treated as a dense series of collisions between one of M parallel incoming
microtubules with N oblique microtubules (see figure 4.1). Appendix 4.B
describes this method in more detail, along with a method to compute the
resulting probabilities for zippering Pz (θ, M , N ) and catastrophe induction
Pc (θ, M , N ).

MICROTUBULE SEVERING

Microtubule severing by the enzyme katanin has been observed to occur in the
cortical array, and is thought to play a significant role in the ability of the microtubules
to align successfully (Burk et al., 2007). Generally, the severing of microtubules can be
divided into three types. The first type is when katanin acts to detach a microtubule
from its nucleation site, thereby enabling treadmilling. This severing process is not
simulated explicitly, but the effect of treadmilling is investigated in section 4.4.2. The
second type of severing occurs at random positions along the length of a microtubule,
a process that has been discussed in detail in chapter 2. In our theoretical and
simulation models, this type of severing has been implemented as a constant severing
rate rs per unit length. After a microtubule has been severed, the newly created plus
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Parameter Description Value
v+

0 growth speed 0.078 µm s−1

v− shrinkage speed 0.164 µm s−1

v tm treadmilling speed 0.02 µm s−1

rr rescue rate 6.8 ×10−3 s−1

rc catastrophe rate variable: 3×10−3 – 1.2×10−2 s−1

rn nucleation rate 0.002 s−1µm−2

rs severing rate 0 (default) – 2×10−4 µm−1s−1

rx intersection severing rate 0 (default) – 0.05 s−1

Lmax total tubulin pool (length equiv.) 5 µm, ∞ (default)
W ×H system size (periodic) 80 × 80 µm

Table 4.1: Overview of all parameters and variables with their default values
(when applicable). The dynamic instability parameters are taken from Vos
et al. (2004) and the value for v tm has been approximated from the data by
Shaw et al. (2003). The nucleation rate has been selected to give rise to an or-
dered state in combination with the chosen dynamic instability parameters
and the interaction functions measured by Dixit and Cyr (2004) (see also sec-
tion 3.3). Because biological observations have made no distinction between
spontaneous and collision-induced catastrophes, the reported value for rc

(4.7×10−3s−1) is likely to be too high, by an unknown factor (see section
3.F). Because of this uncertainty and the fact that G is a linear function of
rc , we use the spontaneous catastrophe rate rc as our primary means to
change the value of the control parameter G . The system size corresponds
to a reasonable measure for the surface area of a young Tobacco BY-2 cell
(Jan Vos, personal communication; see also chapter 5) and strikes a good
balance between simulation speed and suppression of finite size effects. For
the interaction functions, see figure 4.8.

end immediately undergoes a catastrophe, placing it in the shrinking state. There
is some controversy about the importance of this mode of severing in plant cells
(Burk et al., 2007). The final type severing was reported by Wightman and Turner
(2007), who observed that, in Arabidopsis cotyledons, severing takes place almost
exclusively at locations where one microtubule crosses over another microtubule.
In our simulation model, this is represented by a separate severing mechanism that
severs each intersection with a rate rx . The microtubule that is severed is always a
microtubule that has crossed over a pre-existing microtubule. The microtubule that
is severed is the one on the cytoplasmic side, i.e. ‘on top’ if we view the membrane as
the surface on which the microtubules move. Similarly, in the case of overlapping
bundles, a microtubule is selected at random from the second bundle to arrive at the
intersection.
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4.2 Simulation method

The model described above leads to dense systems with many interactions and
spontaneous events such as nucleations or catastrophes. Between these events,
microtubules are steadily growing and shrinking. To simulate the cortical array
model in a way that is both accurate and fast, we have opted for an event-driven
simulation method. Whenever an event has taken place, the time of the next event
is computed, the microtubule lengths are updated to reflect that time and the next
event is executed. This cycle is repeated until a stop event is encountered, indicating
that the end of the simulation has been reached. For the implementation, we make a
distinction between deterministic and stochastic events. Deterministic events are
those events for which the event time is fully determined by the state of the system,
whereas stochastic events are the result of a random process. Table 4.2 lists the
relevant events of both classes for our model. The simulation scheme for the queuing
and evaluation of stochastic and deterministic events is explained in more detail
below and summarized in figure 4.2.

stochastic events deterministic events
nucleations collisions
catastrophes shrinking past previously crossed intersections
rescues disappearance of segments
severing simulation control (measurement, stop)

Table 4.2: Division of the simulation events into two classes: deterministic
and stochastic events.

STOCHASTIC EVENTS

Because all stochastic events are independent and memoryless, we use a kinetic
Monte Carlo algorithm (Fichthorn and Weinberg, 1991) to determine the next stochas-
tic event, with two twists: (1) the event rates are typically time-dependent and (2)
before a stochastic event is executed, its time is compared with the first deterministic
event. If the deterministic event should occur at an earlier time, it is executed first
and a new stochastic time is computed, because the result of the deterministic event
will typically affect the stochastic event rates.

Each stochastic event that can occur is associated with an event rate ri (t ). Most
event rates are constant between events, with the exception of the severing rate,
which is dependent on the total length of growing and shrinking microtubules. The
total event rate is given by

R(t ) =∑
i

ri (t ) (4.2)

The value – and time-dependence – of R(t) will depend on the state of the system.
For a given rate, the time interval ∆ts to the next stochastic event can be computed
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Figure 4.2: Schematic depiction of the event-driven simulation scheme.
Two queues of deterministic events are maintained, and updated ac-
cording to the state of the system. The system state also determines the
timing of the next stochastic event. The nearest event is selected and
executed, which usually changes the state of the system. The cycle is
repeated until a stop event is encountered.

from the expression ∫ t+∆ts

t
R(t ′)dt ′ =−log(u) , (4.3)

where u is a uniform number in (0,1]. An explicit expression for ∆ts is derived in
appendix 4.C. Because the stochastic events have no memory, we may recalculate
∆ts whenever it is (potentially) invalidated, such as after the execution of any deter-
ministic event.

The interval ∆ts indicates the occurrence of the first stochastic event of any type.
The specific type of stochastic event that takes place is determined by selecting an
event at random proportionally to the corresponding rates ri (t +∆ts ), evaluated at
time t +∆ts .
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DETERMINISTIC EVENTS

For a given state of the system, deterministic events – such as collisions – occur
at a known time in the future. This allows us to pre-compute the times at which
deterministic events will take place and store them in a queue. At any given time,
the front of the queue indicates the time interval ∆td to the first deterministic event.
This interval is compared with the interval ∆ts for the first stochastic event and the
one with the shortest interval is executed. The resulting change in the state of the
system will typically cause new deterministic events to be added to the queue, or
obsolete events to be invalidated.

The process of handling deterministic events is more complicated when a finite
tubulin pool is used. In that case, the speed of the growing plus ends is dependent
on the total length of all microtubules in the system (see equation (4.1)). As a conse-
quence, the time it takes a plus end to travel a certain distance to the next collision
depends on the dynamics of all microtubules in the meantime. In particular, these dy-
namics are potentially affected by intermediate deterministic and stochastic events.
It is therefore no longer possible to calculate collision times a priori.

This problem is resolved by the creation of a second deterministic event queue,
specifically for the plus end collisions. This queue does not store (and sort) events
by their time of occurrence, but rather by the distance that has to be covered by
a growing plus end to reach to the collision position. Because all plus ends are
affected equally by the limited tubulin pool, their relative positions in the queue
are conserved by the dynamics of the system. To determine from which queue the
next deterministic event should be taken, the plus end distance of the first event is
converted to an event time that can be compared to the event time from the other
queue. Functions to convert from plus end distance to time and back are derived in
appendix 4.D.

4.3 Analysis

ORDER PARAMETERS

To measure the degree of ordering in the system, we introduce the microscopic (i.e.
derived from the individual particles) order parameter S2

S2 =
∣∣∣〈ei 2θ〉l

∣∣∣= |∑n lnei 2θn |∑
n ln

=
√(∑

n lncos(2θn)
)2 + (∑

n lnsin(2θn)
)2∑

n ln
, (4.4)

where the index n runs over the segments in the system, with length ln and angle θn .
The S2 order parameter has a value of 0 for an isotropic system and a value of 1 for a
fully oriented system. Note that this order parameter is insensitive to the polarity of
the segments. In the coarse-grained limit, this definition is equal to definition (3.72)
from chapter 3. Whereas the S2 value gives an indication of the amount of order, the
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dominant direction of this order is given by the angle

Φ2 = arctan

(∑
n lncos(2θn)∑
n lnsin(2θn)

)
. (4.5)

A problem particular to most experimental studies is that the spatial resolution
of optical microscopy is too low to observe individual microtubules within a bundle.
Although the relative brightness of the observed (bundles of) microtubules can give
some guidance, this is generally inaccurate (Barton et al., 2008). To account for this
effect, we may also compute worst case ‘optical’ measures for the density and the S2

order parameters. These measures are determined by counting the bundled sections
of microtubules as a single microtubule. The optical density will therefore necessarily
be lower than the actual density, and the difference between the two provides insight
into the degree of bundling. The optical S2 value will generally also be lower than the
real value, because bundles (which contribute more to S2) tend to be oriented more
towards the direction of global alignment than the average microtubule.

CONTROL PARAMETERS

The work in chapter 3 has allowed us to identify two control parameters that can
assist in the understanding of the simulation results, and clarify their dependence on
the system parameters. These compound parameters are the natural length scale l0

and the control parameter G , that, for a given set of angular interaction probabilities,
determines the steady state properties of the system. Higher values for G generally
correspond to more ordered systems.

The expressions for l0 and G were initially derived in the context of a model that
includes microtubule zippering but not the treadmilling motion of the minus end. In
section 3.E, these definitions were extended to include treadmilling, at the expense
of zippering. Because the definitions for the treadmilling-only case reduce to those
for the zippering-only case when v tm = 0 (no treadmilling), we use the treadmilling
parameters to interpret all simulation results in this chapter. Note that we also use
these parameters for the simulations with both zippering and treadmilling, for which
the theory gives no guidance.

In the absence of treadmilling, the natural length scale l0 is given by (3.35), which
translates into (3.121) when treadmilling is enabled:

l tm
0 =

(
2(v+− v tm)(v−+ v tm)

rn(v++ v−)

) 1
3

. (4.6)

The control parameter G is defined by equation (3.40e), and its treadmilling equiva-
lent is given by (3.120). The change in control parameter for a treadmilling system is
accompanied by a scaling of the interaction functions with a factor v+/(v+− v tm),
which reduces to 1 as the treadmilling velocity vanishes. Using the scaling properties
of the system (see section 3.1.4) we find that the system is ultimately controlled by
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the value of the combined control parameter G ′ =G tm((v+− v tm)/v+)1/3. Explicitly,
G ′ is given by

G ′ =
(

2(v+− v tm)2(v−+ v tm)

rn v+ (v++ v−)

) 1
3 ( rr

v−+ v tm − rc

v+− v tm

)
. (4.7)

4.4 Results

The simulation model presented above has many independent parameters and there
is a large variety of questions that can be addressed using the simulations. In this
chapter we will focus on three aspects. We start by comparing the steady state
simulation results with the theoretical predictions derived in chapter 3. Next, we look
at a number of biologically observed processes and see how they affect the propensity
for the system to align. As a final step we take a single set of parameters that closely
matches experimental results and track the process of alignment as a function of
time.

4.4.1 Comparison with the coarse-grained model

For the comparison with the theoretical results from chapter 3, we use the simplified
interaction functions that were introduced in section 3.2.4, with ĉ0 = 3/4 (to get
an ordered phase at negative values of G ′) and ẑ0 = 0 or 1 (to control zippering).
The remaining parameter α is used to scale both the probabilities for zippering and
induced catastrophes, at the expense of cross-over events. Figure 4.3 shows the
resulting interaction probabilities, with zippering enabled and α= 1/2.

To start, simulations were performed without zippering and treadmilling, and
α= 1, so that every perpendicular collision leads to a catastrophe. Figure 4.4a shows
the resulting S2-values as a function of G , both with and without rescue events.
To adjust for the difference in rescue rates, the catastrophe rates for both systems
were chosen to obtain an identical range of G values. The agreement between the
two curves suggests that G is indeed the relevant control parameter, also for the
simulations.

Furthermore, we note that there is substantial agreement between the measured
S2-values and the theoretical prediction (the solid line). The remaining differences
are probably caused by a mixture of three factors: finite-size effects, finite-number
effects and the existence of spatial correlations that are ignored in the coarse-grained
model. Temporal correlations do not appear to be of great importance, because if
this were the case, disabling the rescue events would have had a significant impact.
To further probe the limit of large numbers and weak interactions in which the theory
should provide exact results, we decreased value of α so that more collisions result in
cross-over events. This should both decrease the spatial correlations and increase
the number density. At the same time, we increased the nucleation rate by the same
factor, to keep the value of G/α1/3 constant. The increased nucleation rate leads



4.4 Results 83

0 π 4 π 2
0

1

p
ro
b
ab
il
it
y

Pc

Pz
Px

Figure 4.3: Overview of the collision outcome probabilities Pc (θ) (in-
duced catastrophe), Pz (θ) (zippering) and Px (θ) (crossover) for the
simplified interaction functions defined in section 3.2.4, with α= 1/2,
ĉ0 = 3/4 and ẑ0 = 1. The predicted bifurcation value for G ′ is located at
G ′/α1/3 =−0.25.

both to an increased number density and to a decrease of the natural length scale
l0, which should suppress the finite-size effects (for a given system size). Figure 4.4b
shows that the results do indeed converge to the theoretical prediction in this limit.

The situation changes when we enable zippering (ẑ0 = 1), which by its very
nature introduces strong spatial correlations in the form of microtubule bundles.
Figures 4.6 and 4.7 show the S2 values as a function of G/α1/3, for all four bundle
interaction modes under consideration. This time, we observe large differences in
the onset of alignment, and correspondingly large deviations from the theoretical
prediction. Furthermore, the results do not appear to converge to each other nor to
the theoretical curve when α is decreased. The exception to this pattern is the multi-
collision interaction mode, which has been constructed specifically to approximate
the coarse-grained model (see appendix 4.B). Using this interaction mode, there still
are large deviations from the theoretical solutions for moderate interaction strengths,
but in the limit of very weak interactions (α= 0.01) the simulation results do indeed
converge to the predicted bifurcation point between the ordered and disordered
states. Nevertheless, even with the multi-collision significant deviations from the
theoretical curve remain visible for highly ordered systems. Most likely, this is caused
by the fact that only microtubules that have previously crossed over the intersection
are taken into account in the multi-collision computation. Microtubules that have
previously zippered along the other bundle are ignored. This can have a marked effect
on the validity of the multi-collision approximation if the strength of the interactions
or the thickness of the bundles causes a significant fraction of the microtubules to
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Figure 4.4: Steady state alignment as a function of G/α1/3, using interaction functions
derived from those in figure 4.3 without zippering (ẑ0 = 0) and with varying values of
α. (a) Comparison of systems with and without rescue events; α= 1 (b) Comparison
of systems with different collision cross sections (α) and nucleation rates (rn). In
both graphs, the solid line represents the theoretical solution shown in figure 3.4.
The point indicated by ‘a’ and ‘b’ corresponds to the panels in figure 4.5. All systems
were initialized at the highest catastrophe rate (lowest G) and equilibrated for 50,000
seconds before the alignment was measured. After that, the catastrophe rate was
decreased and the procedure was repeated. Results were averaged over 80 runs
and the standard error of the mean is indicated by vertical bars (not always visible).
rc ∈ [10−3, 9×10−3] s−1 (rescues disabled) or rc ∈ [4×10−3, 1.2×10−2] s−1 (rescues
enabled). Non-default parameters are specified in the legends.
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Figure 4.5: Snapshots of steady state systems at various parameter set-
tings. For all panels α= 1/2, and panel (c) has been created using the
bundle interaction mode in which zippering away from a bundle is
not permitted. Each panel has been rotated for horizontal alignment
and covers an area of 5l0 ×11l0, where l0 = 3.3µm for these parameter
settings.

zipper at a given intersection.

Summarizing, we see that the four bundle interaction modes lead to very different
results, even in the limit of weak interactions. The theoretical prediction is only
matched by the multi-collision interaction mode when combined with very weak
interactions. For the other cases, it only offers qualitative guidance: for the interaction
probabilities defined in figure 4.3, we see a sharp transition from disorder to order at
negative values of G . It follows that the details of the interactions between bundles
are of vital importance for the quantitative understanding of cortical array formation
in plant cells. In the absence of experimental leads, we apply Occam’s razor and will
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Figure 4.6: Steady state alignment as a function of G/α1/3 using the simplified in-
teraction functions and zippering enabled (ẑ0 = 1). Results are shown for simple
bundle collisions and for ‘sticky’ bundles, each with two different collision cross
sections α. The solid line represents the theoretical solution shown in figure 3.4. All
systems were initialized at the highest catastrophe rate (lowest G) and equilibrated
for 250,000 seconds before the alignment was measured. After that, the catastrophe
rate was decreased and the procedure was repeated. Results were averaged over 40
runs (α= 0.5) or 20 runs (α= 0.05) and the standard error of the mean is indicated by
vertical bars. rn = 3×10−3 s−1. For α= 0.5: rc ∈ [5×10−3, 1.2×10−2] s−1; for α= 0.05:
rc ∈ [4×10−3, 7.5×10−3] s−1.
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Figure 4.7: Steady state alignment as a function of G/α1/3 using the simplified inter-
action functions and zippering enabled (ẑ0 = 1). Results are shown for the repression
of zippering away from bundles and for multi-collisions, each with varying collision
cross sections α. The solid line represents the theoretical solution shown in figure
3.4. The point indicated by ‘c’ corresponds to panel c in figure 4.5. All systems were
initialized at the highest catastrophe rate (lowest G) and equilibrated for 250,000
seconds before the alignment was measured. After that, the catastrophe rate was de-
creased and the procedure was repeated. Results were averaged over 40 runs (α= 0.5)
or 20 runs (α = 0.05, α = 0.01) and the standard error of the mean is indicated by
vertical bars. rn = 3×10−3 s−1. For α= 0.5: rc ∈ [5×10−3, 1.2×10−2] s−1; for α= 0.05:
rc ∈ [4×10−3, 7.5×10−3] s−1; for α= 0.01: rc ∈ [4.2×10−3, 5.5×10−3] s−1.
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use the simple single-collision interaction mode for the simulations in the remainder
of this and the following chapter.

Figure 4.5 shows partial snapshots of three systems in the steady state. The first
two are taken from non-zippering systems with different values of G , indicated by
(a) and (b) in figure 4.4. The last one is taken from a system with zippering enabled
(no zippering away from bundles), indicated by (c) in figure 4.7. The results can be
compared with the theoretical equivalent presented in figure 3.6. The visible density
differences between the figures are directly related to the corresponding deviations
of the S2 values from the theoretical results.

4.4.2 Realistic interactions and other control mechanisms

Having established the link with the theoretical results from the previous chapter, we
continue by investigating the influence of various factors that have been reported to
affect microtubule alignment. For the remainder of the simulations in this and the
following chapter, we will use the experimentally motivated interaction probabilities
that are shown in figure 4.8.

ZIPPERING AND TREADMILLING

In figure 4.9 we show the effects of treadmilling and zippering on the alignment
of the cortical microtubules. In panel (a), the S2 values are plotted as a function
of G ′ (equation (4.7)). To start, we note that the parameter G ′ absorbs the effect
of treadmilling, evidenced by the overlapping results for systems with and without
treadmilling (in the absence of zippering). In addition, both results closely match
the predicted transition between the ordered and disordered states, indicated by the
short thick line. Switching on zippering (using the single collision interaction mode)
leads to an increase of the order, in apparent contradiction to the result in figure
4.6 for the simplified interaction functions. This means that the qualitative effect of
zippering not only depends on the bundle interaction mode, but also on the specific
probabilities of the various collision outcomes. The fact that the S2 values of the
zippering systems reach a plateau below 1 is caused by persistent areas with slightly
differing orientations. Because of the high zippering probability for shallow angles,
the microtubules can move from one area to another without being penalized by an
induced catastrophe. Finally, we note that switching on zippering for the treadmilling
system leads to an even larger increase in alignment.

It is important to note that the results in 4.9a are plotted as a function of G ′,
which allows us to link the results for a treadmilling system to theoretical predictions.
However, because the definition of G ′ (4.7) involves the treadmilling velocity, figure
4.9a cannot be used to visually answer the question whether or not switching on
treadmilling and/or zippering leads to an enhancement of alignment. For that
purpose, figure 4.9b shows the same data as a function of G (the same as G ′ with v tm =
0). In this figure we see that enabling treadmilling leads to a significant reduction
in the level of alignment. This reduction does, however, go hand in hand with
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Figure 4.8: In vivo microtubule collision data from Dixit and Cyr (2004,
combined data from MBD-DsRed and YFP-TUA6 labelling), where the
collision outcome probabilities Pc (θ) (induced catastrophe), Pz (θ) (zip-
pering) and Px (θ) (crossover) are plotted on a cumulative scale. Every
data point is plotted at the center of the corresponding bin (10◦ bin
width), and the shaded regions have been extended to the boundaries
using horizontal lines. Superimposed in black lines is the approximation
that is used in simulations. In this approximation, the probability of
an induced catastrophe increases linearly from 0 at 10◦ to 0.8 at 90◦.
When a collision does not lead to an induced catastrophe, it results in
zippering for angles below 40◦ and a cross-over above 40◦. The coarse-
grained theory from chapter 3 predicts a bifurcation at G ′ = −0.15 for
this interaction function.

decreased density and could therefore be (partially) offset by an increased growth
velocity in the presence of a finite tubulin pool. When treadmilling is combined with
zippering and plotted as a function of G there is a small net enhancement of the
ordering ability, although it is not quite as large as the effect caused by zippering in
the absence of treadmilling motion. Notably results for treadmilling and zippering in
conjunction with the simplified interaction functions from the previous section (data
not shown) also indicate a small beneficial effect from the combination of zippering
and treadmilling, even though zippering alone is detrimental in that case.

MICROTUBULE SEVERING

As a next step we focus on the effects of microtubule severing. Generally, micro-
tubule severing events fall into three categories. The first is severing at their base,
releasing the microtubules from their nucleation site. This type of severing enables
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Figure 4.9: The influence of zippering and treadmilling on alignment using the Dixit
& Cyr interaction parameters. a) Alignment as a function of G ′. The location of
the predicted bifurcation value is indicated by the thick vertical line. b) The same
data, plotted as a function of the non-treadmilling G parameter that is defined by
(3.40e). All systems were initialized at the highest catastrophe rate (lowest G ′) and
equilibrated for 50,000 seconds before the alignment was measured. After that,
the catastrophe rate was decreased and the procedure was repeated. Results were
averaged over 80 runs and the standard error of the mean is indicated by vertical bars.
For non-treadmilling systems rc ∈ [3×10−3, 6.75×10−3] s−1; for treadmilling systems
rc ∈ [4×10−3, 9×10−2] s−1.
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treadmilling motion, the effect of which has been discussed in the previous section.
In this section we subsequently focus on the two remaining severing mechanisms:
uniform severing along the length of a microtubule and severing at microtubule inter-
sections. Both types of severing will be applied to systems with neither treadmilling
nor zippering and systems with both treadmilling and zippering.

Figure 4.10 shows the result of a uniform severing rate along the microtubule’s
length, for various severing rates. We note that in all cases, an increase in the severing
rate leads to a decreased level of alignment. This is not unexpected, because we have
seen in chapter 2 that, at a constant nucleation rate, severing leads to a decrease in
the average microtubule length and a decreasing microtubule density. This results
in a lower frequency of collision events that mediate the ‘alignment negotiations’
between microtubules.

In the upper graph of figure 4.11 we find a similar effect for severing at inter-
sections, in the absence of zippering and treadmilling. However, the situation is
dramatically reversed when both zippering and treadmilling are enabled. In that
case, microtubule severing at intersections leads to a marked increase of the sys-
tem’s ability to align. The most likely explanation for this observation is related to
the fact that for our implementation of severing at intersections, the microtubule
that is severed is always part of the bundle (or single microtubule) that was last to
arrive at that particular intersection (i.e., the one that is ‘on top’). The microtubule
bundles that are formed through zippering events are inherently more stable over
time than individual microtubules, and are therefore more likely to be shielded from
severing. This effective stabilization of bundles compared to individual microtubules
is probably what enhances the ability to align.

4.4.3 Time-dependent properties

Up to this point we have only considered the steady state properties of the simu-
lated systems. In this section we briefly investigate the time-dependent properties
of systems for a single set of parameters. To best approximate the experimental
observations, we enable both treadmilling and zippering (single collisions). Fur-
thermore, we introduce a finite tubulin pool with a length density equivalent of
Lmax = 5µm/µm2, corresponding to a reasonable tubulin concentration in the cell2.
It is further justified a posteriori because – for the selected parameters – it leads to
approximately half of the available tubulin being incorporated into microtubules, in
line with generic observations on tubulin distributions (Boal, 2002). As a result of
the inclusion of a finite tubulin pool, the microtubule plus end velocity will become
a time-dependent variable. Knowing that the density in the system will eventually
stabilize at approximately half the value of Lmax (see below), we have opted to double

2For a cylindrical cell with a length and diameter of 40µm where half of the space is taken up by the
vacuole, and using the fact that a tubulin dimer has a length of 8 nm and there are 13 protofilaments in a
microtubule, this corresponds to a tubulin concentration of 2.7 µM, not taking account the tubulin that is
used outside of the cortex. This concentration is lower than the 20 µM that is commonly quoted (Boal,
2002), but not unreasonable given the substantial differences between plant and animal cells.
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Figure 4.10: The effect of random microtubule severing on alignment. The Dixit &
Cyr interaction model was used for all simulations, first without zippering and in the
absence of treadmilling (top figure) and then with both zippering and treadmilling
enabled (bottom figure). All systems were initialized at the highest catastrophe rate
(lowest G ′) and equilibrated for 50,000 seconds before the alignment was measured,
the catastrophe rate was decreased and the procedure was repeated. Results were
averaged over 40 runs and the standard error of the mean is indicated by vertical bars.
For non-treadmilling systems rc ∈ [3×10−3, 6.75×10−3] s−1; for treadmilling systems
rc ∈ [4×10−3, 9×10−2] s−1.
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Figure 4.11: The effect of severing at microtubule intersections on the system’s ability
to align. The Dixit & Cyr interaction model was used for all simulations, first without
zippering and in the absence of treadmilling (top figure) and then with both zippering
and treadmilling enabled (bottom figure). All systems were initialized at the highest
catastrophe rate (lowest G ′) and equilibrated for 50,000 seconds before the alignment
was measured, the catastrophe rate was decreased and the procedure was repeated.
Results were averaged over 40 runs and the standard error of the mean is indicated
by vertical bars. For non-treadmilling systems rc ∈ [3×10−3, 6.75×10−3] s−1; for
treadmilling systems rc ∈ [4×10−3, 9×10−2] s−1.
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the value v+
0 to 0.156µm s−1 from the value used earlier in this chapter. This way, the

steady state growth speed remains approximately the same. Finally, the catastrophe
rate is chosen as rc = 4.7×10−3 s−1 (Vos et al., 2004). This value does not account
for the experimental overestimation of the spontaneous catastrophe rate due to the
occurrence of induced catastrophes (see section 3.F), but we use it regardless because
(a) there is no reliable estimate for the fraction of induced catastrophes and (b) the
reported value is already the lowest of those referenced by Vos et al. (2004).

Figure 4.12 shows a series of snapshots of the evolution of a single system, rang-
ing from 500 seconds to 24,000 seconds. We see that after an initial phase of local
alignment in various orientation, the global alignment is firmly established after
approximately 5000 seconds. Next, figure 4.13 shows the average of the S2 order
parameter for an ensemble of 1000 systems. We observe that the average system at-
tains a significant level of alignment (S2 > 0.5) after approximately one hour, whereas
after two hours virtually all systems have passed that point. Looking at the density
graphs, we see that the real density follows a profile similar to that of the S2 order
parameter. The optical density, on the other hand, rapidly approaches a plateau value
and its sample variation remains fairly small at all times. Due to the limitations of
optical microscopy, it is the optical density that should be compared to experiments.
However, very detailed comparisons of the time-dependent properties will likely be
affected by our linear approximation of the effect of tubulin availability on the plus
end growth speed and our use of a constant nucleation rate. In the examples given in
this section, the initial growth speed is twice as high as its steady state value.

Observable Value
S2 0.8751(10)
optical S2 0.7948(10)
density 2.656(3) µm−1

optical density 0.9229(13) µm−1

average microtubule length 10.106(6) µm
segments per microtubule 1.5721(10)
v+ 0.07313(9)µm s−1

Table 4.3: Averaged properties measured from 1,000 runs after 50,000 simu-
lation seconds. Indicated margins represent the standard error of the mean.

Table 4.3 provides an overview of various ensemble properties of the system
at the end of the 50,000 second run. We note that the resulting values correspond
favorably with those reported in the literature. Specifically, the plus end growth
speed is close to the value reported by Vos et al. (2004) (because of our choice for
v+

0 ), the optical density (the inverse length between microtubules for an aligned
array) is comparable to the 1 µm−1 number reported by Ambrose et al. (2007), the
microtubule length is also within a reasonable range (Barton et al., 2008) and the
optical S2 value lies in the range 0.5-0.8 (Tanase, 2004). In addition, the simulation
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Figure 4.12: Snapshots showing the gradual alignment of the cortical
microtubules. The system size is 80×80 µm (periodic boundary condi-
tions). Lmax = 5µm, v+

0 = 0.156µm s−1, rc = 4.7×10−3 s−1.
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Figure 4.14: Trace of a single system as it evolves in the G ′-S2 plane
(solid line). Because of the finite tubulin pool, the value of G ′ decreases,
until it finally stabilizes on the steady state curve already shown in figure
4.9 (dashed line). Run time=50,000 s, Lmax = 5µm, v+

0 = 0.156µm s−1,
rc = 4.7×10−3 s−1.

predicts that every microtubule consists of approximately 1.5 segments on average.
From the ratio between the real and optical density we deduce that the average
degree of bundling is 2.9: every visible stretch of microtubule is, on average, a bundle
with 2.9 microtubules.

Finally, figure 4.14 shows the trajectory of a single system in the G ′-S2 plane.
Initially, in the absence of microtubules, the plus end growth speed is at its highest
(v+ = v+

0 ) and the initial value of G ′ is positive (G ′ = 9.8× 10−3). As the density
(and S2) increases, G ′ decreases and finally settles at an ensemble averaged value of
G ′ =−0.1602(3). The same effect was demonstrated in a theoretical context in figure
3.7.
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4.5 Discussion

In this chapter we have introduced a simulation model for the microtubules in the
cortical array that builds upon the theoretical model introduced in chapter 3 and
extends it by adding a number of processes that have been shown to be relevant
in the biological context. In conjunction with the model, an efficient event-driven
simulation scheme has been presented that is tailored to the specific needs imposed
by the model. The use of an efficient simulation algorithm allows us to address a wide
range of questions regarding the self-organized alignment of cortical microtubules.

The simulations have shown that the theoretical framework from chapter 3 pro-
vides an accurate description for systems without zippering and severing, as evi-
denced by figures 4.4 and 4.9a. The extent of the agreement between the theory and
simulations was perhaps unexpected, given the approximations that were involved
in the construction of the theory. For systems in which zippering was enabled, the
theoretical results reached a similar level of accuracy only in the limit of very weakly
interacting microtubules, in conjunction with the multi-collision interaction mode
between bundles. This interaction mode has been constructed specifically to im-
prove the match with the theoretical predictions (see appendix 4.B), but has little
biological relevance. For other bundle interaction modes, the ability for the system to
spontaneously align is very sensitive to the specific interaction mode (figures 4.6 and
4.7), as well as the choice of collision outcome probabilities (figure 4.9). Practically,
because cortical microtubules in plant cells are not in the weakly-interacting limit
and not much is known about the interactions between microtubules in bundles,
very few generic statements can be made regarding the qualitative effect of zippering
in cells. The results are so sensitive to the model parameters that the analysis should
be done on a case by case basis, using the specific parameters for the cell type under
investigation. A necessary first step would be the experimental characterization of
the collision interactions between microtubules in intersecting bundles.

The effect of treadmilling motion in the absence of zippering is well-described by
the theoretical framework of chapter 3, and enabling treadmilling for a given system
leads to a decrease of the degree of alignment (figure 4.9). The results are less clear for
the case where both treadmilling and zippering are enabled. For the two examples
discussed in this chapter, the combination of zippering and treadmilling leads to a
slight enhancement of the ordered phase, compared to the baseline without zippering
and treadmilling. However, due to the sensitive dependence on the underlying
zippering mechanism, it should not be expected that this result can be generalized to
all systems.

The final mechanism under consideration is that of microtubule severing. As was
expected, uniform severing along the length of the microtubule leads to a decrease
in the ability of the system to align (figure 4.10), due to the shorter microtubules
and corresponding decrease in density. The effect of severing at intersections is
more subtle. Whereas it also leads to decreased alignment in the absence of both
treadmilling and zippering, switching on both effects causes the severing events to
have a beneficial effect on alignment (figure 4.11). This observation is consistent with
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the results by Wightman and Turner (2007), who found that severing in Arabidopsis
cotyledons primarily occurred at intersections and appeared to enhance the micro-
tubule alignment. The sudden reversal of the effect of severing at intersections is
likely to be caused by the asymmetry of the severing mechanism in our model: the
microtubule that is cut is always the one that is on the cytoplasmic side, i.e. part
of the bundle that was last to arrive at that particular intersection. This leads to an
effective stabilization of microtubule bundles due to their longer lifetimes. Further
investigations should verify whether this is indeed the case in the case of our model,
and whether this asymmetry is also present in experiments.

The time-dependent results in section 4.4.3 show that the simulation model is
able to reproduce a number of the observables reported in the literature (table 4.3),
starting from literature values for the parameters, augmented with educated guesses
for the remaining parameters. As more experimental data becomes available and
more parameters can be pinned down, the simulations can be expected to yield more
accurate quantitative insights into the self-organized alignment of microtubules.

4.A Simulation: program structure

The simulation code (corticalSim, written in C++) is constructed around a hi-
erarchy of objects. The objects that are implemented as separate C++ objects are
indicated in italic type. The simulation system contains a number of growing and
shrinking microtubules, each of which has a plus and a minus tip, connected by a
series of segments.

Microtubule positions and interactions are encoded in a single system geometry
object. The geometry consists of a series of connected regions (in our case, rectangles
or discs), along with prescriptions for their connections and how to combine region-
specific measurements into system-wide properties. Whenever a microtubule is
nucleated on a particular region, or enters it at the boundary, a straight-line trajectory
is created that spans the region. The trajectories serve as ‘rails’ for the microtubules
segments and tips. The positions of the tips and segment ends are measured along
the length of their associated trajectories. Bundled microtubules are characterized
by the fact that they share the same trajectory.

Upon creation of a new trajectory, the intersections with all other trajectories
in the region are computed and stored in a sorted intersection list. Within a region,
any two trajectories either intersect once or not at all, so this procedure leads to a
well-defined ordered list for all possible collision events between microtubules on
the trajectories. This list is used to efficiently locate the next collision event and its
distance from the current tip location. It should be noted that the computation of all
intersections upon creation of a trajectory is a significant overhead that is only worth
the computational expense if the microtubule(s) on the trajectory will reach a fair
number of these intersections. Trial runs have indicated that the optimal efficiency is
obtained when the region size is approximately equal to the length scale l0 (≈ 3.5µm
for the parameters used in this chapter). This is achieved by dividing the geometry (a
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square, in this chapter) into a number of smaller connected regions. See also figure
4.15.

geometry

region

trajectory

microtubule

(segment)

Figure 4.15: Schematic representation of the relation between the geom-
etry, regions, trajectories and microtubule segments.

For speed and efficiency reasons, the simulation code relies heavily on the caching
of information, both implicitly (through the queues) and explicitly (through the
caching of length information, so that not every segment needs to be updated at
each event). It is important to realize that numerical errors can accumulate over the
course of the simulation, to the point where they potentially affect the ordering of
events. This potential problem is countered in two ways. Firstly, the intersection list
position information is used as a ‘master’ list to correct positional information on the
fly and when the ordering of two events is unclear, the sort order is used. Secondly,
after the execution of every one million events, all queues and caches are cleared
and the deterministic events are recalculated. After clearing, the new event times are
stored with respect to the current simulation time, to avoid the repeated comparison
of large numbers (times) with very small differences, a notorious source of relatively
large numerical errors.

4.B Multi-collision events

The multi-collision interaction mode is one of the four bundle collision recipes men-
tioned in section 4.1. This interaction mode attempts to approximate the dynamics
of the coarse-grained model introduced in chapter 3, in which bundles are absent by
definition. Therefore, the collision of a microtubule that is part of an ongoing bundle
of M other microtubules with another bundle that has N microtubules is described
as a dense series of collisions. Microtubules that have previously zippered at the
intersection, and are therefore part of both microtubules, are ignored.



4.B Multi-collision events 101

The multiple collision process can be imagined as a microtubule working its
way through an (M +1)×N lattice, as shown in figure 4.1. Every individual collision
inside the grid is governed by the single-microtubule interaction probabilities Pc (θ)
(induced catastrophe, Pz (θ) (zippering) and Px (θ) (crossover). If the microtubule
exits on the opposite side of the grid, it results in a cross-over event and if it exits
on the side it results in a zippering event. When one of the collisions induces a
catastrophe, the microtubule retreats. It should be noted that we do not explicitly
track the position of the incoming microtubule with respect to the other microtubules
in the bundle, i.e. whether it’s on the left, the right or somewhere in the middle. We
therefore average the resulting probabilities uniformly over all possible positions in
the incoming bundle.

In this section we compute the total multi-collision probabilities Px (θ, M , N )
(crossover) and Pz (θ, M , N ) (zippering). The probability Pc (θ, M , N ) for an induced
catastrophe follows from

Pc (θ, M , N ) = 1−Pz (θ, M , N )−Px (θ, M , N ). (4.8)

To simplify the expressions, we introduce the following shorthand notation for the
individual collision probabilities:

z ≡ Pz (θ,0,1), (4.9)

x ≡ Px (θ,0,1). (4.10)

4.B.1 Crossover events

First, we analyze the collision process that results in crossovers. As an initial step,
we compute the probability to traverse an i ×N grid of intersections, starting at one
corner and exiting at the opposite corner in the same direction (see figure 4.16). A
path from entry to exit consists of a series of zippering and crossover events that
cause the path to move sideways and up through the lattice, so every possible path
consists of i +N −1 individual collision events. The probability P i ,N

x for a crossover
event with the given entry and exit points is given by the sum over the probabilities
of all possible paths

P i ,N
x = ∑

p∈paths(i ,N )
Px (p). (4.11)

Arbitrarily designating the direction of the incoming microtubule as ‘vertical’ (V)
and that of the other bundle as ‘diagonal’ (D), every path p corresponds to a series of
N −1 vertical and i −1 diagonal steps between lattice sites, with additional vertical
steps at the beginning and end of the path. For example, a path on a 3×5 lattice could
be described by the string V-DDVVDV-V. In this string, a DV pair corresponds to a
zippering event, whereas DD and VV pairs indicate crossover events. The probability
for a specific path to be followed is given by the product of the probabilities of each
pair in its string.
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Figure 4.16: An example of a microtubule collision path traversing an
i × N (or i × j ) lattice of intersections, eventually resulting in either
zippering or crossing over. Also indicated are the translation into a
string of D’s and V’s, and the mapping of the D’s onto the traversed
microtubules. The indicated path contains three DD-pairs, so q = 3.

Initially, let us assume that all i −1 D-characters are disconnected. This leads to
the following base probability with 2i −2 zippering events and N − i +1 crossovers:

P i ,N
x,base = xN−i+1z2i−2. (4.12)

An actual path p will typically have a number of consecutive diagonal steps, corre-
sponding to fewer zippering events and more crossover events. For all paths with q
DD-pairs, the probability is given by

P i ,N
x (p|q) = x2q z−2q P i ,N

x,base. (4.13)

To determine the number of paths with a particular value of q , we introduce a
1-to-1 mapping of the paths onto a series of counts by noting how many diagonal
segments are located along each of the N microtubules that is crossed (see figure
4.16). We thus get a distribution of i − 1 diagonal moves over N nodes, with the
number of occupied nodes being i −1−q . The value of q is therefore in the range

q ∈ [max(i −1−N ,0),max(i −2,0)] ≡ [qmin, qmax] (4.14)
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The total probability for crossing over is symbolically given by

P i ,N
x =

qmax∑
q=qmin

[ways to pick i −1−q out of N nodes]×

[ways to distribute q items over i −q −1 nodes]P i ,N
x (p|q). (4.15)

The number of ways to distribute q items over i −q −1 nodes is equal to the number
of ways to arrange q items and i −q −2 ‘node divisions’, so that we may write

P i ,N
x =

qmax∑
q=qmin

(
N

i −q −1

)(
max(i −2,0)

q

)
xN−(i−1)+2q z2(i−1)−2q . (4.16)

Finally, the total crossover probability is obtained by summing the probabilities
of all possible paths through the (M +1)×N grid of intersections, with a uniform
distribution of the initial position, producing the final result

Px (θ, M , N ) = 1

M +1

M+1∑
i=1

(M − i +2)P i ,N
x (4.17)

=
M+1∑
i=1

qmax∑
q=qmin

(M − i +2)

M +1

(
N

i −q −1

)(
i −2

q

)
xN−(i−1)+2q z2(i−1)−2q .

(4.18)

4.B.2 Zippering events

The total probability for a multi-collision zippering event can be computed in a
similar way. This time, we start with the probability to traverse an i × j grid ( j ≤ N ) of
intersections, entering vertically on one corner and exiting diagonally on the opposite
corner (see figure 4.16). Each path across the lattice consists of i + j −1 events, with

an odd number of zippering events. The probability P i , j
z for a zippering event with

the given entry and exit points is given by the sum over all paths

P i , j
z = ∑

p∈paths(i , j )
Pz (p) (4.19)

Analogous to the crossover events, each zippering path p corresponds to a series
of j − 1 vertical and i − 1 diagonal steps between lattice sites, with an additional
vertical step at the beginning and an additional diagonal step at the end. This can be
expressed as a string of the form V-VDVVD-D in which every DV pair corresponds to
a zippering event, and DD and VV pairs indicate crossover events.

For a path in which all i diagonal steps are disconnected, we obtain the following
base probability with 2i −1 zippering events and j − i crossovers:

P i , j
z,base = x j−i z2i−1. (4.20)
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An actual path p will generally have a number of neighboring diagonal steps. For all
paths with q DD-pairs the probability for that path to be taken is given by

P i , j
z (p|q) = x2q z−2q P i , j

x,base. (4.21)

To determine the number of paths with a particular value of q , we introduce a
1-to-1 mapping of the paths onto a series of counts by noting how many diagonal
segments are located along each of the j microtubules that is crossed (see figure
4.16). We thus get a distribution of i diagonal moves over j nodes, where the number
of occupied nodes is i −q and the j -th node is always occupied. The value of q is in
the range

q ∈ [max(i − j ,0), i −1] ≡ [qmin, qmax] (4.22)

The total probability for zippering is therefore symbolically given by

P i , j
z =

qmax∑
q=qmin

[ways to pick i −q −1 (free) nodes out of j −1 nodes]×

[ways to distribute q items over i −q nodes]P i , j
z (p|q) (4.23)

which equates to

P i , j
z =

qmax∑
q=qmin

(
j −1

i −q −1

)(
i −1

q

)
x j−i+2q z2i−1−2q . (4.24)

Finally, the total zippering probability is obtained by summing the probabilities
of all possible paths through the (M +1)×N grid of intersections that enter on the
bottom and exit on the side. The entry points are weighted uniformly, because of
the unknown position of the incoming microtubule. The expression for the total
zippering probability is given by

Pz (θ, M , N ) = 1

M +1

M+1∑
i=1

N∑
j=1

P i , j
z (4.25)

= 1

M +1

M+1∑
i=1

N∑
j=1

i−1∑
q=max(0,i− j )

(
j −1

i −q −1

)(
i −1

q

)
x j−i+2q z2i−1−2q .

(4.26)

4.C Determining length-dependent event times

To determine the timing of the next stochastic event, we should explicitly solve
equation (4.3) for ∆ts , starting from the expression for the stochastic event rate R(t )
that is given by

R(t ) = rn A+ rc N++ rr N−+ rx X + rs L(t ). (4.27)

Here, N+ (N−) is the total number of growing (shrinking) microtubules, A is the total
area of the system and X is the total number of intersections. Between events, these



4.C Determining length-dependent event times 105

numbers are all constant, and only the total microtubule length L(t) varies. In the
presence of a finite tubulin pool (4.1), the rate of change of the total microtubule
length L(t ) in the system is given by

dL(t )

dt
= N+v+(t )−N−v−− (N++N−)v tm (4.28)

= (
N+v+

0 −N−v−− (N++N−)v tm)−(
N+v+

0

Lmax

)
L(t ) (4.29)

≡ γ−βL(t ), (4.30)

where Lmax is the length-equivalent of the total amount of tubulin in the system.
Solving this for L(t ) yields

L(t ) =
(
L(0)− γ

β

)
e−βt + γ

β
(4.31)

with

β= N+v+
0

Lmax
(4.32)

γ= N+v+
0 −N−v−− (N++N−)v tm (4.33)

We note that the total length asymptotically approaches L∞ = γ/β.
Having obtained an explicit expression for the total event rate R(t), we are in a

position to compute the interval to the next event by evaluating (4.3). Arbitrarily
setting t = 0, we get

−log(u) =
∫ ∆ts

0
R(t ′)dt ′ (4.34)

=
(
rn A+ rc N++ rr N−+ rx X + rs

γ

β

)
∆ts + rs

β

(
L(0)− γ

β

)(
1−e−β∆ts

)
(4.35)

≡ w∆ts + v
(
1−e−β∆ts

)
, (4.36)

where

v = rs

β

(
L(0)− γ

β

)
, w = rn A+ rc N++ rr N−+ rx X + rs

γ

β
. (4.37)

Multiplying (4.36) by βeβ∆ts /w and reordering the terms gives

vβ

w
=β

(
∆ts + log(u)

w
+ v

w

)
eβ∆ts (4.38)

=β
(
∆ts + log(u)

w
+ v

w

)
e
β
(
∆ts+ log(u)

w + v
w

)
e
−β

(
log(u)

w + v
w

)
. (4.39)
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Defining

x = βv

w
, y =− β

w
log(u) (4.40)

we can write (
β∆ts +x − y

)
eβ∆ts+x−y = xex−y . (4.41)

Finally, we solve this equation for ∆ts and obtain

∆ts = 1

β

[−x + y +W (xex+y )
]

, (4.42)

where W is the Lambert W function, the inverse of z ez . In the simulations, its value
is computed using the numerical procedure described by Barry et al. (1995), with a
single conversion pass.

THE CASE β= 0

Special attention should be given to the case β = 0. This corresponds to both the
situation with an unlimited supply of tubulin (constant v+ = v+

0 ) and to a system
without growing microtubules (N+ = 0). In this case, the length evolves as

L(t ) = L(0)+γt (4.43)

and expression (4.3) evaluates to

− log(u) = (
rn A+ rc N++ rr N−+ rx X + rs L(0)

)
∆ts + 1

2
rsγ∆t 2

s . (4.44)

Defining the constant

c = rn A+ rc N++ rr N−+ rx X + rs L(0) (4.45)

the solution is given by

∆ts = −c +
√

c2 +2rsγ(−log(u))

rsγ
. (4.46)

Note that a solution only exists if 2rsγlog(u) < c2. The case where no (real) solution
can be found correspond to cases where an event would occur after the system has
reached a negative total length. Naturally, one or more deterministic events will take
place before this ever happens, decreasing the number of shrinking microtubule
until it reaches 0. Each of these events will trigger the recalculation of the stochastic
event interval ∆ts so that a real value for ∆ts is eventually generated.
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4.D Converting between plus end growth and time

The variable speed of growing plus ends that results from the limited availability
of tubulin necessitates the creation of a separate deterministic event queue, as de-
scribed in section 4.2. To maintain this queue, we need to convert the distance that
needs to be traversed by a plus end to reach the first collision position in the queue to
a time interval. Conversely, for the bookkeeping of the segment lengths, the traversed
plus end distance as a function of time should be known. In this section, we derive
the relationship between the plus end distance d and a time interval t .

Arbitrarily setting the initial time to zero, the distance d travelled by a growing tip
is given by

d(t ) =
∫ t

0
v+(t ′)dt ′ (4.47)

In the case of an infinite tubulin supply, this immediately gives the simple relation
d = v+

0 t . For the remainder of this section, we assume that the tubulin supply is
limited (Lmax is finite). This leads to the relation

d(t ) = v+
0

∫ t

0

(
1− L(t ′)

Lmax

)
dt ′. (4.48)

4.D.1 In the presence of growing segments

Typically, some of the microtubules in the system will be in the growing state. This
means we may use equation (4.31) for the time evolution of the total length L(t).
Inserting it into (4.48) we obtain

d(t ) = v+
0 t − v+

0

Lmax

∫ t

0

[(
L(0)− γ

β

)
e−βt ′ + γ

β

]
dt ′ (4.49)

= v+
0

Lmax

[(
Lmax − γ

β

)
t − 1

β

(
L(0)− γ

β

)(
1−e−βt

)]
(4.50)

In the special case where N− = 0 and v tm = 0 (i.e. only growing, non-treadmilling
microtubules are present), γ/β= Lmax and this expression simplifies to

d(t ) = v+
0

βLmax
(Lmax −L(0))

(
1−e−βt

)
, (4.51)

which can be inverted when N+d < (Lmax −L(0)), yielding

t =− 1

β
log

(
1− N+d

Lmax −L(0)

)
. (4.52)

In other cases, equation (4.50) can be rewritten as

pep−q = (
βt +p −q

)
eβt+p−q , (4.53)
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with

p =− L(0)−γ/β

Lmax −γ/β
, q = N+d

Lmax −γ/β
. (4.54)

Its solution is given by

t = 1

β

[
q −p +W

(
p ep−q )]

, (4.55)

where W is the Lambert W function, defined as the inverse of z ez . In the simulations,
its value is usually computed using the numerical method described by Barry et al.
(1995), with a single conversion pass. However, when the value of p −q is sufficiently
large, the exponentiation causes a numerical overflow, even though the resulting
time interval will be of order 1. Therefore, when p −q > 250, we use the asymptotic
series expansion by Corless et al. (1996):

W (z) = L1 −L2 + L2

L1
+ L2(−2+L2)

2L1
2 + L2(6−9L2 +2L2

2)

6L1
3

+ L2(−12+36L2 −22L2
2 +3L2

3)

12L1
4 +O

([
L2

L1

]5)
, (4.56)

where L1 = log(z) and L2 = log
(
log(z)

)
. Specifically, for the calculation of W (pep−q ),

this becomes

L1 = p −q + log
(
p

)
, L2 = log

(
p −q + log

(
p

))
. (4.57)

4.D.2 In the absence of growing segments

In case there are no growing microtubules in the system (N+ = 0), the length as a
function of time is given by the linear relation (4.43), so that (4.48) evaluates to

d(t ) = v+
0

[(
1− L(0)

Lmax

)
t − γ

2Lmax
t 2

]
(4.58)

Inverting this equation, we need to be aware of the special case in which no micro-
tubules are present in the system at all. In this case γ= 0 and the inverted expression
becomes

t (d) = d

v+
0 (1−L(0)/Lmax)

(4.59)

In the more general case where γ 6= 0, the time as a function of distance is given by

t (d) =
(Lmax −L(0))−

√
(Lmax −L(0))2 −2γLmaxd/v+

0

γ
(4.60)



Simulating the cortical
array: orientation 5
In the previous chapter, we have investigated the potential for cortical microtubules
to align and found a robust ability to form an ordered phase. Absent from our investi-
gations up to this point was the issue of the absolute orientation of this alignment.
Plant cells need a reliable method for orienting the cortical array, because its orienta-
tion determines the direction of cell growth and subsequent cell division. Generally,
subsequent divisions occur in the same direction, so that the orientation of the corti-
cal array is preserved between cell generations. However, the are situations in which
organisms are shown to exert precise control over the orientation of individual cell
divisions, for example in the formation of stomatal complexes in maize (Cartwright
et al., 2009). In this chapter we build upon the simulation scheme presented in
chapter 4 and investigate the influence of the cell geometry and possible biochemical
cues on the orientation of the cortical array.

The simulations in the previous chapter were all run on a square canvas with
periodic boundary conditions. This geometry should not impose any directional bias
to the system, as evidenced by figure 5.4, although a preference for the horizontal
and vertical directions may occur for smaller systems due to finite-size effects1.
An additional problem with the periodic square system is that it is topologically
equivalent to a torus (genus 1), whereas the cell (genus 0) does not have a penetrating
hole. This is an important distinction, because whereas it is possible to create a
uniformly ordered vector field (or a field of microtubules) on the torus, such a field
on the cell surface must contain at least two singularities. It is reasonable to expect
that the location of these singularities will be sensitive to the cell geometry. For the
remainder of this chapter, we represent the cell geometry by a cylinder of length L
and radius R.

Making the switch from a flat two-dimensional system to the surface of a three-
dimensional object necessitates the re-thinking of two basic assumptions that were

1MSc thesis Eva Deinum, AMOLF 2009
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made in the previous chapters. First, we need to determine the path that a growing
microtubule will follow on the curved surface. Second, it means we need to replace
the strictly two-dimensional order parameter S2 by one that explicitly takes into
account the embedding of the surface in three dimensions. These issues will be
addressed in more detail on the following pages.

In addition to the cell geometry we also touch on the potential for local chemical
cues to influence the orientation of the cortical array. It is well-established, for
example, that auxin gradients are in place that can provide information about the
growth axis of the cell (Lucas and Shaw, 2008). Also, localized cell wall stress has
been found to influence cortical array orientation (Hamant et al., 2008). As a first
step towards understanding the effect of local cues, we have chosen to selectively
increase the spontaneous catastrophe rate on the end caps of the cylinder by an
arbitrary factor c. The possibility for localized changes in the catastrophe rate was
also mentioned by Ehrhardt and Shaw (2006) and doing so on the end caps is in
agreement the lower density of microtubules observed near the ends of tobacco BY-2
cells (Jan Vos, personal communication). For c = 1 we recover the regular capped
cylindrical geometry, and for c →∞ we obtain a finite cylinder without end caps (i.e.
the end caps are effectively inaccessible to microtubules).

5.1 Microtubule trajectories on the cylinder

Microtubules have a persistence length that is large on the scale of the cell (Van den
Heuvel et al., 2008), so they can be treated as stiff rods that resist bending. However,
their confinement to the cell’s volume and their adherence to the cell membrane
means that the microtubules will generally be curved. The question that needs to be
addressed is which path the microtubule will follow after it has nucleated at a given
location and in a certain direction.

Depending on the specific constraints, there are two solutions to this problem.
When the microtubule is only confined by the cell membrane, but still free to move
laterally, the solution is given by a global minimization of the curvature along the
microtubule. This solution has been determined for an infinite cylinder – and, by
extension, for spherocylinders – by Lagomarsino et al. (2007) and is shown in figure
5.1. As the filament becomes longer, its free end will tend to align more with the axis
of the cylinder. However, the cortical microtubules in plant cells are linked to the
cell membrane and are therefore restricted in their lateral movement (Shaw et al.,
2003; Vos et al., 2004; Sainsbury et al., 2008). This means that a microtubule cannot
make use of lateral relaxation to decrease its energy as it gets longer. Instead, the
polymerizing microtubule end can only locally minimize the bending energy before
the curvature is ‘frozen in’ by binding to membrane linkers. The trajectory of growing
microtubules is therefore given by a minimal curvature path on the cell membrane,
starting from a given initial position and direction.

The curvature κ of any regular curve on a surface can be decomposed into two
components, the normal curvature κn in the normal plane and the lateral curvature
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Figure 5.1: Comparison of the curves resulting from global and local
curvature minimization, starting from the same initial conditions. Both
solutions have an initial opening angle of 5.7◦ and the curve for the
global energy minimization has a total length of 4.5 times the cylinder
radius (the length is not relevant for the local energy minimization).

κl in the tangent plane (see figure 5.2). These curvatures are related by

κ2 = κ2
n +κ2

l . (5.1)

The Meusnier theorem states that for a given surface S, all possible curves through a
certain point with a given tangent vector have the same normal curvature (Do Carmo,
1976), so that any differences in curvature must be attributed to the lateral curvature
κl . It follows from equation (5.1) that the total curvature is always minimized by
setting κl = 0. The solutions on the surface of a cylindrical body are therefore helices,
defined by their starting position and angle. In figure 5.1, the local and global curva-
ture minimization solutions on the body of a cylinder are compared. The transition
from the cylinder body to the end caps can also be treated as the limiting case of
a smooth transition: a 90◦ turn on a cylinder with a vanishing radius. The implica-
tion is that the crossing of the rim of the cylinder conserves the angle between the
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tangent plane 

normal plane 

u

n

Figure 5.2: A curve on a two-dimensional curved surface. Indicated
are the tangent vector u and the surface normal n. The normal plane
contains both vectors and the tangent plane contains only the tangent
vector and is perpendicular to the normal vector.

microtubule and the edge.
Of course, cortical microtubules are not actually attached to the cell membrane

at all points along their length, but rather at intervals of a finite size (Gardiner et al.,
2001; Kirik et al., 2007; Barton et al., 2008), so there is some room for non-local
curvature minimization. However, as long as the attachment interval is much smaller
than the radius of the cylinder, the helical solution is a good approximation.

5.2 Measuring order in three dimensions

Having developed the tools to simulate the cortical microtubules on the surface of a
cylinder, we construct an order parameter to assist in the interpretation of the results,
analogous to the definition of S2 in (3.72) (for fields) and (4.4) (for line elements).
The formation of the cortical array is thought to serve the purpose of aligning the
cellulose microfibrils in the cell wall, which, in turn, allows the cell wall to expand in
the perpendicular direction (Lucas and Shaw, 2008). The order parameter should be
an indicator of the ability for the cell to undergo directional expansion, so it should
measure the underrepresention of microtubules pointing in a certain direction.

We start by defining a nematic order parameter that is a generalization of the one
used for liquid crystals in three dimensions (for the derivation, see appendix 5.A). We
define the second order tensor Q with the elements

Qαβ =
∑

i
∫ li

0 u(i )
α (l ′)u(i )

β
(l ′)dl ′∑

i li
−Tαβ, (5.2)
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where li is the length of the i -th microtubule segment and u(i )(l ) is the tangent vector
at position l along the segment i (see figure 5.2). The isotropic tensor T is used
to ensure that Q is zero in the isotropic homogeneous phase and accounts for the
potential anisotropy of the simulation geometry. In the case of a cylinder of length L
and radius R that is oriented along the x-axis, T is given by the matrix

T = 1

2(L+R)

 L 0 0
0 1

2 L+R 0
0 0 1

2 L+R

 (5.3)

From the tensors Q and T we derive the scalar order parameter R2, defined as

R2 =−λmin(Q)

λmax(T)
. (5.4)

Here, λmin(Q) is the lowest eigenvalue of Q (interpreted as a matrix), expressing our
wish to identify the absence of microtubules in a certain direction. The division by
the highest eigenvalue of T guarantees that R2 is in the range [0,1] (see appendix
5.A for details). The lowest eigenvalue of Q is associated with an eigenvector vmin

that indicates the preferential direction of cell expansion. To remove the redundancy
caused by the rotational symmetry of the cylinder, we reduce this vector to the angle
Θ2 between vmin and the cylinder axis (ex ) (see figure 5.3).

Θ2 = arccos(|vmin ·ex |) (5.5)

vmin

ex

Θ2

Figure 5.3: Example of a microtubule configuration on a cylindrical
geometry, showing the corresponding direction of the director vmin and
the angleΘ2 that indicates the deviation from the transverse orientation.

Summarizing, the value of R2 ∈ [0,1] measures the degree in which there is a
preferred expansion direction and Θ2 indicates its deviation from the transverse
orientation. Note that the highest attainable value of R2 depends on the orientation
of vmin. For the case of a finite cylinder with L ≥ 2R, the range of possible values for
R2 decreases from [0,1] whenΘ2 = 0 to [0,1/2+R/L] forΘ2 =π/2.
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5.3 Results

For the results in this chapter we make use of the biologically motivated parameters
that have been introduced in section 4.4.3 of the previous chapter. There, we have
seen that these parameters invariably lead to a highly ordered system (R2 > 0.8)
on a periodic geometry2. Figure 5.4 shows the degree of alignment R2 and the
angleΘ2 (measured from the y-axis) for an ensemble of 1000 systems, evaluated at
50,000 seconds, clearly indicating the isotropic distribution of the orientations in the
ensemble.
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2
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Figure 5.4: Scatter plot of 1000 R2-Θ2 pairs for the periodic 80×80µm
system discussed in section 4.4.3, evaluated at 50,000s. The R2 andΘ2

distributions are obtained by projecting the data onto the respective
axes into 50 bins.

For the cylindrical geometry we have opted to use a cell length of 40µm and a
radius of 20µm, which is reasonable estimate for a tobacco BY-2 cell at the beginning
of interphase, when the transverse cortical array is first established (Jan Vos, personal
communication). On the end caps of the cylinder we have subsequently imposed an
induced catastrophe multiplication factor c with values of 1 (no effect), 2 and 4. This
makes the end caps of the cylinder increasingly inhospitable to microtubules.

Figures 5.6 and 5.7 show the resulting 3D order parameters of an ensemble of
1000 systems as a function of time. The results show that for c = 1, within a period of
a few hours the population begins to separate into two distinct subpopulations with
transversal and longitudinal orientations. The switch to a cylindrical geometry thus
breaks the orientational symmetry of the solution space. For judging the distributions
along the orientation angleΘ2, it should be kept in mind that this angle is computed
through a projection onto one of three coordinate axes. This implies that a truly
isotropic distribution of orientation angles would result in an angle distribution that

2Note that for a two-dimensional surface R2 = S2.
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750 s 1500 s

3000 s 6000 s

12000 s 24000 s

Figure 5.5: Time series of snapshots of a longitudinally ordered system
with c = 1.
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Figure 5.6: Scatter plots showing the evolution of 1000 R2-Θ2 pairs for cylindrical
systems with a length of 40µm and a radius of 20µm, for three different values of the
spontaneous catastrophe multiplier c. The R2 andΘ2 distributions are obtained by
projecting the data onto the respective axes into 50 bins.
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Figure 5.7: Scatter plots showing the evolution of 1000 R2-Θ2 pairs for cylindrical
systems with a length of 40µm and a radius of 20µm, for three different values of the
spontaneous catastrophe multiplier c. The R2 andΘ2 distributions are obtained by
projecting the data onto the respective axes into 50 bins.
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is not uniform, but proportional to sin(Θ2). Looking again at figures 5.6 and 5.7, we
conclude that even for c = 1, the final orientation distribution is not just the result of
systems settling down in the nearest stable orientation, but there is already a distinct
bias in the direction of the cylinder axis. However, this bias is not strong enough to
force all systems to orient their microtubules transversally. An example of a stable
longitudinally ordered system is given in figure 5.5.

Increasing the spontaneous catastrophe multiplier to c = 2, an initial tendency to
form two subpopulations is visible at 15,000 seconds, but by 50,000 seconds most
of the systems have oriented their microtubules in the transverse direction (Θ2 ≈ 0).
We see the same effect occur, albeit more rapidly for c = 4. To understand why all
systems eventually orient transversally, we look at the value of the control parameter
G ′. In the steady state, its definition (4.7) can be written as G ′ =C1rr −C2rc , clearly
exposing the role of the catastrophe rate rc . In the cases under consideration, G ′ is
always negative, implying that C2rc >C1rr . This means that a local multiplication
of the catastrophe rate by a factor c leads to an effect on G ′ that is larger than that
obtained by a multiplication by c . So, for a system that is well into the ordered phase
on the cylinder body, a factor c that is slightly larger than 1 can push the caps back
into the isotropic phase. As long as the caps are large enough, so that they cannot
easily be traversed by ordered microtubules from the cylinder body, the caps will
effectively repel microtubules, forcing them to align in the transverse orientation. An
example is shown in figure 5.8, where the final value of G ′ on the cylinder body is
−0.13, firmly in the ordered range, whereas its value on the cylinder caps is -0.89, in
the isotropic range (compare with figure 4.14).

Looking closer at the final distributions for c = 2 and c = 4 in figure 5.7, we see
that although the values of the orientation angle Θ2 are tightly focused around 0,
the values of R2 are more widely distributed, with an obvious tail towards lower
values. Visual inspection of the systems with low R2-values shows that many of these
systems have a subtly helical arrangement of microtubules. In these systems, the
microtubules on the cylinder body are well-aligned, but they are not lined up with
the end caps, leading to an angle-dependent penalty at the boundary. Assuming the
system is oriented more or less in the transverse direction (Θ2 ≈ 0), the existence of a
helical distribution can also be deduced by comparing the R2 order parameter with

the S(body)
2 order parameter that is computed on the unrolled cylinder body alone and

its corresponding angleΦ(body)
2 . If S(body)

2 is significantly larger than R2, some degree
of helical order is present in the system, and its pitch is given by the orientation

angle Φ(body)
2 . An example of the formation of a helical pattern is given in figure

5.9. In the final configuration, it has the order parameters R2 = 0.73, S(body)
2 = 0.90,

Θ2 = 4◦, Φ(body)
2 = 13◦. For comparison, the transverse pattern shown in the final

configuration of figure 5.8 has the order parameters R2 = 0.87, S(body)
2 = 0.89,Θ2 = 9◦,

Φ
(body)
2 = 2.5◦.
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750 s 1500 s

3000 s 6000 s

12000 s 24000 s

Figure 5.8: Time series of snapshots of a transversely ordered system
with c = 4. In the final configuration, R2 = 0.87,Θ2 = 9◦.
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750 s 1500 s

3000 s 6000 s

12000 s 24000 s

Figure 5.9: Time series of snapshots of a helically ordered system with
c = 4. In the final configuration, R2 = 0.73,Θ2 = 4◦.
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5.4 Discussion

In this chapter we have extended the two-dimensional cortical array simulations
from chapter 4 to the surface of a cylinder in three dimensions. This step necessitated
the determination of minimum-curvature microtubule trajectories on curved sur-
faces and the creation of the R2 order parameter that describes the degree in which
microtubules on a surface exhibit collective alignment perpendicular to an emergent
cell expansion axis. Although both concepts have only been used for the cylinder
surface, they are applicable to generic curved surfaces in three spatial dimensions.
Extensions to other basic cell shapes, such as boxes or spherocylinders, can therefore
be implemented in a straightforward manner.

The simulation results in figures 5.6 and 5.7 indicate that the use of a cylindrical
cell geometry restricts the possible orientations of the cortical array, and the observed
orientations (along the cylinder axis and perpendicular to it) correspond to the sym-
metries of the underlying geometry. In addition, the cylindrical geometry imposes a
slight bias to the orientation of the array in the direction of the cell axis (i.e. with the
microtubules perpendicular to the cell axis), but this is not strong enough to reliably
determine the orientation of alignment. In addition, we varied the spontaneous
catastrophe rate on the end caps of the cylindrical cell by multiplying it by a factor
c. Comparing the result for c = 1,2 and 4, we see that a local cue in the form of
in increased spontaneous catastrophe rate at the cylinder end caps is sufficient to
ensure that (nearly) all systems eventually orient their microtubules perpendicular
to the cell axis.

The suggestion that local cues at the cell ends exist and may play a role in cortical
array orientation has popped up repeatedly in the literature. It is known, for example,
that the PIN family of proteins, related to auxin transport, localize to these faces
(Lucas and Shaw, 2008), making them a potential candidate for (indirect) modifi-
cation of microtubule activity. Also, the ROP2/RIC1 proteins are thought to modify
microtubule activity in specific regions of the cortex (Ehrhardt and Shaw, 2006).
Furthermore, recent experiments by Hamant et al. (2008) have demonstrated the
existence of a connection between stresses applied to the cell wall and cortical array
orientation. The model that was introduced by the authors relied on a macroscopic
description in which the average microtubule direction on the outward-facing cell
surface co-aligns with the direction of maximal stress on the surrounding cell walls.
The simulation results from this chapter could provide a microscopic understand-
ing of this connection: If we assume that tension on the cell wall activates a stress
response that locally increases the catastrophe rate, the two sides of the cell that are
under maximum tension will act as the ‘cell poles’. The cortical array will then be
established along the axis between these poles, with the microtubule pointing in
the perpendicular direction – parallel to the direction of maximum wall stress, as
observed in the experiments.

We conclude that there is plenty of circumstantial evidence for location-specific
modulation of microtubule dynamics. However, experiments will have to indicate
whether the dynamics of the cortical microtubules are indeed different at the cell
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poles, and, if so, which parameters are most affected.

5.A Derivation of the 3D order parameter

5.A.1 The tensorial order parameter

To measure the degree of order of the collective set of microtubules in the cell cortex,
we must specify an order parameter. We start from the definition of the nematic order
parameter Q that is commonly used for liquid crystals (Gramsbergen et al., 1986). It
is an second order tensor (equivalent to a matrix) that can be defined as

Q =< u⊗u >−1

3
I(3). (5.6)

In the case of particles, u is the director of the individual particles in the system and
the angled brackets denote an averaging over all particles. In the case of orientational
density fields, u is the orientation and the brackets indicate a density-weighted
average over all angles and space. The definition of Q is easily adjusted for a two-
dimensional system, by reducing the dimensionality and replacing the fractions by
1/2. However, it is important to realize that in both of these cases the particles are
free to orient themselves in all dimensions.

This is clearly not the case in the cortical array, where we have particles that
are located on a two-dimensional surface S that is embedded in R3, restricting the
admissible orientations to the tangent plane at each location. This means that the
geometry has a large, possibly non-isotropic, influence on the possible realizations
of Q, resulting in the problematic outcome that locally isotropic configurations can
lead to non-zero elements in Q. To rectify this, we note that the identity matrix in
(5.6) ensures that the isotropic configuration corresponds to Q = 0. Therefore, we
may generalize (5.6) by replacing the correction term with a geometry-dependent
correction term.

The definitions below will be given in terms of an orientational density fieldρ(r,θ),
where r ∈ S and θ is a coordinate indicating the orientation in the local tangent plane.
The translation to a particle-based definition is straightforward, and will be given
below. In terms of the orientational density field ρ, we define

Q =< u⊗u >ρ(r,θ) −< u⊗u >iso,homo (5.7)

=< u⊗u >ρ(r,θ) −T. (5.8)

Here, the first term is an average that is weighted by the actual orientation density
field and the second is the isotropic correction term, where the averaging is done with
respect to an isotropic and homogenous distribution. This correction is represented
by the geometry-dependent tensor T.
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THE ISOTROPIC CORRECTION

The isotropic homogeneous distribution tensor T is defined as the result of two
subsequent averaging procedures: first a local averaging over all directions in the
tangent plane (isotropic) and then an averaging over r ∈ S (homogeneous). Defining
a local orthogonal frame by the surface normal n and two orthogonal unit vectors v
and w, the local averaging yields

< u⊗u >iso = v⊗v+w⊗w (5.9)

= I(3) −n⊗n. (5.10)

The tensor T can now be computed as

T = 1

A

∫
S

(
I(3) −n⊗n

)
dA′, (5.11)

where A is the total area of the surface S. Its values for a few common shapes are

Tplane(x,y) =
 1

2 0 0
0 1

2 0
0 0 0

 Tcylinder(x) =
 1

2 0 0
0 1

4 0
0 0 1

4

 (5.12)

and

Tsphere = Tcube =
 1

3 0 0
0 1

3 0
0 0 1

3

 . (5.13)

We note that the generalized definition (5.8) reduces to the regular definition (5.6) on
isotropic surfaces such as the sphere, and to its two-dimensional form on a plane.

A PARTICLE BASED DEFINITION

Definition (5.8) is based on the existence of a directional density field ρ, but as
the microtubules in the cortical array are individual extended particles, we need to
modify our definition accordingly, by integrating the direct product u⊗u along the
length of each microtubule segment. Summing over all microtubule segments i with
lengths li , we get

Q =
∑

i
∫ li

0 u(i )(l ′)⊗u(i )(l ′)dl ′∑
i li

−T (5.14)

=
∑

i Ũ(i )∑
i li

−T (5.15)

To determine Q for the cortical array on a finite-sized cylinder, the components of
Ũ(i ) must be computed for segments on the cylinder body and the end caps. For
these calculations, we will assume that the cylinder is pointing along the x-axis. On
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the end caps, each segment has a direction that can be parameterized by the angle α
it makes with the z-axis in the direction of increasing y . This gives

u(i )(l ) =
 0

sin(αi )
cos(αi )

 (5.16)

Noting that Ũ(i )
mn is symmetric, only six components need to be computed, which are

Ũ (i )
xx = Ũ (i )

x y = Ũ (i )
xz = 0, (5.17)

Ũ (i )
y y = li sin(αi )2 , (5.18)

Ũ (i )
y z = li sin(αi )cos(αi ) , (5.19)

Ũ (i )
zz = li cos(αi )2 . (5.20)

On the body of the cylinder, every microtubule segment can be characterized by the
position of its base, its length and the direction of growth. The x-coordinate of the
base is not relevant, and the y- and z-coordinates are encoded in the angle β with
the z-axis, in the direction of increasing y . The growth direction of the microtubules
is oriented at an angle α to the x-axis. Denoting the radius of the cylinder by R, the
local director u(i ) is given by

u(i )(l ) =


cos(αi )

sin(αi )cos
(
βi + lsin(αi )

R

)
−sin(αi )sin

(
βi + lsin(αi )

R

)
 . (5.21)

The components of Ũ(i )
mn are

Ũ (i )
xx = li cos(αi )2 (5.22)

Ũ (i )
x y = Rcos(αi )

[
−sin

(
βi

)+ sin

(
βi + li sin(αi )

R

)]
(5.23)

Ũ (i )
xz = Rcos(αi )

[
−cos

(
βi

)+cos

(
βi + li sin(αi )

R

)]
(5.24)

Ũ (i )
y y = 1

4
sin(αi )

[
2li sin(αi )+R

[
−sin

(
2βi

)+ sin

(
2βi + 2li sin(αi )

R

)]]
(5.25)

Ũ (i )
y z = 1

2
Rsin(αi )

[
−cos

(
βi

)2 +cos

(
βi + li sin(αi )

R

)2]
(5.26)

Ũ (i )
zz = 1

4
sin(αi )

[
2li sin(αi )+R

[
sin

(
2βi

)− sin

(
2βi + 2li sin(αi )

R

)]]
. (5.27)

5.A.2 A scalar order parameter

The order parameter Q as defined in (5.8) is a second order tensor. In this section
we extract from Q a single scalar order parameter R2 that indicates the extent to
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which a particular direction is avoided by the microtubules. We note that Q is a
symmetric real matrix and as such it has an orthogonal basis of eigenvectors. By
choosing a reference frame that coincides with the eigenvectors, it is easily seen that
the larger eigenvalues correspond to preferred directions of the microtubules. The
direction that is avoided by the microtubules (and thus the preferred direction of cell
expansion) is indicated by the eigenvector corresponding to the lowest eigenvalue
λmin(Q).

Furthermore, since Q is traceless, the sum of all three eigenvalues equals zero,
implying that λmin(Q) is negative. We can determine a lower bound for λmin(Q)
by evaluating the terms in equation (5.8). Suppose we have a director vmin corre-
sponding to the lowest eigenvalue. In every point on S, it is possible to choose the
particle/field director u perpendicular to this vector, so that the first term of (5.8)
does not contribute to the eigenvalue. The second term is −T, which in itself is a
symmetric matrix with eigenvalues in the range [0,1/2]. The maximum (negative)
contribution it can give in the direction of vmin is equal to its maximum eigenvalue
λmax(T). Using this information we define the order parameter R2 ∈ [0,1] that mea-
sures the expansion asymmetry in plant cells as

R2 =−λmin(Q)

λmax(T)
. (5.28)

For the special case of a distribution of microtubules on a 2D plane, it can be shown
that R2 is identical to S2, defined by (3.72) (for density fields) and (4.4) (for a set of
line segments).





Designing ground state
patterns for DNA-coated
colloids 6
In the previous chapters we have investigated in detail the processes that lead to
the self-organization of cortical microtubules in plant cells. These processes have
evolved over the course of millions of years through natural selection. In this chap-
ter, we focus on the possibility to design a complex self-organizing system from
scratch. Biomolecules are natural candidates for the design of materials with custom
interactions, due to their large variety and the specificity of their interactions. Our
subject of study is a prominent model system for self-assembly through biomolecular
interactions: DNA-coated colloids.

In this system, first proposed by Mirkin et al. (1996), DNA is grafted onto micro-
meter-sized beads. The two strands forming the DNA are of slightly differing lengths,
so that a short stretch of single stranded DNA is exposed at the far end of the strand.
This creates what is called a ‘sticky’ end, to which another single DNA strand can
bind through hybridization. The range of possible binding sequences provided by
DNA’s four-letter alphabet combined with the specificity of base pair binding means
that the binding affinity can be precisely manipulated, and this can not only be
done for a single pair of DNA strands, but orthogonal interactions can be defined
simultaneously for a large number of sticky ends. In principle, it is possible to create
a system with many different types of beads, each of which has tunable interactions
with every other type of bead. The sticky ends of two different beads can either bind
directly (see figure 6.1), or mediated by a piece of linker DNA that has preferential
affinities for both types of beads. The latter provides more flexibility to control the
interactions in the system, especially when many beads with different sticky ends are
involved. The holy grail of the research on DNA-coated colloids is to design materials
that will, in the proper circumstances, self-assemble from their constituents (the
DNA-coated beads).

The range of possibilities offered by DNA-mediated interactions is fundamen-
tally different from the use of, for example, electrostatic interactions, for which the
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Figure 6.1: a) Schematic overview of bead-bead binding through DNA
interactions. b) Overview of the nearest neighbor (n(1)), next-nearest
neighbor (n(2)) and next-next-nearest neighbor (n(3)) interactions on
hexagonal and square lattices.

control is limited to the sign, strength and range of the interactions, without further
possibilities for discrimination. Patterns of colloids are therefore generally limited
to two colloidal species (see, for example, Leunissen et al., 2005). However, it must
be said that the full potential of DNA-mediated interactions has so far not been
utilized, as experiments have only been done on systems with a single bead species
(Biancaniello et al., 2005; Hill et al., 2008) or two species of beads (Nykypanchuk
et al., 2008; Park et al., 2008; Geerts et al., 2008). Also, theoretical work (Tkachenko,
2002) and simulations (Lukatsky and Frenkel, 2004; Bozorgui and Frenkel, 2008) have
predominantly focused on systems with two types of beads. Notable exceptions are
the work by Licata and Tkachenko (2006), which was however limited to a single
particle per bead type and the lattice model by Lukatsky et al. (2006) that used four
species of beads, and provided the basis for the work in this chapter.

In order for a collection of DNA-coated colloids to self-assemble into a complex
pattern, every bead – through its interactions – should contain enough information
to ‘find’ its target position. A complication is that the distribution of the sticky DNA
ends that mediate the interactions is to a first approximation isotropic (Crocker,
2008) so that the interactions can only be a function of the distance between beads.
Furthermore, for practical purposes, this distance is constrained by the length of the
DNA (Geerts et al., 2008). Therefore we may ask ourselves whether it is at all possible
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to design large patterns using only short-ranged isotropic interactions, and, if so,
whether there is a lower limit to this interaction range. We will address this question
in the context of a two-dimensional lattice model with isotropic interactions and
we investigate whether the interactions between the beads on this lattice can be
designed in such a way that the beads self-assemble into a complex crystal structure.
A necessary requirement for self-assembly is that the target structure represents the
unique minimum energy ground state of the system, so that it will be the preferred
state for T → 0. For the basic theoretical work in presented in this chapter we
therefore restrict ourselves to the design of a unique ground state for non-trivial
crystal structures, using only isotropic interactions.

After introducing the model, we will derive a requirement for the minimum
interaction range between beads, depending on the symmetry of the underlying
lattice and the size of the desired pattern. Subsequently, we present a minimal recipe
for the interactions that allows for the design of arbitrarily large periodic patterns.
Besides periodic patterns, this recipe can also be used to construct patterns with glide
reflections and two-fold rotations. Finally, these results are illustrated by means of
Monte Carlo simulations that demonstrate the self-assembly of the designed patterns
from random initial conditions.

6.1 Model definition

We define a simple geometrical lattice model for the interactions in a system of DNA-
coated colloids, as a generalization of the model by Lukatsky et al. (2006). Let us
consider a lattice on which every site may be occupied by at most one bead. Each
bead is of a particular type that is characterized by its sticky end and labelled by an
alphabetical index (A, B, etc.). Formally, every lattice site i is in a state

s(i ) ∈ {A,B, ...,Z}, (6.1)

in which Z is the final element of the set of distinguishable beads (not necessarily
containing 26 elements). Empty sites can be included in the model as an additional
non-interacting bead ‘species’. We can trivially assign a unit vector in a Z +1 dimen-
sional vector space to each of the possible states through the identification

A=


1
0
...
0

 , . . . , Z=


0
...
0
1

 ; 0 =

 0
...
0

 (6.2)

The beads on the lattice interact with each other in two distinct ways. First, they
obey the rule that no two beads can occupy the same lattice site, corresponding to
an excluded volume effect with the size of a lattice unit cell. Second, the interaction
between the DNA strands of different beads gives rise to an effective two-body inter-
action energy that is both isotropic and short-ranged. This interaction will therefore
be a function of the distance on the lattice.



130 6. Designing ground state patterns for DNA-coated colloids

It is convenient to introduce the shorthand notation n(r ), r ∈ N, for the set of
particles with identical site-to-site distances on the lattice, ordered by increasing
distance for increasing r . n(1) thus contains all nearest-neighbor pairs, n(2) all next-
nearest-neighbor pairs, etc. In the context of this chapter, we restrict ourselves to
two-dimensional lattices, but the language used to describe the interactions is also
applicable to various lattices in higher dimensions. See figure 6.1 for the interaction
ranges for the square and hexagonal lattices used in this chapter.

The Hamiltonian for the system is defined as

H =
R∑

r=1

∑
(i , j )∈n(r )

1

2
J (r )

mn sm(i )sn( j ). (6.3)

Here, R indicates the maximum range of the particle interactions, as measured along
the lattice links, and we introduce a symmetric interaction matrix J (r ) for every lattice
distance r . The aim is therefore to design the interaction matrices J (r ) in such a way
that the Hamiltonian is uniquely minimized for a predetermined crystal lattice – up
to global transformations corresponding to the symmetries of the underlying lattice
(rotations, translations and reflections).

At this point, it will be clear that the above model can easily be used to describe
any multi-state lattice model with pairwise interactions that are both short-ranged
and isotropic. However, for conceptual clarity, we will only refer to the DNA-coated
colloid system and leave further applications up to imagination of the reader.

6.2 Lower limits to the interaction range

So far, the maximum interaction range n(R) has not been specified. For reasons
of conceptual clarity and experimental tractability, we’d like the interaction range
to be as short as possible. However, it is reasonable to expect that a very short
interaction range can impose limitations on size or complexity of the patterns that
can be designed. This is certainly true in the limiting case of vanishing interactions.
In this section we determine lower limits for the interaction range, depending on
the underlying lattice type (square, hexagonal) and the desired complexity of the
designed pattern.

The square and hexagonal lattices have a large number of intrinsic symmetries:
translations, rotations, reflections and glide reflections (reflections accompanied
by a translation along the reflection axis). The collection of these symmetries is
summarized by the corresponding wallpaper group: p4m for the square lattice, p6m
for the hexagonal lattice (Grünbaum and Shephard, 1987). Applying any of these
symmetry operations to a configuration of beads on the lattice produces another valid
(on-lattice) configuration. Furthermore, for any given configuration and symmetry
operation, a number of symmetrized configurations can be constructed that are
invariant under the given symmetry operation. For example, a pair of reflection-
symmetrized configurations is created by copying the pattern one side of a reflection
axis over to the other side, and vice-versa.
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The goal of this chapter is to design the interaction matrices in such a way that
the system has a unique ground state for a configuration of beads that is equal to
an a priori specified pattern. Naturally, this means the energy of this distribution
should be lower than that of every other possible distribution, including all possible
symmetrized forms. We conclude that the ground state can only possibly be unique
if each of the possible symmetrized distributions either (a) increases the energy or
(b) is equal to the original distribution (i.e. it was already symmetric).

This observation gives us a handle on the relation between ground state design
and interaction range. Figure 6.2 gives a graphical overview of this relation on a
square lattice. Starting on top, for an interaction range of n(0) (no interactions) the
interaction energy is always zero. Obviously, any symmetrized solution will have the
same energy, so a solution can only be a unique ground state if it itself is symmetric
under all symmetry operations on the lattice (p4m). This is shown as the maximum
complexity pattern on the top right, consisting of only A-type beads.

Increasing the interaction range to n(1), the nearest-neighbor interactions along
lattice links can be used to distinguish a bead from its neighbors, as shown in the in-
teraction patch by the different labels 0 and 1. The presence of these interactions can
cause a symmetrized state to have a higher energy than the original state. Graphically
speaking, this happens when, for a given symmetry operation, the interaction patch
can be placed on a position such that either (a) the 0 is mapped onto a 1 or vice-versa,
or (b) the patch is split by a glide reflection. A large fraction of the intrinsic lattice
symmetries can be suppressed this way, such as the reflection symmetry between
columns and rows of beads. The remaining symmetries are shown in the second
row of figure 6.2 (the glide symmetries are a resultant of the remaining symmetries).
Again, the symmetry group is p4m, but this time with a unit cell of two beads. Every
ground state should by symmetric under this group, so that the most complex ground
state pattern is given by the checkerboard pattern of A and B type beads.

Increasing the range yet again to n(2) further reduces the symmetries that cannot
be suppressed to the p2m wallpaper group, corresponding to a 2×2 repeated pattern
of beads. This class of interactions and the corresponding solutions have been
used by Lukatsky et al. (2006). When the interactions reach up to n(3), all lattice
symmetries can be suppressed and this method does not indicate any remaining
symmetry-derived limitations. An interaction range of n(3) or longer is therefore a
necessary condition for the design of patterns that are larger than 2×2. In the next
section, we will show that this interaction range is also sufficient.

Figure 6.3 shows a similar derivation on the hexagonal lattice. Starting from the
full symmetry of the lattice (p6m), symmetries are suppressed by increasing the
interaction range. For n(1) interactions, the remaining lattice symmetries are of
group p3m, corresponding with a triangular 3-bead pattern. In contrast to the square
lattice, n(2) interactions are already sufficient to suppress all lattice symmetries on
the hexagonal lattice. The design recipe that is presented in the following section
will prove that the n(2) interaction range is not only necessary, but also sufficient for
designing unique ground states with arbitrarily large numbers of beads.
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square lattice.
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6.3 Proof of designability

The previous section has demonstrated that non-trivial patterns can only be reliably
designed if interaction range is at least n(2) (on a hexagonal lattice) or n(3) (on a
square lattice). Building on this generic result we now introduce a simple recipe for
interactions between the beads that is both minimal in terms of the interaction range
and guaranteed to produce a unique ground state for a large class of patterns.

The prescription for the interactions consists of a mixture of positive and negative
design elements. First, each pair of beads that should form a nearest-neighbor pair
in the final pattern is assigned a negative interaction energy −α< 0 in the nearest-
neighbor matrix J (1) (positive design). In addition, at longer distances there is a
self-repulsion, represented by a contribution ε> 0 for all diagonal elements in the
next-nearest neighbor matrix J (2) and, for a square lattice, the next-next-nearest
neighbor matrix J (3). The remaining interactions are set to zero. This choice of the
interaction matrices is far from unique, but it is simple, leading to sparse matrices,
and it is sufficient to guarantee a unique ground state with an energy of −αN /2 per
particle, where N is the coordination number (the number of nearest-neighbors per
site) of the lattice. A motivation and proof for this design strategy is given below, for
both lattice types under consideration.

ONE DIMENSION

It is instructive to start our analysis with a one-dimensional system. The symmetry
argument from the previous section suggests that the interactions should range up
to n(2) in order to suppress the reflection symmetry through the center of each bead.
Suppose we wish to design a linear pattern containing the sequence ...KLMN....
Using only nearest-neighbor interactions, this requires a preferential binding of L
to both K and M. However, when L is bound to K on one side, there is nothing to
stop another K from binding on the other side of L, producing the sequence LKL.
Hence, as expected, the only sequence that can reliably be designed is an alternating
sequence.

This restriction can be circumvented by extending the range of interactions to
n(2). This allows us to include a self-repulsion at range n(2) for both K and M. Suppose
K binds to L first, forming the complex KL. The long-range self-repulsion of K will
prevent it from also binding to the other side of L, or it can only do so with a reduced
affinity. In both cases, if M has approximately the same nearest-neighbor affinity for
L as K does, the ground state will contain the sequence ...KLM..., or its reverse,
which is allowed by a global symmetry operation. The same argument can be applied
iteratively to each position in the sequence, from which we conclude that a sequence
of infinite length can indeed be designed. Using the interaction recipe defined
in the beginning of this section, every link in the lattice has an energy −α, which
corresponds to the lowest possible energy state of the lattice, making it the ground
state.

This argument shows that it is theoretically possible to design arbitrarily long
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unique strings of letters, but in practice it is more desirable to form a string of a
limited length, say AB...YZ, and to create a repeated ‘tiling’ based on this fragment.
Implementing this periodic boundary condition is straightforward, as we can simply
design A and Z to become nearest neighbors (positive design).

1D

2D

n(1)

n(2)

n(3)

Figure 6.4: Top: overview of the n(1) and n(2) interactions on a one-
dimensional lattice. Bottom: the mapping of local neighborhoods of
a central particle onto a one-dimensional periodic structure with n(2)
(hexagonal) or n(3) (square) range.

TRIANGULAR LATTICE IN TWO DIMENSIONS

We now move on to the more interesting case of two-dimensional designs, starting
with the hexagonal lattice. As in the one-dimensional case, a minimum interaction
range extending to the next-nearest neighbors (n(2)) is required to design crystals
with more than three beads (see section 6.2). That the design recipe with this in-
teraction range is also sufficient can be seen as follows. Consider a single particle
A, having six nearest-neighbors, and suppose we wish to design a ring of particles
BCDEFG around A (see also figure 6.5). The attractive nearest-neighbor interactions
between bead A and the other particles cause the ring of particles around A to be
made up of the correct beads in the ground state, but does not specify their order.

However, let us now consider this ring of particles as a periodic line of six particles
around A. Figure 6.4 shows that the n(2)-interactions on this ring on the hexagonal
lattice also correspond to the next-nearest neighbor interactions along the ring.
The implication is that the one-dimensional argument for designability carries over
directly to this situation, meaning that the sequence BCDEFG will reliably form
around bead A, up to a global rotation or reflection. By iterative application of this
argument to the points in the outer ring of the hexagon (B, C, etc.), the proof scales
to arbitrarily large systems. Note that the orientation of the subsequent hexagons is
completely fixed with respect to the initial patch. There is only a global freedom to
orient the pattern.
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SQUARE LATTICE IN TWO DIMENSIONS

On the square lattice the self-repulsion energy ε of the design recipe should be
extended to the n(3) range (the J (3) matrix). The proof then follows along the same
lines as that for the triangular lattice. We pick any lattice location and consider the
8-vertex square around it. This square can be represented as a line with periodic
boundary conditions and next-nearest neighbor interactions (see figure 6.4), proving
the local uniqueness of the ground state. This process can be repeated iteratively for
points on the edge of the square to extend the proof to arbitrarily large systems.

6.4 Crystal structures

The derivations above prove that the design recipe produces a unique ground state
locally, and, by extension, on larger patches consisting of unique beads. Ideally, one
would like to limit the number of unique beads that need to be designed, and there-
fore the maximum size of such an ordered patch. Retaining the ability to make com-
plex patterns, these patches can be treated as tiles that can be programmed to attach
to one another and form a crystal structure. The 17 crystallographic wallpaper groups
provide an exhaustive set of all possible symmetry groups on the two-dimensional
plane that contain two independent translations (periodic patterns) (Grünbaum and
Shephard, 1987).

It should be noted that a crystal structure can only exist on our lattice model
if its symmetry group is compatible with that of the lattice itself. Specifically, the
5 wallpaper groups containing a 3-fold rotation are not compatible with a square
lattice and the 3 groups with a 4-fold rotation are not compatible with the hexagonal
lattice. Formally, the symmetry group of the crystal should be a subgroup of that of
the lattice (p4m or p6m), and at least contain two independent translations on the
lattice (p1). For a pattern with symmetry group g , we have p1 ⊆ g ⊆ p4m (square) or
p1 ⊆ g ⊆ p6m (hexagonal).

In this section we show how the interaction recipe outlined above can be suc-
cessfully applied to generate patterns representing 4 out of the 17 wallpaper groups
by selectively enabling symmetries. The simplest wallpaper group, p1, represents a
periodic crystal structure with only translation symmetries. The ground state for such
a pattern can be reliably designed simply by instructing the beads on one side of a
patch to connect to those on the opposite side. There is, however, a lower limit to the
translation distances that can be used. The proof for the existence of a unique ground
state in section 6.3 assumes that the beads that form a ring around any bead A (see
figure 6.5a) only have attractive interactions with the neighboring beads. However, if
one of the two translation vectors becomes so short that the ring of beads around
bead A has nearest-neighbor interactions with another copy of itself, the design
recipe leads to spurious attractions that can cause a degeneracy of the ground state.
An example of a regular periodic pattern on a hexagonal lattice is given in figure 6.6.
Note that this pattern has the shortest repeat length that is possible without creating
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Figure 6.5: a) Locally ordered neighborhoods on the hexagonal and
square lattices. b) Locally ordered neighborhood of a two-fold rotation
center on a hexagonal lattice.

interactions between a single bead’s local neighborhoods.

Another symmetry that can be implemented in a straightforward fashion is the
glide reflection: a reflection followed by a translation along the reflection axis. Again,
if the translation is large enough so that the local neighborhoods of identical beads
do not touch one another, the glide reflection is simply achieved by applying the
interaction recipe to the desired pattern. Producing a periodic pattern based on the
glide reflection generates the pg wallpaper group, an example of which is shown in
figure 6.8. For this symmetry group, the unit cell is twice the size of the fundamental
domain, the patch of uniquely designed beads.

As a final step we implement a non-trivial symmetry operation that forces us to
revisit the uniqueness proof of section 6.3. This symmetry operation is the two-fold
rotation around the center point of two beads on the hexagonal lattice. An example
of the local target pattern for this symmetry is given in figure 6.5b. For all the beads
outside this region, the local neighborhood is unaffected, so the (local) ground state
remains unique. For each of the beads inside the region, we have enumerated the
possible local neighborhoods and verified that the target configuration is the only one
that leads to attractive interactions on all lattice links. There is, however, an energy
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Figure 6.6: Example of a simple periodic crystal on a hexagonal lattice.
The basic tile of beads is delineated by the black rectangle, and the unit
cell is indicated by the gray parallelogram. The image on the right shows
how the tiles are connected to produce the pattern, where the P indicates
the intrinsic orientation of each tile.

penalty associated with the presence of two B beads at a next-nearest neighbor
distance from each other. As long as this energy penalty is similar in magnitude to
the attractive interactions – and it’s likely to be much smaller – this penalty will be
overcome by the attractive interactions and the target pattern represents the unique
ground state. Obviously, a very large repulsive energy between the B-beads will
disrupt the target pattern, but the exact threshold value will generally depend on
non-local interactions involving the rest of the design. The use of a two-fold rotation
allows us to generate patterns from two other wallpaper groups: the group p2 with
only two-fold rotation symmetries (and resulting translations) and the group pgg that
combines two-fold rotations with glide reflections. An example of the latter is given
in figure 6.10. For the group pgg, the unit cell is four times the size of the fundamental
domain.

6.5 Simulation results

To illustrate and support our findings, we have applied the interaction recipe to
the target patterns shown in figures 6.6, 6.8 and 6.10 and we have run Monte Carlo
simulations starting from random initial conditions. The resulting configurations are
shown for comparison on the opposing pages, in figures 6.7, 6.9 and 6.11. The results
clearly indicate a strong tendency to assemble into the designed target patterns. In
addition, in figures 6.7 and 6.11 distinct grain boundaries are visible between locally
ordered patches with incompatible macroscopic orientations.

For the simulations, the interaction energies were chosen as α= 3kB T , ε= 3kB T .



6.5 Simulation results 139

a

b
d

e
c

f

g

h
j

k
i

l
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with locally ordered nearest-neighbors are indicated with a dark ring.



140 6. Designing ground state patterns for DNA-coated colloids

dcba

hgfe

lkji

ponm

d c ba

h g fe

l k ji

p o nm

d c ba

h g fe

l k ji

p o nm

d c ba

h g fe

l k ji

p o nm

dcba

hgfe

lkji

ponm

dcba

hgfe

lkji

ponm

dcba

hgfe

l k ji

p o nm

l k ji

p o nm

l k ji

p o nm

dcba

hgfe

dcba

hgfe

a

e

i

m

a

e

i

m

d c ba

h g fe

l k ji

p o nm

dcba

hgfe

lkji

ponm

P P

PP

P P

PP

P P

PP

P P

PP

pg symmetry group

Figure 6.8: Example of a periodic crystal (group pg) with glide sym-
metries (dashed lines) on a square lattice. The basic tile of beads is
delineated by the black rectangle, and the unit cell is indicated by the
gray rectangle. The image on the right shows how the tiles are connected
to produce the pattern, where the P indicates the intrinsic orientation of
each tile.

The system dimensions were 50×50, forming a square for a square lattice and a
parallelogram for a hexagonal lattice, both with periodic boundary conditions. The
systems were initialized with 2/3 of the sites occupied by beads of all types in equal
proportions, and at random positions. For the evolution of the system a Metropo-
lis algorithm was used with 109 steps in which a swap of two random beads was
attempted. In all cases, this led to sufficient equilibration of the system, with the
possible exception of grain boundaries. Local ordering is determined by detecting
whether a bead has all the correct nearest neighbors in the correct order. Beads with
locally ordered neighborhoods are indicated by a black ring around them. Connected
regions of these beads therefore indicate macroscopic crystal structures of the correct
type.

6.6 Discussion

In this chapter we have introduced a two-dimensional lattice model for the interac-
tions between DNA-coated colloids. The model allows for a multitude of bead types
that interact according to pair-specific interaction energies that are isotropic and of
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finite range. For this system we have investigated whether it is possible to choose
the interaction energies in such a way that a predetermined periodic pattern is the
unique ground state of the system.

Essential to the establishment of a non-trivial pattern as a unique ground state
is the ability for the interactions between beads to suppress the symmetries of the
underlying lattice. This has lead to the derivation in section 6.2 of a minimum
interaction range that depends on the lattice type. On a square lattice, interactions
need to extend to the next-next-nearest neighbors, whereas on a hexagonal lattice,
interactions up to and including the next-nearest neighbors are sufficient.

Building on this result, we have introduced a simple recipe for the interactions
between bead species that is minimal in terms of the interaction range between
particles and guarantees the local uniqueness of the ground state. The prescription
consists of an attractive nearest-neighbor potential for particles that should become
nearest neighbors in the final pattern and a self-repulsion at larger distances (up to
the required interaction range) between particles of the same type . This recipe has
been shown to work for simple periodic patterns, patterns with glide reflections and
patterns with two-fold rotations on a hexagonal lattice.

The choice of interactions energies that has been made for the simple recipe is
meant as a proof of concept and is certainly not unique. This is especially true for
the choice for the long-range self-repulsion that does not contribute to the energy of
the ground state, but merely prevents lattice symmetries from disrupting the pattern.
Another valid choice would be to add an offset to all long-range interaction energies,
whilst maintaining a slightly more repulsive interaction for beads of the same type.
A similar assumption of long-range repulsions has been necessary to stabilize bead
configurations in off-lattice models (Tkachenko, 2002; Licata and Tkachenko, 2006).
The authors did not arrive at the requirement for this repulsion to be pair-specific,
but that is likely because they did not address the situation with many copies of each
bead type, which is the reason for the existence of the self-repulsion in our recipe.

Any further adjustments to the interaction recipe will need to be made in the light
of the temporal aspects of self-assembly, which have been ignored in the context of
this chapter. For example, the ground state of a system, however well designed, may
be kinetically inaccessible. On the other hand, well-chosen interactions could speed
up the formation of the ground state pattern, for example through a ‘staged’ ordering
process (Lukatsky et al., 2006).

In section 6.4 crystal structures have been created by enabling specific sym-
metries: translations, glide reflections and two-fold rotations. These crystals have
fundamental domains that consist of beads that are all unique in terms of their inter-
actions. One of the distinct advantages of more complex crystal structures over the
simple periodic crystals is that the fundamental domain, the basic unit of the tiling,
is smaller than the unit cell, limiting the number of uniquely designed beads that is
required to make a pattern of a given periodicity. For example, the unit cell of the pgg
symmetry group is four times larger than its fundamental domain (see figure 6.10).

In addition, it is important to stress that the requirement for all beads in a tile
to be unique only refers to their DNA-mediated interactions. The other properties
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Figure 6.12: Demonstration of the use of a periodic pattern of unique
beads as a template. Beads b, e and h are colored black, the others are
white.

of the beads can be chosen independently and can be used to create a higher level
pattern on top of the periodic crystal that now serves as a template. For example,
some beads could have additional chemical binding sites, or fluorescent or electrical
properties. The ability to use the underlying crystal as a template is visualized in
figure 6.12 for the simple periodic pattern shown in figure 6.6.

In future work, the interaction recipe presented in this chapter could be extended
to allow for additional symmetries, enabling even more complex crystals to be de-
signed. Furthermore, the techniques that have been introduced in this chapter
could be applied to the three-dimensional case, which has many more symmetry
operations, but otherwise is not fundamentally different from the two-dimensional
situation discussed here.

6.A Classification of possible tilings

In this chapter we have created and classified various patterns according to their
symmetries. The collection of possible symmetries is given by the crystallographic
wallpaper groups. However, an alternative approach to the design of patterns is
worth mentioning, especially if the interactions energies are chosen differently for
the various beads. Then, it may be more fruitful to consider the self-assembly as a
two-step process, in which a number of beads first assemble into tiles (due to strongly
attractive interactions) and these tiles assemble into a crystal structure on longer
time scales.

In this context, the symmetry groups can be used to classify the result of a tiling
process, but the starting point should be the shape and connectivity properties of
the tiles themselves. For simplicity, we restrict ourselves to marked isohedral tilings.
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A tiling is isohedral if every tile belongs to one equivalence class under the symmetry
group of the tiling, i.e. the pattern consists of a single ‘type’ of tile. Furthermore,
the DNA-coated colloid tiles are marked (oriented) because they have an internal
structure of unique beads. In this section we present a classification of all possible
ways in which a marked isohedral tiling can be constructed, for both triangular and
square underlying lattices. This information is presented as a resource for potential
future work.

6.A.1 Tiling topologies

The following analysis is based on the classification of marked isohedral tilings by
Grünbaum and Shephard (1987). They have constructed an exhaustive list of 93
topologically distinct marked isohedral tilings of the 2D plane. However, 47 of these
are based on prototiles (the equivalence class of tiles with all possible rotations) that
have non-trivial internal symmetries, implying that they can be decomposed into
other, more basic tiles. It is therefore sufficient to consider only the remaining 46
tilings.

In figures 6.13 and 6.14 we show all possible tilings by their respective adjacency
diagrams. All tilings are edge-to-edge and isohedral, so the tiling is fully determined
when we specify which edges of the prototile connect to each other and the orienta-
tion with which they do so. The connectivity is indicated by the dots in the center
of the tile edges in the adjacency diagram. If two dots are connected by a line, the
corresponding edges will be connected to each other in the resulting tiling. The ab-
sence of a connecting line indicates that an edge connects to itself. Every connection
dot or pair of connection dots also has a sign associated with it. A plus sign indicates
that the orientation of the attached tile can be obtained from the presented tile using
only a rotation, whereas a minus sign indicates that a reflection is required. The IHxx
classification below the diagrams is the name assigned by Grünbaum and Shephard
(1987). The diagrams are ordered according to their symmetry groups, and their
compatibility with the square and hexagonal lattices is indicated.

6.A.2 Topologically equivalent tilings

The 46 different tilings thus created are only representatives of their respective topo-
logical classes. These archetypical examples can be modified to form an infinitely
large family of different prototile shapes by a continuous transformation, under the
constraint that the resulting prototile still defines a valid tiling. This transformation,
and the constraints imposed on it, can be decomposed into two steps.

First, we may change the positions of the vertices of the tiling. This generally
involves changing the length of the edges and the opening angles between adjacent
edges. In this process, care must be taken to scale edges that are connected by an
adjacency line by the same amount. Another restriction applies to the angles at which
the edges meet. Since the number of tiles that meet at a particular lattice vertex is
conserved by any continuous transformation, the decrease of one angle implies the
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Figure 6.13: Adjacency diagrams of all marked isohedral tilings, sorted by
symmetry group. Compatibility with the square and hexagonal lattices
is indicated by a small square or triangle, respectively.
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increase of another one. This imposes a strong restriction when combined with
the isohedral assumption. It is possible to divide the corners of the prototile into
equivalence classes, with corners sharing the same vertex locations belonging to the
same equivalence class. This means that any change in angle of one corner needs
to be compensated for by an opposite change in the angle of (an)other corner(s)
belonging to the same equivalence class. Furthermore, it implies that any corners
that form an equivalence class of their own necessarily have a fixed angle. In the
adjacency diagrams in figures 6.13 and 6.14, corners belonging to equivalence classes
that have more than one element are indicated by a colored dot, specific for that
class. To see these transformations in action, we note that our definition of the
fundamental domain in figure 6.6 corresponds to the tiling labelled IH1, the one in
figure 6.8 corresponds to IH43 and the one in figure 6.10 corresponds to IH51.

Note that the dependencies between the changes in vertex angles and edge
lengths may prevent changes in the positions of the vertices. The diagrams in figures
6.13 and 6.14 that are indicated with an asterisk (*) have fixed vertex positions for this
reason. The prototiles IH48 and IH52 indicated by a hash (#) sign can only change
their aspect ratios, whereas the vertex angles are fixed.

Finally, although we have not done so, the shapes of the edges of the prototiles
can be modified, in accordance with the adjacency diagram: adjacent edges must
transform in similar ways.





Discussion and outlook 7
In this final chapter we summarize the main findings from the earlier chapters and,
where applicable, relate them to each other. In addition, suggestions are made for
continued theoretical work and experiments are indicated that would help in giving
direction to that work. To elucidate the connections between the work presented
in different chapters, the results will be discussed in their biological context. This
necessarily leads to a reduced exposure for results that are interesting mainly from
a theoretical or methodological perspective. For these, we refer the reader to the
discussion sections of the individual chapters.

The chapter is divided into three sections. The first section discusses the pro-
cesses causing cortical microtubules to align (chapters 2, 3 and 4); the second section
delves into the possible mechanisms underlying the orientation of this alignment
(chapter 5), and the final section addresses the design of unique ground states for
DNA-coated colloids (chapter 6).

7.1 Alignment of cortical microtubules

There is a large number of factors that influence the ability of the cortical array
in plant cells to align. We have investigated these mechanisms using a mixture of
theoretical and simulations tools. We start this section by discussing these tools,
before summarizing the results for each of the mechanisms the cell has at its disposal
to control the cortical array formation.

7.1.1 Methods

In chapter 3 we have constructed a model for the alignment of cortical microtubules,
based on biological observations. An important aspect of this model is that it allows
us to identify a single dimensionless control parameter G , which is fully determined
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by the nucleation rate and intrinsic dynamics of individual microtubules. This con-
trol parameter determines the steady state degree of order of the system, when the
probabilities for zippering (Pz (θ)) and catastrophe induction (Pc (θ)) upon collision
are specified. For increasing values of G , the isotropic stationary solutions to the
model show an increase both in density and in abundance of interactions, as mea-
sured by the ratio of microtubule length over the mesh-size. The control parameter
G has been used throughout the research in this thesis and may also turn out to be
very useful in comparing different in vivo systems.

In chapter 4 we have introduced a simulation model for the microtubules in
the cortical array that builds upon the theoretical model and extends it by adding a
number of additional processes that have been shown to be relevant in a biological
context. In conjunction with the model, an efficient event-driven simulation scheme
has been presented that is tailored to the specific needs imposed by the cortical array
model. The simulations make it possible to directly probe the dynamics of discrete
microtubules, instead of the coarse-grained averages described by the theory. This
also allows us to verify the applicability of the theory to real-life (non-coarse-grained)
situations.

7.1.2 Induced catastrophes

One of the most striking results from the theory of interacting microtubules is that the
collision-induced catastrophes are the primary driver of alignment. The bifurcation
point of the isotropic solution, i.e. the critical value of G∗ of the control parameter
at which the system develops ordered stationary solutions from the isotropic state,
is determined solely by the angle-dependent probability for collisions to induce a
catastrophe (equation (3.56)).

For a limited class of models for which the geometrically corrected induced
catastrophe probability consists of a small number of Fourier modes, the ordered
solution to the theoretical model can be determined numerically as a function of
G (section 3.2.4). In spite of the coarse-grained approximation in the derivation of
the theory, simulation results match these predictions very closely, as evidenced by
figure 4.4. From this we conclude that the theory can be used to make quantitative
predictions for systems of microtubules that interact only through a combination of
crossing over and induced catastrophes. It would be worthwhile to compare these
results to in vitro experiments on microtubules that are bound to a surface.

7.1.3 Zippering

A surprising corollary of the result that the onset of ordering only depends on the
induced catastrophe function is that it does not depend on zippering in any way
– at least insofar as the theory is concerned. Also, the numerical solutions of the
minimal interaction model (section 3.2.4) with zippering enabled, show only a min-
imal dependence on the amount of zippering, resulting in a slightly less ordered
system. However, whereas the simulations yielded a good match with the theory
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in the absence of zippering, this was no longer the case when zippering was en-
abled. The reason for the discrepancy is that zippering, by its very nature introduces
strong spatial correlations in the form of microtubule bundles – something that is
not accounted for in the theory.

Furthermore, when bundles are present it is necessary to specify how the prob-
abilities for microtubules to undergo a collision-induced catastrophe or to zipper
depend on whether they are colliding with a single microtubule or with a bundle, or
whether they themselves are part of a bundle. Several of these bundle interaction
modes were introduced in section 4.1. Simulations comparing all four modes revealed
large differences in the onset of alignment as a function of G , and correspondingly
large deviations from the theoretical prediction – both towards higher and lower
values of G (figures 4.6 and 4.7). Furthermore, as the fraction of crossover events was
increased, i.e. in the weak-interaction limit, the results did not seem to converge
to the theoretical prediction, nor to each other. The one exception to this pattern
is the multi-collision interaction mode that has been constructed specifically to ap-
proximate the coarse-grained model (see appendix 4.B), at the expense of biological
accuracy. In the limit of very weak interactions, this interaction mode did reproduce
the predicted bifurcation point, but significant deviations from the theoretical curve
remain visible for highly ordered systems.

Finally, it should be noted that the qualitative impact of zippering depends not
only on the bundle interaction mode, but also on the features of the probability
functions: enabling zippering for the simple bundle collision mode led to a decrease
in order with the minimal interaction probabilities (figure 4.6), but it led to an increase
in combination with the interaction probabilities described in figure 4.8 (see figure
4.9).

The conclusion to be drawn from these observations is that the details of the
interactions between bundles are of vital importance for the quantitative understand-
ing of microtubule alignment in the presence of zippering. The large fluctuations of
the results depending on the choice of interaction mode show that this is an area in
which experimental guidance is extremely valuable. Once a biologically motivated
model for bundle interactions has been created, it can be used for simulations, and it
may be possible to incorporate it in the theoretical model from chapter 3.

7.1.4 Treadmilling

In a treadmilling microtubule the minus end of a microtubule undergoes a steady
depolymerization. In the absence of zippering , the effect of treadmilling can be
described through a renormalization of the control parameter G and a rescaling of
the collision and zippering probabilities, leading to the definition of an effective
control parameter G ′, defined in (4.7). This scaling behavior works very well in the
absence of zippering, as evidenced by the comparison in figure 4.9 (top).

The same figure (bottom) shows that for biologically relevant parameters, en-
abling treadmilling in the absence of zippering generally leads to a decreased align-
ment of the system. However, there is some evidence (see the discussion in section
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4.4.2) that the combination of zippering and treadmilling leads to a robust increase
in the alignment of the system, accompanied by a decrease of its density. This com-
bination may therefore be used by cells to create an ordered system with a smaller
tubulin footprint.

7.1.5 Severing

CONSERVATION OF MICROTUBULE NUMBER

One of the surprising theoretical results from chapter 2 is that severing events do not
affect the total number of microtubules in the system, provided that the newly created
microtubule plus end immediately undergoes a catastrophe (section 2.3). This is
true for any number of severing events and regardless of where on the microtubule
they occur. This result is a consequence of the fact that the expected lifetime of a
shrinking microtubule is proportional to its length, and that a growing microtubule
of the same length has a fixed additional lifetime.

The conservation of microtubule number in the presence of severing is in appar-
ent contradiction with the experimentally reported increase in microtubule numbers
(Roll-Mecak and Vale, 2006). However, this is readily explained by the fact that our
result is based on constant parameter values. In a living cell, the decrease in average
microtubule length that is the result of severing will lead to an increased availability of
free tubulin dimers. In turn, this is likely to increase the polymerization rate (growth
speed) and nucleation rate, either of which indeed causes an increase in the number
of microtubules.

RANDOM SEVERING

In chapter 2 we have constructed a model for the length distribution of microtubules
that are being severed at random locations on the microtubule lattice with a fixed
rate per unit of length. The resulting steady state length distributions have been
determined analytically for the special cases of small severing rates and the case
without rescues. The generic case has been addressed using a numerical method
and the results have been verified by a comparison with the outcome of a direct
simulation of an ensemble of microtubules.

As was to be expected, an increase in the severing rate always leads to a decrease
in the average length of the microtubules. In addition, we have found that the dis-
tributions became more compact, meaning that the microtubules become more
similar in length. This can be appreciated from the fact that the rate of severing is pro-
portional to the length of each microtubule, so the number of long microtubules is
strongly suppressed. Furthermore, in contrast to the dynamic instability model with-
out severing, the length distributions are no longer always monotonically decreasing
with increasing length. A ‘bump’ can sometimes be created in the distribution when
the steady supply of short growing microtubules that are created by severing events is
not balanced by a sufficiently high spontaneous catastrophe rate. Unfortunately, we
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are not aware of in vitro experiments in which the microtubule length distribution
has been measured in the presence of severing, so we cannot compare our results
with experimental findings.

When microtubule severing at random locations was enabled in simulations of
interacting microtubules, this predictably led to a decreased ability of the system to
align (figure 4.10), due to the shorter microtubules and corresponding decrease in
density. However, there seems to be no clear quantitative link between the decrease
in order and the decrease in average length of the non-interacting system with the
same parameters.

SEVERING AT INTERSECTIONS

Wightman and Turner (2007) have found evidence in Arabidopsis for severing of
microtubules at locations where two microtubules cross. Their experiments suggest
that this type of severing is required for the formation of the cortical array. In our
simulations, the inclusion of this effect led to a rather subtle effect. In the absence of
treadmilling and zippering, severing at intersections caused a decrease in the ten-
dency to align, just as for severing at random locations. However, when treadmilling
and zippering were enabled, severing at intersections suddenly had a beneficial effect
on alignment (figure 4.11). The sudden reversal of the effect of severing at intersec-
tions is probably caused by the asymmetry of the severing mechanism in our model:
the microtubule that is cut is always the one that is on the cytoplasmic side, i.e. part
of the bundle that was last to arrive at that particular intersection. This leads to an
effective stabilization of microtubule bundles due to the fact that they have longer
effective lifetimes than single microtubules. Further investigations should indicate
whether this is indeed the case in the case of our model, and whether this asymmetry
is also present in experiments.

7.1.6 Finite tubulin pool

For the purposes of the theory and simulations it is common to use fixed values for
the model parameters. However, when G approaches or exceeds zero, this can lead
to a diverging density of the ordered phase. This can be understood, because the use
of constant parameter values implicitly assumes that there is an infinite supply of
tubulin dimers available for incorporation into microtubules.

To counter these diverging densities that are at odds with biological reality, we
have argued in section 3.2.5 that it is reasonable to assume that the cell contains
only a limited pool of tubulin dimers. The depletion of this pool feeds back into the
system through a decreased growth speed of the microtubules, ensuring that the
total length of the system remains bounded. Through this mechanism, the system
will always settle into a steady state – even when the initial value of G is larger than 0.
As the density increases, the decreasing growth speed of the microtubule plus end
will eventually cause the effective value of G to settle at a value smaller than zero.
Examples of this mechanism are shown in figures 3.7 and 4.14.
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We have found that the limitation on the amount of available tubulin has a
stabilizing effect on the system, making it less sensitive to changes in individual pa-
rameters. It should be noted that we have thus far used a linear relation between the
available tubulin pool and the plus end growth speed (cf. Mitchison and Kirschner,
1984). For further research, especially into the time-dependent process of alignment,
this relationship should be verified experimentally, and adjusted if necessary. Fur-
thermore, in the simulations we have estimated the size of the tubulin pool on an a
posteriori argument, whereas it is preferable to be able to set it as an independent
parameter that is based on experimental findings.

7.1.7 Time-dependent properties

The time-dependent simulation results in section 4.4.3 show that the simulation
model is able to reproduce a number of the observables reported in the literature (ta-
ble 4.3), starting from literature values for the parameters, augmented with educated
guesses for the remaining parameters. As more experimental data becomes available
and more parameters can be pinned down, the simulations can be expected to yield
more quantitative insights into the self-organized alignment of microtubules and the
process of its establishment. Specifically, the nucleation rate, and its dependence
on the cell cycle and tubulin concentration, remains an important parameter that is
largely unknown. Also, although there are measured values for the catastrophe rate,
these can only be treated as an upper limit for the actual spontaneous catastrophe
rate, because the collision-induced catastrophes are not accounted for. The analysis
in section 3.F suggests that the reported values may be too high by a factor of two or
more.

7.2 Cortical array orientation

To investigate the origins of the orientation of the cortical array, in chapter 5 we have
extended the hitherto two-dimensional cortical array simulations to the surface of a
cylinder in three dimensions. This step necessitated the determination of minimum-
curvature microtubule trajectories on curved surfaces and the creation of the R2

order parameter that describes the extent to which microtubules on a surface exhibit
collective alignment perpendicular to an emergent cell expansion axis. Although
both concepts have only been applied to the cylinder surface, they are applicable
to generic curved surfaces in three spatial dimensions. Extensions to other basic
cell shapes, such as boxes or spherocylinders, can therefore be implemented in a
straightforward manner.

The simulation results in figures 5.6 and 5.7 indicate that the use of a cylindrical
cell geometry restricts the possible orientations of the cortical array, and the observed
orientations (along the cylinder axis and perpendicular to it) correspond to the sym-
metries of the underlying geometry. In addition, the cylindrical geometry imposes a
slight bias to the orientation of the array in the direction of the cell axis, but this is
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not strong enough to reliably determine the orientation of alignment. In addition,
we varied the spontaneous catastrophe rate on the end caps of the cylindrical cell by
multiplying it by a factor c . Comparing the results for c = 1,2 and 4, we see that a local
cue in the form of in increased spontaneous catastrophe rate at the cylinder end caps
is sufficient to ensure that (nearly) all systems eventually orient their microtubules
perpendicular to the cell axis.

The suggestion that local cues at the cell ends exist and may play a role in cortical
array orientation has popped up repeatedly in the literature. It is known, for example,
that the PIN family of proteins, related to auxin transport, localize to these faces
(Lucas and Shaw, 2008), making them a potential candidate for (indirect) modifi-
cation of microtubule activity. Also, the ROP2/RIC1 proteins are thought to modify
microtubule activity in specific regions of the cortex (Ehrhardt and Shaw, 2006).
Furthermore, recent experiments by Hamant et al. (2008) have demonstrated the
existence of a connection between applied cell wall stress and the cortical array
orientation. The model that was introduced by the authors relied on a macroscopic
description in which the average microtubule direction on the outward-facing cell
surface co-aligns with the direction of maximal stress on the surrounding cell walls.
The simulation results from this chapter could provide a microscopic understand-
ing of this connection: If we assume that tension on the cell wall activates a stress
response that locally increases the catastrophe rate, the two sides of the cell that are
under maximum tension will act as the ‘cell poles’. The cortical array will then be
established along the axis between these poles, with the microtubule pointing in
the perpendicular direction – parallel to the direction of maximum wall stress, as
observed in the experiments.

We conclude that there is plenty of circumstantial evidence for location-specific
modulation of microtubule dynamics. However, experiments will have to indicate
whether the dynamics of the cortical microtubules are indeed different at the cell
poles, and, if so, which parameters are most affected.

7.3 DNA-coated colloids

In chapter 6 we have discussed the ability for DNA-coated colloids to self-assemble
into a designed pattern. For this purpose we have introduced a two-dimensional
lattice model for the interaction between the beads. The model allows for a multitude
of bead types that interact according to pair-specific interaction energies that are
isotropic and of finite range. For this system we have investigated whether it is
possible to choose the interaction energies in such a way that a predetermined
periodic pattern is the unique ground state of the system.

Essential to the establishment of a non-trivial pattern as a unique ground state
is the ability for the interactions between beads to suppress the symmetries of the
underlying lattice. This has lead to the derivation in section 6.2 of a minimum
interaction range that depends on the lattice type. On a square lattice, interactions
need to extend to the next-next-nearest neighbors, whereas on a hexagonal lattice,



158 7. Discussion and outlook

interactions up to and including the next-nearest neighbors are sufficient.
Building on this result, we have introduced a simple recipe for the interactions

between bead species that is minimal in terms of the interaction range between
particles and guarantees the local uniqueness of the ground state. The prescription
consists of an attractive nearest-neighbor potential for particles that should become
nearest neighbors in the final pattern and a self-repulsion at larger distances (up to
the required interaction range) between particles of the same type . This recipe has
been shown to work for simple periodic patterns, patterns with glide reflections and
patterns with two-fold rotations on a hexagonal lattice.

The choice of interactions energies that has been made for the simple recipe is
meant as a proof of concept and is certainly not unique. This is especially true for
the choice for the long-range self-repulsion that does not contribute to the energy of
the ground state, but merely prevents lattice symmetries from disrupting the pattern.
Another valid choice would be to add an offset to all long-range interaction energies,
whilst maintaining a slightly more repulsive interaction for beads of the same type.
A similar assumption of long-range repulsions has been necessary to stabilize bead
configurations in off-lattice models (Tkachenko, 2002; Licata and Tkachenko, 2006).
The authors did not arrive at the requirement for this repulsion to be pair-specific,
but that is likely because they did not address the situation with many copies of each
bead type, which is the reason for the existence of the self-repulsion in our recipe.

Any further adjustments to the interaction recipe will need to be made in the light
of the temporal aspects of self-assembly, which have been ignored in the context of
this chapter. For example, the ground state of a system, however well designed, may
be kinetically inaccessible. On the other hand, well-chosen interactions could speed
up the formation of the ground state pattern, for example through a ‘staged’ ordering
process (Lukatsky et al., 2006).

In section 6.4 crystal structures have been created by enabling specific sym-
metries: translations, glide reflections and two-fold rotations. In future work, the
interaction recipe presented in this chapter could be extended to allow for addi-
tional symmetries, enabling even more complex crystal structures to be designed.
Furthermore, the techniques that have been introduced in this chapter could be
applied to the three-dimensional case, which has many more symmetry operations,
but otherwise is not fundamentally different from the two-dimensional situation
discussed in chapter 6.
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Samenvatting

Biomoleculaire ontwerpbouwstenen:
corticale microtubuli en met DNA gedecoreerde colloïden

Het onderzoek dat is beschreven in dit proefschrift gaat over de zelforganiserende
eigenschappen van biomoleculen. Gezamenlijk kunnen deze moleculen geordende
systemen vormen die veel groter zijn dan de individuele moleculen, door hun posi-
ties en/of bewegingen te coördineren door middel van hun onderlinge interacties.
Biomoleculen zijn hiervoor uitermate geschikt, omdat ze een grote structurele di-
versiteit en zeer specifieke interactie-eigenschappen hebben. Daarmee vormen zij
ideale bouwstenen die door de natuur – en de mens – gebruikt kunnen worden om
interacties naar keuze te construeren en op deze wijze materialen met specifieke
eigenschappen te ontwerpen. In dit proefschrift komen twee zelforganiserende sys-
temen op basis van biomoleculen aan bod.

Het eerste systeem is er een dat in de loop van honderden miljoenen jaren door
de natuur is geëvolueerd: het cytoskelet van plantencellen. Het cytoskelet in een cel
dankt zijn naam aan het feit dat het een grote bijdrage levert aan de mechanische
eigenschappen van de cel, maar het cytoskelet is veel meer. Het dient ook als het
cellulaire ‘wegennet’ waarlangs materialen worden getransporteerd, en het grootste
verschil met ons eigen skelet is wellicht dat het cytoskelet een dynamisch geheel is. De
filamenten waaruit het is opgebouwd veranderen voortdurend van lengte en positie,
nieuwe filamenten ontstaan en andere verdwijnen. Daardoor is het cytoskelet in staat
om te veranderen van vorm en functie, al naar gelang dit tijdens de verschillende
levensfasen van een cel nodig is.

Het cytoskelet bestaat uit een lange dunne filamenten en bijbehorende eiwitten.
Het onderzoek in dit proefschrift richt zich op de stijfste van de verschillende typen
filamenten: microtubuli. Dit zijn zeer dunne (25 nanometer) holle eiwitstaafjes die
vele micrometers lang kunnen worden. Door hun constructie zijn ze erg stijf op de
schaal van een cel en ze vervullen daarom vaak de functie van cellulaire draagbalk.
In tegenstelling tot wat deze analogie suggereert zijn microtubuli zeer dynamisch
door de voortdurende toevoeging en verwijdering van eiwitten aan de uiteinden.
Het zijn bovendien polaire structuren, waarvan de twee onderscheidbare uiteinden
worden aangeduid als het plus-einde en het min-einde. Het plus-einde schakelt
tussen periodes van groei en krimp met ieder een (in eerste benadering) constante
snelheid. Het min-einde is minder dynamisch en zit vast aan de plaats waar de
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microtubule is ontstaan of krimpt met een vrij constante (lage) snelheid.
In hoofdstuk 2 is beschreven hoe deze dynamica, samen met het willekeurig in

tweeën ‘knippen’ van microtubuli, leidt tot een lengteverdeling van de filamenten in
de cel. Zoals verwacht veroorzaakt het knippen een afname van de gemiddelde lengte
en een lengteverdeling met minder variatie: heel lange microtubuli kunnen niet lang
overleven, omdat ze snel in tweeën worden gedeeld. Een verrassend resultaat is
dat het verwachte totale aantal filamenten gelijk blijft: de creatie van een nieuwe
microtubule door het knippen wordt precies gecompenseerd door het feit dat de
kortere filamenten sneller geheel verdwijnen.

De hoofdstukken 3-5 gaan over het microtubule-cytoskelet in de context van de
plantencel. Plantencellen hebben de interessante eigenschap dat ze omringd zijn
door een harde celwand en onder een grote inwendige druk staan. Tegelijkertijd zijn
ze in staat om in een zeer specifieke richting te groeien, zodat een gecontroleerde
expansie van de celwand vereist is. De microtubuli spelen hierin een belangrijke
rol. Ze bevinden zich in de cortex van de cel en zijn aan de binnenkant verbonden
met het celmembraan. Kort na de celdeling oriënteren de corticale microtubuli zich
loodrecht op de groei-as. De zo ontstane corticale array dient als ‘rails’ voor de aanleg
van de richtingsgevoelige celwand.

Er is een aantal factoren dat bijdraagt aan het ontstaan van een gezamenlijke
richting, maar in welke mate ze dat doen en wat hun wisselwerking is, is nog gro-
tendeels onbekend. Om hier meer licht op te werpen hebben wij de experimentele
observaties samengevat in een model voor interacterende microtubuli. De micro-
tubuli zitten vast aan het celmembraan en kunnen slechts bewegen door groei en
krimp aan hun uiteindes. Door de tweedimensionale geometrie is het mogelijk dat
een groeiend uiteinde botst met een andere microtubule. Experimenten hebben
aangetoond dat zo’n botsing leidt tot één van drie mogelijke uitkomsten: (i) ritsen,
waarbij het groeiende uiteinde parallel aan de andere microtubule verder groeit,
(ii) een ‘catastrofe’, waarbij het groeiende uiteinde begint te krimpen, of (iii) een
oversteek, waarbij de twee microtubuli elkaar kruisen.

In hoofdstuk 3 is op basis hiervan een analytisch model geconstrueerd. Hoewel
het model vele parameters heeft, blijkt het een enorme reductie in complexiteit
toe te staan: de frequentie waarmee nieuwe microtubuli gecreëerd worden en alle
microtubule-eigen parameters (groei/krimpsnelheid en de frequentie waarmee hi-
ertussen geschakeld wordt) kunnen worden samengevat in een enkele controlepa-
rameter. Bij een bepaalde waarde van deze controleparameter is er een overgang
van een wanordelijke toestand naar een toestand waarin de microtubuli ordenen.
De precieze waarde waarbij deze overgang optreedt (en of het geordende systeem
stabiel is) hangt verrassend genoeg alleen af van de hoekafhankelijke kans dat een
botsing een catastrofe tot gevolg heeft. De kans om te ritsen heeft slechts een kleine
invloed op de mate waarin het systeem ordent.

Deze analytische aanpak van het model voor interacterende microtubuli wordt
in hoofdstuk 4 aangevuld met computersimulaties. Een vergelijking tussen de re-
sultaten die zijn verkregen met de twee methoden toont aan dat de theoretische
voorspellingen erg goed zijn voor systemen waarin microtubuli niet ritsen. Als ritsen
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wel mogelijk is, lopen de resultaten uiteen, en hangen de simulatieresultaten sterk
af van wat er gebeurt bij een botsing met een bundel van parallelle microtubuli,
waarover tot op heden geen experimentele gegevens beschikbaar zijn. Deze bundels
zijn het directe gevolg van het ritsen van een plus-einde langs een andere micro-
tubule. Ondanks deze onzekerheid is er niettemin een kwalitatieve overeenkomst
tussen de simulaties en de theorie.

De simulaties lenen zich bovendien bij uitstek voor onderzoek naar overige pro-
cessen die een rol kunnen spelen bij de vorming van de corticale array. Zo is uit de
simulaties gebleken dat de combinatie van depolymerisatie (krimp) aan het min-
einde en ritsen kan leiden tot ordening bij een lagere dichtheid dan zonder deze
effecten het geval zou zijn. Ook is het effect van het knippen van microtubuli onder-
zocht. Het knippen op willekeurige locaties langs de microtubuli leidt tot een reductie
van de ordening, zoals te verwachten was op basis van de in hoofdstuk 2 voorspelde
afname van de dichtheid. Het knippen op een kruising van twee microtubuli kan
daarentegen leiden tot een forse toename van de ordening, in overeenstemming met
experimentele waarnemingen. Ten slotte komt ook het tijdsverloop van het ontstaan
van de corticale array redelijk overeen met de experimentele waarnemingen.

De microtubuli in de corticale array liggen niet alleen parallel aan elkaar, maar ook
loodrecht op de groeirichting van de cel. In een eerste benadering zijn plantencellen
cilindervormig en groeien ze in de richting van de as van de cilinder. In hoofdstuk 5
hebben we onderzocht welke invloed deze geometrie heeft op de ordeningsrichting
van de corticale array. Hoewel de resulterende oriëntaties niet langer isotroop zijn
en de geometrie dus wel wordt ‘opgemerkt’ door de microtubuli, leidt dit op zichzelf
niet tot een betrouwbare oriëntatie. Daarvoor is een additioneel mechanisme nodig,
zoals een lokale modulatie van de groeiparameters van de microtubuli. Een specifiek
voorbeeld van een dergelijke beïnvloeding is nader onderzocht: een verhoging van
de kans dat een microtubule schakelt van de groei- naar de krimptoestand op de
uiteindes van de cilinder. Het blijkt dat dit afdoende is om een betrouwbare oriëntatie
van de corticale array te garanderen. Deze door ons gebruikte ad-hoc hypothese
is niet onredelijk, omdat bekend is dat een aantal eiwitten in de cel lokaliseert aan
de uiteindes van de cel en omdat de waargenomen dichtheid van microtubuli daar
inderdaad lager is.

Het tweede systeem dat in dit proefschrift wordt behandeld, is een door de mens
ontworpen modelsysteem voor zelfassemblage. Het bestaat uit colloïden, kleine
bolletjes met een doorsnede van ongeveer 1 micrometer, waarop DNA-strengen zijn
bevestigd. Een DNA-streng bestaat uit een aaneenschakeling van nucleotiden die
meestal worden weergegeven met de letters A, C, T en G. In de natuurlijke toestand
vormt DNA de bekende dubbele helix, waarin twee strengen om elkaar heen zijn
gewikkeld. Hierin zijn de nucleotiden door middel van waterstofbindingen verbon-
den met nucleotiden in de andere streng, waarbij een sterke binding alleen wordt
gevormd tussen een A-T paar of een C-G paar. Een DNA-streng, met een specifieke
code die bestaat uit het ATCG-alfabet, heeft dus een unieke partner waarmee een op-
timale binding kan worden aangegaan. De combinatie van de grote verscheidenheid
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aan mogelijke codes en de specificiteit van de interacties maakt DNA tot een ideale
kandidaat voor designer-interacties. De DNA-streng die aan een colloïde bevestigd
is, kan op deze wijze ‘geprogrammeerd’ worden om te binden met het DNA van een
specifieke andere colloïde.

Het is een aantrekkelijk vooruitzicht dat de met DNA gedecoreerde colloïden
zichzelf kunnen organiseren in complexe structuren door middel van onderlinge
interacties die gecodeerd zijn in het DNA. Een fundamentele vraag die zich hierbij
opdringt is hoeveel ieder deeltje moet ‘weten’ over zijn omgeving om een unieke
eindtoestand te specificeren. Deze vraag is leidend geweest bij het onderzoek in
hoofdstuk 6. Daarin is een abstract model geïntroduceerd met een willekeurig aantal
verschillende deeltjes, gemarkeerd met de letters van het alfabet. Deze deeltjes
bevinden zich op een tweedimensionaal rooster en hebben paarspecifieke interacties
die richtingsonafhankelijk zijn en een korte dracht hebben. Voor dit model hebben
we ons afgevraagd of het mogelijk is om de interacties zo te kiezen dat een gegeven
kristalstructuur de unieke grondtoestand vormt.

Het blijkt dat hiervoor een minimale interactieafstand benodigd is, die afhankelijk
is van het onderliggende roostertype. Als aan deze eis voldaan is, kunnen in principe
kristallen van onbeperkte grootte en complexiteit ontworpen worden. Bovendien
is een specifiek ‘recept’ voor de keuze van de interacties gepresenteerd waarvoor is
bewezen dat deze keuze leidt tot een unieke grondtoestand voor enkele eenvoudige
kristalstructuren. Voorbeelden hiervan zijn geverifieerd door middel van Monte-
Carlosimulaties.
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