
                                                                                       Yousfi M. and M'sadak Y. (2025). AFRIMED AJ - Al Awamia (147): 115-127. 

 

115 

 

 

 

 

  

Smart dairy cattle farming: current tools, technologies, and future 

(Literature review) 
 

Yousfi Maha (1, 2) and M'sadak Youssef (1) 

 

maha.yousfi@wur.nl 

 

1: University of Sousse, Higher Institute of Agronomic Sciences of Chott Mariem, P.O. Box No. 47, Sousse 4042, Tunisia 

2: Wageningen University and Research, Agricultural Biosystem Engineering Group, Radix Droevendaalsesteeg, Building 107, 

6708 PB Wageningen, Netherlands 

 

 

Abstract- Since the 2000s, smart dairy cattle farming has experienced significant evolution. This development is driven by the 

availability of new technologies in microelectronics, computing, telecommunications, and nanotechnology, along with farmers' need 

for technological support to improve productivity, efficiency, and profitability. Smart farming enables continuous and real-time 

monitoring of animals and herd management. This article provides a concise review of the main research concerning technological 

advancements and innovative equipment introduced in dairy farms. It places special emphasis on the concepts of innovation and 

digital technologies, the types of sensors and data collected, and the integration of automation and robotics. Connected farming 

presents substantial opportunities. Various applications are reviewed including automated reproductive management, milking robots, 

and feeding robots. Currently, precision livestock farming tools offer clear benefits in terms of time savings and improved working 

conditions. However, these advantages have yet to be quantified using typical methods that assess the environmental, economic, and 

social sustainability of dairy cattle production. Further research is needed to evaluate the overall impact and sustainability of 

precision livestock farming. 
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Introduction  

 

The dairy industry plays a significant role in global agriculture, 

employment, and economic development. Global milk 

production reached 950 million tons in 2023, presenting 1.3% 

increase from the previous year (FAO, 2023). With the global 

population projected to reach nearly 10 billion by 2050 (Willett 

et al., 2019), and dairy demand expected to rise by 4.9% in 

volume and 5.2% in value between 2019 and 2024 (FAO, 2021), 

dairy production is anticipated to grow by over 50% by 2050 

(FAO, 2019) to meet these increasing needs. This underscores 

the importance of sustainable and high-quality production 

methods.  

 

The digital revolution has influenced various sectors, including 

agriculture, leading to the rise of Precision Livestock Farming 

(PLF) which is a concept distinct from the broader field of Smart 

Farming. PLF includes advanced computing, sensor technology, 

and data-driven decision-making to enhance livestock 

management (Bao & Xie, 2022). The integration of Information 

and Communication Technologies (ICT) in PLF has 

significantly improved the collection and analysis of farm data, 

optimizing decision-making processes and facilitating early 

health intervention, reproductive management, feeding 

optimization and positive welfare (Gracia et al., 2020). Machine 

learning applications further enhance automation, ensuring 

greater efficiency, safety, and traceability in dairy production 

(Faverdin et al., 2020). These advancements contribute not only 

to improved productivity but also to reducing the environmental 

footprint and promoting animal welfare through real-time health 

and behavioral monitoring (Buller et al., 2020).  

 

The historical development of PLF reflects a steady progression 

from mechanization to digitalization. While PLF as a concept 

was formally established in Great Britain in 1995 and later 

expanded in Belgium, its roots trace back to earlier work in 

automating livestock management (Mueret et al., 2013). The 

introduction of milking robots in the 1990s revolutionized dairy 

farming by enabling precise, individualized monitoring of 

systems to build the foundation for further sensor-based 

technologies in herd management. Over time, PLF evolved into 

a modular system where farmers could select and integrate 

specific technologies according to their needs, economic 

conditions, and farming strategies (Batte & Arnholt, 2023). The 

success of PLF today depends not only on technical 

advancements but also on the collaboration among farmers, 

technology providers, researchers, and agricultural advisors to 

ensure effective implementation and continuous improvement 

(Banhazi & Harmers, 2018).  

 

Despite the advantages of smart dairy farming technologies, 

which improve productivity and animal welfare, their adoption 

faces challenges due to economic and infrastructural disparities. 

While developed countries benefit from advanced ICT 

infrastructure, in regions with limited access to technology, 

implementing PLF can be difficult, yet it remains crucial for 

advancing dairy production sustainably (Allain et al., 2015). 

Digital Agriculture emerged in the mid-2010s, employing 

advanced data sciences and technologies across all agricultural 

scales, seen as a means to enhance agricultural evolution and 

benefit farmers, consumers, and societies at large (Bellon-

Maurel et al., 2022). PLF uses sophisticated technology to 

optimize dairy farming by monitoring and analyzing farm 

operations, ultimately improving animal health and productivity. 

Integrating digital technologies in PLF enhances efficiency and 

ensures sustainable farming practices, although widespread 

adoption remains a challenge. 

 

This literature review examines the current tools and 

technologies in smart dairy farming, their potential to enhance 

productivity, sustainability, and animal welfare, as well as the 

challenges and perspectives of their implementation.  

 

Precision livestock farming and digital tools used in dairy 

cattle farming 

 

Information and Communication Technologies (ICT) have 

significantly advanced sensor technology, communications, and 

data processing, strengthening Precision Livestock Farming 

(PLF). PLF (Figure 1), distinct from the broader "Smart 

Farming" which encompasses all agricultural domains, utilizes 

advanced computing to enhance livestock management. 

According to Bao and Xie (2022), these digital technologies 

streamline the collection and analysis of data from sensors, 

databases, and monitoring systems, thereby improving decision-

making processes. 

 

García et al. (2020) found that these technologies provide 

farmers with timely and precise data on animal health, behavior, 

and performance, facilitating early health intervention, 

reproductive management, and feeding optimization. Machine 

learning applications in PLF enhance data processing, 

supporting operational automation while improving safety and 

traceability (Faverdin et al., 2020). 

 

Digital tools in cattle farming improve productivity, reduce 

environmental impact, and promote animal welfare by enabling 

detailed monitoring of livestock conditions (Buller et al., 2020). 

Integrating these digital technologies involves systematically 

collecting data, which is then fed into information systems 

designed to optimize farm management and operations. 

Effective use of this data transforms it into actionable insights, 

advancing farm management practices and promoting efficiency 

and profitability (Banhazi and Black, 2009; Banhazi et al., 

2012). The use of sensors and Information Technology in 

livestock management supports farmers in decision-making and 

reduces the physical demands of farm operations, thereby 

streamlining management processes and enhancing productivity 

(Hostiou et al., 2014). This comprehensive integration of 

technology in livestock farming not only improves immediate 

farm management but also paves the way for continuous 

improvement and sustainable practices within the agriculture 

industry. 
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Figure 1. Illustration of the Precision Livestock Farming Workflow in Dairy Cattle 

 

 

Milking robots represent a major advancement in the automation 

of dairy cattle farming. They do more than just mechanize the 

milking process; these sophisticated systems also provide 

precise and individualized management for each animal, 

including health monitoring and milk production optimization. 

By facilitating individual identification and continuous tracking, 

milking robots serves as a central pillar of Precision Livestock 

Farming. 

 

Since the mid-2000s, the availability of sensors to assist in herd 

management has been increasing steadily. However, navigating 

the wide array of devices can be challenging (François, 2014). 

Today, a broader range of devices and measurements is 

becoming increasingly important in dairy cattle farming. 

 

A wide range of sensors is available for various purposes in dairy 

farming. These sensors are used to identify animals, detect 

calving and estrus, monitor health disorders, and adjust feeding 

regimes. The Aspexit platform offers a Directory of Digital 

Tools used in agriculture, including livestock farming (Nicolas, 

2022a). This Directory lists over 1,500 tools already referenced, 

dedicated to agricultural production, originating from more than 

800 different French and European companies. In partnership 

with the Livestock Institute, Aspexit has integrated its database 

of sensors and robots in farming to enrich this. 

 

In the field of livestock farming, sensors play a crucial role by 

providing valuable data that can be used in two main ways, 

defining two major categories of application: 

 

 Decision Support Tools: These devices provide 

information that helps farmers make informed decisions 

about their herd management. The data collected enable 

trend analysis, anomaly detection, and optimization of  

 

farming conditions to enhance animal health and 

productivity. 

 Automated Systems: In this category, sensors are 

integrated into systems that automatically control 

equipment or processes based on the data received. These 

systems manage mechanisms such as ventilation, milking, 

or feeding systems without direct human intervention. 

 

According to Nicolas (2022), sensors in farming serve various 

functions that improve efficiency and precision in livestock 

management. They can activate or control an automated system 

ensuring that farm operations run smoothly with minimal human 

intervention. Furthermore, sensors automate measurements that 

could be performed manually (milk meter, food intake 

weighing). In addition, they can measure parameters that are not 

detectable by the human eye or are difficult to measure manually 

(ruminal temperature, milk composition, cow activity, etc.). 

 

Based on diverse technologies, these tools can measure various 

parameters. Physiological measurements focus on the animal 

itself (milk production, food consumption, body temperature). 

Biological parameters assess the animal’s products (milk 

composition, physico-chemical characteristics of milk, etc.). 

Morphological assessments include Body condition score, 

measurements, and weight. Additionally Behavioral monitoring 

captures data on movement, activity, feeding behavior, and 

rumination. Integrating these sensor-based technologies offers 

precise monitoring of the livestock and improve the 

management of dairy cattle.  

 

Digital technologies applied to dairy cattle farming  

 

Digital technologies are radically transforming various aspects 

of dairy cattle farming. They enable more efficient resource 

management, improve genetic selection techniques, provide 

precise monitoring of herds, facilitate assisted reproduction, and 

enable early detection of health issues. These technologies offer 

considerable opportunities to increase sustainability, efficiency, 

and profitability on farms, while also enhancing the well-being 

of cows. 
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Genetic improvement  

 

Genetic improvement in dairy cattle farming has seen significant 

progress due to the adoption of advanced digital technologies 

and precision breeding methods. Two principal tools in this field 

are Marker-Assisted Selection (MAS) and genomic selection. 

MAS allows for the identification of genetic markers linked to 

specific traits using high-throughput genotyping technologies 

that generate extensive genomic datasets. This technology 

provides fast and inexpensive sequencing of large populations. 

The datasets are processed using bioinformatics tools, based on 

sophisticated algorithms to detect genetic variations associated 

with desirable phenotypic traits. Machine learning (ML) and 

deep learning models, such as Random Forest (RF), Support 

Vector Machine (SVM), and Deep Neutral Genomic Prediction 

(DNNGP) (Chafai et al., 2023), refine genomic predictions by 

capturing complex genetic interactions and thus improve 

selection accuracy (Hayes et al., 2007). Furthermore, MAS 

offers user-friendly toolkits and visualization tools that make it 

easy for breeders to conduct genomic analyses and interpret 

results without requiring advanced programming expertise. The 

integration of multi-omics approaches combines genomic, 

phenotypic, and environmental data, to give a clear picture of 

trait heritability and performance. To manage these vast 

datasets, cloud computing, and big data platforms facilitate real-

time storage, processing, and retrieval of genetic information. 

Moreover, automation and high-throughput phenotyping 

technologies, including digital imaging, sensor-based 

monitoring, and robotic systems, allow precise measurement of 

phenotypic traits, enhancing marker-trait associations(Chafai et 

al., 2023). 

 

These markers act as indicators to determine the presence of 

these traits in animals. This method enables breeders to select 

animals based on their genetic potential for characteristics such 

as milk production, milk quality, disease resistance, and fertility. 

The application of these assisted selection techniques, supported 

by digital technologies contributes to more efficient resource 

management. By identifying the highest-performing animals 

and reducing inbreeding within the herd these methods have 

effectively identified and selected the best animals for milk 

production (Pszczola et al., 2011). It can achieve up to 38% 

higher genetic gains for traits like milk production when 

combined with pedigree data (Meuwissen, 2003). 

Digital technologies and Precision Livestock Farming (PLF) 

have revolutionized the selection of dairy performance. Sensor 

based systems, such as RFID tags and automated milking 

technologies using robots, continuously monitor milk yield and 

composition (fat, protein), and health indicators like somatic cell 

counts. In addition, computer vision systems assess behavior and 

traits associated to health and welfare (Schaeffer, 2006; De Roos 

et al., 2008). The collected data is then integrated into breeding 

program to identify the highest-performing animals. 

Furthermore, these technologies allow the exploitation of 

genetic data to predict the future dairy performance of animals. 

 

Advancements in high-throughput genotyping, such as SNP 

microarray and sequencing technologies, have further 

accelerated genomic selection (GS) by analysis of large scale 

genomic data. With this breeders can apply machine learning 

(ML) models, deep neural networks and gradient boosting to 

optimize genomic breeding values (GEBVs) and improve 

selection for complex traits such as feed efficiency and fertility 

(Hayes et al., 2007; Pszczola et al., 2011). 

 

Single-step GBLUP (Genomic Best Linear Unbiased Prediction) 

incorporates pedigree, genomic, and phenotypic data to refine 

predictions for milk production and longevity, whereas multi-

omics approaches integrates metabolomic and proteomic 

profiles to enhance disease resistance selection. This capability 

allows for the selection of disease-resistant animals, reducing 

the prevalence of health issues, and contributing to the overall 

sustainability of the herd (Haile-Mariam et al., 2008). 

 

Dairy cattle reproduction management 

 

Detecting estrus in dairy cows in important for optimizing 

reproduction management, particularly to synchronize artificial 

inseminations, maximizing conception rates and reducing the 

intervals between calvings. Traditional methods rely on the 

observation of behavioral changes such as increased activity, 

such as the number of steps taken, the flehmen response, sniffing 

of the vulva of other cows, chin resting on the backs of peers, 

licking, and rubbing against peers (Roelofs et al., 2010). 

 

To enhance accuracy and efficiency, various PLF technologies 

have been developed to automate estrus detection, primarily by 

monitoring movement patterns and activity changes (Table 1).
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Table 1. Technologies developed for automated estrus detection based behavioral and physiological Indicators 

Technologies Function  References 

Pedometers Cow’s limb mounted devices that count steps over time. 

Accuracy may be affected by lameness and breeding 

conditions. 

Roelofs et al. (2010). 

Accelerometers Attached to the neck or limb to track 3D movement, number 

of steps and the duration of posture. Data is transmitted to 

the farmer at regular intervals wirelessly. The heat detection 

rates generally exceed 80%. 

Alègre (2016)  

Allain et al. (2012a) 

Thermo-boluses Farmers use thermo-boluses to track cows body temperature, 

which slightly increases during estrus. These systems are 

more effective but more expensive than pedometers. 

Therefore, performance and costs must be considered when 

choosing the most suitable heat detection tool.  

Allain et al., 2012a 

HeatWatch 2® 

(CowChips): 

Uses a pressure-sensitive radio transmitter on sacrum to 

detect mounting behavior lasting over 2 seconds. Detecting 

heat rates (<50% to >85%) are influenced by breed, flooring 

type and housing conditions. False alerts may occur from 

automatic brushes. 

Roelofs et al. (2010); 

Saint-Dizier and 

Chastant-Maillard 

(2012); Chastant-

Maillard and Saint-

Dizier, (2016). 

Video 

Surveillance 

Systems 

Infrared cameras record all estrus behavior day and night, 

with a 82% heat detection rate. These systems are suitable 

only for indoor use. Image resolution may hinder cow 

identification.  

Saint-Dizier and 

Chastant-Maillard 

(2012); (Hetreau et al., 

2010) 

Herd 

Navigator™: 

Analyses progesterone in milk to detect estrus and 

reproductive anomalies with a 95% heat detection rate a 94% 

specificity. Also detects abnormal progesterone profiles, 

pregnancies and abortions and ketosis via beta-

hydroxybutyrates (BHB) concentration in milk.  

Asmussen, (2010); 

Saint-Dizier and 

Chastant-Maillard, 

(2012); Chastant-

Maillard and Saint-

Dizier, (2016). 

AI-Endoscopy 

Integration for 

Heat Detection in 

Cows 

Eye Breed combines AI and endoscopy for precise heat 

detection and insemination support. This smartphone-

compatible device with an onboard camera enables real-time 

monitoring via the cow's genital apparatus (Figure 2).  

(He et al., 2022) 

 

 

 
Figure 2. An overview of cow heat detection system using Eye Breed technology 
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Eye Breed quickly analyzes heat states using AI models that 

employ deep learning, specifically convolutional neural 

networks, to assess conditions in under 20 seconds (He et al., 

2022). This technology not only enhances the accuracy of 

insemination timings but also positions Eye Breed as both a 

detector and an insemination implement, thereby streamlining 

reproductive management Allain et al. (2020).  

 

Automated detection of calving in dairy cattle farming aims to 

optimize the use of the farmer's time and reduce the physical 

strain of labor by enabling them to anticipate and track calving 

events. Various systems have been developed to meet this need 

(Table 2). 

 

 

Table 2. Evaluation of Calving Detection Technologies: Applications, Benefits, and Drawbacks 

Technology Function Strengths Limitations 

Pedometer Detects increased leg 

activity prior to 

calving 

-High sensitivity and 

specificity (Disenhaus et 

al., 2010) 

-Early alerts to farmer 

-Requires extra antennas 

-No data on labor stage or calf 

expulsion 

 -Continuous monitoring still 

needed (Riaboff, 2020) 

Tail-Mounted 

Accelerometer 

Monitors tail lifting 

duration and activity 

level  

-Simple 

-Low-cost 

-Sends alerts during 

prolonged tail lifting 

(Alègre, 2016) 

-Possible time gap between alert 

and birth 

-Limited validation across 

conditions (Ouellet, 2015) 

 

Pressure sensor Detects abdominal and 

uterine contractions  

-Non-invasive 

-Provides voice or light 

alerts based on contraction 

timing 

 

-Difficult to install 

-Effectiveness varies 

-Needs further validation 

(Riaboff, 2020) 

 

Overall, calving detection in dairy cattle benefits from various 

technologies such as pedometers and accelerometers, which 

measure cow activity to predict calving. However, these systems 

have limitations in accuracy and reliability, with detection rates 

often varying from 60% to 85%. Factors such as housing type 

and cow behavior can influence the outcomes. Research is 

needed to refine these tools and reduce false alarms, aiming to 

offer more precise and reliable methods for reproductive 

management (Sylvie Chastant, 2015). 

 

Dairy production management 

 

Milking Robot 

 

The installation of a milking robot is part of a much broader 

process, ranging from feeding the animals to milk collection 

(Béguin et al., 2010). According to Bony and Pomiès (2002), 

although marketed robots have different operating systems, they 

all share several key components, including automatic 

identification, a milking booth, a teat cleaning system, a teat 

location system, a robotic arm, a milking system, a milk 

refrigeration and storage system, and a control station. Béguin et 

al. (2010) outline four types of management systems with 

different impacts on building layout and equipment level: 

 

 In a free flow system, cows have free access to all 

stations in the building, including milking, feeding, and resting 

areas. The system is simple, easily adaptable in existing 

buildings, less costly due to fewer equipment needs, and less 

stressful for animals. However, it allows less optimized use of 

the robot, has a more difficult startup, and involves more 

challenging animal management (heifers, rejected cows, etc.). 

 A guided flow system, with two guidance systems, one 

free controlled and the other pre-selection, organizes cow 

movement into a structured circuit following a specific order of 

resting, milking, and feeding. It allows easier startup and the 

possibility to combine with grazing. However, some cows may 

wait a long time in the waiting area, it can be more stressful for 

animals, and cleaning of the waiting area is required. 

 A selective flow system limits access to the robot to 

only those cows that need to be milked, while a reverse selective 

flow system prioritizes feeding over milking, thereby optimizing 

the efficiency of milking time. These systems allow 

management of a high number of cows per stall and offer the 

possibility to combine with grazing. However, they are more 

costly, require more precise settings, and cleaning of the waiting 

area is required (Béguin et al., 2010) 

 

In a robotic milking system, performance indicators vary 

depending on the type of flow. In free flow, the number of 

milkings and refusals are counted with a goal of four passages 

per cow per day. In forced flow, this target is five. In controlled 

free flow, the indicator is the number of times cows pass the 

smart gate (goal: six to eight). Finally, in the pre-selection 

system, the target remains the same (Journel, sd.). 

 

The milking robot offers numerous advantages for farmers, 

meeting their expectations in terms of optimizing work time and 

reducing labor intensity. In addition to milking, the robot 

analyzes performance by recording various parameters and 

alerts the farmer to cows that require special monitoring in cases 

of heat or illness (Yousfi and M’Sadak, 2022). It thus becomes 

a valuable partner for the farmer. 
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A robotic stall allows for the milking of 60 to 65 cows under 

optimal conditions. However,  in predominantly free-stall 

French farms, one stall is needed for approximately 50 cows. 

Only farms with sufficient investment capacity, typically those 

with more than one hundred dairy cows, can afford this system 

(Veysset et al., 2001). 

 

Automated Optimization of milk Quantity and Quality  

 

Many dairy farms are equipped with milk meters to precisely 

measure the production of their cows. While monthly dairy 

monitoring was once customary, milk meters have been widely 

adopted, with 10% of farms equipped, according to a 2014 

survey (Allain et al., 2015). Additionally, 13% of farms use 

milking robots, which have apparently become more common in 

recent years. Although production disturbances do not allow for 

the precise identification of underlying problems, they serve as 

good indicators of issues or deviations. New technologies have 

quickly found their place on farms, and they also provide new 

information that was not traditionally included in dairy farming 

practices (Faverdin et al., 2020). 

 

The integration of Near-Infrared Spectroscopy (NIRS) in dairy 

operations allows for more effective management of dairy 

production. Using this tool, farmers can obtain instant 

information on milk composition, facilitating real-time decision-

making regarding feeding, health, and reproduction of dairy 

cows (Evangelista et al., 2021). While NIRS technology is quick 

and easy to apply for evaluating milk quality, some issues have 

been reported, such as spectral distortions caused by the 

scattering of fat globules. By applying Principal Component 

Analysis to the near-infrared spectra, researchers have been able 

to assign specific wavelengths to fat, protein, and lactose, and to 

discriminate between samples (Mehrotra, 2000). A recent study 

by de la Roza-Delgado et al. (2017) on the use of portable NIRS 

instruments for in situ monitoring of cow milk composition 

indicators confirmed accurate calibration for fats and proteins 

but less precise calibration for non-fat solids (SNF). Meanwhile, 

Llano Suárez et al. (2018) explored the use of a portable NIRS 

instrument to monitor in-situ fatty acid profile of cow's milk. 

They found that this tool accurately measures variations in milk 

fatty acids, thus providing an opportunity to enhance nutritional 

monitoring of herds and optimize milk quality. 

 

Feeding management 

 

In animal feed management, a variety of tools ranging from 

automatic concentrate dispensers to feeding robots are 

sometimes integrated with milking robots. These techniques are 

used in both free-stall and grazing systems to optimize feeding 

efficiency and ensure proper nutrition for the animals. 

 

Automatic Dispensers  

 

Automated dispensing systems enable individualized feeding of 

cows based on their specific nutritional needs. They use sensors 

to measure each cow's food intake and automatically adjust the 

ration accordingly (Ferard et al., 2013). These systems reduce 

food competition among cows, ensuring that each animal 

receives its fair share of feed. The data collected, such as feed 

consumption and feeding behaviors, are used to adjust 

individual rations and optimize cow nutrition (Grothmann et al., 

2010). Additionally, these systems quickly detect variations in 

food consumption, which can be an early indicator of health 

problems or changes in cow behavior (Grothmann et al., 2010). 

Farmers can receive alerts or automated reports on cows that 

exhibit abnormal feeding behaviors. 

 

Feeding Robots  

 

According to Bruel et al. (2020), feeding dairy herds involves 

several tasks that can be robotized. However, the robotization of 

feeding is not applicable in all situations and systems. Its cost-

effectiveness is linked to significant time spent inside buildings, 

making it less suited for farms that prioritize grazing. 

Furthermore, like all robots, their usage saturation is also a key 

to profitability, and as such, it concerns mainly larger to very 

large farms. Nevertheless, some suppliers offer less complex 

options for medium-sized farms. The benefits and limitations of 

feeding robots are summarized in figure 3. 

 

 
Figure 3. Characteristics of Robotic Feeding in Dairy Cattle: Advantages and Limitations 
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Measurement of Individual Food Intake  

 

Managing dietary rations based on individual cow data is a key 

practice of Precision Livestock Farming (PLF) to optimize 

nutrition and cow health. A proposed solution involves using a 

camera equipped with depth recognition (Bezen et al., 2020): 

The camera is placed above the feeder at a height of 140 cm. To 

train the neural network to estimate the weight of the food before 

and after the cow has eaten, researchers take pictures of the 

feeder with different amounts of food and under various lighting 

conditions. A motion sensor is also installed to trigger the 

camera when the cow approaches the feeder and after the cow 

has left. 

 

Optimization of Feeding Schedules 

 

Optimizing feeding schedules is a key component of Precision 

Livestock Farming (PLF). This strategy determines the optimal 

times to feed cows, tailored to their individual needs and 

production goals. Automated feed distribution technologies 

facilitate scheduling personalized feeding times for each cow, 

based on precise measurements of their actual feeding behaviors 

and needs, provided by behavioral sensors. This approach not 

only improves operational efficiency but also contributes to 

tangible improvements in dairy production and animal welfare. 

By allowing farmers to precisely meet the nutritional needs of 

each cow, optimizing feeding schedules helps maximize farm 

performance while supporting sustainable agricultural practices 

(Shafiullah et al., 2019). 

 

New Technologies to Facilitate Pasture Management 

 

Recent advancements in measurement and communication 

technologies (smartphones and tablets equipped with Bluetooth, 

Wi-Fi, and GPS) open up new prospects for effective and precise 

management. In the medium term, remote sensing and the 

availability of high-resolution images, whether obtained by 

satellite or drone, offer new possibilities (Pottier et al., 2017). 

 

Automation of Biomass Measurement 

 

The height of the grass in pastures can be used to estimate 

available biomass and to derive most of the indicators that assist 

in managing grazing (Seuret et al., 2014). The electronic 

GrassHopper® herbometer (True North Technologies) is 

equipped with an integrated Global Positioning System (GPS) 

that allows for the geolocation of grass height measurements. 

The measurements and associated geographical coordinates are 

automatically transferred to a smartphone application via 

Bluetooth, enabling the farmer to visualize the measurements 

taken on their farm’s paddocks in real-time (French et al., 2015). 

 

The use of satellites is also expanding, as demonstrated by the 

product Pastures from Space®, which provides weekly 

information on grass growth at both regional and paddock scales 

by using both satellite-obtained biomass measurements and 

climatic data (Hills et al., 2016). 

 

Recent technological advancements, particularly in terms of 

communication and information transfer, their commercial 

development, and accessibility, largely meet the expectations of 

farmers, not only in terms of labor but also in providing technical 

support (Pottier et al., 2017). 

 

Virtual Fences 

 

Virtual fences represent a major innovation in Precision 

Livestock Farming (PLF), especially regarding grazing. These 

modern systems do not use physical barriers to delineate the 

spaces allotted to animals. Instead, they employ advanced 

technologies to create invisible boundaries (Umstatter, 2011). 

Initially, virtual fence systems relied on the emission and 

reception of electromagnetic signals between a central device 

and a receiver worn by the animal (Brose, 1990). Over time, 

these technologies have evolved, particularly with the 

integration of GPS into devices worn by the animals, a 

significant advancement introduced by Marsh in 1999. These 

GPS devices allow for more precise control of animal 

movements: if an animal crosses the predefined boundaries, it 

receives a sound or electric stimulus to guide it back to the 

authorized area (Riaboff et al., 2020). 

 

The eShepherd® system, marketed since 2016 by Agersens, is 

one of the first of its kind to be widely adopted. This system 

exemplifies the concept of pasture management via virtual 

fences, offering an efficient and less restrictive solution for 

farmers and animals. The operation of this system is detailed in 

Figure 4 below. 
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Figure 4. Principle of Virtual Fencing for Cattle  

 

Health Management  

 

Early Detection of Mastitis Assisted by AI Systems  

 

In dairy cows, Ida® (Connecterra®, Netherlands) is one of the 

most used and advanced AI applications in Europe (Van 

Rossem, 2020). It uses a motion detector attached to a cow’s 

neck to transmit its movements 24/7 to a program driven by 

algorithms for the early detection of pathologies, such as 

mastitis. 

In addition to milking robots, several connected devices are 

available to quickly detect mastitis. The Online Cell Counter 

(OCC®) from DeLaval® is installed alongside the VMS® 

milking robot and counts the number of somatic cells from each 

cow (DeLaval, 2020). The Crystalab® from Fullwood® directly 

analyzes the content of fat, protein, and lactose in the milk 

collected by a milking robot to quickly detect the presence of 

mastitis, as well as potential ketosis or ruminal acidosis 

(Fullwood, 2020). 

 

Monitoring Vital Signs of the Cow 

 

Monitoring the vital signs of a cow is crucial for real-time 

assessment of the herd's health. A comprehensive system 

includes a body thermometer in the form of a bolus placed in the 

reticulum, an accelerometer, a GPS, and an environmental 

temperature and humidity sensor (Smith et al., 2006). This 

device can communicate with a base station via ZigBee. The 

data collected has shown that the recorded temperature is 

reliable, although water consumption by the cow causes a 

temporary drop in measured temperature. However, this feature 

also allows monitoring of the cow's drinking frequency. 

Furthermore, researchers have observed that a cow's heart rate is 

lower at night than during the day. Additionally, the respiratory 

rate can be monitored. 

 

Monitoring Digestive System Parameters: Ruminal pH 

 

Measuring ruminal pH is crucial for assessing the state of the 

digestive system and the digestion of food. A pH that is too low 

can lead to acidosis or sub-acidosis, while a pH that is too high 

can cause alkalosis. In both cases, digestion is disrupted, and the 

cow's milk production is compromised. However, continuously 

measuring the rumen pH is complex and requires the use of 

invasive methods such as the insertion of a trocar or, more 

permanently, the installation of a cannula. Despite the 

advancements in precision tools, the practical deployment on 

farms often faces hurdles such as high costs, complex integration 

with existing systems, and a lack of technical expertise among 

small to mid-sized farm operators. 

 

Conclusion  

 

The integration of digital technologies and artificial intelligence 

in dairy cattle farming is revolutionizing the industry, enhancing 

productivity while improving animal health and welfare. These 

innovations enable precise herd management, optimize 

nutrition, strengthen reproductive monitoring, and reduce the 

physical workload for farmers. As one of the most 

technologically advanced livestock sectors, dairy farming is 

leading in automation, with tools such as milking robots, 

automated feeders, and decision-support systems for detecting 

heat and calving. 

 

Beyond daily operations, recent innovations in robotic milking 

and automated feeding pave the way for more integrated sensor 

systems that closely monitor animal welfare. Digital tools are 

also transforming pasture management through GPS collars, 

enabling precise traceability and optimized land use. However, 

despite their advantages, these technologies raise ethical and 

privacy concerns, particularly around data ownership and farmer 

autonomy. The cost of adoption can be expensive, especially for 

smaller farms, necessitating careful cost-benefit analyses and 

policies that ensure accessibility. Bridging the "digital divide" is 

crucial, particularly in regions where limited infrastructure 

restricts technological adoption. 

 

As dairy farming moves toward a fully connected and data-

driven future, training and demonstrations will be key to 

facilitating adoption. Networks like the Sm@rt Farming 

Network play an essential role in supporting farmers and 

promoting best practices. In Africa, digital agriculture offers a 

pathway for economic diversification and job creation, with 

growing research capabilities fostering technological 

innovation. However, ensuring equitable access to digital 



                                                                                       Yousfi M. and M'sadak Y. (2025). AFRIMED AJ - Al Awamia (147): 115-127. 

 

124 

 

solutions requires investments in user-friendly technologies, 

tailored designs, and impact-driven research. 

 

Ultimately, the digital transformation of dairy farming presents 

both opportunities and challenges. While it holds the potential to 

enhance sustainability and economic viability, its success 

depends on ethical governance, affordability, and equitable 

access to technology. 

 

Bibliographic References 

 

Alègre B., 2016. Développement d’un nouvel outil d’aide à la 

surveillance des vêlages, New Deal. Thèse d’exercice, École 

Nationale Vétérinaire de Toulouse, ENVT, Toulouse : 80 p. 

https://oatao.univ-toulouse.fr/15569/1/Alegre_15569.pdf 

 

Allain C., Duroy S., Alix E., Dassé B., Delaunay M., Langlais 

J., 2012a. Utilisation des capteurs et des TIC en élevage laitier : 

Une nouvelle dimension pour la conduite du troupeau. 

Conférence SPACE 2012, 

http://www.journees3r.fr/IMG/pdf/Texte_1_Elevage_de_precis

ion_C-Allain.pdf 

 

Allain C., Bidan F., Roussel P., Courties R., Quiniou Y., 

Disenhaus C., Croiseau-Leclerc H., Salvetti P., Freret S., Leyrat-

Bousquet E., 2020. MARIAGE-Monitoring Automatisé de la 

Reproduction : Innovations et Applications pour l’élevage bovin 

laitier. Innovations Agronomiques, 79 : 1-18.  

doi : 10.15454/ftea-3c84ï 

 

Allain C., Philibert A., Frappat B., Poitevin P., Quinton P., 

Lafont N., Larsonneur S., Cimino M., Herman M., Cros P., 

2015. La connectivité des élevages laitiers. Rapport Condensé, 

Institut de l’Élevage : 72 p. 

https://idele.fr/fileadmin/medias/Documents/ETUDE_CONNE

CTIVITE_-_Pwp_final-2.pdf 

 

Allain C., Thomas G., Chanvallon A., 2012b. Détection 

automatisée des chaleurs en élevage bovin laitier : quel outil 

choisir ? 

http://idele.fr/no_cache/recherche/publication/idelesolr/recom

mends/detectionautomatisee-des-chaleurs-en-elevage-bovin-

laitier-quel-outil-choisir.html 

 

Asmussen T., 2010. Herd Navigator or « How to benefit from 

frequent measurements ». PROC ICAR 37TH ANNUAL 

MEETING. 

 

Banhazi T., Harmes M., 2018. Development of Precision 

Livestock Farming Technologies. Advances in Agricultural 

Machinery and Technologies: 179-194. 

doi: 10.1201/9781351132398-8 

 

Banhazi T.M., Black J.L., 2009. Precision Livestock Farming: 

A Suite of Electronic Systems to Ensure the Application of Best 

Practice Management on Livestock Farms. Australian Journal 

of Multi-Disciplinary Engineering, 7 (1): 1-14. 

doi: 10.1080/14488388.2009.11464794 

 

 

Banhazi T.M., Lehr H., Black J.L., Crabtree H., Schofield P., 

Tscharke M., Berckmans D., 2012. Precision Livestock 

Farming: An international review of scientific and commercial 

aspects. International Journal of Agricultural and Biological 

Engineering, 5 (3): 1-9. doi: 10.25165/IJABE.V5I3.599 

 

Bao J., Xie Q., 2022. Artificial intelligence in animal farming: 

A systematic literature review. J. Clean Prod., 331, 129956. 

 doi: 10.1016/J.JCLEPRO.2021.129956 

 

Batte M.T., Arnholt M.W., 2003. Precision farming adoption 

and use in Ohio: case studies of six leading-edge adopters. 

Comput Electron Agric, 38 (2): 125-139. doi: 10.1016/S0168-

1699(02)00143-6 

 

Béguin M., Gain G., Jacqueroud M.P., Delange J.C., Durel L., 

Gautier B., Gaule J.F., Lecler D., 2010. Un projet de robot de 

traite ? Comment bien l’intégrer dans son exploitation et son 

organisation ! L’Agriculteur Normand, 28 Octobre 2010. 

https://www.agriculteur-normand.com/un-projet-de-robot-de-

traite-comment-bien-lintegrer-dans-son-exploitation-et-son-

organisation 

 

Bellon-Maurel V., Brossard L., Garcia F., 2022. Agriculture et 

numérique : Tirer le meilleur du numérique pour contribuer à la 

transition vers des agricultures et des systèmes alimentaires 

durables. Livre Blanc, No6, INRIA-INRAE, France : 198 p. 

https://www.inria.fr/sites/default/files/2022-02/livre-blanc-

agriculture-numerique-2022_INRIA_BD.pdf  

 

Bezen R., Edan Y., Halachmi I., 2020. Computer vision system 

for measuring individual cow feed intake using RGB-D camera 

and deep learning algorithms. Comput Electron Agric, 

172105345. doi: 10.1016/J.COMPAG.2020.105345 

 

Bonnet P., Cesaro J.D., Alexandre Ch., Sow A., Roche M., Paget 

N., 2022. Une agriculture numérique inclusive ? Le cas de 

l’agriculture familiale en Afrique de l’Ouest. Enjeux 

numériques, Septembre 2022, N°19 © Annales des Mines : 148-

156. https://www.annales.org/enjeux-numeriques/2022/en-19-

09-22.pdf 

 

Bony J., Pomiès D., 2002. Le Robot de traite : Aspects 

techniques et économiques. 1ère Édition. INRA, Collection 

Techniques et pratiques : 120 p. 

 

Brandl N., et Jorgensen E., 1996. Determination of live weight 

of pigs from dimensions measured using image analysis. 

Computers and Electronics in Agriculture, 15 (1): 57-72. 

 

Brose, P.W., 1990. Animal training and restraining system. U.S. 

patent 4,898,120 February 6: 11 p. 

 

Bruel A., Coutant S., Mary J., Rocheteau P., Gaboriau L., 

Daneau A.C., Pilet J.M., Guicheau S., Briand P., Beauchamp 

J.J., Savary C., Jurquet J., Menard J.L., 2020. Automatisation de 

l’alimentation en élevage bovin. Chambres d’Agriculture des 

Pays de la Loire, de Bretagne et de Normandie : 64 p. 

https://normandie.chambres-

agriculture.fr/fileadmin/user_upload/National/FAL_commun/p

http://www.journees3r.fr/IMG/pdf/Texte_1_Elevage_de_precision_C-Allain.pdf
http://www.journees3r.fr/IMG/pdf/Texte_1_Elevage_de_precision_C-Allain.pdf
https://idele.fr/fileadmin/medias/Documents/ETUDE_CONNECTIVITE_-_Pwp_final-2.pdf
https://idele.fr/fileadmin/medias/Documents/ETUDE_CONNECTIVITE_-_Pwp_final-2.pdf
http://idele.fr/no_cache/recherche/publication/idelesolr/recommends/detectionautomatisee-des-chaleurs-en-elevage-bovin-laitier-quel-outil-choisir.html
http://idele.fr/no_cache/recherche/publication/idelesolr/recommends/detectionautomatisee-des-chaleurs-en-elevage-bovin-laitier-quel-outil-choisir.html
http://idele.fr/no_cache/recherche/publication/idelesolr/recommends/detectionautomatisee-des-chaleurs-en-elevage-bovin-laitier-quel-outil-choisir.html


                                                                                       Yousfi M. and M'sadak Y. (2025). AFRIMED AJ - Al Awamia (147): 115-127. 

 

125 

 

ublications/Pays_de_la_Loire/2020/2020_Automatisation_de_a

limentation_elevage_bovin.pdf 

 

Buller H., Blokhuis H., Lokhorst K., Silberberg M., Veissier I., 

2020. Animal Welfare Management in a Digital World. Animals 

2020, Vol. 10, Page 1779, 10 (10): 1779. doi: 

10.3390/ANI10101779 

 

Chafai N., Hayah I., Houaga I., Badaoui B., 2023. A review of 

machine learning models applied to genomic prediction in 

animal breeding. Front Genet, 141150596, doi: 

10.3389/FGENE.2023.1150596 

 

Chastant-Maillard S., Saint-Dizier M., 2016. Reproduction in 

Cattle. Summa, Animali da Reddito, 11 (10): 19-20 

De la Roza-Delgado B., Garrido-Varo A., Soldado A., González 

Arrojo A., Cuevas Valdés M., Maroto F., Pérez-Marín D., 2017. 

Matching portable NIRS instruments for in situ monitoring 

indicators of milk composition. Food Control, 76: 74-81. doi: 

10.1016/J.FOODCONT.2017.01.004 

 

De Roos A.P.W., Hayes B.J., Spelman R.J., Goddard M.E., 

2008. Linkage Disequilibrium and Persistence of Phase in 

Holstein-Friesian, Jersey and Angus Cattle. Genetics, 179 (3): 

1503-1512., doi: 10.1534/genetics.107.084301 

DeLaval, 2020. DeLaval VMSTM Series – DeLaval, 

https://www.delaval.com/en-us/our-solutions/milking/vms-

series 

 

Devir S., Maltz E., Metz J. H. M.,1997 Strategic management 

planning and implementation at the milking robot dairy farm. 

Computers and Electronics in Agriculture, 17 (1): 95-110. 

 

Disenhaus C., Ouest A., Ponsart C., 2010. Vers une cohérence 

des pratiques de détection des chaleurs : intégrer la vache, 

l’éleveur et le système d’élevage Embryo genotyping View 

project MARIAGE : Monitoring Automatisé de la 

Reproduction : Innovations et Applications pour l’élevaGE 

bovin laitier View project 

 

Evangelista C., Basiricò L., Bernabucci U., 2021. An overview 

on the use of near infrared spectroscopy (nirs) on farms for the 

management of dairy cows. Agriculture (Switzerland), 11 (4): , 

doi: 10.3390/agriculture11040296 

 

FAO (Food and Agriculture Organization of the United 

Nations), 2019. The future of food and agriculture: Alternative 

pathways to 2050. Rome: FAO, https://www.fao.org/global-

perspectives-studies/food-agriculture-projections-to-2050/en/ 

 

FAO, 2021. Produits laitiers : Marché européen, tendances de 

consommation et innovation. Projet " AHFES - Un écosystème 

alimentaire sain à quadruple hélice dans l'Espace Atlantique 

pour la croissance des PME " : 52 p. 

https://www.ahfesproject.com/app/uploads/2021/06/AHFES-

A6.2_rapport-produits-laitiers_20210603.pdf 

FAO, 2023. Dairy market review Overview of global market 

developments in 2023 

 

Faverdin P., Allain C., Guatteo R., Hostiou N., Veissier I., 2020. 

Élevage de précision : De nouvelles informations utiles pour la 

décision ? 2020 (4) : 4. doi: 10.20870/productions-

animales.2020.33.4.4585ï 

 

Ferard A., Faucet S., Protin P.V., Menard J.L., Brunschwig P., 

2013. Effet de la fréquence de distribution d’une ration 

complète, gérée avec un système automatisé, sur les 

performances de production des vaches laitières. Renc. Rech. 

Ruminants, 20 (2) : 109. 

 

François J., 2014. Détecteurs de chaleurs, vêlages, troubles de 

santé : quelques conseils pour bien choisir ! Dossier Fermes 

numériques, Journal Français Terra31.  

 

French P., O’Brien B., Shalloo L., 2015. Development and 

adoption of new technologies to increase the efficiency and 

sustainability of pasture-based systems. Anim. Prod. Sci., 55: 

931. https://doi.org/10.1071/AN14896 

 

Fullwood, 2020. Crystal Lab Milk Analyser. Fullwood Packo, 

https://fullwoodpacko.com/products/cow-monitoring-and-

herdmanagement/crysta-lab-milk-analyser/ 

 

García R., Aguilar J., Toro M., Pinto A., Rodríguez P., 2020. A 

systematic literature review on the use of machine learning in 

precision livestock farming. Comput. Electron. Agric., 179, 

105826, doi: 10.1016/j.compag.2020.105826 

 

Grothmann A., Nydegger F., Häußermann A., Hartung E., 2010. 

Automatic feeding systems (AFS)-potential for optimisation in 

dairy farming. How automatic feeding systems work. 

Landtechnik, 2: 129-131. 

 

Haile-Mariam M., Carrick M.J., Goddard M.E., 2008. Genotype 

by Environment Interaction for Fertility, Survival, and Milk 

Production Traits in Australian Dairy Cattle. J. Dairy Sci., 91 

(12): 4840-4853. doi: 10.3168/JDS.2008-1084 

 

Halachmi I., Edan Y., Maltz E., Peiper U.M., Moallem U., 

Brukental I.A. real-time control system for individual dairy cow 

food intake. Computers and Electronics in Agriculture, 1998; 20 

(2): 131-144. 

 

Hayes B.J., Chamberlain A.J., McPartlan H., MacLeod I., 

Sethuraman L., Goddard M.E., 2007. Accuracy of marker-

assisted selection with single markers and marker haplotypes in 

cattle. Genet Res (Camb), 89 (4): 215-220. doi: 

10.1017/S0016672307008865 

 

He R., Benhabiles H., Windal F., Even G., Audebert C., Decherf 

A., Collard D., Taleb-Ahmed A., 2022. A CNN-based 

methodology for cow heat analysis from endoscopic images. 

Applied Intelligence, 52 (8): 8372-8385. doi: 10.1007/S10489-

021-02910-5/FIGURES/8 

 

Hetreau T., Giroud O., Ponsart C., Gatien J., Paccard P., 

Badinand F., Bruyere P., 2010. Simplifier la détection des 

chaleurs des vaches laitières grâce à la vidéosurveillance : une 

https://www.fao.org/global-perspectives-studies/food-agriculture-projections-to-2050/en/
https://www.fao.org/global-perspectives-studies/food-agriculture-projections-to-2050/en/
https://www.ahfesproject.com/app/uploads/2021/06/AHFES-A6.2_rapport-produits-laitiers_20210603.pdf
https://www.ahfesproject.com/app/uploads/2021/06/AHFES-A6.2_rapport-produits-laitiers_20210603.pdf
https://doi.org/10.1071/AN14896
https://fullwoodpacko.com/products/cow-monitoring-and-herdmanagement/crysta-lab-milk-analyser/
https://fullwoodpacko.com/products/cow-monitoring-and-herdmanagement/crysta-lab-milk-analyser/


                                                                                       Yousfi M. and M'sadak Y. (2025). AFRIMED AJ - Al Awamia (147): 115-127. 

 

126 

 

étude dans les races Montbéliarde et Abondance. Renc. Rech. 

Rumin., 14 (1) : 141-144. 

 

Hills, J.L., Rawnsley, R., Harrison, M.T., Bishop-Hurley, G.J., 

Henry, D.A., Raedts, P., 

Freeman, M., Roche, J.R., 2016. Precision feeding and grazing 

management for 

temperate pasture-based dairy systems. Conference Paper, 

Proceedings of the International Conference on Precision Dairy 

Farming, At: Leeuwarden, The Netherlands, 

https://www.researchgate.net/publication/305682860_Precision

_feeding_and_grazing_management_for_temperate_pasture-

based_dairy_systems 

 

Hostiou N., Allain C., Chauvat S., Turlot A., Pineau C., Fagon 

J., 2014. Élevage de précision : quelles conséquences pour le 

travail des éleveurs ? In : Numéro spécial, Quelles innovations 

pour quels systèmes d’élevage ? INRA Prod. Anim., 27 (2): 

113-122. https://productions-

animales.org/article/view/3059/9837 

 

Journel C., sd. Circulation en traite robotisée : Partie 1 : Les 

différents modes de circulation. In : Entreprise Pharmaceutique 

Vétérinaire Zoetis : 4 p. 

 

https://www.pathobetonline.fr/upload/fichier/761f22b2c1593d0

bb87e0b606f990ba4974706de.pdf 

 

Kleen, J.L.; Guatteo, R.,2023. Precision Livestock Farming: 

What Does It Contain and What Are the 

Perspectives? Animals, 13 : 779. 

https://doi.org/10.3390/ani13050779 

 

Lamoly A., 2020. L’application de l’intelligence artificielle au 

service de la nutrition individualisée. Thèse d’exercice, École 

Nationale Vétérinaire de Toulouse, ENVT, Toulouse : 113 p. 

https://oatao.univ-toulouse.fr/27355/1/Lamoly_27355.pdf 

 

Llano Suárez P., Soldado A., González-Arrojo A., Vicente F., 

de la Roza-Delgado B., 2018. Rapid on-site monitoring of fatty 

acid profile in raw milk using a handheld near infrared sensor. 

Journal of Food Composition and Analysis, 70: 1-8. 

doi: 10.1016/J.JFCA.2018.03.003 

 

Losch B., Fréguin-Gresh S. & White E.Th., 2013. 

Transformations rurales et développement. Les défis du 

changement structurel dans un monde globalisé. Banque 

Internationale pour la Reconstruction et le Développement 

(BIRD)/Banque Mondiale, Pearson France : 298 p. 

https://agritrop.cirad.fr/572489/1/ID572489.pdf 

 

Marsh, R.E., 1999. Fenceless animal control system using GPS 

location information. 

 

Mehrotra R., 2000. Infrared Spectroscopy, Gas 

Chromatography/Infrared in Food Analysis. In: Encyclopedia of 

Analytical Chemistry. JOHN WILEY & SONS, LTD. 

 

Meuret M., Tichit M.M., Hostiou N., 2013. Elevage et pâturage 

« de précision » : l’animal sous surveillance électronique. Le 

Courrier de l’environnement de l’INRA, 63 (63) : 13-24. 

 

Meuwissen T., 2003. Genomic selection : the future of marker 

assisted selection and animal breeding 

 

Nicola E., Guy Z., Allain C., 2022. Un Projet Européen pour 

évaluer l’impact et l’efficacité des solutions numériques en 

agriculture. Dossiers et Publications, https://idele.fr/detail-

article/un-projet-europeen-pour-evaluer-limpact-et-lefficacite-

des-solutions-numeriques-en-agriculture 

 

Nicolas E., 2022a. Utilisation et inventaire des outils 

numériques et capteurs en élevage, Dossiers et Publications, 

https://idele.fr/smartelevage/publications/detail-

article?tx_atolidelecontenus_publicationdetail... 

 

Nicolas E., 2022b. HARPAGON : Pilotage de précision de 

l’alimentation des vaches laitières pour un élevage multi-

performant, Dossier Outils connectés pour la gestion de 

l’alimentation, idele.fr/smartelevage/publications/detail-

article?tx_atolidelecontenus_publicationdetail… 

 

Niemi J. K., Sevón-Aimonen M., Pietola K., Stalder K. J., 2010. 

The value of precision feeding technologies for grow-finish 

swine. Livestock Science, 2010; 129: 13-23. 

 

Ouellet V., 2015. La détection du vêlage chez la vache laitière. 

Mémoire M. Sc., Université Laval, Québec : 127 p. 

https://corpus.ulaval.ca/server/api/core/bitstreams/03df949d-

dd35-482d-8fbb-93714183f759/content 

 

Pesche D., Losch B. & Imbernon J., 2016. Une nouvelle ruralité 

émergente : Regards croisés sur les transformations rurales 

africaines. 2ème édition. Montpellier : CIRAD-NEPAD, 76 

p. ISBN 978-2-87614-718-8, 

https://issuu.com/cirad/docs/atlas_nepad_en_final-optimise 

 

Pottier E., Jacquin A., Roumiguié A., Fougere M., 2017. Les 

nouvelles technologies au service de la prairie. Revue 

Fourrages, 230 : 161-168. https://afpf-asso.fr/article/les-

nouvelles-technologies-au-service-de-la-prairie 

 

Pszczola M., Mulder H.A., Calus M.P.L., 2011. Effect of 

enlarging the reference population with (un)genotyped animals 

on the accuracy of genomic selection in dairy cattle, doi: 

10.3168/jds.2009-2840 

 

Riaboff L., 2020. Mise en place d’une méthodologie pour 

l’analyse de données GPS et accéléromètres afin d’améliorer la 

gestion du pâturage en élevage de bovins laitiers. Thèse Le Mans 

Université, France : 245 p. https://theses.hal.science/tel-

02985391 

 

Riaboff L., Couvreur S., Aubin S., Madouasse A., Poggi S., 

Chauvin A., Massabie P., Plantier G., 2020. Remontée 

automatique du comportement des vaches laitières à partir 

d’algorithmes de Machine Learning et de modèles probabilistes 

appliqués à des données accélérométriques : une approche 

https://productions-animales.org/article/view/3059/9837
https://productions-animales.org/article/view/3059/9837
https://www.pathobetonline.fr/upload/fichier/761f22b2c1593d0bb87e0b606f990ba4974706de.pdf
https://www.pathobetonline.fr/upload/fichier/761f22b2c1593d0bb87e0b606f990ba4974706de.pdf
https://doi.org/10.3390/ani13050779
https://issuu.com/cirad/docs/atlas_nepad_en_final-optimise


                                                                                       Yousfi M. and M'sadak Y. (2025). AFRIMED AJ - Al Awamia (147): 115-127. 

 

127 

 

prometteuse pour améliorer la gestion du pâturage. HAL open 

science 

 

Roelofs J., López-Gatius F., Hunter R.H.F., van Eerdenburg 

F.J.C.M., Hanzen C., 2010. When is a cow in estrus? Clinical 

and practical aspects. Theriogenology, 74 (3): 327-344. doi: 

10.1016/J.THERIOGENOLOGY.2010.02.016 

 

Saint-Dizier M., Chastant-Maillard S., 2012. Review Article 

Towards an Automated Detection of Oestrus in Dairy Cattle. 

Reprod. Dom. Anim., 471056-1061, doi: 10.1111/j.1439-

0531.2011.01971.x 

 

Schaeffer L.R., 2006. Strategy for applying genome-wide 

selection in dairy cattle. J. Anim. Breed. Genet, 123218-223, doi: 

10.1111/j.1439-0388.2006.00595.x 

 

Seye M., Diallo M., Gueye B. & Cambier C., 2021. Systèmes de 

réseau de communication pour les zones blanches. Journal of 

Interdisciplinary Methodologies and Issues in Sciences, 03 Mai 

2021, Vol. 8, Agriculture Numérique en Afrique,  

https://doi.org/10.18713/JIMIS-120221-8-3 

 

Seuret J.-M., Theau J.-P., Pottier E., Pelletier P., Piquet M., 

Delaby L., 2014. Des outils 

d’aide à la gestion du pâturage pour mieux valoriser les prairies 

et renforcer la confiance 

des éleveurs. Revue Fourrages, 218: 191-201. https://afpf-

asso.fr ›  

 

Shafiullah A.Z., Werner J., Kennedy E., Leso L., O’brien B., 

Umstätter C., 2019. Machine Learning based Prediction of 

Insufficient Herbage Allowance with Automated Feeding 

Behaviour and Activity Data. Sensors, 19 (20): 4479. doi: 

10.3390/s19204479 

 

Smith K., Martinez A., Craddolph R., Erickson H., Andresen D., 

Warren S., 2006. An integrated cattle health monitoring system. 

Annual International Conference of the IEEE Engineering in 

Medicine and Biology – Proceedings: 4659-4662. doi: 

10.1109/IEMBS.2006.259693 

 

Sylvie Chastant, 2015. La reproduction au service de l’économie 

en élevage allaitant. École Nationale Vétérinaire de Toulouse : 

1-12. 

 

Umstatter, C., 2011. The evolution of virtual fences: A review. 

Comput. Electron. Agric. 75: 10-22. 

https://doi.org/10.1016/j.compag.2010.10.005 

 

Van Rossem M., 2020. Disease prevention: What a difference 2 

days can make! Ida. https://ida.io/stories/disease-prevention-

healthy-cows/ 

 

Veysset P., Wallet P., Prugnard E., 2001. Le robot de traite : pour 

qui ? Pourquoi ? Caractérisation des exploitations équipées, 

simulations économiques et éléments de réflexion avant 

investissement. INRAE Productions Animales, 14 (1) : 51-61. 

doi: 10.20870/PRODUCTIONS-ANIMALES.2001.14.1.3725 

 

Willett W., Rockström J., Loken B., Springmann M., Lang T., 

Vermeulen S., Garnett T., Tilman D., DeClerck F., Wood A., 

Jonell M., Clark M., Gordon L.J., Fanzo J., Hawkes C., Zurayk 

R., Rivera J.A., De Vries W., Majele Sibanda L., Afshin A., 

Chaudhary A., Herrero M., Agustina R., Branca F., Lartey A., 

Fan S., Crona B., Fox E., Bignet V., Troell M., Lindahl T., Singh 

S., Cornell S.E., Srinath Reddy K., Narain S., Nishtar S., Murray 

C.J.L., 2019. Food in the Anthropocene: the EAT–Lancet 

Commission on healthy diets from sustainable food systems. 

The Lancet, 393 (10170): 447-492. doi: 10.1016/S0140-

6736(18)31788-4 

 

Yousfi M., M’Sadak Y., 2022. Mise à jour des connaissances sur 

la traite robotisée des vaches laitières. Revue Nature et 

Technologie, 14 (2) : 18-32. 

https://www.asjp.cerist.dz/en/downArticle/47/14/2/196613 

 

 

 

 

 

 

 

 

https://doi.org/10.18713/JIMIS-120221-8-3
https://doi.org/10.1016/j.compag.2010.10.005
https://ida.io/stories/disease-prevention-healthy-cows/
https://ida.io/stories/disease-prevention-healthy-cows/
https://www.asjp.cerist.dz/en/downArticle/47/14/2/196613

