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Abstract- Since the 2000s, smart dairy cattle farming has experienced significant evolution. This development is driven by the
availability of new technologies in microelectronics, computing, telecommunications, and nanotechnology, along with farmers' need
for technological support to improve productivity, efficiency, and profitability. Smart farming enables continuous and real-time
monitoring of animals and herd management. This article provides a concise review of the main research concerning technological
advancements and innovative equipment introduced in dairy farms. It places special emphasis on the concepts of innovation and
digital technologies, the types of sensors and data collected, and the integration of automation and robotics. Connected farming
presents substantial opportunities. VVarious applications are reviewed including automated reproductive management, milking robots,
and feeding robots. Currently, precision livestock farming tools offer clear benefits in terms of time savings and improved working
conditions. However, these advantages have yet to be quantified using typical methods that assess the environmental, economic, and
social sustainability of dairy cattle production. Further research is needed to evaluate the overall impact and sustainability of
precision livestock farming.
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Introduction

The dairy industry plays a significant role in global agriculture,
employment, and economic development. Global milk
production reached 950 million tons in 2023, presenting 1.3%
increase from the previous year (FAO, 2023). With the global
population projected to reach nearly 10 billion by 2050 (Willett
et al., 2019), and dairy demand expected to rise by 4.9% in
volume and 5.2% in value between 2019 and 2024 (FAO, 2021),
dairy production is anticipated to grow by over 50% by 2050
(FAO, 2019) to meet these increasing needs. This underscores
the importance of sustainable and high-quality production
methods.

The digital revolution has influenced various sectors, including
agriculture, leading to the rise of Precision Livestock Farming
(PLF) which is a concept distinct from the broader field of Smart
Farming. PLF includes advanced computing, sensor technology,
and data-driven decision-making to enhance livestock
management (Bao & Xie, 2022). The integration of Information
and Communication Technologies (ICT) in PLF has
significantly improved the collection and analysis of farm data,
optimizing decision-making processes and facilitating early
health intervention, reproductive management, feeding
optimization and positive welfare (Gracia et al., 2020). Machine
learning applications further enhance automation, ensuring
greater efficiency, safety, and traceability in dairy production
(Faverdin et al., 2020). These advancements contribute not only
to improved productivity but also to reducing the environmental
footprint and promoting animal welfare through real-time health
and behavioral monitoring (Buller et al., 2020).

The historical development of PLF reflects a steady progression
from mechanization to digitalization. While PLF as a concept
was formally established in Great Britain in 1995 and later
expanded in Belgium, its roots trace back to earlier work in
automating livestock management (Mueret et al., 2013). The
introduction of milking robots in the 1990s revolutionized dairy
farming by enabling precise, individualized monitoring of
systems to build the foundation for further sensor-based
technologies in herd management. Over time, PLF evolved into
a modular system where farmers could select and integrate
specific technologies according to their needs, economic
conditions, and farming strategies (Batte & Arnholt, 2023). The
success of PLF today depends not only on technical
advancements but also on the collaboration among farmers,
technology providers, researchers, and agricultural advisors to
ensure effective implementation and continuous improvement
(Banhazi & Harmers, 2018).

Despite the advantages of smart dairy farming technologies,
which improve productivity and animal welfare, their adoption
faces challenges due to economic and infrastructural disparities.
While developed countries benefit from advanced ICT
infrastructure, in regions with limited access to technology,
implementing PLF can be difficult, yet it remains crucial for
advancing dairy production sustainably (Allain et al., 2015).
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Digital Agriculture emerged in the mid-2010s, employing
advanced data sciences and technologies across all agricultural
scales, seen as a means to enhance agricultural evolution and
benefit farmers, consumers, and societies at large (Bellon-
Maurel et al., 2022). PLF uses sophisticated technology to
optimize dairy farming by monitoring and analyzing farm
operations, ultimately improving animal health and productivity.
Integrating digital technologies in PLF enhances efficiency and
ensures sustainable farming practices, although widespread
adoption remains a challenge.

This literature review examines the current tools and
technologies in smart dairy farming, their potential to enhance
productivity, sustainability, and animal welfare, as well as the
challenges and perspectives of their implementation.

Precision livestock farming and digital tools used in dairy
cattle farming

Information and Communication Technologies (ICT) have
significantly advanced sensor technology, communications, and
data processing, strengthening Precision Livestock Farming
(PLF). PLF (Figure 1), distinct from the broader "Smart
Farming" which encompasses all agricultural domains, utilizes
advanced computing to enhance livestock management.
According to Bao and Xie (2022), these digital technologies
streamline the collection and analysis of data from sensors,
databases, and monitoring systems, thereby improving decision-
making processes.

Garcia et al. (2020) found that these technologies provide
farmers with timely and precise data on animal health, behavior,
and performance, facilitating early health intervention,
reproductive management, and feeding optimization. Machine
learning applications in PLF enhance data processing,
supporting operational automation while improving safety and
traceability (Faverdin et al., 2020).

Digital tools in cattle farming improve productivity, reduce
environmental impact, and promote animal welfare by enabling
detailed monitoring of livestock conditions (Buller et al., 2020).
Integrating these digital technologies involves systematically
collecting data, which is then fed into information systems
designed to optimize farm management and operations.
Effective use of this data transforms it into actionable insights,
advancing farm management practices and promoting efficiency
and profitability (Banhazi and Black, 2009; Banhazi et al.,
2012). The use of sensors and Information Technology in
livestock management supports farmers in decision-making and
reduces the physical demands of farm operations, thereby
streamlining management processes and enhancing productivity
(Hostiou et al., 2014). This comprehensive integration of
technology in livestock farming not only improves immediate
farm management but also paves the way for continuous
improvement and sustainable practices within the agriculture
industry.
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Figure 1. lllustration of the Precision Livestock Farming Workflow in Dairy Cattle

Milking robots represent a major advancement in the automation
of dairy cattle farming. They do more than just mechanize the
milking process; these sophisticated systems also provide
precise and individualized management for each animal,
including health monitoring and milk production optimization.
By facilitating individual identification and continuous tracking,
milking robots serves as a central pillar of Precision Livestock
Farming.

Since the mid-2000s, the availability of sensors to assist in herd
management has been increasing steadily. However, navigating
the wide array of devices can be challenging (Frangois, 2014).
Today, a broader range of devices and measurements is
becoming increasingly important in dairy cattle farming.

A wide range of sensors is available for various purposes in dairy
farming. These sensors are used to identify animals, detect
calving and estrus, monitor health disorders, and adjust feeding
regimes. The Aspexit platform offers a Directory of Digital
Tools used in agriculture, including livestock farming (Nicolas,
2022a). This Directory lists over 1,500 tools already referenced,
dedicated to agricultural production, originating from more than
800 different French and European companies. In partnership
with the Livestock Institute, Aspexit has integrated its database
of sensors and robots in farming to enrich this.

In the field of livestock farming, sensors play a crucial role by
providing valuable data that can be used in two main ways,
defining two major categories of application:

Decision Support Tools: These devices provide
information that helps farmers make informed decisions
about their herd management. The data collected enable
trend analysis, anomaly detection, and optimization of
farming conditions to enhance animal health and
productivity.

Automated Systems: In this category, sensors are
integrated into systems that automatically control
equipment or processes based on the data received. These
systems manage mechanisms such as ventilation, milking,
or feeding systems without direct human intervention.

According to Nicolas (2022), sensors in farming serve various
functions that improve efficiency and precision in livestock
management. They can activate or control an automated system
ensuring that farm operations run smoothly with minimal human
intervention. Furthermore, sensors automate measurements that
could be performed manually (milk meter, food intake
weighing). In addition, they can measure parameters that are not
detectable by the human eye or are difficult to measure manually
(ruminal temperature, milk composition, cow activity, etc.).

Based on diverse technologies, these tools can measure various
parameters. Physiological measurements focus on the animal
itself (milk production, food consumption, body temperature).
Biological parameters assess the animal’s products (milk
composition, physico-chemical characteristics of milk, etc.).
Morphological assessments include Body condition score,
measurements, and weight. Additionally Behavioral monitoring
captures data on movement, activity, feeding behavior, and
rumination. Integrating these sensor-based technologies offers
precise monitoring of the livestock and improve the
management of dairy cattle.

Digital technologies applied to dairy cattle farming

Digital technologies are radically transforming various aspects
of dairy cattle farming. They enable more efficient resource
management, improve genetic selection techniques, provide
precise monitoring of herds, facilitate assisted reproduction, and
enable early detection of health issues. These technologies offer
considerable opportunities to increase sustainability, efficiency,
and profitability on farms, while also enhancing the well-being
of cows.
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Genetic improvement

Genetic improvement in dairy cattle farming has seen significant
progress due to the adoption of advanced digital technologies
and precision breeding methods. Two principal tools in this field
are Marker-Assisted Selection (MAS) and genomic selection.
MAS allows for the identification of genetic markers linked to
specific traits using high-throughput genotyping technologies
that generate extensive genomic datasets. This technology
provides fast and inexpensive sequencing of large populations.
The datasets are processed using bioinformatics tools, based on
sophisticated algorithms to detect genetic variations associated
with desirable phenotypic traits. Machine learning (ML) and
deep learning models, such as Random Forest (RF), Support
Vector Machine (SVM), and Deep Neutral Genomic Prediction
(DNNGP) (Chafai et al., 2023), refine genomic predictions by
capturing complex genetic interactions and thus improve
selection accuracy (Hayes et al., 2007). Furthermore, MAS
offers user-friendly toolkits and visualization tools that make it
easy for breeders to conduct genomic analyses and interpret
results without requiring advanced programming expertise. The
integration of multi-omics approaches combines genomic,
phenotypic, and environmental data, to give a clear picture of
trait heritability and performance. To manage these vast
datasets, cloud computing, and big data platforms facilitate real-
time storage, processing, and retrieval of genetic information.
Moreover, automation and high-throughput phenotyping
technologies, including digital imaging, sensor-based
monitoring, and robotic systems, allow precise measurement of
phenotypic traits, enhancing marker-trait associations(Chafai et
al., 2023).

These markers act as indicators to determine the presence of
these traits in animals. This method enables breeders to select
animals based on their genetic potential for characteristics such
as milk production, milk quality, disease resistance, and fertility.
The application of these assisted selection techniques, supported
by digital technologies contributes to more efficient resource
management. By identifying the highest-performing animals
and reducing inbreeding within the herd these methods have
effectively identified and selected the best animals for milk
production (Pszczola et al., 2011). It can achieve up to 38%
higher genetic gains for traits like milk production when
combined with pedigree data (Meuwissen, 2003).
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Digital technologies and Precision Livestock Farming (PLF)
have revolutionized the selection of dairy performance. Sensor
based systems, such as RFID tags and automated milking
technologies using robots, continuously monitor milk yield and
composition (fat, protein), and health indicators like somatic cell
counts. In addition, computer vision systems assess behavior and
traits associated to health and welfare (Schaeffer, 2006; De Roos
et al., 2008). The collected data is then integrated into breeding
program to identify the highest-performing animals.
Furthermore, these technologies allow the exploitation of
genetic data to predict the future dairy performance of animals.

Advancements in high-throughput genotyping, such as SNP
microarray and sequencing technologies, have further
accelerated genomic selection (GS) by analysis of large scale
genomic data. With this breeders can apply machine learning
(ML) models, deep neural networks and gradient boosting to
optimize genomic breeding values (GEBVS) and improve
selection for complex traits such as feed efficiency and fertility
(Hayes et al., 2007; Pszczola et al., 2011).

Single-step GBLUP (Genomic Best Linear Unbiased Prediction)
incorporates pedigree, genomic, and phenotypic data to refine
predictions for milk production and longevity, whereas multi-
omics approaches integrates metabolomic and proteomic
profiles to enhance disease resistance selection. This capability
allows for the selection of disease-resistant animals, reducing
the prevalence of health issues, and contributing to the overall
sustainability of the herd (Haile-Mariam et al., 2008).

Dairy cattle reproduction management

Detecting estrus in dairy cows in important for optimizing
reproduction management, particularly to synchronize artificial
inseminations, maximizing conception rates and reducing the
intervals between calvings. Traditional methods rely on the
observation of behavioral changes such as increased activity,
such as the number of steps taken, the flehmen response, sniffing
of the vulva of other cows, chin resting on the backs of peers,
licking, and rubbing against peers (Roelofs et al., 2010).

To enhance accuracy and efficiency, various PLF technologies
have been developed to automate estrus detection, primarily by
monitoring movement patterns and activity changes (Table 1).

118



African s Mediterranean

AGRICULTURAL JOURNAL

AL AwAamA

Yousfi M. and M'sadak Y. (2025). AFRIMED AJ - Al Awamia (147): 115-127.

Table 1. Technologies developed for automated estrus detection based behavioral and physiological Indicators

Technologies Function References
Pedometers Cow’s limb mounted devices that count steps over time. | Roelofs et al. (2010).
Accuracy may be affected by lameness and breeding

conditions.
Accelerometers Attached to the neck or limb to track 3D movement, number | Alégre (2016)

of steps and the duration of posture. Data is transmitted to | Allain et al. (2012a)
the farmer at regular intervals wirelessly. The heat detection
rates generally exceed 80%.

Thermo-boluses Farmers use thermo-boluses to track cows body temperature, | Allain et al., 2012a
which slightly increases during estrus. These systems are
more effective but more expensive than pedometers.
Therefore, performance and costs must be considered when
choosing the most suitable heat detection tool.

HeatWatch  2® | Uses a pressure-sensitive radio transmitter on sacrum to | Roelofs et al. (2010);

(CowChips): detect mounting behavior lasting over 2 seconds. Detecting | Saint-Dizier and
heat rates (<50% to >85%) are influenced by breed, flooring | Chastant-Maillard
type and housing conditions. False alerts may occur from | (2012); Chastant-
automatic brushes. Maillard and  Saint-
Dizier, (2016).
Video Infrared cameras record all estrus behavior day and night, | Saint-Dizier and
Surveillance with a 82% heat detection rate. These systems are suitable | Chastant-Maillard
Systems only for indoor use. Image resolution may hinder cow | (2012); (Hetreau et al.,
identification. 2010)
Herd Analyses progesterone in milk to detect estrus and | Asmussen, (2010);
Navigator™: reproductive anomalies with a 95% heat detection rate a 94% | Saint-Dizier and
specificity. Also detects abnormal progesterone profiles, | Chastant-Maillard,
pregnancies and abortions and ketosis via beta- | (2012); Chastant-
hydroxybutyrates (BHB) concentration in milk. Maillard and  Saint-
Dizier, (2016).
Al-Endoscopy Eye Breed combines Al and endoscopy for precise heat | (He et al., 2022)

Integration for | detection and insemination support. This smartphone-
Heat Detection in | compatible device with an onboard camera enables real-time
Cows monitoring via the cow's genital apparatus (Figure 2).
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Figure 2. An overview of cow heat detection system using Eye Breed technology
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Eye Breed quickly analyzes heat states using Al models that
employ deep learning, specifically convolutional neural
networks, to assess conditions in under 20 seconds (He et al.,
2022). This technology not only enhances the accuracy of
insemination timings but also positions Eye Breed as both a
detector and an insemination implement, thereby streamlining
reproductive management Allain et al. (2020).
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Automated detection of calving in dairy cattle farming aims to
optimize the use of the farmer's time and reduce the physical
strain of labor by enabling them to anticipate and track calving
events. Various systems have been developed to meet this need
(Table 2).

Table 2. Evaluation of Calving Detection Technologies: Applications, Benefits, and Drawbacks

level

Technology Function Strengths Limitations
Pedometer Detects increased leg -High sensitivity and -Requires extra antennas
activity prior to specificity (Disenhaus et -No data on labor stage or calf
calving al., 2010) expulsion
-Early alerts to farmer -Continuous monitoring still
needed (Riaboff, 2020)
Tail-Mounted | Monitors tail lifting -Simple -Possible time gap between alert
Accelerometer | duration and activity -Low-cost and birth

-Sends alerts during
prolonged tail lifting
(Alégre, 2016)

-Limited validation across
conditions (Ouellet, 2015)

Detects abdominal and
uterine contractions

Pressure sensor

timing

-Non-invasive
-Provides voice or light
alerts based on contraction

-Difficult to install
-Effectiveness varies
-Needs further validation
(Riaboff, 2020)

Overall, calving detection in dairy cattle benefits from various
technologies such as pedometers and accelerometers, which
measure cow activity to predict calving. However, these systems
have limitations in accuracy and reliability, with detection rates
often varying from 60% to 85%. Factors such as housing type
and cow behavior can influence the outcomes. Research is
needed to refine these tools and reduce false alarms, aiming to
offer more precise and reliable methods for reproductive
management (Sylvie Chastant, 2015).

Dairy production management
Milking Robot

The installation of a milking robot is part of a much broader
process, ranging from feeding the animals to milk collection
(Béguin et al., 2010). According to Bony and Pomies (2002),
although marketed robots have different operating systems, they
all share several key components, including automatic
identification, a milking booth, a teat cleaning system, a teat
location system, a robotic arm, a milking system, a milk
refrigeration and storage system, and a control station. Béguin et
al. (2010) outline four types of management systems with
different impacts on building layout and equipment level:

> In a free flow system, cows have free access to all
stations in the building, including milking, feeding, and resting
areas. The system is simple, easily adaptable in existing
buildings, less costly due to fewer equipment needs, and less
stressful for animals. However, it allows less optimized use of
the robot, has a more difficult startup, and involves more
challenging animal management (heifers, rejected cows, etc.).

> A guided flow system, with two guidance systems, one
free controlled and the other pre-selection, organizes cow
movement into a structured circuit following a specific order of
resting, milking, and feeding. It allows easier startup and the
possibility to combine with grazing. However, some cows may
wait a long time in the waiting area, it can be more stressful for
animals, and cleaning of the waiting area is required.

> A selective flow system limits access to the robot to
only those cows that need to be milked, while a reverse selective
flow system prioritizes feeding over milking, thereby optimizing
the efficiency of milking time. These systems allow
management of a high number of cows per stall and offer the
possibility to combine with grazing. However, they are more
costly, require more precise settings, and cleaning of the waiting
area is required (Béguin et al., 2010)

In a robotic milking system, performance indicators vary
depending on the type of flow. In free flow, the number of
milkings and refusals are counted with a goal of four passages
per cow per day. In forced flow, this target is five. In controlled
free flow, the indicator is the number of times cows pass the
smart gate (goal: six to eight). Finally, in the pre-selection
system, the target remains the same (Journel, sd.).

The milking robot offers numerous advantages for farmers,
meeting their expectations in terms of optimizing work time and
reducing labor intensity. In addition to milking, the robot
analyzes performance by recording various parameters and
alerts the farmer to cows that require special monitoring in cases
of heat or illness (Yousfi and M’Sadak, 2022). It thus becomes
a valuable partner for the farmer.
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A robotic stall allows for the milking of 60 to 65 cows under
optimal conditions. However, in predominantly free-stall
French farms, one stall is needed for approximately 50 cows.
Only farms with sufficient investment capacity, typically those
with more than one hundred dairy cows, can afford this system
(Veysset et al., 2001).

Automated Optimization of milk Quantity and Quality

Many dairy farms are equipped with milk meters to precisely
measure the production of their cows. While monthly dairy
monitoring was once customary, milk meters have been widely
adopted, with 10% of farms equipped, according to a 2014
survey (Allain et al., 2015). Additionally, 13% of farms use
milking robots, which have apparently become more common in
recent years. Although production disturbances do not allow for
the precise identification of underlying problems, they serve as
good indicators of issues or deviations. New technologies have
quickly found their place on farms, and they also provide new
information that was not traditionally included in dairy farming
practices (Faverdin et al., 2020).

The integration of Near-Infrared Spectroscopy (NIRS) in dairy
operations allows for more effective management of dairy
production. Using this tool, farmers can obtain instant
information on milk composition, facilitating real-time decision-
making regarding feeding, health, and reproduction of dairy
cows (Evangelista et al., 2021). While NIRS technology is quick
and easy to apply for evaluating milk quality, some issues have
been reported, such as spectral distortions caused by the
scattering of fat globules. By applying Principal Component
Analysis to the near-infrared spectra, researchers have been able
to assign specific wavelengths to fat, protein, and lactose, and to
discriminate between samples (Mehrotra, 2000). A recent study
by de la Roza-Delgado et al. (2017) on the use of portable NIRS
instruments for in situ monitoring of cow milk composition
indicators confirmed accurate calibration for fats and proteins
but less precise calibration for non-fat solids (SNF). Meanwhile,
Llano Suarez et al. (2018) explored the use of a portable NIRS
instrument to monitor in-situ fatty acid profile of cow's milk.
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They found that this tool accurately measures variations in milk
fatty acids, thus providing an opportunity to enhance nutritional
monitoring of herds and optimize milk quality.

Feeding management

In animal feed management, a variety of tools ranging from
automatic concentrate dispensers to feeding robots are
sometimes integrated with milking robots. These techniques are
used in both free-stall and grazing systems to optimize feeding
efficiency and ensure proper nutrition for the animals.

Automatic Dispensers

Automated dispensing systems enable individualized feeding of
cows based on their specific nutritional needs. They use sensors
to measure each cow's food intake and automatically adjust the
ration accordingly (Ferard et al., 2013). These systems reduce
food competition among cows, ensuring that each animal
receives its fair share of feed. The data collected, such as feed
consumption and feeding behaviors, are used to adjust
individual rations and optimize cow nutrition (Grothmann et al.,
2010). Additionally, these systems quickly detect variations in
food consumption, which can be an early indicator of health
problems or changes in cow behavior (Grothmann et al., 2010).
Farmers can receive alerts or automated reports on cows that
exhibit abnormal feeding behaviors.

Feeding Robots

According to Bruel et al. (2020), feeding dairy herds involves
several tasks that can be robotized. However, the robotization of
feeding is not applicable in all situations and systems. Its cost-
effectiveness is linked to significant time spent inside buildings,
making it less suited for farms that prioritize grazing.
Furthermore, like all robots, their usage saturation is also a key
to profitability, and as such, it concerns mainly larger to very
large farms. Nevertheless, some suppliers offer less complex
options for medium-sized farms. The benefits and limitations of
feeding robots are summarized in figure 3.
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Figure 3. Characteristics of Robotic Feeding in Dairy Cattle: Advantages and Limitations
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Measurement of Individual Food Intake

Managing dietary rations based on individual cow data is a key
practice of Precision Livestock Farming (PLF) to optimize
nutrition and cow health. A proposed solution involves using a
camera equipped with depth recognition (Bezen et al., 2020):
The camera is placed above the feeder at a height of 140 cm. To
train the neural network to estimate the weight of the food before
and after the cow has eaten, researchers take pictures of the
feeder with different amounts of food and under various lighting
conditions. A motion sensor is also installed to trigger the
camera when the cow approaches the feeder and after the cow
has left.

Optimization of Feeding Schedules

Optimizing feeding schedules is a key component of Precision
Livestock Farming (PLF). This strategy determines the optimal
times to feed cows, tailored to their individual needs and
production goals. Automated feed distribution technologies
facilitate scheduling personalized feeding times for each cow,
based on precise measurements of their actual feeding behaviors
and needs, provided by behavioral sensors. This approach not
only improves operational efficiency but also contributes to
tangible improvements in dairy production and animal welfare.
By allowing farmers to precisely meet the nutritional needs of
each cow, optimizing feeding schedules helps maximize farm
performance while supporting sustainable agricultural practices
(Shafiullah et al., 2019).

New Technologies to Facilitate Pasture Management

Recent advancements in measurement and communication
technologies (smartphones and tablets equipped with Bluetooth,
Wi-Fi, and GPS) open up new prospects for effective and precise
management. In the medium term, remote sensing and the
availability of high-resolution images, whether obtained by
satellite or drone, offer new possibilities (Pottier et al., 2017).

Automation of Biomass Measurement

The height of the grass in pastures can be used to estimate
available biomass and to derive most of the indicators that assist
in managing grazing (Seuret et al., 2014). The electronic
GrassHopper® herbometer (True North Technologies) is
equipped with an integrated Global Positioning System (GPS)
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that allows for the geolocation of grass height measurements.
The measurements and associated geographical coordinates are
automatically transferred to a smartphone application via
Bluetooth, enabling the farmer to visualize the measurements
taken on their farm’s paddocks in real-time (French et al., 2015).

The use of satellites is also expanding, as demonstrated by the
product Pastures from Space®, which provides weekly
information on grass growth at both regional and paddock scales
by using both satellite-obtained biomass measurements and
climatic data (Hills et al., 2016).

Recent technological advancements, particularly in terms of
communication and information transfer, their commercial
development, and accessibility, largely meet the expectations of
farmers, not only in terms of labor but also in providing technical
support (Pottier et al., 2017).

Virtual Fences

Virtual fences represent a major innovation in Precision
Livestock Farming (PLF), especially regarding grazing. These
modern systems do not use physical barriers to delineate the
spaces allotted to animals. Instead, they employ advanced
technologies to create invisible boundaries (Umstatter, 2011).
Initially, virtual fence systems relied on the emission and
reception of electromagnetic signals between a central device
and a receiver worn by the animal (Brose, 1990). Over time,
these technologies have evolved, particularly with the
integration of GPS into devices worn by the animals, a
significant advancement introduced by Marsh in 1999. These
GPS devices allow for more precise control of animal
movements: if an animal crosses the predefined boundaries, it
receives a sound or electric stimulus to guide it back to the
authorized area (Riaboff et al., 2020).

The eShepherd® system, marketed since 2016 by Agersens, is
one of the first of its kind to be widely adopted. This system
exemplifies the concept of pasture management via virtual
fences, offering an efficient and less restrictive solution for
farmers and animals. The operation of this system is detailed in
Figure 4 below.
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Health Management
Early Detection of Mastitis Assisted by Al Systems

In dairy cows, Ida® (Connecterra®, Netherlands) is one of the
most used and advanced Al applications in Europe (Van
Rossem, 2020). It uses a motion detector attached to a cow’s
neck to transmit its movements 24/7 to a program driven by
algorithms for the early detection of pathologies, such as
mastitis.

In addition to milking robots, several connected devices are
available to quickly detect mastitis. The Online Cell Counter
(OCC®) from Delaval® is installed alongside the VMS®
milking robot and counts the number of somatic cells from each
cow (DeLaval, 2020). The Crystalab® from Fullwood® directly
analyzes the content of fat, protein, and lactose in the milk
collected by a milking robot to quickly detect the presence of
mastitis, as well as potential ketosis or ruminal acidosis
(Fullwood, 2020).

Monitoring Vital Signs of the Cow

Monitoring the vital signs of a cow is crucial for real-time
assessment of the herd's health. A comprehensive system
includes a body thermometer in the form of a bolus placed in the
reticulum, an accelerometer, a GPS, and an environmental
temperature and humidity sensor (Smith et al., 2006). This
device can communicate with a base station via ZigBee. The
data collected has shown that the recorded temperature is
reliable, although water consumption by the cow causes a
temporary drop in measured temperature. However, this feature
also allows monitoring of the cow's drinking frequency.
Furthermore, researchers have observed that a cow's heart rate is
lower at night than during the day. Additionally, the respiratory
rate can be monitored.

Monitoring Digestive System Parameters: Ruminal pH

Measuring ruminal pH is crucial for assessing the state of the
digestive system and the digestion of food. A pH that is too low
can lead to acidosis or sub-acidosis, while a pH that is too high
can cause alkalosis. In both cases, digestion is disrupted, and the
cow's milk production is compromised. However, continuously

measuring the rumen pH is complex and requires the use of
invasive methods such as the insertion of a trocar or, more
permanently, the installation of a cannula. Despite the
advancements in precision tools, the practical deployment on
farms often faces hurdles such as high costs, complex integration
with existing systems, and a lack of technical expertise among
small to mid-sized farm operators.

Conclusion

The integration of digital technologies and artificial intelligence
in dairy cattle farming is revolutionizing the industry, enhancing
productivity while improving animal health and welfare. These
innovations enable precise herd management, optimize
nutrition, strengthen reproductive monitoring, and reduce the
physical workload for farmers. As one of the most
technologically advanced livestock sectors, dairy farming is
leading in automation, with tools such as milking robots,
automated feeders, and decision-support systems for detecting
heat and calving.

Beyond daily operations, recent innovations in robotic milking
and automated feeding pave the way for more integrated sensor
systems that closely monitor animal welfare. Digital tools are
also transforming pasture management through GPS collars,
enabling precise traceability and optimized land use. However,
despite their advantages, these technologies raise ethical and
privacy concerns, particularly around data ownership and farmer
autonomy. The cost of adoption can be expensive, especially for
smaller farms, necessitating careful cost-benefit analyses and
policies that ensure accessibility. Bridging the "digital divide" is
crucial, particularly in regions where limited infrastructure
restricts technological adoption.

As dairy farming moves toward a fully connected and data-
driven future, training and demonstrations will be key to
facilitating adoption. Networks like the Sm@rt Farming
Network play an essential role in supporting farmers and
promoting best practices. In Africa, digital agriculture offers a
pathway for economic diversification and job creation, with
growing research  capabilities fostering technological
innovation. However, ensuring equitable access to digital
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solutions requires investments in user-friendly technologies,
tailored designs, and impact-driven research.

Ultimately, the digital transformation of dairy farming presents
both opportunities and challenges. While it holds the potential to
enhance sustainability and economic viability, its success
depends on ethical governance, affordability, and equitable
access to technology.
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