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Shorebird responses to fine-scale water level fluctuations
and macrofauna biomass in a newly
constructed freshwater wetland
Lars Ursem1,2, Elisabeth S. Bakker1,2, Hui Jin1,3,4, Casper H. A. van Leeuwen5,6

Abstract
Introduction: Restoration of marine and freshwater wetlands for shorebirds is essential for the recovery of their declining populations.
An ongoing approach is to restore shorebird habitats by large-scale engineering, expecting the return of birds once suitable abiotic con-
ditions are (re)established. However, this requires science-based knowledge on which abiotic conditions should be (re)constructed.
Objectives:Here, we aimed to identify preferred water-level ranges of a diverse shorebird community by studying shorebird habitat use
in a new 1300 ha heterogeneous freshwater wetland with spatio-temporal variation in food availability and water levels (Marker Wad-
den, The Netherlands). We hypothesized that (1) water levels regulate the attractiveness of wetland sites to shorebirds; (2) shorebird
numbers are positively related to benthic and pelagic macrofauna biomass; (3) water level and macrofauna biomass interact, with
the effect of macrofauna biomass diminishing as water levels increase.
Methods: We combined artificial intelligence shorebird counting on 86,400 camera trap images with automatic water level registra-
tions and monthly macrofauna biomass sampling.
Results: Statistical modeling identified water level as the key driver of shorebird numbers, and macrofauna biomass as less important
during our 1-year study. Optimal water levels ranged between just exposed saturated mudflats and mudflats with 5 cm of water on the
sediment surface. Water level-regulated macrofauna accessibility overruled effects of macrofauna biomass on shorebird numbers.
Conclusions: Fine-scale water level management can be a powerful approach to restore habitat suitability for foraging shorebirds, and
thus contribute to the recovery of their declining populations.
Implications for Practice:Water levels determine the value of wetland areas for shorebirds at the resolution of centimeters. Two-thirds
of all shorebirds were observed when water levels ranged between 10 cm below and 10 cm above the sediment surface. This makes
high-resolution water level management a powerful tool for improving shorebird habitat suitability. This is particularly feasible in
freshwater wetlands, in the absence of a tidal cycle. Variation in pelagic and benthic macrofauna densities is irrelevant if prey are inac-
cessible due to unsuitable water levels. Considering water levels during the design phase of wetland restoration can ensure future habitat
suitability for shorebirds throughout the annual cycle.
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Introduction

Many shorebird species (Charadriiformes, suborder Charadrii,
also known as waders) are decreasing in numbers across the
globe (Lindström et al. 2015, 2019; Donlan et al. 2023). Among
key threats are climate change and habitat loss, which affect
their reproduction at breeding grounds, survival at wintering
grounds, and the quality of the intermediately located stopover
locations they require during their long-distance migrations
(van Roomen et al. 2012; Studds et al. 2017; Alves 2020).
During most of their annual cycle, shorebird species reside in
wet habitats, including wet meadows and tundra for breeding,
and mudflats as stopover locations and winter foraging sites
(van de Kam et al. 2004). Habitats range from marine to fresh-
water systems.

Shorebird ecology is especially well-studied in the marine
environment, which includes internationally protected areas
such as the Wadden Sea, Yellow Sea, and Banc d’Arguin (van
de Kam et al. 2004; Piersma 2007; Melville et al. 2016). In these
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systems, identified parameters of suitable shorebird habitat are
low predation pressure, high prey density, high prey quality,
and suitable water levels for foraging (Pomeroy 2006; van Gils
et al. 2015; Bijleveld et al. 2016). At low tide, individuals forage
on benthic fauna in the drying mudflats, while they spend their
time resting and digesting at roosting sites during high tide
(Evans 1976; Dodd & Colwell 1998; Burton et al. 2004).
Although the importance of thesemarine areas for shorebird com-
munities is well-known, it is often complicated to implement con-
servation or restoration efforts. Socioecological constraints such
as coastal protection and the large spatial scale of environmental
dynamics (e.g. tidal cycle and global sea level rise) prohibit resto-
ration opportunities, and consequently, many important marine
shorebird habitats are degrading globally (Piersma 2007; Pon-
tee 2013; Birchenough et al. 2015). Restoration and conservation
may therefore be easier to implement in less dynamic but also
important shorebird habitats, such as freshwater wetlands.

Freshwater wetlands are increasingly recognized as important
habitats for shorebirds (Foster et al. 2013). Although most shore-
bird species use both marine and freshwater wetlands, there are
also species that almost exclusively reside in freshwater—such
as Common snipe (Gallinago gallinago) and Ruff (Calidris pug-
nax) (Piersma 2007; Włodarczyk et al. 2007). In freshwater envi-
ronments, water levels are less dynamic, non-tidal, and they can
be regulated by human interventions in many parts of the world.
This regulation offers opportunities to manage water levels in
favor of the shorebird community, for which water levels are very
important (Safran et al. 1997; Colwell & Taft 2000). However,
before implementing such management, detailed knowledge is
needed on how water levels should best be managed for shore-
birds at fine scales, and how shorebirds respond to combinations
of water levels and prey availability.

Here, our aimwas to quantify how a diverse shorebird commu-
nity selects foraging sites in a newly constructed freshwater wet-
land, in relation to spatio-temporally varying water levels and
macrofauna prey biomass. We hypothesized that (1) water levels
regulate the attractiveness of (newly constructed) wetland sites to
shorebirds at the fine scale of centimeters; (2) shorebird numbers
are positively related to benthic and pelagic macrofauna biomass;
and that (3) there is an interaction between water level and macro-
fauna biomass, becausemacrofauna prey species become unavail-
ablewhenwater levels rise too high.We expected a strong role for
water levels because in marine ecosystems water levels impor-
tantly determine accessibility of prey (van Gils et al. 2015; Bijle-
veld et al. 2016). However, in contrast to marine studies that
typically compare high to low tide situations with a variability
of several meters, we here focused on fine-scale water level vari-
ation (at the centimeter scale) that is relevant in the context of
freshwater wetlands and their management.

Methods

Study Site

This study was carried out in a newly constructed wetland area
called “Marker Wadden,” situated in the north-east of the
4 m-deep freshwater Lake Markermeer (The Netherlands,

52�35030.200N 5�22043.600E; Fig. 1A). Marker Wadden was
created as a large-scale restoration project in this Natura
2000-protected lake, aiming to add reproduction and foraging
habitat to the shallow lake’s declining bird and fish communi-
ties. Between 2016 and 2020, five islands and a shallow under-
water landscape with a total area of 1300 ha were constructed
(van Leeuwen et al. 2021). Each island was constructed by cre-
ating basins inside oval dikes of coarse Pleistocene sand locally
extracted from the lake’s own sediment, which provided protec-
tion against erosion from wind and waves. The created basins
were subsequently filled with soft sediments (i.e. silts and clays)
locally extracted from Holocene layers of Lake Markermeer’s
sediment (van Leeuwen et al. 2021). By strategically distribut-
ing these sediments within the basins, mudflats were created
with very shallow water depths and gradual land–water transi-
tions. The basins were initially not connected to the larger water
body of LakeMarkermeer to allow the soft sediments to subside,
but after settling of the sediment the basins were connected to
the open water of the lake in the winter of 2020–2021.

Water levels in Lake Markermeer are driven by rainfall and
evaporation; however, mostly because of water level regulations
by the Dutch Water Authorities. As an important lake central in
the Netherlands, Lake Markermeer provides many ecosystem
services—including recreation, extraction of water for agricul-
tural irrigation and extraction of drinking water (van Leeuwen
et al. 2021). The lake’s water levels are therefore carefully regu-
lated by weirs and sluices. In spring, high river discharges of the
Rhine river allow water levels to be high, and water is actively
stored in the lake. Over summer, water levels drop because of
surplus evaporation and active water extraction (agricultural irri-
gation and drinking water, Fig. 2A). During winter, water levels
are maintained low for water safety purposes, especially because
strong winds in combination with long fetch lengths can cause
wind setup of several decimeters on the downwind shore
(Calle 2005). As the result of all these active interventions, water
levels are artificially reversed to what would be expected in a
naturally fluctuating lake (high winter levels and low summer
levels). Water levels are partly predictable for birds, but can also
suddenly increase substantially in response to changing wind
speeds, wind directions, or a surplus in discharge of the Rhine
(Calle 2005).

Study Species

A wide variety of shorebird species visited the study area for
breeding and feeding throughout the study year (van derWinden
et al. 2024). In this study, we were interested in habitat use by
the entire shorebird community (Charadriiformes), which
included nine different species (Dreef & van der Winden 2023):
Pied avocet (Recurvirostra avosetta), Common snipe, Ruff,
Common ringed plover (Charadrius hiaticula), Little ringed
plover (C. dubius), Common redshank (Tringa totanus), North-
ern lapwing (Vanellus vanellus), Black-tailed godwit (Limosa
limosa), and Black-winged stilt (Himantopus himantopus). Of
these nine species, we concentrate on the four most dominant
ones (Pied avocet, Common snipe, Ruff, and Common ringed
plover) to enable working with an artificial intelligence
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(AI) identification model (see below). These species comprised
approximately 63% of the total shorebird community observed
on Marker Wadden throughout the study period from May to
September in 2022 (Dreef & van der Winden 2023). We here
take these four species as representative for the wider range of
shorebird species with similar morphological characteristics
and preferences.

All four species share that they opportunistically feed on
macrofauna, including Oligochaeta, Gastropoda, Chironomid
larvae, and fish larvae (Pienkowski 1982; Moreira 1995; Enners
et al. 2019). By grouping these species into one focus group
(Charadriiformes), we can test general patterns relevant for
shorebirds, assuming that individual species within this group
respond similarly to changes in water level and macrofauna bio-
mass. However, we know that different shorebird species have
slightly different preferences due to, for example, different mor-
phological traits like leg length. Still, we expect more similar
intragroup responses to changes in water level and macrofauna

biomass as compared to the responses of species in other taxo-
nomic groups (Laridae, Anatidae).

Study Design

To study how shorebirds responded to heterogeneity in water
levels and macrofauna biomass, the number of shorebirds was
quantified every 5 minutes at six locations on the Marker Wad-
den islands fromMay to September in 2022. The six study areas
were selected based on the presence of gradual land–water tran-
sitions with a gradient of water levels from the shorelines and a
soft-sediment substrate, that is, representing mudflat shorebird
habitat (Fig. 1B). Sediment slopes of the sites were similar to
ensure capturing a consistent range of water levels for our mon-
itoring. At each location we monitored (1) shorebird numbers,
(2) water levels, and (3) macrofauna biomass as described in
the following sections. Macrofauna sampling dates were
17/05, 07/06, 05/07, 02/08, and 30/08 (for clarity reasons further

Figure 1. Map of camera trap locations, with (A) the location of the Marker Wadden study area in the Netherlands; (B) a detailed overview of the studied area of
the Marker Wadden, with red triangles (n = 6) indicating the sampling locations and the black arrows indicating the direction of the camera traps and the
transects. The blue circle shows the position of the water level data-logger. (C) Ground image of the setup of one of the camera traps, with the transects indicated
by the sticks.
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referred to as the months of May, June, July, August, and
September).

Camera Trap Monitoring of Shorebird Numbers

To quantify shorebird numbers, we installed a camera trap at
each of the six locations. The camera traps (RECONYX
HP2XODG HyperFire 2 Professional Cover IR Camera OD
Green) were mounted on a wooden pole and secured in the

sediment, leaving the camera approximately 1.5 m above the
water level (Fig. 1C). The vertical angle of the camera was such
that the horizon would be at approximately one-fifth from the
top of the image. The cameras were programmed to take an
image every 5 minutes after being installed (26 April 2022),
thus producing 288 pictures every 24 hours. All cameras were
active throughout the whole study period without malfunction-
ing. Six bamboo sticks were installed in a straight line in front
of each camera, at an interval of five meters, creating a total

Figure 2. (A) Mean water levels in Lake Markermeer relative to the Amsterdam Ordnance Datum (NAP). Mean water levels were calculated per week for all
weeks in 2014, 2018, 2019, 2020, and 2022. Water levels during (early) spring are regulated to be high (notably since a policy change in 2018), and water
levels during summer, autumn, and winter are lower and relatively constant over the years. Data: Dutch Water Authorities, https://waterinfo.rws.nl.
(B) Water levels measured at the Marker Wadden study site relative to the sediment surface over time for each location (n = 6, sediment surface is at 0).
Water levels of all locations are derived as relatives from actual measurements at locations 1.
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transect of 30 m (Fig. 1C). The surface area of the water that was
captured by the cameras was approximately 200 m2 (approxi-
mately 25 m by approximately 8 m).

Monitoring Water Levels

Water level data were automatically recorded hourly to the near-
est mm at one location on Marker Wadden by an Ellitrack data-
logger (Leiderdorp Instruments, Leiden, The Netherlands).
Water levels in the study area peaked at the start of the study
period in May and decreased until early September (Fig. 2B).
Mean water levels per location ranged from 7.26 � 0.04 stan-
dard errors (SE) cm to 22.3 � 0.04 SE cm above the sediment
surface. Themaximumwater level was recorded early in the sea-
son at location 5 (44.3 cm above the sediment surface), and the
minimum water level was recorded at location 4 (for locations
see Fig. 1B) in early September (15.5 cm below the sediment
surface, Fig. 2B).

These manual measurements were used to calibrate the water
level measurements registered by the data-logger to site-specific
values, and programmed to follow the water level fluctuations
registered by the data-logger, assuming homogenous water
movements over the well-connected and relatively small study
area (Fig. 1B). Differences in soil elevation across the transect
were assumed to remain constant throughout the study period
(i.e. negligible soil subsidence over the 5-month study period,
see Alderson et al. 2025). Obtained hourly water level predic-
tions per location were used to calculate mean water levels for
each location over each 10-day period around the macrofauna
sampling moments. This ensured that the spatio-temporal reso-
lution of the pelagic- and benthic macrofauna biomass matched
that of the water levels (see below).We also linearly interpolated
the hourly water level data to a 5-minute interval, which could
then be used to link water level to wader presence on the
5-minute resolution that images were taken.

Determining Macrofauna Biomass

To quantify macrofauna biomass as a potential food source for
shorebirds, samples were collected every 4 weeks throughout
the spring and summer season at all six locations (n = 30). Ben-
thic macrofauna were collected by taking four sediment cores
(diameter = 6 cm) of the top 10 cm at each location, after which
the samples were sieved over a 0.72 mm mesh, and obtained
macrofauna were pooled and stored in 70% ethanol. In close
vicinity of each camera trap, sample locations were selected at
a water level of, respectively, 0 and 10 cm, representing the
lower and higher end of the water level range in which
the selected shorebird species could forage while walking based
on their bill lengths (ranging from 4 to 10 cm) and leg lengths
(between 1.4 and 10 cm, van de Kam et al. 2004; Karlionova
et al. 2007; Meissner 2007; Włodarczyk et al. 2011). Samples
were stored at 4�C until visual assessments for the presence of
benthic macrofauna using a stereomicroscope (Leica M205C,
Germany) within 60 days. Detected macrofauna were counted,
their lengths measured to the nearest 0.1 mm, and the

individuals were identified up to the taxonomic level of family
(except Oligochaeta and Trichoptera, Table S1).

Pelagic macrofauna were collected by securely placing a
metal cylinder (diameter = 60 cm, height 50 cm) in the water
column on the sediment to prevent mobile macrofauna from
escaping. The isolated water column was then sampled with a
net (mesh size = 1 mm) to collect all macrofauna. Samples
were stored at 4�C on 70% ethanol in 10 mL plastic tubes. This
procedure was done at a water level of 10 cm (�2 cm SE) as
close to each camera trap as possible, yielding a total of 30 sam-
ples throughout the study period. Sample processing and identi-
fication were identical to the methods described above for the
benthic macrofauna (Table S1). For both benthic and pelagic
macrofauna, in samples with more than 30 individuals of a
taxonomic group, all individuals were counted but length mea-
surements were only obtained from 30 randomly selected
individuals.

To calculate biomass of the macrofauna, length-body mass
regressions were applied to each family following the procedure
as described in van Leeuwen et al. (2025). By this method, dry
body mass was calculated for all individuals of the benthic and
pelagic macrofauna group (Table S1). Total biomass was pooled
per 4-week period per location.

Data Analyses—Image Processing Using Artificial Intelligence

Each sampling location was visited monthly for 5 months, dur-
ing which macrofauna biomass was sampled (see above) and
images were downloaded from all cameras. To be able to statis-
tically test for relationships between the encountered macro-
fauna biomass (pelagic and benthic) by the shorebirds on the
images, we assumed that pelagic and benthic macrofauna bio-
mass assessed during the field visits would be representative
for the macrofauna biomass encountered by the birds captured
on the camera images 5 days before and 5 days after the macro-
fauna sampling. Therefore, for each field visit, images from the
10 days around the visit were selected to be annotated with AI
(10 days � 288 images � 5 visits = 14,400 images per loca-
tion; 14,400 � 5 locations = 86,400 images in total).

Annotation was performed by a two-step AI pipeline. The
first step was a YOLOv5 model (trained within the agouti.eu
platform [www.agouti.eu]). This is a deep learning model for
object detection that can recognize and locate objects in an
image in a single step (Redmon et al. 2016). It is trained using
labeled images, optimizing a composite loss function that
assesses (1) whether or not an object is present, (2) bounding
box accuracy (i.e. how good the model is at estimating the loca-
tion of the object), and (3) classification (i.e. which object is
detected), with network weights updated through backpropaga-
tion. Once trained, it takes raw pixel values from to-be-classified
images and extracts hierarchical features (e.g. edges, textures,
and shapes). These features are then used to predict the presence
of objects and their location on the image, as well as classifying
the objects once detected (Ajayi et al. 2023). We used this
YOLOv5 model to detect birds in our images and extract their
bounding boxes. Images were cropped around these bounding
boxes followed by a manual check of every image, and non-bird
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objects were all removed to ensure a dataset with 100% bird
images (100% specificity).

The second step in the pipeline was aimed at taxonomic clas-
sification of these bird images in a second model (ResNet50). A
ResNet50 model is a convolutional neural network (i.e. a deep
learning model that automatically learns spatial features from
images by applying convolutional filters across the images;
Habibi Aghdam & Jahani Heravi 2017) with 50 layers that uses
residual (skip) connections to enable efficient training of very
deep models and improve predictive accuracy. This model rec-
ognizes the cropped bird species by adjusting its convolutional
filters through backpropagation during training, which mini-
mizes classification error on labeled images. Once trained, it
processes new images by extracting hierarchical features (edges,
textures, shapes of birds in our case) of the images and uses these
to and assign new images to the most likely previously assigned
group (bird species in our case; Koonce 2021).

The training dataset for the second (ResNet50) AI model in this
pipeline consisted of 8948 randomly selected images (approximately
10%) which were manually assessed for the presence of birds, and
each bird was identified up to species level. Individual bird images
were extracted and used to train the second AI model using the
cnn_learner()-function from the FastAI library (see https://docs.fast.
ai/tutorial.vision.html for detailed documentation). The identified
birds included several species of shorebirds (n = 4; Common ringed
plover, Common snipe, Pied avocet, Ruff) but also several others,
belonging to the families Anatidae (n = 4; Greylag goose [Anser
anser], Common shelduck [Tadorna tadorna], Ruddy shelduck
[T. ferruginea], Anas spec.), Rallidae (n = 2; Eurasian coot [Fulica
atra], Moorhen [Gallinula chloropus]), Laridae (n = 1; Black-
headed gull [Chroicocephalus ridibundus]), and Threskiornithidae
(n = 1; Eurasian spoonbill [Platalea leucorodia]). Although this
study focused on shorebirds, it was necessary to train the model to
classify all (commonly) detected species observed on the camera trap
images to avoid misidentifications (L. Ursem,personal observation,
NIOO-KNAW, 2025).

Model performance by the ResNet50 in correctly classifying
shorebirds (Charadrii group) on the cropped images was evalu-
ated using a subsample (n = 500) of the resulting annotations.
Manual inspection of AI-classified shorebirds showed that the
model was operating with an accuracy of 70% at this taxonomic
group level, that is, other bird species were classified as shore-
birds or shorebirds were classified as other species in 30% of
the cases (i.e. 70% sensitivity). This means that we also obtained
information about other taxonomic groups present in the study
system (Anatidae and Laridae). These groups showed only
weakly directed responses to water levels and/or macrofauna
(Colwell & Taft 2000), and in case they did, they showed a rel-
ative selection for deeper waters rather than shallow waters
(Fig. S1). Therefore, we can safely assume that misidentification
at the taxonomic group level (i.e. identifying a duck as a shore-
bird) would add either non-directional or deep-water-biased
noise to the data—and would therefore not interfere with our
conclusions on shorebirds (see Section 4).

To further test our assumptions, we performed an additional
comparison between AI-annotated images and manually anno-
tated images at the species level. For this comparison, all images

from 1 day prior to and 1 day after each sampling visit were
manually annotated (n = 288 � 2 � = 2880 images per
sampling site), with detected birds being identified up to spe-
cies level. This comparison revealed that the AI-annotation
was able to accurately predict the shorebird numbers identi-
fied by manual annotation with an r2 of 0.66 (linear regres-
sion: manual_shorebird_count = 1.08 � AI_shorebird_count
� 7.47, p < 0.001; Fig. S2).

Data Analyses—Statistical Models

Effects of the factor “month” onmeanmacrofauna biomass were
tested with analyses of variance (ANOVA) followed by Tukey’s
honestly significant difference (HSD) tests, separately for ben-
thic and pelagic macrofauna to account for differences in sam-
pling methodologies.

The AI-annotated shorebird numbers per image were summed
per location and sampling period, resulting in datawith similar tem-
poral resolutions for (1) estimated water level, (2) macrofauna bio-
mass, and (3) shorebird numbers. The main statistical model
performed a direct comparison of the effects of water level and
macrofauna biomass on shorebird numbers (n = 30 datapoints).
The model was a generalized linear mixed-effects model
(GLMM; Brooks et al. 2017), with shorebird numbers as a count
variable depending on (1) mean water level, (2) pelagic- and
(3) benthic macrofauna biomass as the three explanatory variables.
Interaction terms between water level and the two macrofauna-
biomass variables were included in the full model, and sampling
location and periodwere included as random intercepts. A negative
binomial distribution was selected because it performed better than
a Poisson distribution based on Akaike’s Information Criterion
(AICc) criteria (Burnham & Anderson 2004; AICc-Poisson:
1274.6, AICc negative binomial: 363.3; dispersion ratio = 31.5,
p < 0.001). Model selection was performed backwards from full
models based on AICc criteria, using maximum likelihood estima-
tion (MLE). If deltaAICc with the best-fit model was less than
2, the most parsimonious model was preferred (Bolker 2009).
Models were checked for collinearity using the variance inflation
factor (VIF; Lüdecke et al. 2021). r2-adjusted was calculated by
using the predicted values from the best model as an explanatory
variable for the observed shorebird numbers in a linear model.
Fixed effects were centered around the mean by subtracting the
mean value from all values. To test for the robustness and sensitiv-
ity of these analyses to extreme values, we also modeled these rela-
tionships on subsets of the data, that is, without including the
macrofauna data, separately for each location, separately for each
month, and on subsets in which we excluded “extreme” values
potentially driving the observed relationships (e.g. excluding shore-
bird numbers >500, excluding September data).

To detect the range of water levels preferred by shorebirds in
more detail, mean water levels at a 5-minute interval per location
(ranging from 15 cm below to 45 cm above the sediment sur-
face) were binned to intervals of 5 cm (e.g. 0–5, 5–10 cm water
depth, etc). For each water level category, the number of occur-
rences of these depths was determined, as well as how often
shorebirds were present (0 for absence vs. 1 for presence). The
selection of certain water level categories by shorebirds was then
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represented as a proportion of the total number of occurrences of
the matching bin (i.e. the chance a shorebird is present, given a
certain water level category). Using these proportions, a chi-
squared test for independence was performed to test for a rela-
tionship between shorebird presence and the different water
level categories (i.e. testing for non-random site selection by
shorebirds based on water levels). Bonferroni post hoc tests
were performed to test for differences among water-level cate-
gories. An Empirical Cumulative Distribution Function was
computed to illustrate the percentage of wader observations in
response to increasing water levels.

All analyses were performed using R Statistical Software
(v.4.4.3; R Core Team 2025) and the packages glmmTMB
(v.1.1.5; Brooks et al. 2017) and lme4 (v.1.1.31; Bates
et al. 2015). A significance level of α = 0.05 was used for all ana-
lyses, and all mean values are provided � the corresponding SE.

Results

Shorebird Numbers

In total, 27,609 birds were detected and classified on the 86,400
images analyzed via AI. Of these observed birds, 9076 (32.9%)
were classified as Charadrii. The other taxonomic groups included
in the AI classification consisted of 8154 Anatidae (29.5%), 5445
Laridae (19.7%), and 4934 other bird species (17.9%).

Macrofauna Biomass

Macrofauna biomass varied over time and space. Families found
in the benthic and pelagic macrofauna samples included Chiro-
nomidae, Gammaridae, Corixidae, Lymnaeidae, Mysidae, and
Oligochaeta, with other species comprising less than 5% of the
total biomass (Fig. 3). For benthic macrofauna, mean dry bio-
mass was 24.4 � 3.9 SE mg 0.003 m�3. Biomass ranged from
1.5 to 72.9 mg 0.003 m�3, with lowest biomass in May (mean
biomass = 12.7 � 5.3 SE) and highest biomass in September
(mean biomass = 36.9 � 9.5 SE), but there was no significant
effect of time (ANOVA: F = 1.36, p = 0.28, Fig. 3A). For
pelagic macrofauna, dry biomass ranged from 1.2 to 70.2 mg
0.57 m�2 respectively, with a mean dry biomass of 31.2 � 3.7
SEmg 0.57 m�2. May had the lowest biomass of pelagic macro-
fauna (9.3 � 4.7 SEmg 0.57 m�2) and June had the highest bio-
mass (47.0 � 8.6 mg 0.57 m�2), which was significantly
different (ANOVA: F = 4.06, p = 0.01, Fig. 3B); whereas no
other differences were observed. Spatially, macrofauna biomass
varied up to 25-fold among the study locations (Fig. S3).

Relationship Between Shorebird Numbers, Water Level, and
Macrofauna Biomass

We compared the influence of water level, benthic macrofauna
biomass, and pelagic macrofauna biomass on shorebird num-
bers at our six study locations in GLMMs. Model selection on
the main model (Table S2) indicated that water level was the
main driver of shorebird numbers, with shorebird numbers
increasing with decreasing water levels (Table 1; Fig. 4). Gener-
alized linear mixed models including benthic or pelagic

macrofauna biomass, or an interaction between pelagic macro-
fauna biomass and water level, had similar predictive ability as
the best model only including water level (deltaAICc <2.0;
model M3 in Table S2). Although a marginal positive role of
macrofauna biomass was present in these less parsimonious
models (M2 in Table 1), their effect sizes were about six-fold smal-
ler compared to the effect size of water level. We therefore identi-
fied the model only including water level as predictor as the best
model to explain shorebird numbers following (f1) number of
shorebirds � mean water level + (1jLocation) + (1jMonth)
(Table 1). With increasing water levels, shorebird numbers
decrease following the formula (f2) N = 609 � 0.94x, where N is
the number of shorebirds over a 10-day period and x is the mean
water level over the same 10-day period. The effect size of every
unit change (on a log scale) was six-fold higher for water level than
for benthic or pelagic macrofauna biomass.

A similar negative effect of water level on shorebird numbers
was found in the statistical models with only water level
included. We found this result when (1) testing the models for
temporal variation due to differences in water levels among
months, as well as when (2) testing within each month for spatial
variation among locations. The effect of water level due to tem-
poral variation arising within every location was significant
for most locations, with the log of all slopes differing significantly
from 0 (p < 0.002), except for location 3 and location
6 (estimates = �0.02; 0.00, p = 0.36; 0.99, respectively;
Fig. 4A). The effect of water level due to spatial variation, tested
within every sampling month, was significant for the models for
May, June, and July (p < 0.05), only near-significantly for August,
and not significant for September (estimates = �0.07; �0.02,
p = 0.06; 0.6, respectively; Fig. 4B). Rerunning the model on a
subset excluding shorebird numbers greater than 500 and a second
subset excluding data from September still showed a significant
relationship between shorebird numbers and water levels
(estimates = �0.05; �0.07, respectively, p < 0.001).

Shorebirds were more often observed in shallow waters than
in deeper waters, compared to what was expected under random
site selection (Fig. 5; chi-squared test for independence,
p < 0.05). The highest proportion of images with at least one
shorebird present was in the category of 0–5 cm above the sed-
iment surface (Fig. 5). When water levels were between 10 cm
below and 10 cm above the sediment surface, we observed
67% of all shorebirds (Fig. 6A & 6B), which was more than
two-fold higher than randomly predicted (Fig. 5). Shorebird
presence was lower than expected when water levels ranged
between 10 and 35 cm, and again relatively higher when water
levels increased to more than 40 cm deep.

Discussion

The construction of mudflats with shallow water levels in Lake
Markermeer by the Marker Wadden restoration project attracted
a great number of shorebirds during the productive spring and
summer seasons. However, the presence and numbers of shore-
birds on this newly constructed freshwater wetland were highly
dependent on the water level. Water levels of less than 10 cm
above the sediment surface were strongly preferred, and fine-
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scale increases of only a few centimeters quickly reduced the
number of birds that were present. Macrofauna biomass also
varied extensively over time and among locations in the new res-
toration area, even within our 1-year study. However, macro-
fauna biomass was six-fold less important than water level in
determining numbers of shorebirds in search of food.

The fine-scale requirement of certain water levels by shore-
birds canmost likely be explained by their ability to probe in soft
and saturated sediments or shallow waters for benthic and
pelagic prey. The tactile, visual, or sweeping foraging method
of shorebirds to collect prey species is known to be related to
their bill and leg lengths (e.g. Dias et al. 2009). The four species
selected in this study have bill (approximately 1.4–10 cm) and
leg lengths (approximately 4–10 cm) that match the water level
ranges that we found these birds to prefer (van de Kam
et al. 2004; Karlionova et al. 2007; Meissner 2007; Włodarczyk

et al. 2011). These morphological bill and leg length ranges are
also typical for the broader shorebird community at the islands
and beyond (Chambon et al. 2018; Aarif et al. 2024; Jackson
et al. 2024), which suggests that our findings can be applied at
the shorebird community level. Deeper waters prohibit reaching
benthic prey in the sediment and pelagic prey on the sediment
surface. Likewise, probing for prey may be difficult in dryer sed-
iments (Granadeiro et al. 2006; Dias et al. 2009). Therefore, our
data suggest optimal water levels ranged between just exposed
saturated mudflats and mudflats with 5 cm of water on the sedi-
ment surface. Two-thirds of all shorebirds were observed when
water levels ranged between 10 cm below and 10 cm above the
sediment surface.

By studying water levels and macrofauna biomass in a fresh-
water ecosystem with regulated water levels and without a tidal
cycle, we could detect effects of fine-scale water level

Figure 3. Observed variation over time in (A) benthic macrofauna biomass and (B) pelagic macrofauna biomass. In both panels, boxplots correspond to the left y-
axis, thus indicating the variation in macrofauna biomass among locations. The colors of the bars in the background correspond to the right y-axis and show the
proportional representation of the different macrofauna orders in the mean biomass per month. The category “Others” contains the families that together
contributed less than 5% of the total macrofauna biomass as calculated over benthic and pelagic macrofauna. Months that share lowercase letters are not
significantly different from each other.

Restoration Ecology8 of 14

Managing water levels for shorebirds

 1526100x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/rec.70329 by W

ageningen U
niversity and R

esearch Facilitair B
edrijf, W

iley O
nline L

ibrary on [09/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



fluctuations (up to cm) typically not incorporated in marine stud-
ies. This adds fine-scale data to the knowledge that shallow
water levels are important for probe-feeding shorebirds in fresh-
water wetlands (e.g. Safran et al. 1997; Colwell & Taft 2000). In
marine literature, food availability is typically considered a key
variable regulating the spatial distribution of shorebird popula-
tions (van Gils et al. 2015; Bijleveld et al. 2016). However, often
with the implicit focus on shorebirds foraging during low tides
on productive mudflats in which water levels are already in the
shallow ranges that we here specifically focused on
(Evans 1976; Dodd & Colwell 1998; Burton et al. 2004). The
dominant effect of the tidal fluctuations is therefore often not
studied directly but rather implicitly included, because during
high tides food is simply inaccessible. In freshwater ecosystems,
these fine-scale water levels provide the opportunity for man-
agement to regulate habitat suitability for shorebirds.

Methodological Challenges With AI Identification

To assess water level preferences of shorebirds at the commu-
nity level, we trained the AI identification models at the shore-
bird species level, but finally used the data at the resolution of
the community level for improved accuracy (i.e. matching the
identified species to the appropriate taxonomic group). This
accuracy was analyzed by performing the analysis on all
86,400 images using AI, and additionally manually on 2880
images. This allowed for searching in both datasets for the same
patterns and identified an accuracy of about two-thirds. This
compares a manually processed much smaller dataset (1 day
before and 1 day after sampling) to the AI processed larger data-
base (5 days before, 5 days after) and concludes that both
approaches reveal a similar ecological pattern. Both datasets
showed clear variation in the numbers of observed shorebirds

on the images, which allowed us to analyze the underlying eco-
logical explanatory variables (water level and macrofauna).

There was temporal variation in bird numbers, with most
shorebirds counted later in the season (August, September).
The AI model overestimated the number of shorebirds mostly
early during the year (May), if compared to the manual shore-
bird counts. This can be explained by the presence of birds from
other taxonomic groups at the higher water levels earlier in the
season. Particularly the Anatidae and Laridae that were identi-
fied showed a bias toward presence at deeper water levels than
shorebirds, or had no preference. This implies that several other
bird species than shorebirds were also identified by the ResNet
model as shorebirds, and that these misidentifications explain a
large part of the 30% inaccuracy of the AI model. Knowing this,
we can conclude that this bias is unlikely to have contributed to
our ecological conclusion that shorebirds prefer shallow waters,
as false inclusion of Laridae and Anatidae would have directed
our conclusion toward a preference of shorebirds for deeper
water. As such, any misidentification of birds by our AI method-
ology early in the season likely added noise directed toward
“shorebirds prefer higher water levels,” and thus did not contrib-
ute to the overall observed ecological preference of shorebirds
for shallow waters.

The accuracy of our approach provides confidence in our
choice to use AI bird identifications. However, the AI approach
had costs as well as benefits in comparison to traditionally pro-
cessing images manually. Costs of the AI model include
(1) the need to downgrade the data to family level, and thus
not yet being able to work with individual species; (2) a loss of
accuracy in the identifications, in which bird experts would at
present be better; (3) error propagation of mistakes at scale,
instead of remaining local mistakes; (4) a loss of serendipity
and spotting particularities, that is, by manually processing

Table 1. Results from generalized mixed-effect models exploring the effects of predictor variables on shorebird numbers using a negative binomial distribution
(link function = log). Results are presented for the full model (M1) including all possible terms of interest and their interactions, and results of the best models
after model selection within 2.0 deltaAICc from the best model (M5). Estimate and standard errors are given for the predictor variables after centering them by
subtracting their mean value from all values.

Variable Estimate Std error Z-value p-value AICc

M1 Intercept 5.03 0.15 33.52 <0.001 369.7
Water level: benthic biomass 0.00 0.00 0.32 0.75
Water level: pelagic biomass 0.00 0.00 �1.92 0.06
Water level �0.07 0.01 �5.10 <0.001
Benthic biomass 0.01 0.00 1.66 0.09
Pelagic biomass 0.01 0.01 1.60 0.11

M2 Intercept 5.05 0.15 34.45 <0.001 364.7
Water level: pelagic biomass 0.00 0.00 �1.55 0.12
Water level �0.07 0.01 �5.53 <0.001
Pelagic biomass 0.01 0.01 1.81 0.07

M3 Intercept 5.08 0.13 38.85 <0.001 365.2
Water level �0.06 0.01 �5.33 <0.001
Benthic biomass 0.01 0.00 1.19 0.23

M4 Intercept 5.05 0.15 33.41 <0.001 363.7
Water level �0.07 0.01 �5.16 <0.001
Pelagic biomass 0.01 0.01 1.68 0.09

M5 Intercept 5.08 0.14 37.46 <0.001 363.3
Water level �0.06 0.01 �5.44 <0.001

Restoration Ecology 9 of 14

Managing water levels for shorebirds

 1526100x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/rec.70329 by W

ageningen U
niversity and R

esearch Facilitair B
edrijf, W

iley O
nline L

ibrary on [09/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



images, scientists also learn about their ecosystem and may
make observations that could lead to future research; and
(5) the environmental costs of energy-intensive AI models.
However, AI approaches can also have many potential benefits,
which include (1) an improvement in accuracy due to scalability
of the number of processed images, adding confidence to overall
observed patterns; (2) a known and consistent error, that is inde-
pendent of which researcher is processing the images (and for
instance at what time of the day, day of the week, increase in

experience over time); (3) an objective assessment of the images
without unconsciously bias; and (4) exact reproducibility of sci-
entific results. Finally, we also expected the benefit of a lower
time investment; however, in retrospect, creating and training
of the AI methodology was similarly time-consuming. Choos-
ing to use AI models therefore requires future studies to weigh
their time investment for training of AI models based on how
many images need to be processed. Still, considering the rapid
improvements of AI methodology, the further application of

Figure 4. Number of shorebirds present in relation to observed water levels in the study area depicted (A) for each of the six study locations, and (B) for each of
the 5 months of the study. In both panels, significant relationships based on individual generalized linear models with a negative binomial distribution are
depicted with solid lines with 95% CIs. Non-significant relationships are not shown.
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AI identification for studies will without doubt become more
user-friendly to set up and make it possible to study specific spe-
cies of interest with the same methodology in the near future.

Water Level Management in Freshwater Wetlands

The relationship between water levels and shorebirds has long
been recognized; however, mostly in relation to tidal fluctua-
tions in situations where management of water levels is impossi-
ble. Our study highlights the high potential to improve shorebird
habitat by regulating water levels in freshwater ecosystems.
These effects of water levels on shorebirds likely stretch far
beyond our study system, as, for example, shown for small-
bodied shorebirds preferring shallow water on grassland ecosys-
tems during winter floods (Safran et al. 1997; Colwell &
Taft 2000), strong preferences for wet conditions by shorebirds
in the marine realm (e.g. Helmers 1992), and also linked to stud-
ies on a wider range of birds in relation to water dynamics
(Lipford et al. 2025). This suggests that the regulation of water
levels can be broadly applied in a more global context of shore-
bird conservation and restoration. We emphasize the importance
of the fine scale of this high-resolution management and stress
that it needs to be maintained for the full period that (migratory)
shorebirds are present in a managed area.

Despite its importance, shorebird foraging habitat quality is
not solely determined by maintaining stable water levels within
an accessible depth range throughout the annual cycle. Various
ecological processes regulate the abundance of resources for
shorebirds, and such wetland processes may require a dynamic
hydroperiod instead, including times when water levels are
lower or higher—and not ideal for shorebirds. By stabilizing

water levels to always maintain a range accessible to shorebirds,
chemical processes, and productivity by other trophic levels in
the food web may be affected (Åhlén et al. 2024), potentially
reducing habitat quality despite accessible water depths. In addi-
tion, managing water levels to be best for shorebirds locally
could have consequences for other wetland birds. In our study,
Anatidae were found to be present at practically all observed
water levels at similar intensities, while Laridae were more often
observed at water levels between 15 and 25 cm. Whether or not
this is a result of active or random water level selection and how
this relates to habitat suitability at the landscape level are inter-
esting avenues to explore in future studies.

From a restoration context, a dynamic form of water level
management that ensures optimal conditions for all biota at each
season is more feasible to implement in freshwater systems than
in tidal coastal systems. However, also in freshwater wetlands,
the regulation of water levels has its limitations. Here we use
our own study system of Lake Markermeer as a case study to
illustrate this. Our study was carried out in Lake Markermeer
in the Netherlands, which is a degrading Natura 2000 protected
large shallow lake (van Leeuwen et al. 2021). The new Marker
Wadden wetland islands were constructed via engineering in a
“building with nature” approach and led to a novel ecosystem
of over approximately 1300 ha of marshlands, with the aim
and result that bird and fish communities of different life stages
profited at local scales (van Leeuwen et al. 2023; Jin et al. 2024;
van der Winden et al. 2024). However, because Lake Markerm-
eer also provides ecosystem services such as drinking water sup-
ply to a large part of the Netherlands (van Leeuwen et al. 2021),
water levels are actively managed as reversed compared to nat-
ural fluctuations (see methods for details). That is, water levels

Figure 5. Distribution of observed proportions of shorebird observations per category of 5 cm water levels (green bars), and expected proportions under random
site selection (gray bars). Asterisks above the bars indicate a significant difference between observed and expected proportions based on chi-squared tests for
independence and Bonferroni corrected Tukey HSD post hoc tests, differentiating between higher (black asterisks) and lower (red asterisks) proportions than
expected in the case of random site selections by shorebirds. Negative water levels indicate situations where the water levels are below the sediment surface.
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are higher in summer (water storage for drinking and irrigation)
than in winter (for water safety). In recent years, the Dutch water
authorities changed their policies, which resulted in higher
spring and summer water levels since 2018 compared to previ-
ous years. As the nature restoration project of Marker Wadden
was constructed while taking into account water level manage-
ment of years prior to 2018, the aim of creating mudflats with
shallow water for shorebirds is challenged. This illustrates that,
despite knowledge on optimal water level management for
shorebirds, implementation can still be constrained.

These contrasting requirements between humans and nature
within one freshwater ecosystem are not unique to our study sys-
tem, and related to the increased freshwater demand worldwide
(Dudgeon et al. 2006). Water extraction for agriculture is, for
instance, also known as an important challenge for the renowned
wetlands in Doñana National Park in Spain (Green et al. 2024),
which makes water shortage a common threat to wetland eco-
systems (Huggins et al. 2023). Climate changes will likely
worsen future flexibility in water level management, as riverine

discharges and rainwater influx become less predictable. Regu-
lating water levels may therefore be a technical and societal
challenge in many freshwater ecosystems. We hope that the here
provided quantification of how water levels can impact shore-
birds can support these discussions and can contribute to better
conservation and restoration of wetlands.
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Figure 6. (A) Water level preference of shorebirds visualized as an empirical cumulative distribution function (ECDF) for shorebird numbers as a function of
water level. The blue box indicates that water levels ranging from �10 to 10 cm contribute 67% of shorebird observations, matching the peak in shorebird
observations in that range of water levels (as displayed in panel B). (B) The distribution of water levels is given for when shorebirds were observed in an image
(green bars). The total distribution of water levels is also shown (gray bars) for comparison. This comparison shows that shorebirds were mainly observed when
mean water levels ranged from 10 cm above the sediment surface to 10 cm below the sediment surface, although a wide range of water level ranges were
commonly observed (notably around 20 cm of water depth).
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are shown.
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macrofauna biomass.

Coordinating Editor: Stephen Murphy Received: 23 January, 2025; First decision: 1 April, 2025; Revised: 17
December, 2025; Accepted: 8 January, 2026

Restoration Ecology14 of 14

Managing water levels for shorebirds

 1526100x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/rec.70329 by W

ageningen U
niversity and R

esearch Facilitair B
edrijf, W

iley O
nline L

ibrary on [09/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1080/03078698.2007.9674358
https://doi.org/10.1080/03078698.2007.9674358
https://doi.org/10.1071/mu15045
https://doi.org/10.1111/j.1474-919X.1995.tb03225.x
https://doi.org/10.1111/jzo.1982.197.4.511
https://doi.org/10.1007/s10336-007-0240-3
https://doi.org/10.1111/j.0030-1299.2006.14403.x
https://doi.org/10.1016/j.ocecoaman.2013.07.010
https://cran.r-project.org/
https://doi.org/10.1007/bf03161430
https://doi.org/10.1007/bf03161430
https://doi.org/10.1038/ncomms14895
https://doi.org/10.1038/ncomms14895
https://doi.org/10.1675/063.046.0409
https://doi.org/10.1111/1365-2656.12301
https://doi.org/10.1111/fwb.70056
https://doi.org/10.1111/fwb.70056
https://doi.org/10.1016/j.scitotenv.2023.166768
https://doi.org/10.1016/j.scitotenv.2023.166768
https://doi.org/10.1002/2688-8319.12098
https://doi.org/10.1016/j.ocecoaman.2012.04.004

	Shorebird responses to fine‐scale water level fluctuations and macrofauna biomass in a newly constructed freshwater wetland
	Abstract
	Implications for Practice
	Introduction
	Methods
	Study Site
	Study Species
	Study Design
	Camera Trap Monitoring of Shorebird Numbers
	Monitoring Water Levels
	Determining Macrofauna Biomass
	Data Analyses—Image Processing Using Artificial Intelligence
	Data Analyses—Statistical Models

	Results
	Shorebird Numbers
	Macrofauna Biomass
	Relationship Between Shorebird Numbers, Water Level, and Macrofauna Biomass

	Discussion
	Methodological Challenges With AI Identification
	Water Level Management in Freshwater Wetlands

	Acknowledgments
	LITERATURE CITED
	SUPPORTING INFORMATION


