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ARTICLE INFO SUMMARY
Afﬁc{e history: Acute inflammation is a crucial biological response necessary for host defense and tissue repair, but
Received 7 July 2025 unresolved inflammation can contribute to adverse outcomes across critical illness, cardiovascular

Accepted 8 November 2025 disease, neurodegeneration, and cancer. Emerging evidence emphasizes that the resolution of inflam-

mation is an active biosynthetic process mediated in part by specialized pro-resolving mediators
K?J/W"_rds-' (SPMs), lipid-derived molecules generated from omega-3 polyunsaturated fatty acids (PUFAs) such as
Fish oil ) ) eicosapentaenoic acid (C20:5n-3, EPA) and docosahexaenoic acid (C22:6n-3, DHA). These media-
lsr?ggz“;:go[r’:o_resmwng mediators tors—including resolvins, protectins, and maresins—exert potent immunomodulatory actions that
Resolution restore tissue homeostasis and attenuate inflammation without immunosuppression. Despite the
Enteral nutrition established role of SPMs, clinical and preclinical studies demonstrate that SPM biosynthesis is often
impaired in disease states, limiting the efficacy of omega-3 PUFA-based nutritional interventions. To
explore the potential of standardized SPM enrichment in enteral nutrition (EN), a multidisciplinary
panel of experts conducted a Delphi-based consensus process. Consensus statements were developed
supporting the rationale for enriching EN with preformed SPMs or their stable precursors to overcome
compromised endogenous biosynthesis and enhance clinical benefits. Preliminary human studies
suggest that such enrichment may reduce inflammation, improve immune function, and contribute to
better outcomes in conditions such as obesity, atherosclerosis, infections, and chronic pain. The panel
emphasized the need for rigorously designed clinical trials to determine whether enteral SPMs have
measurable clinical effects and, if so, to define effective dosing strategies. Overall, SPM-enriched EN
represents a potential advancement in the nutritional modulation of inflammation, warranting further
investigation to guide evidence-based clinical application.
© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Acute inflammation is a fundamental biological response that is
central to host defense, wound healing, tissue repair, and return to
homeostasis following insult or injury. The resolution of inflam-
mation, which is now known to be a biosynthetically active
response, is key to preventing pathological consequences of the
inflammatory response, as unresolved inflammation can have
adverse health impacts and is associated with a number of chronic
conditions ranging from persistent inflammation, immunosup-
pression, and catabolic syndrome (PICS) after critical illness, to
metabolic disorders, cardiovascular diseases and cancer [1-3]. In-
dicators of inflammation are not only a marker of disease severity
but also a key determinant of clinical outcomes in critically ill
patients, including those receiving nutritional interventions [1].
Furthermore, previous reports demonstrated a significant associ-
ation between elevated inflammatory markers at baseline and
diminished clinical benefits from nutritional support in intensive
care unit (ICU) patients [4]. Systemic inflammation may interfere
with nutrient metabolism, impair cellular uptake of nutrients, and
contribute to adverse metabolic responses, ultimately reducing
the efficacy of nutritional interventions [5,6]. Thus, promoting
inflammation resolution should be one of the therapeutic goals of
nutritional interventions for critically ill patients.

Several anti-inflammatory nutrients have been investigated for
their potential therapeutic effects, predominantly omega-3 poly-
unsaturated fatty acids (PUFAs), such as eicosapentaenoic acid
(C20:5n-3, EPA) and docosahexaenoic acid (C22:6n-3, DHA) [7].
Long-chain omega-3 PUFAs are abundant in marine sources (e.g., fish
and fish oil) and microalgal oils, and have been shown to modulate
inflammatory processes through various mechanisms that actively
facilitate the resolution of inflammation [7]. Clinical studies have
explored the effects of EN enriched with omega-3 PUFAs on patient
outcomes. Some evidence suggests that omega-3 PUFA-enriched EN
can positively influence inflammatory and immune markers,
improve nutritional indicators, and reduce the risk of infections and
sepsis [8]. However, the overall evidence remains equivocal, with
other studies showing no significant clinical benefits of omega-3
PUFA-enriched EN in critically ill patients [9,10].

The resolution of inflammation is now recognized as an active
biosynthetic process that involves a complex interplay of molec-
ular and cellular mechanisms to restore tissue integrity and
function [11]. A pivotal discovery in this field is the identification of
specialized pro-resolving mediators (SPMs), a superfamily of
endogenous bioactive lipid compounds derived from the PUFA
precursors: arachidonic acid (C20:4n-6), EPA, n-3 docosapentae-
noic acid (C22:5n-3, n-3 DPA) and DHA [12,13]. SPMs, which
include lipoxins, resolvins, protectins, and maresins, actively
orchestrate the resolution phase of inflammation by modulating
immune responses, promoting macrophage phagocytosis and
efferocytosis, and facilitating tissue repair across various organs
and tissues [14]. The therapeutic potential of SPMs has gained
significant interest, particularly concerning their role in mediating
the beneficial effects of omega-3 PUFAs. However, studies indicate
that in disease states, the conversion of EPA, n-3 DPA and DHA to
SPMs may be compromised, leading to insufficient endogenous
production of these mediators [15,16]. To counter this, several
strategies have been proposed to actively promote SPM-mediated
inflammation resolution, including developing SPM receptor ag-
onists, synthesizing stable SPM analogs and mimetics, and
administering standardized levels of SPMs [17]. In EN settings,
there may be merit in incorporating standardized levels of SPMs
directly into EN formulas to enhance their anti-inflammatory and
inflammation-resolving efficacy. However, current research is
predominantly at the preclinical stage.
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To bridge the gap between experimental research and the po-
tential applications of bioactive lipid mediators in EN settings, this
narrative review and consensus aims to assess the current evi-
dence on SPMs in critical illness, with a focus on the feasibility,
potential, and challenges of enriching EN formulas with stan-
dardized levels of SPMs or their precursors.

2. Methods
2.1. Study design and panel recruitment

This expert consensus was developed using a structured,
modified, three-step Delphi approach, combining systematic evi-
dence review, iterative feedback from a multidisciplinary panel of
experts, and voting on statements. Panel members were recruited
through purposive sampling to ensure diverse and comprehensive
input. The panel members were selected based on the member's
contributions to EN, omega-3 fatty acid or lipid mediator research,
and active involvement in clinical practice or translational
research. Formal invitations outlining the study objectives and
methodology were sent via email. A total of 10 experts agreed to
participate in this multidisciplinary expert panel, including aca-
demic scientists and clinical nutrition experts from academic and
non-academic institutions. All panel members signed a conflict-of-
interest declaration before the first voting round to maintain
objectivity.

2.2. Delphi process

The consensus development process consisted of three key
phases (Fig. 1). First, a comprehensive literature review was con-
ducted to summarize the current evidence and develop consensus
statements on omega-3 PUFAs, SPMs, and their precursors in EN.

The online bibliographic search targeted studies indexed in
major biomedical databases, including PubMed, Scopus, Embase,
the Cochrane Library, and Web of Science. Search terms included
combinations of "omega-3 fatty acids", "eicosapentaenoic acid",
"docosahexaenoic acid", "specialized pro-resolving mediators",
"lipid mediators", "nutritional therapy", "enteral nutrition",
"enteral feeding", "clinical nutrition", "inflammatory diseases",
"critical care", "chronic illness”, and "malnutrition". Boolean op-
erators (AND/OR) were employed to refine the search, and filters
were applied to limit results to studies published in English within
the past 20 years. Additional references were identified through
manual searches of key article bibliographies. Based on the find-
ings from the literature review, draft consensus statements were
developed, covering key aspects of lipid mediators in disease
states, with a particular focus on EN.

The draft consensus statements were shared with panel
members as preparatory reading material before the panel
meeting. The panel members were gathered during the Lipid
Forum held on 12th December 2024 in Switzerland. The meeting
was divided into two parts; the first part discussed the current
evidence regarding the role of SPMs in inflammation resolution
and their potential benefits across various disease states. During
these discussions, the panel explored the potential benefits of
standardizing SPM levels in EN and identified knowledge gaps in
the field. The second part of the meeting discussed the draft
consensus statements, which were refined during the meeting
through an iterative discussion process.

The updated statements were circulated among the panel
members after the meeting for anonymous voting to evaluate the
level of agreement with each statement. Voting was conducted
electronically using Microsoft Forms, with panelists asked to select
"agree," "disagree," or "decline to vote" for each statement. An
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Fig. 1. The modified Delphi-based Process.

agreement level of >80 % was needed for each statement to ach-
ieve consensus. Statements not meeting this threshold were
removed from the final set of statements. All authors approved the
final version of the consensus statements (Table 1).

3. Inflammation resolution as a goal in patients receiving EN
3.1. The interplay between inflammation and nutrition

Inflammation, a core biological response to stress, injury, or
infection, is typically classified as either acute or chronic, with each
type involving distinct immune pathways and durations. Acute
inflammation, which predominates in critically ill patients, is
mediated by innate immunity and acute-phase proteins, such as C-
reactive protein (CRP) [5]. During this phase, immune cells, including
leukocytes, mast cells, and macrophages, generate a "respiratory
burst” marked by increased oxygen uptake and reactive oxygen
species (ROS) release. In parallel, inducible nitric oxide synthase
(iNOS) is upregulated, producing nitric oxide (NO) and contributing
to vasodilation. These immune cells also release a broad array of
chemokines and cytokines, such as interleukin (IL)-8, tumor necrosis
factor-alpha (TNF-a), and IL-1B, which orchestrate the recruitment
and activation of additional immune cells. Lipid mediators like
prostaglandins and leukotrienes are produced, further amplifying
the inflammatory response. Collectively, these mediators induce
changes in vascular permeability and blood flow, facilitating immune
cell infiltration into the affected tissue [18]. While ROS are essential
for host defense, excess production without sufficient antioxidant
capacity can result in oxidative stress, damaging DNA, proteins, and
cellular membranes and contributing to cell death [19,20].

The interplay between inflammation and nutrition is complex
and bidirectional. Inflammation is a key driver of disease-related
malnutrition since it can cause anorexia, reduce food intake, and
initiate muscle catabolism, anabolic resistance, and insulin resis-
tance, collectively stimulating a catabolic state [5]. Conversely,
nutritional status and dietary patterns significantly influence in-
flammatory responses [4]. In the context of nutritional in-
terventions, elevated systemic inflammation has been associated
with diminished benefits from nutritional support in ICU and non-
ICU patients [4]. Notably, patients with high CRP levels (>100 mg/
L) derive limited survival benefits from standard nutrition in-
terventions, and patients with low CRP also showed limited
benefit, as shown in subgroup analyses from the EFFORT trial
[4,21]. Inflammatory cytokines can suppress appetite, slow gastric
motility, and induce insulin resistance, impairing nutrient intake,
absorption, and metabolism. This results in a catabolic and
anabolic-resistant environment characterized by lipolysis, muscle
proteolysis, and hepatic gluconeogenesis, exacerbating malnutri-
tion despite the provision of nutritional therapy [22,23]. Inflam-
mation may also disrupt intracellular nutrient signaling and

cellular repair mechanisms, such as autophagy, which plays a key
role in clearing damaged organelles and regulating immune re-
sponses [24]. SPMs may engage distinct resolution pathways
beyond inflammation suppression, though, for example, the
transcriptional reprogramming of target cells [25].

Such findings highlight the complexity of malnutrition in the
context of inflammation and suggest that nutritional interventions
cannot be universally applied without considering the underlying
inflammatory state. Consequently, a paradigm shift is warranted:
the resolution of inflammation should be established as a central
objective of nutritional interventions in order to improve clinical
outcomes across a range of acute and chronic conditions.

3.2. Inflammation resolution as a biosynthetically active process

The initiation of an inflammatory response is accompanied not
only by the rapid activation of immune mechanisms aimed at
clearing pathogens or damaged tissue but also by the near-
immediate activation of the resolution phase. Contrary to the tradi-
tional notion of resolution as a passive tapering of inflammation, it is
now well established that inflammation resolution is a biosynthet-
ically active, highly orchestrated process governed by endogenous
mechanisms that restore immune homeostasis and support tissue
repair [26,27]. Key features of this pro-resolving phase include the
downregulation of pro-inflammatory signaling pathways—particu-
larly those involving nuclear factor kappa B (NF-xB) and the NLRP3
inflammasome—and the induction of specialized mediators that
counterbalance the inflammatory cascade (Fig. 2) [28].

Among these mediators, a prominent group is the SPMs, which
are discussed in the following sections. Efferocytosis, the process by
which dead or dying cells (especially apoptotic cells) are cleared by
phagocytic cells like macrophages, also contributes to the pheno-
typic shift of these cells from a pro-inflammatory to a pro-resolving,
tissue-reparative state [29,30]. Regulatory T cells (Tregs) have
emerged as active participants in this process. Beyond their classical
anti-inflammatory functions, Tregs facilitate the resolution of
inflammation by promoting SPM biosynthesis and enhancing
macrophage efferocytosis [31]. The failure of these resolution
mechanisms has been implicated in the persistence of inflammation
and progression of chronic disease states, including atherosclerosis,
hypertension, and non-alcoholic steatohepatitis [28].

Overall, these findings position inflammation resolution as an
active, targetable biological process with therapeutic implications
(Table 1; Statement 1).

4. Omega-3 PUFA-derived SPMs: biological functions and
recent evidence

The discovery of SPMs marked a paradigm shift in our under-
standing of how inflammation is resolved. Pioneering work from
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Table 1
Consensus statements regarding the potential role of SPMs in inflammation resolution.

Consensus Statements Voting

Statement 1: The resolution of inflammation is a biosynthetically active process. 100 %

Statement 2: The resolution of inflammation is partially driven by the endogenous production of SPMs, such as resolvins, protectins, and maresins, 100 %
endogenously synthesized from EPA and DHA. These mediators play an important role in resolving inflammation, restoring homeostasis, modulating
immune response, and facilitating tissue repair.

Statement 3: Preclinical evidence demonstrates that circulating levels of SPMs in the plasma are compromised in animal models of some disease states. 100 %
Emerging human data aligns with these observations, showing that altered SPM levels are associated with worse clinical outcomes, supporting the need for
clinical research.

Statement 4: Patients who rely solely on enteral nutrition therapy often lack a source of DHA and EPA. Enteral formulations enriched with fish oils may provide 90 %
significant benefits.

Statement 5: Fish oil-enriched enteral formulas may be considered in select clinical conditions and scenarios as a primary source of EPA and DHA, which 90 %
provide well-documented anti-inflammatory and immunomodulatory effects.

Statement 6: In certain clinical scenarios, the conversion of EPA and DHA substrates to SPMs may be compromised. 90 %

Statement 7: The unique relevance of the oxidized derivatives of DHA and EPA 17 S-hydroxydocosahexaenoic acid and 18 R-hydroxyeicosapentaenoic acid, 100 %
which serve as direct precursors of SPMs, is that they increase the efficacy of SPM production, bypassing early biosynthetic steps in the conversion of EPA
and DHA to SPM.

Statement 8: Currently, available fish oil supplements provide EPA, DHA and non-standardized levels of SPM precursors. 90 %

Statement 9: While several studies have shown a dose-dependent effect of fish oil supplementation on the resolution of inflammation, the dose relationship 100 %
between fish oil consumption and the level of endogenous SPM production remains unclear.

Statement 10: Preclinical evidence has demonstrated that administration of SPMs and SPM precursors enriched supplements can increase SPM plasma levels 100 %

in a time and dose-dependent manner.

Statement 11: Supplementation enriched with SPMs and their precursors may promote the resolution of inflammation in relevant clinical conditions and 90 %
scenarios, such as obesity, cancer, critical illness, surgery, cardiovascular disease, chronic inflammatory diseases, and wound healing.

Statement 12: Multiple studies have demonstrated that fish oil does not significantly increase the risk, even in patients on anti-platelet or antithrombotic

medications.

Statement 13: Studies indicate a potential for a statistically significant increase in AF in certain high-risk populations. The clinical significance of this risk,

balanced with the multiple benefits, needs to be determined.

100 %

100 %

Statement 14: Although multiple mammalian models have reported significant benefits, limited clinical evidence supports the efficacy of SPM precursors,and 90 %
the appropriate concentrations of SPM precursors in enteral formulas remain unknown, highlighting the need for further investigation.

Statement 15: Enteral formulas containing standardized levels of SPMs and SPM precursors should be developed and investigated in clinical trials in relevant

short- and long-term treatment settings.

Statement 16: When investigating the influence of SPMs and designing studies, it is essential to recognize common pitfalls in nutrition research and focus on

100 %

100 %

selecting appropriate patient populations, identifying relevant biological signatures, and optimizing trial design. This approach enhances clinically
meaningful outcomes related to inflammation resolution, homeostasis restoration, immune modulation, and tissue repair.

SPM: Specialized Pro-resolving Mediator, EPA: Eicosapentaenoic Acid, DHA: Docosahexaenoic Acid, AF: Atrial Fibrillation.

the Serhan laboratory in the early 2000s led to the identification of
novel lipid-derived molecules that emerged during the natural
resolution phase of acute inflammation. These compounds were
first isolated from self-limiting inflammatory exudates in animal
models and demonstrated potent, stereoselective bioactivity in
cellular systems involved in inflammation control. These media-
tors are derived from omega-3 PUFAs, notably EPA, DHA, and n-3
DPA [32]. In-depth reviews of the biosynthesis and biological
functions of omega-3 PUFA-derived SPMs are available [33-35];
these aspects are considered beyond this manuscript's scope. This
section briefly reviews the biological functions of EPA- and DHA-
derived SPMs, as well as evidence supporting their roles in
different disease states.

4.1. SPM biosynthesis and biological functions

Most SPMs are biosynthesized from omega-3 PUFAs through
regulated enzymatic processes initiated during the resolution
phase of inflammation. Initially isolated from self-limiting in-
flammatory exudates, omega-3 PUFA-derived SPMs comprise four
distinct families: resolvins, protectins (or neuroprotectins in
neural contexts), maresins, and the aspirin-triggered epimers of
the resolvins and protectins. These mediators are endogenously
generated and exhibit potent stereoselective actions [34]. SPMs
exert highly cell-specific effects that orchestrate the resolution of
inflammation through distinct immunomodulatory mechanisms
(Table 2).

E-series resolvins (RVE), derived from EPA via lipoxygenation to
form 18-hydroperoxy-eicosapentaenoic acid (18-HpEPE), include
RVE1 to RVE4. RvE1, the first SPM identified, is generated through
interactions between polymorphonuclear leukocytes and

endothelial cells. RvVE1 targets neutrophils by inhibiting their
trans-epithelial and trans-endothelial migration and reducing
superoxide production [33]. In macrophages, RvE1 enhances non-
phlogistic phagocytosis of apoptotic neutrophils, while in den-
dritic cells, it suppresses IL-12 production and inhibits migratory
activity [36]. Additionally, RvE1 upregulates CMKLR1 receptors in
natural killer (NK) cells, suggesting a role in modulating innate
immunity [37]. RVE2 and RvE3 exhibit similar pro-resolving ac-
tions, with RvE3 synthesized by eosinophils via the 12/15-
lipoxygenase (LOX) pathway [38]. RvE4, identified under hypoxic
conditions during leukocyte interactions, stimulates efferocytosis
and has been detected in human cerebrospinal fluid (CSF) [39].

D-series resolvins (RvD), produced via 17-lipoxygenation of
DHA to form 17 S-HpDHA, comprise RvD1 to RvD6. RvD1 attenu-
ates neutrophil transmigration and suppresses lipopolysaccharide
(LPS)-induced TNF release in macrophages while promoting
phagocytosis of allergens and apoptotic cells [40]. Other series
members, such as RvD3 through RvD6, contribute to inflammation
resolution, tissue regeneration, and host defense against in-
fections. For instance, RvD5 enhances bacterial clearance, while
RvD6 plays a role in corneal repair and nerve regeneration [41].

Protectins, including protectin D1 (PD1), are biosynthesized
from DHA and exhibit regulatory activities within the peripheral
and central nervous systems. When generated in the brain, PD1 is
referred to as neuroprotectin D1 (NPD1), reflecting its role in
neuronal differentiation and protection. PD1 reduces neutrophil
infiltration and glial cytokine production and promotes stem cell
differentiation [33,42]. Its biosynthesis proceeds through an
epoxide intermediate, 16 S,17 S-epoxy-PD (ePD), which also dis-
plays independent bioactivity by inhibiting leukotriene (LT) B4
synthesis [43].
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Fig. 2. Schematic representation of the acute inflammatory response and the role of specialized pro-resolving mediators in promoting inflammation resolution. SPM: Specialized

Pro-resolving Mediator. Created in https://BioRender.com.

Maresins were initially identified as macrophage-derived me-
diators produced during the resolution phase of inflammation.
Maresin 1 (MaR1) affects innate lymphoid cells (ILC2) by
decreasing IL-13 and increasing amphiregulin production. MaR1
supports their expansion in regulatory T cells and promotes
amphiregulin release, a cytokine linked to tissue repair [44].
Furthermore, MaR1 suppresses the release of pro-inflammatory
cytokines induced by organic dust exposure in bronchial epithe-
lial cells, suggesting a protective role in airway inflammation [33].
Maresin 2 (MaR2), produced via the interaction of 12-LOX and
soluble epoxide hydrolase 2, shares similar bioactive functions and
has been implicated in modulating hepatic inflammation in
obesity [45]. Additionally, the maresin biosynthetic intermediate,
eMaR, exhibits activity in promoting M2 macrophage polarization
and inhibiting leukotriene synthesis [42].

SPMs act via high-affinity binding to specific G protein-coupled
receptors (GPCRs) expressed on phagocytes and other immune or
stromal cell types. These interactions occur at low nanomolar to
picomolar concentrations, consistent with physiological receptor
binding kinetics [14,46]. Key receptors include ChemR23 (RvE1),
BLT1 (RvE1l), ALX/FPR2 (RvD1), GPR32 (RvD1, RvD3), GPR18
(RvD2), GPR101 (RvD5,.3 ppa), GPR37 (PD1) and LGR6 (MaR1).
Functional studies in transgenic animals, receptor knockout
models, and receptor antagonism experiments have confirmed the

central role of these GPCRs in mediating SPM bioactivity
[14,46-49]. Their activation leads to downstream signaling cas-
cades that culminate in reduced leukocyte recruitment, enhanced
clearance of apoptotic cells, cytokine release modulation, and
inflammation resolution [14].

4.2. Evidence of SPM-mediated inflammation resolution in disease
states (Table 3)

Cardiovascular diseases (CVDs) are linked to chronic vascular
inflammation and impaired resolution mechanisms. Hypertension
is among the most well-established contributors to CVD pathol-
ogy, a condition often driven by systemic inflammation and
endothelial dysfunction [28]. Preclinical studies have primarily
supported the antihypertensive potential of SPMs. In murine
models of angiotensin II (Ang II)-induced hypertension, adminis-
tration of RvD1 and RvD2 reduced systolic and diastolic blood
pressure, improved vasomotor function, and attenuated cardiac
hypertrophy and fibrosis. These benefits were associated with
decreased pro-inflammatory cytokine expression and increased
vasoprotective factors such as nitric oxide and prostacyclin [50,51].
Other studies have shown that SPMs like RvE1 and MaR1 exert
vascular protective effects through modulation of vascular smooth
muscle cell (VSMC) phenotype, suppression of immune cell
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Table 2
Cell-specific actions of SPMs. Adapted with modifications from Basil and Levy [33] and Serhan and Chiang [14].
Mediator Target Cell Action(s) Receptor(s)
Resolvin E1 Neutrophil | trans-epithelial and trans-endothelial migration ChemR23 (1 RVE1 action limiting PMN)
| superoxide generation BLT1 (| RVE1 regulation of PMN and epithelial wound healing)
Macrophage 1 non-phlogistic phagocytosis of apoptotic neutrophils ChemR23 (] phagocytosis, t proatherogenic signaling, 1 plaque
size)
Dendritic cell | IL-12 production -
| migration
NK cell 1 CMKLR1 receptors ChemR23
Resolvin E3 Neutrophil | infiltration -
Resolvin D1 Neutrophil | transmigration ALX (1 RvD1 action on PMN, cytokines)
GPR32 (] RvD1 actions in macrophages)
Macrophage | LPS-induced TNF release ALX, GPR32
1 phagocytosis of allergen and apoptotic cells
| pro-revascularization transcriptional program
Protectin D1 Neutrophil | TNF and IFNy release GPR37 (| PD1 protective actions)
| PMN transmigration
1 CCR5 expression
Macrophage 1 non-phlogistic phagocytosis of apoptotic PMNs GPR37
| phagocytic activity| PD1 protective actions in LPS/Listeria
sepsis
Maresin 1 ILC2 1 IL-13 production LGR6 (| MaR1 functions: t cAMP, phagocytosis, efferocytosis)
t amphiregulin production
Regulatory 1 regulatory T cell formation LGR6
T cell 1 amphiregulin production
Bronchial | organic dust-induced cytokine production LGR6 (| MaR1-inhibited smooth muscle proliferation, |

epithelial cell

osteoblast activity)

AAA: Abdominal Aortic Aneurysm, ALX: Lipoxin A4 Receptor, BLT1: Leukotriene B4 Receptor 1, cAMP: Cyclic Adenosine Monophosphate, CCR5: C—-C Chemokine Receptor
Type 5, CLP: Cecal Ligation and Puncture, CMKLR1: Chemokine-Like Receptor 1, CREB: cAMP Response Element-Binding Protein, IFNy: Interferon Gamma, IL-12: Interleukin-
12,1L-13: Interleukin-13, ILC2: Type 2 Innate Lymphoid Cell, LGR6: Leucine-rich Repeat-containing G-protein Coupled Receptor 6, LPS: Lipopolysaccharide, MCAO/R: Middle
Cerebral Artery Occlusion/Reperfusion, NK cell: Natural Killer Cell, PMN: Polymorphonuclear Neutrophil, RvD1: Resolvin D1, RvD2: Resolvin D2, RvE1: Resolvin E1, SMC:
Smooth Muscle Cell, TNF: Tumor Necrosis Factor, 1: Increased/Upregulated, |: Decreased/Downregulated.

infiltration, and activation of pro-resolving signaling cascades such
as AMPKa/Nrf2 and CaMKII/HO-1 [52,53]..

Experimental models have also demonstrated that RvE1 can
attenuate aortic wall thickening and reduce vascular inflammation
by acting on its receptor ChemR23, while MaR1 promotes arterial
remodeling reversal via LGR6-mediated signaling pathways [28].
Notably, serum levels of several DHA- and EPA-derived mediators,
including RVE1, are significantly lower in individuals with essential
hypertension, suggesting a pathophysiological role for deficient
resolution signaling [52].

Beyond their role in hypertension, SPMs have demonstrated
atheroprotective effects. Studies have reported a disrupted balance
between pro-resolving and pro-inflammatory lipid mediators,
such as a decreased RvD1 to LTB4 ratio, in advanced human
atherosclerotic lesions [26]. Supplementation with RvD1 in animal
models has been shown to restore this ratio, reduce plaque ne-
crosis, and promote fibrous cap integrity, thereby enhancing pla-
que stability [26].

In aortic valve disease, specifically aortic stenosis, decreased
tissue levels of DHA and EPA-derived SPMs have been associated
with increased valve calcification and fibrosis. Experimental data
have shown that RvE1 mitigates valvular inflammation and calci-
fication, with its receptor ChemR23 representing a novel thera-
peutic axis in slowing disease progression [17,54]. These findings
are further supported by genetic studies linking fatty-acid desa-
turase (FADS) polymorphisms with altered omega-3 PUFA levels,
arterial stiffness, and risk of aortic stenosis [54].

Beyond their established role in resolving sterile inflammation,
SPMs have demonstrated host-protective properties across various
infections, including bacterial, viral, and parasitic pathogens [11].
These mediators not only dampen excessive inflammation but also
enhance microbial clearance and promote tissue integrity, posi-
tioning them as potential therapeutic agents in infectious disease
contexts [34]. Preclinical studies have shown that RvE1l can
modulate viral inflammation, exemplified by its ability to control

herpes simplex virus (HSV)-induced ocular inflammation in mu-
rine models [55]. Similarly, PD1 and protectin DX (PDX) have been
found to directly inhibit influenza virus replication, highlighting
their dual anti-inflammatory and antiviral capacities [56]. SPMs
also show efficacy in complex infection scenarios. In a murine
model of bacterial-viral co-infection pneumonia, the aspirin-
triggered epimer of RvD1 (AT-RvD1) was shown to facilitate pul-
monary clearance of Streptococcus pneumoniae, suggesting that
SPMs may aid in resolving secondary bacterial infections that often
complicate viral respiratory illnesses [57].

Uncontrolled or unresolved neuroinflammation—a hallmark of
several neurodegenerative diseases, including multiple sclerosis
(MS), Alzheimer's disease (AD), and Parkinson's disease (PD)—can
result in persistent immune activation, neuronal damage and pro-
gressive cognitive and motor decline [58]. As in peripheral tissues,
endogenous mechanisms govern the resolution of neuro-
inflammation, notably the action of SPMs, which counterbalance
pro-inflammatory signaling and support tissue recovery [59]. In MS,
chronic neuroinflammation contributes significantly to disease pa-
thology across various stages. Metabololipidomic profiling of blood
samples from MS patients has revealed altered lipid mediator sig-
natures characterized by reduced levels of SPMs—such as LXA4,
LXB4, RvD1, and PD1—and increased pro-inflammatory eicosa-
noids. These imbalances correlate with disease severity and pro-
gression [59]. Experimental studies in human blood-brain barrier
models demonstrated that restoring SPM levels could suppress
monocyte activation and inhibit their migration across the endo-
thelium, potentially attenuating central inflammation [60]. In AD,
animal and human studies consistently demonstrated dysregulated
SPM signaling. Post-mortem brain analyses and CSF lipidomic
profiling have revealed significantly lower levels of several resolvins
(RvD1, RvD4, RvE4), PD1, and MaR1 in patients with cognitive
impairment or AD compared to controls [61-63].

Animal models of neurodegeneration indicated a possible
beneficial role for SPMs. For instance, in the LPS-induced rat model
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Table 3
Evidence of SPMs-mediated inflammation resolution in disease states.
Disease Area SPMs Involved Mechanisms/Benefits Preclinical/Clinical References
Evidence

Hypertension RvD1, RvD2, RVE1, MaR1 Lower blood pressure, improved vasomotor function, Preclinical (murine models [50-53]
reduced cardiac hypertrophy, decreased cytokine of Ang Il-induced
expression, increased NO and prostacyclin. hypertension)

Atherosclerosis RvD1 Restored RvD1/LTB4 ratio, reduced plaque necrosis, Animal models and human [26]
and improved fibrous cap integrity. lesion studies

Aortic valve disease RVE1 Reduced valve calcification and inflammation, reversed  Tissue and genetic studies [17,28,54]
arterial remodeling, associated with FADS
polymorphisms.

Infectious diseases RvE1, PD1, PDX, AT-RvD1 Enhanced microbial clearance, reduced inflammation, Murine models (HSV, [55-57]
inhibited viral replication, effective in bacterial-viral influenza, pneumonia)
co-infections.

Neurodegenerative LXA4, LXB4, RvD1, PD1, Suppressed monocyte activation, reduced migration Human samples and [58,59,61-63]

diseases MaR1 across BBB, restored lipid mediator balance, correlated  experimental BBB models

with disease severity.

Pain modulation RvD1, RvD2, MaR1 Reduced inflammatory and neuropathic pain, Animal models (incisional, [67]
preserved normal nociception, and restored balance in  fracture, thoracotomy pain)
pain pathways.

Cancer RvD1, RvD2, MaR1 Reduced pro-inflammatory signaling, modulated Preclinical studies on [69,70]
macrophage polarization (M2 to M1), decreased VEGF tumor progression and
production, and limited angiogenesis. TAMs

Obesity and metabolic RvD1, RvD2 Improved insulin sensitivity, reduced inflammatory Preclinical and clinical [14,77]

syndrome
response.

cytokines, improved autophagy, and ER stress

studies in obese subjects
and mice

of PD, intrathecal administration of RvD2 significantly ameliorated
neuronal damage by suppressing pro-inflammatory mediator
expression and TLR4/NF-«xB signaling pathway. RvD2 treatment
attenuated behavioral impairments as well [64]. In early PD pa-
thology models, sustained intraperitoneal administration of RvD1
mitigated central and peripheral inflammation, prevented
neuronal dysfunction, and improved motor performance [65]. In
addition to AD, RvD1 has been demonstrated to suppress
macrophage-derived IL-6 and TNF-a in amyotrophic lateral scle-
rosis (ALS) [66].

The role of SPMs in pain modulation has gained increasing in-
terest due to their unique ability to alleviate inflammatory and
neuropathic pain without disrupting normal nociceptive function.
Preclinical studies using various animal models have consistently
demonstrated that SPMs such as RvD1, RvD2, and MaR1 effectively
reduce pain associated with tissue injury and inflammation [67]. In
models of incisional and bone fracture pain, administration of
RvD1 and RvD2 led to significant reductions in pain sensitivity.
Similarly, these mediators showed efficacy in reducing pain asso-
ciated with thoracotomy and amputation—models commonly
used to replicate clinical neuropathic pain conditions [67].
Significantly, SPMs do not inhibit normal pain perception—a
crucial distinction from traditional analgesics. Instead, they restore
homeostatic balance within pain pathways, resolving excessive
inflammatory signaling without impairing physiological noci-
ception [68].

Emerging evidence suggests that SPMs may play a crucial role
in cancer biology through their immunomodulatory and anti-
inflammatory properties. Tumor progression is intricately linked
to chronic inflammation, angiogenesis, and immune evasion,
which SPMs can influence at multiple levels [69]. In preclinical
studies, SPMs have demonstrated the ability to control neoplastic
progression by suppressing pro-inflammatory signaling pathways,
modulating cell proliferation, and limiting aberrant angiogenesis
[69,70]. SPMs can influence macrophage polarization, shifting
them from the pro-tumorigenic M2-like phenotype to the pro-
resolving M1-like phenotype [71]. This phenotypic shift reduces
vascular endothelial growth factor (VEGF) production and pro-
motes clearance of tumor-associated inflammation [72].

Additionally, SPMs have shown the ability to modulate tumor-
associated macrophages (TAMs), which are often implicated in
immune suppression, angiogenesis, and tumor growth [70].

Chronic low-grade inflammation is a hallmark of obesity and a
major contributor to its associated metabolic complications,
including insulin resistance, hepatic steatosis, and cardiovascular
disease [73]. SPMs have emerged as important regulators of this
inflammatory state. In both clinical and preclinical settings, obese
individuals have been found to exhibit reduced levels of SPMs in
serum and neutrophils and in adipose tissue [74,75]. In mice, this
trend appears to be exacerbated by high-fat diets and reversed with
weight loss [76]. Animal models have further demonstrated the
therapeutic promise of SPMs, particularly RvD1 and RvD2, in miti-
gating obesity-related metabolic dysfunction. These mediators have
been shown to attenuate systemic inflammation and enhance in-
sulin sensitivity through multiple mechanisms. These include
modulation of adipokines and cytokines (e.g., increased adiponectin
and decreased TNF-q, IL-6, and IL-1B), improvement in insulin
signaling pathways (e.g., upregulation of IRS-1/PI3K/Akt and GLUT-
4), and enhancement of cellular stress responses such as autophagy
and endoplasmic reticulum (ER) stress resilience [14,77].

Overall, inflammation resolution appears to be partially driven
by the endogenous production of SPMs, such as resolvins, pro-
tectins, and maresins, endogenously synthesized from EPA and
DHA. These mediators play an important role in resolving
inflammation, restoring homeostasis, modulating immune
response, and facilitating tissue repair (Table 1; Statement 2).
However, it should be noted that SPMs and their immediate pre-
cursors (e.g., 17-HDHA, 18-HEPE) are biochemically labile and
susceptible to oxidative degradation, with concentrations influ-
enced by storage conditions (temperature, light, oxygen),
handling, and formulation excipients [78-80]. These factors
potentially contribute to variability across preclinical studies,
highlighting the need for stabilization strategies and harmonized
pre-analytical procedures (timed sampling, rapid quenching, in-
ternal standards) alongside validated methods with appropriate
reference materials. Until such controls are standardized, inter-
pretation of measured SPM levels and cross-study comparability
should be made with caution.
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Additionally, since this evidence was derived from studies
utilising non-enteral routes (e.g., intravenous, intraperitoneal,
intrathecal), caution is needed when extrapolating these findings
to enteral administration.

5. Can EN formulas enriched with Omega-3 PUFAs provide
standardized levels of SPMs?

5.1. SPM levels are reduced in disease states

As detailed in the previous section, SPMs are pivotal in
orchestrating the resolution phase of inflammation and restoring
tissue homeostasis. However, emerging evidence indicates
diminished levels of SPMs in various inflammatory states. For
instance, aged mice with heightened inflammation showed
reduced RvD1 levels and SPMs:LT ratio, while RvD1 treatment
reduced inflammatory markers [81]. Similarly, in rheumatoid
arthritis (RA), synovial fluid analyses revealed altered lipid medi-
ator profiles, including decreased levels of SPMs such as lipoxins,
resolvins, and protectins [82].

Neurological disorders also demonstrate associations with
compromised SPM pathways. An alteration in lipid mediator
profiles from anti-inflammatory (pro-resolving) to pro-
inflammatory patterns has been documented in the CSF during
AD progression. A recent study demonstrated lower CSF RvD4,
RvD1, NPD1, MaR1, and RvE4 concentrations in patients with AD
and mild cognitive impairment (MCI). Conversely, levels of pro-
inflammatory mediators were elevated in those with AD or MCI
[39]. Complementary findings were observed in post-mortem
studies of the entorhinal cortex, where patients with AD demon-
strated decreased levels of MaR1, NPD1, and RvD5 compared to
age-matched healthy controls, alongside elevated levels of the
pro-inflammatory prostaglandin (PG) D2 [83]. Mouse models of
AD also exhibited significantly reduced brain cortical levels of
SPMs compared to controls [84]. Patients with MS exhibit altered
SPM profiles in peripheral blood, which are linked to monocyte
and blood-brain barrier dysfunction [59]. Likewise, in mice with
early AD pathology, there were reduced levels of RvD1 and
increased interferon-gamma (IFN-y), which were correlated with
dopaminergic neuronal abnormalities and motor deficits [65].

The reduced levels of SPMs in inflammatory disease states were
also noted in the context of infectious diseases. A study on
tuberculous meningitis demonstrated that CSF profiles with
reduced SPMs were associated with disease severity and worse
patient outcomes [85]. Similarly, in severe SARS-CoV-2 infections,
a notable shift in the serum lipidome has been observed, leading to
dysregulation of eicosanoid mediators. This dysregulation is
characterized by altered levels of pro-inflammatory and pro-
resolving lipid mediators, suggesting an imbalance that may
contribute to the hyperinflammatory state seen in severe COVID-
19 cases [86]. Additional studies support this shift in peripheral
blood lipid mediator levels, indicating that altered SPM production
is also linked with disease trajectory, as seen with dexamethasone
treatment in COVID-19 patients [87].

Collectively, preclinical and human data demonstrate that
circulating levels of SPMs in plasma are compromised in disease
states with heightened inflammation and are associated with
worse clinical outcomes, supporting the need for clinical research
(Table 1; Statement 3). Clinical studies showed a positive impact of
EN enriched with omega-3 PUFAs on inflammatory and immune
markers, which can be attributed to SPMs [8,88]. The European
Society for Clinical Nutrition and Metabolism (ESPEN) guideline
for nutrition in adult ICU patients suggested that enriching EN
with omega-3 PUFAs can be considered [89]. Similar recommen-
dations were published for patients with traumatic brain injury
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and perioperative patients [90]. Despite this guidance, patients
who rely solely on EN therapy often lack a source of DHA and EPA.
Enteral formulations enriched with fish oils may provide signifi-
cant benefits and be considered in select clinical conditions and
scenarios as a primary source of EPA and DHA (Table 1; Statements
4 and 5). Omega-3 PUFA fortification of EN can also be achieved
using microalgal oils [91]. Because most microalgal products are
DHA-rich, they may preferentially support biosynthesis of D-series
resolvins, protectins, and maresins [92]. While this biochemical
rationale is compelling, direct comparative data on microalgal
versus fish-oil sources for SPM pathway activation and clinical
outcomes in EN populations are lacking.

It remains also uncertain whether fish or microalgal oil-
enriched EN formulas deliver standardized SPM levels sufficient
to counteract the reduced endogenous production observed in
certain disease states. For instance, metabolic conditions, such as
obesity and non-alcoholic fatty liver disease, were found to be
associated with impaired activity of delta-5 and delta-6 desa-
turases. This may reduce endogenous conversion of a-linolenic
acid (C18:3n-3, ALA) to EPA/DHA and contribute to low circulating
omega-3 PUFA levels in critically ill patients [93,94].

In the next sections, we discuss recent evidence suggesting the
compromised conversion of EPA and DHA to SPMs in disease states
and the potential benefits of enriching EN with preformed SPM
precursors.

5.2. Compromised conversion of EPA and DHA substrates to SPMs
in disease states

Clinical investigations have demonstrated that supplementa-
tion with omega-3 PUFAs, EPA and DHA, or marine oils that pro-
vide these fatty acids can increase in vivo levels of SPMs. A
randomized controlled trial (RCT) in healthy volunteers demon-
strated that supplementation with marine oil enriched in SPM
precursors significantly increased peripheral blood SPM concen-
trations. This elevation was accompanied by the reprogramming of
peripheral blood cells towards a more pro-resolving phenotype
[95]. A study found that short-term, high-dose fish oil supple-
mentation increased plasma concentrations of SPMs, including
lipoxin A5 (LXA5) and RvE3, in patients with peripheral artery
disease. This was associated with improved endothelial function
and reduced markers of inflammation [96,97]. Among statin-
treated coronary artery disease (CAD) patients, daily supplemen-
tation with EPA and DHA significantly increased circulating con-
centrations of the SPMs RvE1 and MaR1, as well as their precursor
18-hydroxy-EPA (18-HEPE), which correlated with regression of
coronary plaque [98]. Similarly, in patients with chronic kidney
disease (CKD), supplementation with omega-3 PUFAs significantly
enhanced neutrophil production of multiple SPMs, including RVE1,
RvE2, RVE3, and RvD5 [99].

However, recent evidence suggests that in certain conditions,
the enzymatic conversion of omega-3 PUFAs to SPMs may be
compromised (Table 1; Statement 6). In obesity, individuals with
persistent low-grade systemic inflammation exhibit impaired
leukocyte-derived SPM synthesis. This impairment was charac-
terized by reduced production of DHA-derived monohydroxy fatty
acid 17 S-hydroxy-DHA (17-HDHA), alongside decreased forma-
tion of D-series resolvins, despite normal DHA cellular uptake. The
authors attributed these observations to the impairment in the 15-
LOX activity and 5-LOX expression. Notably, incubation of leuko-
cytes from obese subjects with the intermediate precursor 17-
HDHA restored the production of D-series resolvins [15], sug-
gesting that supplementation enriched with oxidized derivatives
of 17-HDHA and 18 R-HEPE, which serve as direct precursors of
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SPMs, may bypass early biosynthetic steps in the conversion of EPA
and DHA to SPMs (Table 1; Statement 7).

Similar compromised SPM biosynthesis was demonstrated in
patients with metabolic syndrome (MetS), whose plasma con-
centrations of SPM precursors—including 18-HEPE, 17-HDHA, and
14-HDHA—were significantly attenuated following omega-3
PUFAs supplementation compared to healthy matched controls.
Despite this impairment in precursor formation, E-series resolvin
production increased similarly in both MetS and control groups,
whereas the addition of aspirin had no further effect [100]. Simi-
larly, patients with osteoarthritis (OA) displayed lower activity of
key enzymes (5-LOX and 15-LOX). While synovial fluid from pa-
tients with OA contained detectable levels of SPM precursors, such
as 17-HDHA and 18-HEPE, active pro-resolving mediators like
RvD2 were only identified in the insoluble cellular fraction, sug-
gesting incomplete or inefficient SPM production in OA-affected
joints [101]. Patients with chronic heart failure (CHF) also
demonstrated significantly decreased plasma levels of RvD1,
attributed to reduced biosynthetic enzyme (15-LOX) activity in
leukocytes [102].

Given the current evidence [15,100-102], the available fish oil
supplements appear to provide non-standardized SPM precursors
(Table 1; Statement 8). While several studies have shown a dose-
dependent effect of fish oil supplementation on the resolution of
inflammation [86-88], the dose relationship between fish oil
consumption and the level of endogenous SPM production re-
mains unclear (Table 1; Statement 9).

6. Potential benefits of enriching EN formulas with either
SPMs or preformed SPM precursors

As demonstrated earlier, preclinical evidence and emerging
human data suggest a compromised conversion of PUFAs to
endogenous SPMs in various disease states, which provides a
mechanistic rationale for providing preformed SPM precursors.
Preclinical evidence suggests that preformed SPM precursors, such
as 17-HDHA and 18-HEPE, can increase plasma SPM levels in a
time and dose-dependent manner (Table 1; Statement 10). Isolated
human vascular tissues and primary vascular cell cultures effi-
ciently convert 17-HDHA into biologically active resolvins and
protectins. This process was accompanied by the translocation of
the 5-LOX enzyme from the nucleus to the cytoplasm, facilitating
local SPM production. Notably, vascular cells exposed to 17-HDHA
demonstrated attenuation of inflammatory responses, as evident
by decreased monocyte adhesion to activated endothelial cells
[103]. Similarly, preformed SPM precursors have been shown to
ameliorate pulmonary inflammation triggered by ozone exposure.
The administration of exogenous 14-HDHA, 17-HDHA, and PDX
prior to ozone exposure restored pulmonary SPM levels, decreased
pro-inflammatory cytokine and chemokine expression, and
reduced inflammatory cell infiltration [104]. In inflammatory
bowel disease (IBD) and retinal degeneration models, 17-HDHA,
along with other SPM precursors, significantly promotes the res-
olution of inflammation via enhanced macrophage phagocytic
activity, shifted macrophage polarization towards the inflamma-
tion resolution type M2 phenotype and reduced pro-inflammatory
gene expression [105,106]. However, it is worth noting that these
findings are mechanistic and preclinical; translation to clinical
efficacy remains to be established.

Emerging clinical evidence also supports the benefits of SPM
precursor supplementation to enhance endogenous SPM levels,
primarily in healthy volunteers or selected outpatient populations,
rather than in critically ill patients. A previous double-blinded,
placebo-controlled crossover study demonstrated that healthy
volunteers receiving SPM precursor-enriched marine oil
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supplements exhibited dose-dependent increases in circulating
SPM levels. This elevation in plasma SPM concentrations corre-
sponded with enhanced neutrophil and monocyte phagocytic
function and decreased activation of peripheral leukocytes and
platelets. Additionally, transcriptomic analyses revealed signifi-
cant shifts toward immune and metabolic gene expression pat-
terns consistent with reduced inflammatory potential [95]. While
supportive of biological activity, these are surrogate and functional
surrogate markers rather than patient-centred outcomes.

Furthermore, in a single-arm, open-label pilot study involving
healthy adults with mild-to-moderate inflammatory pain, a com-
bination supplement enriched with SPM precursors significantly
improved pain scores, pain severity, and physical function within
30 days of use. Notably, improvements in QoL indices persisted
throughout the 60-day intervention period [107]. Another clinical
trial evaluating supplementation with a marine lipid enriched
with 17-HDHA and 18-HEPE demonstrated significant improve-
ments in health-related QoL, pain intensity, pain interference, and
mood in patients with chronic pain [108]. However, these trials
were short-term, had limited sample sizes, and were not designed
to distinguish specific SPM-mediated effects from broader PUFAs
actions; therefore, effect estimates should be regarded as
preliminary.

Clinical evidence from patients with symptomatic peripheral
artery disease (PAD) revealed that short-term administration of
SPM precursor-enriched marine oil supplements significantly
elevated circulating SPM levels. This biochemical shift was
accompanied by enhanced phagocytic activity in neutrophils and
monocytes, reduced expression of leukocyte pro-inflammatory
markers, and a marked shift in monocyte-derived macrophage
gene expression towards reparative, pro-resolution phenotypes
[109]. Recent clinical data from adults with obesity further support
these observations. Supplementation with a marine oil product
enriched with 18-HEPE, 14-HDHA, and 17-HDHA significantly
increased plasma concentrations of RvE1 and MaR1. Although the
supplement did not alter the concentrations of D-series resolvins
nor affect immune cell abundance, a notable reduction in ex vivo
B-cell IgG production was observed, suggesting immunomodula-
tory potential without yet demonstrating clinical outcome bene-
fits [110].

Based on the currently available preclinical and clinical evi-
dence, supplements enriched with SPMs and their precursors may
promote the resolution of inflammation in relevant clinical con-
ditions and scenarios, such as obesity, cancer, critical illness, sur-
gery, cardiovascular disease, chronic inflammatory diseases, and
wound healing (Table 1; Statement 11). However, direct evidence
that enteral administration of preformed produces reproducible
increases in bioactive SPMs at target sites, and that these increases
translate into improved clinical outcomes, remains limited. Vari-
ability in absorption, enzymatic conversion, illness-related meta-
bolism, and tissue distribution may all constrain bioavailability in
these settings. Accordingly, current recommendations are
hypothesis-generating and should be tested in adequately pow-
ered RCTs using harmonised SPM analytics and patient-centred
endpoints.

Additionally, emerging data indicate that genetic variabilities
may modulate SPM pathway biology and therapeutic responsive-
ness. In a model that captures human-like diversity, diversity
outbred mice displayed heterogeneous metabolic and glycaemic
responses to RvE1, suggesting that background genetics influences
SPM efficacy windows [77]. This aligns with the concept that
variants across the LOX axis (ALOX5/ALOX12/ALOX15) and PUFA
desaturases (FADS1/2) can alter precursor availability and endog-
enous SPM biosynthesis [111], while polymorphisms in SPM re-
ceptors, notably ERV1/ChemR23 (CMKLR1), FPR2/ALX [112], and
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LGR6 [113] may affect ligand signalling and downstream resolu-
tion programs. Taken together, these observations support the
need for genotype-aware trial designs (pre-specified subgrouping
or stratified randomisation by key loci/ancestry), baseline SPM-
metabolome phenotyping, and PK/PD frameworks to parse inter-
individual variability in clinical endpoints when testing omega-
3-derived SPM strategies in humans.

Research indicates that standard clinical doses of fish oil, rich in
omega-3 PUFAs, do not significantly elevate bleeding risk, even
among patients concurrently using anti-platelet or anticoagulant
therapies (Table 1; Statement 12). A comprehensive analysis found
that high-dose EPA supplementation resulted in only a modest
absolute increase in overall bleeding risk (0.6 %) without a corre-
sponding rise in serious bleeding events such as intracranial
hemorrhage or hemorrhagic stroke. Furthermore, this study
observed no correlation between bleeding events and the con-
current use of anti-platelet treatments in patients receiving
omega-3 PUFAs [114]. A large meta-analysis of 11 RCTs, which
included 120,643 patients, reported no increase in bleeding risk.
They also reported that fish oils taken simultaneously with anti-
platelet medications showed no increase in bleeding. These data
provide robust evidence supporting the safety of fish oil in surgical
settings [115].

Recent studies have identified an association between omega-3
fatty acid supplementation and increased atrial fibrillation (AF)
incidence in certain populations. A 2021 meta-analysis encom-
passing six RCTs revealed that omega-3 fatty acids were linked to a
higher risk of incident AF than placebo, particularly among in-
dividuals at high risk of or with established CVD and elevated
plasma triglyceride levels [116]. Similarly, a study suggested that
regular use of fish oil supplements might be a risk factor for AF and
stroke in the general population, although it could be beneficial for
the progression of CVD from AF to major adverse cardiovascular
events and from AF to death [117]. Conversely, observational
studies and analyses of omega-3 fatty acid biomarkers have
generally reported an inverse relationship between dietary intake
of omega-3 fatty acids and AF risk. For example, the Million Vet-
eran Program study found that higher dietary intake of EPA, DHA,
and DPA was associated with a lower risk of incident AF in a
nonlinear manner [118]. Similarly, a global consortium study re-
ported that higher in vivo DPA, DHA, and EPA + DHA levels were
associated with a reduced risk of incident AF [119].

The clinical implications of these findings remain controversial
and under investigation. While fish oil supplements offer various
cardiovascular benefits, including triglyceride reduction and anti-
inflammatory effects, the potential increased risk of AF necessi-
tates a careful evaluation of the risk-benefit ratio for individual
patients (Table 1; Statement 13).

7. Future directions in research and practice

Although preclinical studies in mammalian models have
consistently demonstrated benefits from supplementation with
SPM precursors, clinical evidence to support their efficacy remains
limited. While systemic administration of precursors has been
shown to elevate SPM levels in healthy individuals, whether
enteral delivery can replicate these effects in critically ill or
chronically ill patients remains unclear. This must be established
before optimal dosing strategies can be developed for different
disease states. Future research should prioritize developing and
evaluating EN formulations that deliver standardized levels of
SPMs and their precursors. Such standardized formulations should
be rigorously tested in clinical trials conducted across relevant
patient populations, encompassing both acute and chronic in-
flammatory conditions. Robustly designed studies will facilitate
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clear conclusions regarding the therapeutic potential and clinical
utility of these enriched formulas.

Moreover, when designing these clinical studies, investigators
should account for common pitfalls associated with nutritional
research. Key considerations include carefully selecting appro-
priate patient cohorts, identifying relevant biological markers and
clinical endpoints, and optimizing trial design parameters.
Focusing on these aspects will enhance the likelihood of gener-
ating clinically meaningful outcomes, particularly those related to
inflammation resolution, restoration of tissue homeostasis, im-
mune modulation, and tissue repair processes. Such a structured
and targeted approach will ensure that future trials provide
definitive insights, ultimately guiding clinical practice toward
evidence-based nutritional strategies leveraging SPM biology.

The erythrocyte omega-3 index (EPA + DHA) is a validated,
time-integrated marker of long-chain omega-3 PUFA status [120]
and thus a plausible upstream indicator of precursor availability
for lipid mediators. In a randomised trial, increasing EPA/DHA
intake led to linear, dose-dependent increases in plasma oxylipins
and correlations between the omega-3 index and EPA/DHA-
derived hydroxy-metabolites (e.g., 18-HEPE, 17-HDHA), support-
ing biological plausibility for a link between tissue omega-3 status
and downstream mediator formation [121]. However, whether the
omega-3 index correlates with bioactive SPMs and with patient-
centred outcomes in enterally fed populations remains un-
known. We therefore recommend that EN studies incorporate (i)
baseline and on-treatment omega-3 index measurements aligned
with erythrocyte turnover, (ii) harmonised pre-analytical pro-
tocols and targeted profiling of SPMs/oxylipins, and (iii) pre-
specified correlation and mediation analyses to determine
whether erythrocyte EPA + DHA tracks SPM biosynthesis and
clinical effects.

8. Conclusion

In conclusion, inflammation involves dynamic and actively
regulated processes, including resolution pathways mediated by
SPMs. Cumulative evidence has demonstrated multiple mecha-
nisms by which SPMs promote resolution, clarifying how omega-3
fatty acids exert immunomodulatory effects. SPM-enriched EN
formulations hold tremendous promise as a nutritional strategy to
modulate immune responses and enhance inflammation resolu-
tion across diverse acute and chronic clinical scenarios. Additional
rigorous clinical studies are needed to evaluate the efficacy of
SPM-enriched EN formulas and to inform evidence-based clinical
guidelines.
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