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Diverse crop rotations offset yield-scaled
nitrogen losses via denitrification
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Denitrification, a major source of gaseous nitrogen emissions from agricultural soils, is influenced by
management. Practices promoting belowground diversity are suggested to support sustainable
agriculture, but how they modulate nitrogen losses via denitrification remains inconclusive. Here we
sampled 106 cereal fields spanning a 3000 km North-South gradient across Europe and compiled 56
associated climatic, soil, microbial andmanagement variables.We show that increased denitrification
potential was associatedwith higher proportion of timewith crop cover over the last ten years andwas
best predicted by microbial biomass and microbial functional guilds involved in nitrogen cycling, in
particular denitrification.We also demonstrate that several diversification practices affect the variation
in denitrification potential predictors, suggesting a trade-off between agricultural diversification and
nitrogen losses via denitrification. However, increased crop diversity in rotations improved yield-
scaled denitrification, highlighting the potential of this practice to minimize nitrogen losses while
contributing to sustainable food production.

Globally, there is a surplus of reactive nitrogen (N) in the environment due
to thewidespread use of fertilizers in agriculture1. Nitrogen-use efficiency in
cropping systems is low, with only half of the N inputs recovered in the
harvested crop2, and the loss of N from fertilized soils represents a major
threat to the integrity of both terrestrial and aquatic ecosystems3. Deni-
trification, an anaerobicmicrobial respiratory pathway, is themain sourceof
the potent greenhouse gas nitrous oxide (N2O) and dinitrogen (N2) from
fertilized soils, returning 48 ± 10 Tg N to the atmosphere annually at the
global scale4. These agricultural soils also account for nearly half of the
anthropogenic N2O production worldwide5, making reactive N surplus a
key driver of climate change, which could create undefined feedbacks on
terrestrial N cycling6,7. Identifying and promoting management practices
that minimize gaseous N losses is therefore critical for sustainable agri-
cultural intensification8 and climate change mitigation9.

Cropping systemswithmore diverse crop rotations and longer periods
with crop cover, aswell asmanagement practices such as reduced tillage and
the application of organic amendments, have been advocated to increase
belowground biodiversity and promote soil multifunctionality10–12. Diverse
cropping can also provide higher grain yields13 and support a variety of
ecosystem services14. Although the abundance, composition, and activity of
denitrifying microbial communities are influenced by agricultural man-
agement practices15,16, most studies cover a limited range of environmental

conditions with only a few variables measured and the relative importance
of management versus other environmental drivers on denitrification
remains unclear17. Characterising the underlying factors explaining the
effects of agriculturalmanagement practices on denitrification is thus key to
develop effective strategies aimed at minimizing gaseous N losses through
denitrification in cropping systems.

Building on our previous study conducted along a 3000 km North-
South gradient across Europe, where we showed that crop cover promotes
soil multifunctionality10, we investigate here whether a trade-off exists
between N losses via denitrification and various diversification practices,
including long-term phylogenetic and functional crop diversification, the
proportion of time with crop cover, tillage frequency and the application of
organic and mineral fertilizers. For this purpose, we used a dataset com-
prising 56 climatic, soil, microbial and management variables associated to
106 soils along the European gradient (Fig. 1). We hypothesized that
management practices enhancing belowground diversity would lead to a
greater abundance of denitrifiers, as these facultative anaerobes make up a
substantial portion of the overall microbial community18. This, in turn,
would increase thepotential for denitrificationactivity,measuredhere as the
potential production of N2 and N2O under standardized conditions using a
common-garden approach (hereafter, denitrification). We then expressed
denitrification in relation to the harvested yield (yield-scaled denitrification,
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hereafter, ydenitrification) to determine whether any management practice
can off-set denitrification activity with higher yields. Finally, we identified
the best predictors of denitrification and ydenitrification from our dataset
and assessed how much of the variation in denitrification predictors could
be explained by management. We demonstrate that enhanced denitrifica-
tion activity is associated with a greater proportion of time that the fields are
cultivated with crops over a decade-long period, and the best predictors of
denitrification were various microbial factors. However, the yield-scaled
denitrification capacity decreased with increasing phylogenetic diversity of
crops, suggesting that the implementation of diverse crop rotations can
mitigate yield-scaled emissions of gaseous nitrogen.

Results
Effects of management practices on denitrification and
ydenitrification
The generalized additive models including the six management practices as
explanatory variables (Figs. 2 and 3) explained 47.3% and 37.6% of the
deviance for denitrification and ydenitrification, respectively. We found a

non-linear relationship between the proportion of time with crop
cover during the last 10 years and denitrification (Fig. 2b). Denitrification
was highest in soils at 100% time under cover, meaning crops were grown
all year-round (including cover crops), and lowest at 50–60% time under
crop cover. By contrast, lower ydenitrification, or higher efficiency, was
associated with higher phylogenetic diversity of the crops in the rotations
(Fig. 3a). Reduced tillage was also associated with lower ydenitrification
(Fig. 3f), but none of the other management practices, including N fertili-
zation rates in the sampling year, affected denitrification or ydenitrification
(Figs. 2 and 3).

Predictors of denitrification activity
We then examined the relative importance of climatic, microbial, soil and
management variables to predict denitrification and ydenitrification in our
dataset (Fig. 1b, c). Tenpredictors of denitrificationwere retained in thefinal
random forest model, all displaying non-linear relationships with deni-
trification (Fig. 4). The majority of predictors were microbial, with several
related to the overall size of the microbial communities, as reflected by the

Fig. 1 | Schematics of the study design and variables included in the analyses.
aMap of Europe showing sampling sites. b The nitrogen cycle with genes encoding
the respective enzymes that catalyze the reactions and that were used in this study. In
the nitrification process, amoA genes in both ammonia-oxidizing archaea (AOA)
and bacteria (AOB) were quantified. For the abundance of prokaryotic and fungal

communities, we quantified the 16S rRNA gene and the ITS2 region, respectively.
Products and a selection of intermediates are shown by their chemical names.
c Additional variables included were associated with management, climate, soil
properties andmicrobial diversity, biomass, and activity. See Supplementary Table 1
for units.
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strong positive effect of microbial biomass, the abundance of several func-
tional guilds involved in N cycling, more specifically denitrifiers (nirS, nosZ
clade I) and bacteria performing nitrate ammonification (nrfA), as well as
the composition of the microbial communities (Fig. 4b–d). Soil predictors,
and in particular total N in the range 0–3000mgN kg−1 soil, were also
positively associated with denitrification activity, but to a lower extent than
microbial predictors (Fig. 4a). Regarding ydenitrification, the final random
forest model comprised a subset of the best predictors of denitrification.
Higher ydenitrification, or higher gaseous N losses in relation to the har-
vested yield, was mainly associated with increasing total N, particularly in
the range 1500–3000mgN kg−1 soil, microbial biomass and abundance of
nirS-denitrifiers (Fig. 5). Neither climatic variables (mean annual tem-
perature and mean annual precipitation over the past 10 years) nor man-
agement practiceswere selected as important predictors of denitrification or
ydenitrification by the random forest models.

Combining management and denitrification predictors
Finally, we assessed whether management practices could indirectly influ-
ence denitrification and ydenitrification by affecting their best predictors.
The redundancy analysis models, including the best predictors as response
variables (Figs. 4 and 5) and the six management practices as explanatory
variables, showed that management explained 37.5% and 32.3% of the
variance in the predictors of denitrification and ydenitrification, respectively
(p = 0.001). Forward selectionof themanagement variables in the fullmodel
identified threemanagement practices as drivers, namely proportionof time
with crop cover, application of organic fertilizers and tillage frequency, but
their individual contribution was relatively small (3.0–5.5%, Fig. 6). These

practices correlated positively with all denitrification predictors, except the
bacterial and cercozoannon-metricmultidimensional scaling (NMDS) axes
(Supplementary Fig. 1). The inclusion of climate (mean annual temperature
andmean annual precipitation over the past 10 years) and soil texture (clay
and silt content) variables improved themodels, which explained 56.9%and
53.9%of the variance in thepredictors of denitrification and ydenitrification,
respectively (p = 0.001; Supplementary Fig. 2). Although clay content and
mean annual precipitation over the past 10 years were the two variables
explaining most of the variation (9.3–12.3%) in both models, the collective
contribution of the differentmanagement, climate and soil texture variables
was comparable (9–13%).

Discussion
Increased time with crop cover has positive effects on soil biodiversity and
functioning, including the accrual and accumulation of organic matter12,19

and the capacity to provide multiple ecosystems functions and services10,12.
However, our study shows that crop cover also increases the risk for gaseous
N losses through denitrification, which aligns with studies showing higher
N2Oemissions fromfieldswith cover crops20,21. This is possibly explainedby
the increased carbon input through higher primary production supporting
the growth of heterotrophic denitrifiers combined with crop residue
degradation generating anoxic hotspots that favor denitrification as well as
N2Oemissions22,23.Higher cropdiversity,measuredhere as thephylogenetic
diversity of the crops in the rotations over 10 years prior to sampling, and
fewer tillage occasions were associated with lower denitrification in relation
to the harvested yield (ydenitrification). Both practices have been shown to
promote multiple ecosystem services, including soil fertility and carbon

Fig. 2 | Responses of potential denitrification activity to different management
practices. Responses to a phylogenetic diversity of the crops, b proportion of time
with crop cover and c presence of ley in the rotation, all during the last 10 years, and
d amount of applied nitrogen (N) fertilizer the year of sampling (including both
organic and inorganic N), e amount of organic fertilizers during the last 4 years, and

f number of tillage occurrences the year of sampling. The blue line represents the
estimated effect of each variable conditional upon the other terms in the model. The
grey dots denote the partial residuals, and the shaded area indicates 95% confidence
intervals. P-values are indicated on the corresponding plots. See Supplementary
Table 2 for summary of the model statistics.
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sequestration but differ in their influence on yield12. In contrast to
reduced tillage, crop diversification can enhance cereal yields (as shown
earlier with this dataset)10, particularly at low N fertilization rates13,24, and
can also buffer against yield loss from global warming and changes in
precipitation25,26. Moreover, diverse crop rotations can increase N-use effi-
ciency in arable soils27,28, as supported here for ydenitrification, thereby
decreasing the amount of reactive N available for denitrification. We found
that the presence of leys in the rotations had no effect on denitrification,
suggesting that the capacity of such rotations to decrease gaseous N
losses from soils depends on a combination of the local environment and
management, which contrasts with site and region-specific reports indi-
cating that cropping systems including perennials emit less N2O compared
to systems with annual crops29–31. Overall, we conclude that agronomic
management practices aiming to increase belowground diversity and sup-
port multiple ecosystems functions come with both trade-offs and co-
benefits.

Denitrification was best predicted by the cumulative effect of N inputs,
as reflected by total soil N, rather than the amount of N fertilizer applied in
the sampling year. The growing surplus of reactive N in arable soils causes
profound shifts in both the composition and functioning of soil microbial
communities32–34, and this aligns with the acceleration of yearly increases in
global N2O emission rates35. Surprisingly, there was no direct effect of
addition of organic fertilizers during the past 4 years36. Nevertheless, organic
fertilizer amendment affected the best predictors of both denitrification and
ydenitrification, indicating an indirect effect of organic amendments on
denitrification, possibly by increasing soil C and thereby supporting

microbial biomass accumulation. Apart from soil N content, several
microbial variables, including microbial biomass, the composition of
microbial communities and abundance of specific N-cycling guilds, pre-
dicted denitrification capacity across European croplands. The abundance
of nirS and nosZ clade I, two genes commonly found in combination in the
genome of complete denitrifiers37, best explained effects of the functional
guilds.We also found that denitrificationwas predicted by the abundance of
nitrate ammonifiers (i.e.,nrfA), even thoughnitrateammonification leads to
N retention rather than loss38. This is likely because denitrifiers and nitrate
ammonifiers share the same substrates (nitrate and nitrite, and organic
compounds), making nrfA abundance an indirect predictor of denitrifica-
tion. However, the genetic potential for nitrate ammonification was one to
two orders ofmagnitude lower than that of denitrification (average nrfA:nir
abundance ratio = 0.04 ± 0.02). This suggests a limited mitigating effect of
ammonification on N losses in arable soils across Europe and aligns with
recent findings showing that denitrification capacity dominates over nitrate
ammonification in terrestrial biomes39. Regarding the bacterial OTUs
associated with an increase in the prediction of denitrification activity, the
high diversity of physiological traits at the class level40 and the limited
congruence between denitrification capacity and organismal phylogeny41

prevented further inferences on specific OTUs for denitrification capacity.
The absence of variables related to fungal abundance and diversity in the set
of the best denitrification predictors suggests that, relative to bacteria,
denitrifying fungi42 contribute less to denitrification in arable soils. This
could be due to the sieving and freezing of the soils before performing the
assays, which could disrupt fungal hyphae and reduce fungal activity, or,

Fig. 3 | Responses of yield-scaled potential denitrification activity
(ydenitrification = denitrification/raw crop yield) to different management
practices. Responses to a phylogenetic diversity of the crops, b proportion of time
with crop cover and c presence of ley in the rotation, all during the last 10 years, and
d amount of applied nitrogen (N) fertilizer the year of sampling (including both
organic and inorganic N), e amount of organic fertilizers during the last 4 years, and

f number of tillage occurrences the year of sampling. The blue line represents the
estimated effect of each variable conditional upon the other terms in the model, the
grey dots denote the partial residuals, and the shaded area indicates 95% confidence
intervals. P-values are indicated on the corresponding plots. See Supplementary
Table 3 for summary of the model statistics.
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more likely, because fungal denitrifiers make up only a small proportion of
the overall fungal community as well as of the total denitrifying
community43. At any rate, the existence of a threshold for total N but not for
gene abundances of N cycling guilds indicates that microbial factors are an
important control of denitrification in arable soils. Future research on how
resource availability shapes the interactions and niche partitioning within
and between the different N-cycling guilds may provide additional insight
into the mechanisms that link community composition and gaseous N
losses in arable soils. We also acknowledge that our findings are based on a
one-time point sampling and future research should confirm our
conclusions.

Conclusions
Our analysis of the relationships between denitrification and climatic, soil,
microbial, and management variables associated with 106 agricultural
soils across Europe revealed that denitrification activity was directly and
indirectly influenced by management practices aiming to promote
belowground diversity, particularly the proportion of time with crop
cover. However, when denitrification was linked to crop yield by using
yield-scaled denitrification rates, increased phylogenetic diversity of the
crops in the rotations during the last 10 years was associated with lower
gaseous N losses. This supports the widespread adoption of diverse crop
rotations as a promising way to contribute to food security while mini-
mizingN loss throughdenitrification andpossibly negative impacts on the
environment14. However, although identifying how management mod-
ulates the N2O:N2 end-product ratio of denitrification and net N2O
emissionswas beyond the scope of thiswork, we believe thismerits further
investigation in future research efforts. Overall, our study shows that
management strategies should be implemented with consideration of
trade-offs as well as co-benefits that could affect sustainability and pro-
ductivity goals.

Methods
Sampling and associated data
The sampling procedure and part of the data used in this study have been
described in detail in Garland et al.10. Briefly, soil samples were collected in
fields under cereal cultivation across Europe (in Sweden, Germany, Swit-
zerland, France and Spain) aroundflowering time betweenMay andAugust
2017, depending on the country and site. In this study, we used a subset of
the samples (n = 106) from Garland et al.10 for which information on
management practices, crop yield, soil properties and microbial commu-
nities were available (Fig. 1b, c, and Supplementary Table 1). Management
practices and crop yield were obtained by surveying the farmers and farm
managers at each site via a questionnaire. Physical and chemical soil
properties were measured using the Swiss standard protocols44. Potential
rates for mineralization were determined following Gregorich and Carter45.
Mean annual air temperature and precipitation (2007–2016) were obtained
using the GPS coordinates of each sampling site and the historical monthly
weather data from the WorldClim database (https://worldclim.org), using
theRpackage ‘raster’v. 3.6–26 (ref. 46) and theR software v. 4.4.1 (ref. 47).A
weighed measure of Faith’s phylogenetic diversity in the crop rotations at
each site, incorporating both the evolutionary distance between crops (in
My) and the period of time each crop was grown over the last 10 years prior
to sampling (in month), was calculated with the weighted.faith function
(https://rdrr.io/github/NGSwenson/lefse_0.5/), using the GBOTB.exten-
ded.tre phylogeny of vascular plants available in the ‘V.PhyloMaker’ v. 0.1.0
package48 (scenario 3) as backbone.

OTU tables for archaea, bacteria, cercozoan, and fungi obtained
from Garland et al.10 were rarefied by averaging the OTU counts over
1000 computations using the rrarefy function in ‘vegan’ v. 2.6–4
(ref. 49). Shannon’s diversity and Pielou’s evenness were determined
using ‘vegan’ on the rarefied OTU tables with the diversity function.
The species abundance distribution patterns of the OTUs were then

Fig. 4 | Relationships between potential denitrification activity and its best
predictors across European arable soils. Predictor variables selected by
VSURF among a soil properties, b microbial biomass, c microbial community
composition, and d abundances of nitrogen-cycling genes were used to generate
accumulated local effects plots. They show the differences in prediction of

denitrification rates compared to the mean prediction along the range of each
predictor (x-axis), while accounting for potential correlations amongst predictor
values. The effect is centered so that the mean effect is zero. The random forest
model was built with 500 trees, 5 features considered at each split and a tree depth set
to 6 (variance explained: 75 %, root mean square error: 69.9).
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examined to partition the rarefied table between frequent and rare
community members50. This was achieved by calculating an index of
dispersion for each OTU, which corresponded to the ratio of the
variance to the mean abundance multiplied by the occurrence51. The
index was then used to model whether OTUs followed a stochastic
(Poisson) distribution. The rare community members were defined as
the OTUs falling below the 2.5% confidence limit of the χ2

distribution52 and were discarded. The remaining OTUs (or frequent
community members), which distribution was not random, were
used to compute NMDS ordinations using the metaMDS function.
This approach minimizes the risk of sampling artefacts that can bias
the distribution of the rare OTUs and thus increases the likelihood to
detect relevant associations with the potential for denitrification.

Potential denitrification activity
Potential denitrification activity was determined on soil samples kept at
−20 °C using the acetylene inhibition technique modified from Pell et al.53.
Thawed soil samples (10 g freshweight)were placed in 125mLDuranflasks
and kept at room temperature overnight. The following morning, a slurry
was prepared for each sample by adding 20ml of water. The bottles were
tightly capped, and the headspace was exchanged by flushing with N2 to
obtain anoxic conditions. After 30min of pre-incubation at 25 °C on a
shaker (175 rpm), acetylene was added equivalent to 10% (v/v) of the
headspace to inhibit the reduction ofN2O toN2. Then, 1ml of substratewas
added to reach a final concentration of 3mM KNO3, 1.5mM succinate,
1mM glucose, and 3mM acetate54. Gas samples were taken from the
headspace after 30, 75, 120, 150 and 180min. Nitrous oxide concentrations

Fig. 5 | Relationships between yield-scaled potential denitrification activity
(ydenitrification = denitrification rate/raw crop yield) and its best predictors
across European arable soils. Predictor variables selected by VSURF among a soil
properties, b microbial biomass, and c abundances of nitrogen-cycling genes were
used to generate accumulated local effects plots. They show the differences in

prediction of ydenitrification (y-axis) compared to the mean prediction along the
range of each predictor (x-axis), while accounting for potential correlations amongst
predictor values. The effect is centered so that the mean effect is zero. The random
forest model was built with 500 trees, 2 features considered at each split and a tree
depth set to 9 (variance explained: 58%, root mean square error: 4.3).

Fig. 6 | Variance explained by management for
predictors of denitrification activity. Variance
explained by the full redundancy analysis model (all
management practices, MP) and individual man-
agement practices after accounting for the remain-
ingmanagement practices in partial models for both
a denitrification and b yield-scaled potential deni-
trification activity (ydenitrification = denitrification/
raw crop yield) predictors. Crop cov., proportion of
time with crop cover (past 10 years); Org. fert.,
organic fertilizer application (past 4 years); Till. occ.,
tillage occurrences (sampling year); Leys in rot.,
presence of ley (past 10 years); PD crops, phyloge-
netic diversity of the crops (past 10 years); Appl. N,
applied N fertilizer (sampling year).
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were determined using a gas chromatograph (Clarus-500, Elite-Q PLOT
phase capillary column, Perkin-Elmer,Hägersten, Sweden) equippedwith a
63Ni electron-capture detector and the rate of N2O accumulation was
determined in each bottle by non-linear regression.

We also adapted the widely used “yield-scaled N2O emissions”metric
(e.g., ref. 55) to “yield-scaled denitrification” (ydenitrification), corre-
sponding to the potential activity divided by the crop yield for the corre-
sponding field, to determine whether any management practice can off-set
denitrification activity with higher yields.

Quantitative PCR analyses
The abundance of the 16S rRNA gene, fungal ITS and a set of nine genes
involved in various steps in the N cycle (i.e., nitrogen fixation, nitrification,
denitrification and ammonification; Fig. 1b) were measured by quantitative
real-time PCR based on SYBR green detection. The qPCR reactions were
carried out in duplicate runs on either the CFX Connect Real-Time System
(Bio-Rad, Hercules, CA, USA) or ViiA7 (Life Technologies, Carlsbad, CA,
USA) machine. Standard curves were obtained by serial dilutions of line-
arized plasmids with cloned fragments of the specific genes. The amplifi-
cations were validated by melting curve analyzes and gel electrophoresis.
Potential inhibition of PCR reactions was checked for all samples by
amplifying a known amount of the pGEM-T plasmid (Promega, Madison,
WI, USA) with the plasmid-specific T7 and SP6 primers when added to the
DNAextracts or non-template controls.No inhibitionwasdetectedwith the
amount of DNA used. Primer sequences and concentration, qPCR condi-
tions and amplification efficiencies can be found in Supplementary Table 4.

Relationships between denitrification and management
Relationships between management practices and denitrification or
ydenitrification rates were assessed using generalized additive models. The
models were fitted using the ‘mgcv’ package v. 1.9-1 (ref. 56) with a gamma
distribution for the response (denitrification or ydenitrification) and the log
link function. Fertilizer amount, phylogenic diversity of the crops and
proportion of time with crop cover weremodeled as thin plate splines (with
k = 10) and tillage occurrences, application of organic fertilizer andpresence
of leys in the rotations as parametric terms. Country was included as a
random factor. The gam.check function was used to ensure that enough
basis functions (k) were specified for each smooth and that model residuals
were normally distributed56. Concurvity between smooth terms, the non-
linear equivalent of co-linearity, was assessed using the concurvity function
implemented in the ‘mgcv’ package. Concurvity estimates were <0.6 for all
pair-wise comparisons. Model coefficients were estimated using restricted
marginal likelihood57,58 and the goodness-of-fit of eachmodelwas calculated
as the percentage of deviance explained. Effects were visualized on the
response scale using the ‘visreg’ package v. 2.7.0 (ref. 59).

Identification of the predictors of denitrification activity
Random forest modeling was used to determine the relationships between
denitrification and ydenitrification and their best predictors among climatic,
microbial, soil and management variables. The best predictors were iden-
tified by variable selection using the ‘VSURF’ package v. 1.2.0 (ref. 60) with
default parameters and denitrification or ydenitrification as response vari-
able. The algorithm was run 100 times, and only the variables selected in
more than 95%of the runswere retained. Then, a grid searchwas conducted
to find the optimal combination of tuning parameters for the models
containing the best predictors (n = 10 for denitrification and n = 5 for
ydenitrification): the number of variables to randomly sample as candidates
at each split, theminimal number of samples within the terminal nodes and
the fraction of samples to train the model on (with n = 500 trees; ‘ran-
domForest’ package v. 4.7-1.1 (ref. 61)). The search was run 100 times and
the combination of parameters corresponding to the best model fit (i.e.,
lowest out-of-bag root-mean-square error) was selected. The relationship
between each variable and denitrification or ydenitrification was visualized
using accumulated local effects plots (grid.size = 25) implemented in the
‘iml’ package v. 0.11.3 ref. 62. These plots show how the prediction changes

on average over the range of each individual explanatory variable, while
accounting for potential correlations amongst explanatory variables63.

Relationships between denitrification predictors and manage-
ment, climate and soil texture
Redundancy analysismodelswere used to explore the relationships between
management practices and denitrification and ydenitrification predictors.
Two separate models were run for the two sets of predictors, using the
‘vegan’ package, and significance testing was done using permutation tests.
Forward selection (ordiR2step function with default settings) and sig-
nificance testing with permutation tests were applied to identify the man-
agement practices that were statistically significant for explaining the
variation in the denitrification and ydenitrification predictors. Partial
models were implemented to test the amount of variation explained by each
individual management practice (constrained variance) while accounting
for the variation explained by the othermanagement practices (conditioned
variance). The same procedure was used to determine the relative impor-
tance ofmanagement, climate (mean annual temperature andmean annual
precipitation over the past 10 years) and soil texture (silt and clay) on the
variation in denitrification and ydenitrification predictors.

Data availability
Data andOTU tables used in this study as well as source data for the figures
are available at Zenodo (https://doi.org/10.5281/zenodo.14760398).

Code availability
The R code used in this study is available at Zenodo (https://doi.org/10.
5281/zenodo.14760398).
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