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ABSTRACT

Recent developments of higher-resolution and lower-latency reanalysis data allow mapping reference
evapotranspiration (ET,) over large areas in a near real-time manner. This study evaluates the ERA5,
AgERAS5 and GEOSS5 reanalysis datasets for meteorological input in Africa and Southwest Asia by
comparing between data products and with 174 in situ sites. The inter-comparison reveals non-
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stationary differences between datasets and highlights temporal inconsistencies in the GEOS5 data.

When evaluated against in situ measurements, GEOS5 demonstrates lower accuracy compared with ERA5
and AgERAS. Additionally, while all datasets accurately estimate air temperature and pressure, they
overestimate windspeed and solar radiation, and underestimate vapour pressure. The propagation of
uncertainty estimates of ERA5 through the FAO56 ET, equation shows particularly high uncertainty in the
tropics. This study emphasizes the importance of applying multiple uncertainty assessment methods for
better-informed use of reanalysis data, especially in data-scarce regions.

1 Introduction

In many regions across Africa and Southwest Asia, a high per-
centage of the population experiences water shortage and water
stress (Kummu et al. 2016). Climate change is projected to cause
further water stress (Lelieveld et al. 2012, Kusangaya et al. 2014,
Leal Filho et al. 2022), including regions with currently low
physical water stress, such as Eastern and Central Africa
(Adhikari et al. 2015, Abernethy et al. 2016). Agriculture, a key
sector in Africa and Southwest Asia, is especially vulnerable to
water stress, despite also being the largest consumer of water (de
Pauw 2005, Hejazi et al. 2023). Thus, just and sustainable water
management in agriculture is critically important for food and
water security in these regions. This requires hydrological and
meteorological information for estimating water demands and
consumption, which is often limited and unevenly distributed
over a vast land surface (Kusangaya et al. 2014).

In this context, estimating and mapping evaporation is
instrumental in informing decisions to respond to water stress
and ensure food security (Fisher et al. 2017). Evaporation is the
transfer of water from liquid form to vapour in the atmosphere,
which includes open water evaporation, soil water evaporation,
plant transpiration and evaporation from canopy interception.
This process is driven by the atmosphere’s capacity to evaporate
water when water is abundantly available, a concept introduced
as potential evapotranspiration (ET,) by Thornthwaite (1948).
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The term “potential” is sometimes confused with “reference” ET
as described by Hargreaves and Samani (1982, 1985) (Xiang
et al. 2020). However, these two terms need to be distinguished
to avoid confusion and improper application (Xiang et al. 2020,
Raza et al. 2022). The definition of PET lacks a strict definition
of the evaporating surface. Because of its ambiguous definition,
Allen et al. (1998) discouraged using the term PET when deter-
mining crop water requirement. Instead, reference ET (ET,) is
recommended, which is defined as the evapotranspiration rate
of a hypothetical reference crop surface (e.g. grass or alfalfa) with
uniform characteristics (i.e. surface albedo and crop height),
without any water shortage or biophysical stress. The guideline
to calculate ET,, as reported in the Irrigation and drainage paper
56 published by the Food and Agriculture Organization (FAO)
(Allen et al. 1998, Equation 6) is based on Penman-Monteith
equation, hereafter called FAO56. The FAO56 report also
provides a standard method to calculate crop water con-
sumption or actual ET (ET,) based on ET, values and crop
coefficients. The FAO56 method has been popularized and
applied extensively across multiple disciplines, especially
for determining crop water requirement and consumption
(Raza et al. 2022).

Almost all of the methods to calculate ET,, (as well as ET,),
including the FAO56 method, require data of at least some
meteorological variables that are often measured with standard
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weather stations, such as air temperature, pressure, humidity,
windspeed and solar radiation. Since some variables are not
always available, the FAO56 guideline provides alternative
equations to estimate missing meteorological variables (Allen
et al. 1998). Still, many regions lack weather stations, especially
Africa and Southwest Asia (van de Giesen et al. 2014, Dinku
2019). Therefore, mapping ET,, over large regions depends on
either interpolated gridded weather datasets or climate reana-
lysis data (Abatzoglou et al. 2018, Singer et al. 2021). At the
same time, the estimation of ET, aided by satellite
observations is also dependent on models and forcing inputs
(McCabe et al. 2017, Tran et al. 2023). Meteorological data are
therefore essential forcing inputs for both ET, and ET, calcu-
lations. Despite the increasing development and use of spatial
ET, data, there is limited understanding of the accuracy and
precision of these data, and how they are related to the uncer-
tainties of the meteorological input data.

Reanalysis is a compelling alternative to interpolated
gridded weather datasets for mapping ET,. Reanalysis is
data generated using data assimilation techniques to couple
numerical weather prediction (NWP) models with past
observations. Recent developments in atmospheric reanaly-
sis have greatly improved spatial resolution, notably the
fifth generation of the European Centre for Medium-
Range Weather Forecasts (ECMWF) atmospheric reanalysis
(ERA5) and its derived dataset AgGERAS5 (up to about
11 km resolution). In addition, the short latency of some
NWP models and data assimilation systems facilitates
operational near real-time monitoring of ET, and ET.,.
For example, the FAQO’s portal to monitor Water
Productivity through Open access of Remotely sensed
derived data (WaPOR) provides global daily ET, updated
within 3 days calculated using the Goddard Earth
Observing System version 5 (GEOS5) dataset, which has
a latency of less than a day (FAO 2024). However, Parker
(2016) forewarned that the reliability of reanalysis is
unclear due to partial understanding of the errors and
uncertainties in NWP models and thus advocated both
quantitative and qualitative assessment of uncertainties in
reanalysis data. The explicit and standardized quantifica-
tion of uncertainties in NWP models and input parameters
is often overlooked (Wang et al. 2024b). For example,
Wang et al. (2024b) emphasized that uncertainties in
cloud optical thickness, aerosol optical depth and ozone
significantly impact solar radiation estimates, a key input
for ET, and ET, calculation. Lang et al. (2024) demon-
strated that coarse-resolution reanalysis data can introduce
substantial errors in solar radiation estimates, due to
mixed-pixel effects, especially under cloudy conditions
(Wang et al. 2024a).

Since the sensitivity of ET, models to errors in meteorolo-
gical forcing varies with different models, space and time
(Fisher et al. 2017), it is important to analyse uncertainty in
each ET, model when using reanalysis data. Furthermore,
climate reanalysis and reanalysis-based evaporation estimates

are increasingly used to study hydrological processes, which
may lead to errors in these estimates being amplified and
misinterpreted in hydrological studies. This necessitates
a comprehensive review and description of both evaporation
retrieval models and their forcing components (McCabe et al.
2017). The reliability of ET,, calculated using particular reana-
lysis datasets has been investigated, mainly in southern Europe
and China (e.g. Martins et al. 2017, Ippolito et al. 2024, Xu
et al. 2024) where past weather observations for reanalysis are
more available than in other parts of the world (Bronnimann
et al. 2018, Soci et al. 2024). For instance, in Africa and
Southwest Asia, where weather observations are scarce, the
reanalysis data quality is largely unknown as well as the impact
of the meteorological uncertainty on ET,, calculations.

The objective of this article is therefore, to assess the uncer-
tainty of meteorological forcing from reanalysis products
(namely GEOS5, ERA5 and AgERAS5) and the resulting uncer-
tainty in ET,, over Africa and Southwest Asia regions. In this
study, we focused on ET,, since the definition and calculation
of ET, depends only on meteorological forcing. However, we
also extend our discussion to the impact of uncertainty in
meteorological forcing on ET, estimation where relevant.

2 Materials and methods

In this study, we assessed the uncertainty of three reanalysis
data products (GEOS5, ERA5, AgERA5) for five meteorologi-
cal inputs in the FAO56 ET, calculation: air temperature,
atmospheric pressure, windspeed, vapour pressure and solar
radiation for a five-year period (from 2018 to 2022). Our
assessment entails three components: uncertainty between
products, nominal accuracy and quantitative impact of uncer-
tainty in inputs on ET, (Fig. 1). The uncertainty between
products was assessed by spatial and temporal pair-wise com-
parison. The nominal accuracy' was assessed by comparison
with time-series data from in situ measurements. Finally, the
impact of uncertainty in inputs on ET, was assessed by two
error propagation methods (Monte Carlo simulations and
Taylor expansion).

2.1 Study area and in situ data

This study covers the land mass of Africa and Southwest Asia
(30°S-60°N, 40°W-40°E) with a wide range of climates from
arid to tropical (Fig. 2). About half of the study area is arid
desert in the North Africa and Southwest Asia regions. There
are a few climate monitoring networks that cover only frac-
tions of the study area. The Trans-African Hydro-
Meteorological Observatory (TAHMO) is an initiative that
has successfully extended a network of meteorological and
hydrological stations in sub-Saharan Africa (van de Giesen
et al. 2014). Currently, TAHMO provides hydro-
meteorological measurements from the largest number of sta-
tions in the region of interest.

In situ climate data were collected from 174 TAHMO
stations (Fig. 2 and Table S3, see Supplementary material).

"The result from comparison with in situ measurement is considered nominal accuracy since in situ measurements also have errors and do not necessarily present true

values of the grid cells due to spatial scale mismatch.
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Figure 1. Schematization of the methodological framework. Collected reanalysis data (GEOS5, AGERA5 and ERA5) were resampled and processed for spatio-temporal
pair-wise comparison to calculate difference between products, which represents uncertainty between products. Time-series were extracted at grid cells for
comparison with in situ measurements, to calculate performance metrics, which represent nominal accuracy. The ensemble spread of ERA5, which represents
uncertainty within ERA5 product, was used to propagate errors in FAO56 reference evapotranspiration (ET,) calculation using Monte Carlo and Taylor expansion

methods.
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Figure 2. Climate classification map of study area and the locations of in situ observations. Data source: TAHMO, Koppen—-Geiger map (Beck et al. 2023). Base map:

Natural Earth NE1_50M_SR_W.

Table S1 (see Supplementary material) shows the distribu-
tion of TAHMO stations by climate classes. The dataset
includes hourly measurement of standard meteorological
variables (i.e. air temperature, relative humidity, wind
speed and direction, solar radiation and atmospheric pres-
sure) from ATMOS 41 sensors (METER 2023). Daily mean

air temperature (°C), relative humidity (%), wind speed at
2 m (m s™'), air pressure (mbar) and solar radiation
(W m™) were computed by averaging hourly data
(TAHMO 2023).

The quality of in situ data varies and depends on the
accuracy specification of sensors (see Supplementary material,
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Table S2), sensor performance and operation continuity. We
acquired data from stations with the best quality flags provided
by the TAHMO quality control procedure (van de Giesen et al.
2014). Quality control procedure for TAHMO stations is
extended from the procedures in the Oklahoma
Mesonetwork (Shafer et al. 2000). TAHMO employs both
automated and manual methods to ensure data quality, includ-
ing tests for range, sensor accuracy, climate condition, tem-
poral changes, dips and spikes, changes in variance (Annor
2023, p. 125). In addition, we evaluated the quality and integ-
rity of the acquired dataset by visually checking the timeseries
of each climatic variable at each station.

2.2 Reanalysis data

2.2.1 Datasets description
We selected and retrieved data for a study period of 5 years
from 1/1/2018 to 31/12/2022, which we considered a sufficient
sample of daily values for analysing spatio-temporal pattern of
data uncertainty (1826 data points per time-series). This is also
the period for which we have access to TAHMO climate data.
The hourly GEOS5 and ERA5 data and daily AgGERAS5 data
were retrieved from the sources that are provided in Table 1.
GEOS5 stands for the Goddard Earth Observing System
version 5, a global atmospheric model, developed by the
NASA Global Modelling and Assimilation Office (GMAO)
(Rienecker et al. 2008). The GEOS Data Assimilation System
is the integration of GEOS5 Atmospheric General Circulation
Model and the Gridpoint Statistical Interpolation Analysis
(Rienecker et al. 2008). GMAO runs the GEOS Forward
Processing stream, which generates both forecasts and assim-
ilation products. The meteorological variables from the time-
average 1-hourly data, 2-dimensional, single-level* atmo-
spheric state variables (tavgl_2d_slv_Nx) and radiative fluxes
(tavgl_2d_rad_Nx) data products were retrieved. The GEOS5
dataset includes the following variables: hourly air temperature
at 2 m (K), northward and eastward components of wind at
10 m (m s™'), specific humidity at 2 m (kg kg™'), sea level
pressure (Pa), surface pressure (Pa) and surface incoming
shortwave flux (J m™2 h™!). The GEOS5 system derives air
pressure at surface level from mean sea level pressure using

the United States Geological Survey’s 1-km Global Elevation
(GTOPO30) raster data (Rienecker et al. 2008).

ERAS is the fifth generation of the ECMWF atmospheric
reanalysis of the global climate. ERA5 is generated by combin-
ing the model forecasts from the Integrated Forecasting
System Cy41r2 with vast amounts of historical observations
using the 4D-Var assimilation scheme (Hersbach et al. 2020).
ERAS5 provides data products for several climate variables at
137 pressure levels from the surface up to 80 km. In this study,
the ERA5 hourly data on single levels (Hersbach et al. 2023)
was retrieved from ECMWF’s Climate Data Store (CDS). The
ERAS5 dataset includes the following variables: hourly 2 m
temperature (K), 2 m dewpoint temperature (K), 10 m v-com-
ponent and u-component of wind speed (m s'), mean sea
level pressure (Pa), surface pressure (Pa) and surface solar
radiation downwards (J m™> h™!). ERA5 surface pressure was
computed using surface elevation data interpolated from the
Shuttle Radar Topography Mission Digital Elevation 30 m data
(SRTM30) combined with other surface elevation datasets
(ECMWEF, 2023a).

AgERAS5 comprises agrometeorological indicators derived
from reanalysis, providing input needed for most crop growth
models. Daily AGERAS data is produced by aggregating ERA5
to daily time steps at the local time zone and downscaling
towards a finer topography at a 0.1° spatial resolution. The
ERAS5 data was corrected using regression equations that were
calibrated with the ECMWF’s operational high-resolution
atmospheric model (HRES) for each variable and grid
(Boogaard et al. 2020). AgERA5 provides data products for
12 agro-meteorological variables at the surface level and daily
timestep. The AgERAS5 dataset was collected from ECMWF’s
CDS, which includes the following variables: daily 2 m tem-
perature (K), 2 m dewpoint temperature (K), 10 m wind speed
(m s7!) and solar radiation flux (J m™2d™).

2.2.2 Reanalysis data pre-processing

Prior to our analyses, we applied a pre-processing proce-
dure on the retrieved reanalysis data products to ensure
consistency among variables and units for accurate com-
parisons. Simple linear temporal and spatial aggregation
were applied to achieve the same resolution for comparison
of different input datasets. For spatial and temporal

Table 1. Spatial and temporal resolution of the three reanalysis datasets used in the study. The specific data products were acquired from the data source given in

parentheses.

Dataset name Spatial resolution Temporal resolution

Product name (data source)

GEOS-FP tavg1_2d_slv_Nx
(https://opendap.nccs.nasa.gov/dods/GEOS-5/fp/0.25_deg/assim/tavg1_2d_slv_Nx.info)

GEOS-FP tavg1_2d_rad_Nx
(https://opendap.nccs.nasa.gov/dods/GEOS-5/fp/0.25_deg/assim/tavg1_2d_rad_Nx.info)

ERA5 hourly data on single levels from 1940 to present
(https://doi.org/10.24381/cds.adbb2d47)

(Hersbach et al. 2023)

GEQS5 0.31° x 0.25° hourly
(~30 km at the equator)

ERA5 0.25° x 0.25° hourly
(~28 km at the equator)

AgERA5 0.1° x 0.1° daily

(~11 km at the equator)

Agrometeorological indicators from 1979 to present derived from reanalysis
(https://doi.org/10.24381/cds.6¢68c9bb)

(Boogaard et al. 2020)

2In the context of climate reanalysis, single level data includes variables measured or modelled close to the surface.


https://opendap.nccs.nasa.gov/dods/GEOS-5/fp/0.25_deg/assim/tavg1_2d_slv_Nx.info
https://opendap.nccs.nasa.gov/dods/GEOS-5/fp/0.25_deg/assim/tavg1_2d_rad_Nx.info
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.6c68c9bb

comparison, we analysed meteorological variables at the
coarser resolution of the data products to avoid introdu-
cing errors due to spatial downscaling and elevation cor-
rection. Reanalysis data was converted to the same unit as
in situ data.

The average windspeed at 10 m is derived from the wind-
speed components collected from ERA5 and GEOS5:

Uy = |/ Uox? + toy? (1)

where ) is wind speed at 10 m (m s, u1gy is 10 m eastward
wind or u-component (m s7!) and uygy is 10 m northward
wind or v-component (m sh.

The wind speed at 2 m was estimated from reanalysis wind-
speed at 10 m using the logarithmic wind speed profile (Allen
et al. 1998, Eq. 47):

4.87

In(67.8 x z — 5.42) @

Uy = Ujo

where u;y wind speed at 10 m (m sY), up wind speed at 2 m
(m s™") and z = 10 m is the height at which wind speed is
calculated.

Notably, the reanalysis datasets do not have relative humid-
ity except for AGERAS. Therefore, we compared vapour pres-
sure derived from ERA5 and AgERA5 dew-point temperature
and from GEOS5 specific humidity, which is required for the
calculation of ET,. The calculation of vapour pressure from
specific humidity is:

qv P
£

€q = (3)
where e, is vapour pressure (kPa), g, is specific humidity
(kg kg™), P is air pressure (kPa) and e is the ratio of molecular
weight of water to dry air (¢ = 0.622).

The saturation vapour pressure at actual temperature was
calculated following Allen et al. (1998, Eq. 11):

(4)

es(T) = 0.6108 exp( 17271 )

T +237.3

where e,(T) is saturated vapour pressure (kPa) at the actual air
temperature (°C).

The actual vapour pressure e, (kPa) equals the saturated
vapour pressure ¢, at the dewpoint temperature Ty (°C):
e, = e5(Tq). Therefore, the saturated vapour pressure was cal-
culated by substituting T4 from reanalysis data for T in
Equation (4) following Allen et al. (1998, Eq. 14).
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For in situ dataset, vapour pressure was derived from
minimum and maximum relative humidity following Allen
et al. (1998, Eq. 17) since dew-point temperature was not
available:

es(Tmin) X Rb o + es(Tmax) X Rbons

e, = 100 : 100 (5)

where RH iy is daily minimum relative humidity (%), RHmax
is daily maximum relative humidity (%) and e,(T) is the
saturation vapour pressure (kPa) at the same temperature (T).

2.3 Spatial and temporal pair-wise comparison

The uncertainty between products was assessed by pair-wise
comparison. Before that, we aggregated hourly reanalysis data
to daily, daily to monthly, and monthly to yearly by arithmetic
averaging. The higher-resolution datasets (GEOS5 and
AgERA5) were resampled to the spatial resolution of ERA5
to ensure that all datasets represent the same level of detail,
allowing for an unbiased comparison. For spatial comparison,
we computed the yearly average of the differences between
each pair for mean air temperature at 2 m, wind speed at 10 m,
vapour pressure and solar radiation. For atmospheric pressure,
we compared the pressure at sea level and the pressure at
surface originally retrieved from GEOS5 and ERA5. Since the
AgERAS dataset does not include data of air pressure, it was
excluded from air pressure comparison. For spatio-temporal
comparison, we used the latitude-time Hovmoller diagrams of
monthly average maps (Hovmoller 1949), which helps visually
detect seasonal anomalies or any dynamics of the discrepancy
between datasets.

2.4 Comparison with in situ data and performance
metrics

The nominal accuracy of reanalysis data was evaluated by
comparison with in situ measurements. Daily time-series of
air temperature, air pressure, windspeed at 2 m, vapour
pressure and solar radiation were extracted from the rea-
nalysis datasets at the grids containing observation stations.
The performance metrics we used to validate reanalysis
data against in situ data include the coefficient of determi-
nation (r%); the root mean square error (RMSE), the bias
and the relative bias (PBIAS) (Table 2). The r* metric is the
square of Pearson correlation coefficient, which measures
how well the variables from in situ data are correlated to
the temporal variation of variables derived from reanalysis

Table 2. Performance metrics used to validate the reanalysis data with in situ observations. For all equations, x represents the value from reanalysis product,

y represents the value from in situ data and i represents the time step.

Evaluation metrics Formula Unit Value range Best value
Coefficient of determination o [Z;(Xﬁx)(yﬁy)]z _ [0,1] 1
(2 ") (320, 0r9))
BIAS " (i—y) Same unit as x and y (-00, +00) 0
BIAS = ,—21 s
PBIAS PBIAS = 845 x 100 % (o0, +o0) 0
Root Mean Square Error (RMSE) ) Same unit as x and y [0, +e0) 0

RMSE =
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products. The bias measures mean residuals, while the
RMSE measures the root mean square difference between
reanalysis and in situ data. These metrics are widely used
in in situ validation of earth observation data (Mayr et al.
2019, Tran et al. 2023).

2.5 Error propagation methods

We analysed the impact of uncertainty in ET,, propagated from
the meteorological inputs from reanalysis on ET, by applying
error propagation methods in the FAO56 calculation of ET.,.
We applied and compared the Monte Carlo (MC) method with
the Taylor method.

The MC method is a statistical approach to estimate the
uncertainty in a complex mathematical model by perform-
ing random sampling. It entails randomly simulating
inputs based on known or assumed probability distribu-
tions, applying these inputs to the model, and deriving the
uncertainty and variability from the resulting outputs. The
MC method is well-suited for non-linear functions and
models with multiple variables. However, it can be compu-
tationally expensive and time-consuming when a large
number of simulations are needed to obtain accurate esti-
mates of the probability distribution.

The Taylor method is based on the theory of error
propagation, which applies the Taylor expansion for linear
approximation of non-linear functions (Taylor 1997). The
main advantages of using the Taylor method are efficient
computation and the analytical form of the variance of the
output error. However, when the operation g(-) is strongly
non-linear or involves many inputs, like the ET, calcula-
tion, the approximation error may increase and computa-
tional efficiency may decrease (Heuvelink 1998, p. 43).
Therefore, comparing the Taylor method and the MC
method can provide more insights to guide future applica-
tions of ET, error propagation. Our intention was to eval-
uate whether the Taylor method can be an alternative to
the MC method for operational ET, uncertainty
estimation.

2.5.1 Calculation of FAO56 reference evapotranspiration
The daily ET, (mm d™) was calculated following the FAO56
Penman-Monteith equation for reference crop following the
procedure described by Allen et al. (1998):

~ 0.408A(R, — G) + YT sz Wa(es — )

A+ (1 +0.34u,) (6)

o =

where A is the slope of saturation vapour pressure curve
(kPa °C™"), R, is the net radiation at the reference crop
surface (M] m™> d7'), G is the soil heat flux density
(MJ] m™2 d7!) assumed to be zero for day period, Tmean is
the daily mean air temperature (°C), y is the psychrometric
constant (kPa °C™), e, is saturation vapour pressure (kPa),
u, is daily average wind speed at 2 m (m s™') and e, is
actual vapour pressure (kPa). Tpean was calculated as the
average of minimum and maximum air temperature (Tmin
and Thpax):

Tmin + Tmax
= 7
3 (7)

Tmean

The slope of saturation vapour pressure curve (A) was calcu-
lated following Allen et al. (1998, Eq. 13). The psychrometric
constant (y) was calculated following Allen et al. (1998, Eq. 8).

The net radiation (R,) was calculated by subtracting the net
longwave radiation (Rp;) from the net shortwave solar radia-
tion (Rp):

Rn = Rns - Rnl = (1 - “)Rs - Rnl (8)

where a = 0.23 is surface albedo for the hypothetical grass
reference and R; is the incoming solar radiation from reana-
lysis data (M] m™ d7!). was calculated following Allen et al.
(1998, Eq. 39):

[(Tmin +273.16)* + (Toax + 273.16)4]
Rnl =0
2
R
x (0.34 — 0.14,/2;) x <1.35R— - 0.35) 9)

SO
where 0 = 4.903-107° MJ K™* m™2 d™" is Stefan-Boltzmann
constant, (0.34 — 0.14\/5) and (1.35};—? — 0.35) are correc-

tion terms for air humidity and cloudiness respectively and Ry,
is the clear-sky radiation (M] m~2 d7) calculated from the
extraterrestrial radiation R,, which was, in turn, calculated
following Allen et al. (1998, Eq. 21).

2.5.2 Uncertainty estimation of reanalysis datasets

Since only the ERA5 data product comes with uncertainty
estimation, we focused on the propagation of ERA5 data
uncertainty estimates in the FAO56 ET, calculation. The
uncertainty estimates of the ERA5 data product was produced
by ECMWF by sampling from 10 underlying ensemble mem-
bers every 3 hours (ECMWF 2023b). This uncertainty estima-
tion addresses mostly random errors in the observations and
sea surface temperature model parameterization. The esti-
mates are closely related to the uncertainty of the assimilated
observations, which have evolved considerably over time. The
ERAS5 uncertainty estimates vary in different zones due to the
uneven distribution of measurements that are used to correct
the forecasting model through data assimilation. However, the
systematic errors were not addressed and not correlated to the
computed uncertainty estimates (ECMWFEF, 2023b).

The mean and spread (standard deviation) of the ERA5
ensemble (see Supplementary material, Fig. S1) were
retrieved from ECMWPF’s CDS (Hersbach et al. 2023). We
considered each meteorological variable as a quantitative
spatial attribute A(-) = {A(x)|x € D} where D is the domain
of interest in a 3-dimensional space (longitude-latitude-
time). Then, A(x) is the value of A(-) at a certain point in
time and space. An error model of that variable was
assumed:  A(x) =b(x) + V(x),  where  b(x) is
a deterministic function of x, and A(x) and V(x) are random
variables (Heuvelink 1998, p. 10). We assumed that V(x)
were the random errors that follow a normal distribution
N (u, 0*), where u is the mean (equal to zero) and o is the
variance. Instead of assuming an error model for o(x), we
utilized the hourly ensemble spread o(x) at each ERA5 grid,



which presents the temporal and spatial variability of errors,
the covariance of meteorological variables and
autocorrelation.

2.5.3 Monte Carlo method
The Monte Carlo (MC) method was applied to propagate the
random errors from the aforementioned five meteorological
variables to ET,. Since each daily output ET, map is computed
from the five input maps A;(-)(i =1,...,5), the output ET,
maps are also random functions: U(:) = g(A:(+),...,As()),
where g(-) is the FAO56 ET, calculation. The MC method
randomly samples N sets of realizations a;j(x)(j = 1,...,N)
from the distribution of A;(x) described by the daily ERA5
ensemble mean and standard deviation maps. For each set of
realizations, an ET, map uj(x) = g(a1j(x),...,asj(x)) was
calculated. The error of ET, was estimated by calculating the
statistics of N outputs #;j(x), including standard deviation
normalized with mean values (0y,0:m), and percentiles.
Although the MC method can generate the entire distribu-
tion of uj(x), the level of accuracy may be arbitrary depending
on the method of the random generator and number of simu-
lations. Since the efficiency of MC method is proportional to
VN (Heuvelink 1998, p. 106), we experimented with
N between 100 to 10,000 (10 times less efficient) to assess the
impact of N on the results. Due to the computational burden of
random sampling, we employed Latin-Hypercube sampling
(LHS) (Stein 1987, Lee et al. 2014) to improve computational
efficiency.

2.5.4 Taylor method

For implementing the Taylor method, we utilized the Python
package uncertainties (Lebigot 2017) to facilitate the calcula-
tion of derivatives. For that, we defined the daily ensemble
mean and ensemble spread of ERA5 reanalysis products as the
nominal mean and standard deviation of uncertain arrays
(uncertainties.unumpy.uarray) for each meteorological vari-
able. The uarray objects of each meteorological variable were
used directly as inputs in each equation in the FAO56 ET,
calculation procedure to estimate the uncertain arrays of daily
ET, over the study area. The advantage of this step-wise
calculation is that we can analyse also the propagated errors
of intermediate variables, such as y and R,,.

3 Results and discussion
3.1 Spatio-temporal comparison of reanalysis datasets

The scatterplots of meteorological variables show that all pro-
ducts are well correlated grid by grid (Fig. 3). The correlation
between paired datasets for air pressure, air temperature and
vapour pressure are very high (0.97 to above 0.99). Meanwhile,
windspeed (0.85-0.94) and solar radiation (0.82-0.98) show
slightly lower correlation, especially between GEOS5 and other
two products. The data points in the scatterplot exhibit the
largest spread for solar radiation, followed by windspeed,
vapour pressure, air temperature and air pressure. The highest
correlation in the three pairs is between AgERA5 and ERAS5
(Fig. 3(a, d, g, j)), which is expected since AGERAS5 is derived
from ERAS5. However, the comparison between AgERAS5 and
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ERA5 shows the largest mean bias of air temperature
(-0.41°C) and windspeed (0.14 m s ") among three pairs
(Fig. 3(a, d)).

The difference between datasets varies with location
(Fig. 4). In case of air temperature, the largest difference
between AgERAS5 and ERAS5 can be seen in areas with variable
elevation (e.g. the Great Rift Valley and the Iranian highlands)
(Fig. 4(a) and Fig. S3a, see Supplementary material). This can
be explained by the fact that an elevation correction using
vertical lapse rate is applied to derive AGERA5 from ERA5
(Boogaard et al. 2023). GEOS5 air temperature is lower near
the equator, while it is higher at mid-latitude when compared
with both ERA5 and AgERAS5 (Fig. 4(b, ¢)).

The difference between AgERA5 and ERA5 windspeed is
close to zero in the majority of the grid cells, and slightly
negative near the coastline and mountainous areas (Fig. 4
(d)). This is likely due to the topographical correction algo-
rithm of AgGERA5. Compared with GEOS5, both AgGERAS5 and
ERA5 show greater windspeed below the Sahel, in Iran and in
Southern Africa and lower windspeed in the Sahara and Congo
rainforest, with differences up to 3 m s~ (Fig. 4(e, 1)).
Moreover, the difference between the products over the
Congo rainforest increases below the equator. Given that
GEOS5 is prone to a larger error (Rienecker et al. 2008,
p. 25) and ERA5 exhibits lower uncertainty (see
Supplementary material, Fig. S1) in the southern hemisphere,
the larger difference between the two products is likely due to
the errors in GEOS5.

In the case of vapour pressure, the difference between
products is greater in the middle range (between 20 and
25 mbar) (Fig. 3(g-i)). The difference between AgERAS5 and
ERAS is slightly positive over the majority of the area (lower
than 2 mbar) and greater in Western Africa and the coastline
of the Red Sea (Fig. 4(g)). The difference in vapour pressure
between GEOS5 and ERAS5 is highest among the three pairs.
GEOSS5 vapour pressure is found to be higher than ERA5 and
AgERAS5 in the Sahel and Congo rainforest, but lower in the
Ethiopian highlands (Fig. 4(h, i)).

GEOS5 estimates higher solar radiation values than do
ERA5 and AgERAS5 in the humid tropical parts of Western
and Central Africa (10°S-20°N, 0°-30°E), and lower over the
rest of the continent (Fig. 4(k, 1)). Although AgERAS5 is derived
from ERAS, it shows slightly lower solar radiation values than
ERAS5 in most areas, except for the mountainous areas around
Lake Victoria and Ethiopia (Fig. 4(j)). This is likely due to the
topographic correction used for AgGERAS.

When comparing air pressure at the surface, ERA5 and
GEOS5 exhibit greater similarity than for other variables
(Fig. 3(m)). Differences between the two products are primar-
ily observed in regions with high elevation and coastlines
(Fig. 4(m)). However, these differences appear to be random
and only present in a small number of grid cells, which does
not affect the overall correlation. The difference between the
two datasets for air pressure at the surface is much smaller than
the difference in air pressure at sea level (see Supplementary
material, Fig. S2), which underlines the effect of topographical
correction of air pressure for both datasets.

The differences between the datasets vary seasonally, espe-
cially for air temperature, vapour pressure and solar radiation
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Figure 3. Comparison of mean annual air temperature, windspeed, vapour pressure, solar radiation and air pressure at the surface from ERA5, AgERA5 and GEOS5 for
the period 2018-2022. The scatterplots show the correlation between each pair of two datasets (column) for each meteorological variable (row). The performance
metrics (%, RMSE, BIAS, PBIAS) and linear regression coefficients were calculated grid-wise by reshaping mean annual 2-dimensional arrays into 1-dimensional series,

showing the spatial correlation between two products.

(Fig. 5). The highest discrepancy in air temperature between
the GEOS5 and ERA5 or AgERAS5 products occurs between
May and July (up to 2°C). Moreover, during these months, the
differences of air temperature near the equator are larger than
the other months. In the case of vapour pressure, the largest
difference between GEOS5 and the other two products occurs
between May and July below the equator and between July and
September above the equator. The vapour pressure difference
shows a seasonal pattern aligning with air temperature differ-
ences, but it has an inverse relationship - positive air tempera-
ture differences correspond to negative vapour pressure

differences, and vice versa. The difference in solar radiation
between GEOS5 and the other two products also varies sea-
sonally. From June to October, GEOS5 provides higher solar
radiation values, whereas for the rest of the year, GEOS5 values
of solar radiation are lower below the equator. In the case of
windspeed, the latitudinal pattern of differences between the
products is mostly consistent throughout the year. The differ-
ence in air pressure at the surface is also very low (<5 mbar)
and not seasonally variable.

The time-series of air temperature, windspeed and vapour
pressure difference between GEOS5 and the other two datasets
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Figure 4. Mean annual difference of air temperature, windspeed, vapour pressure, solar radiation and air pressure at the surface from ERA5, AGERA5 and GEQOS5 for the

period 2018-2022.
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Figure 5. Hovmoéller diagrams showing the monthly and latitudinal variation of mean difference in air temperature, windspeed, vapour pressure, solar radiation and air
pressure at the surface between GEOS5, AGERA5 and ERAS5 for the period 2018-2022.

show a shift in pattern from March 2020 (Fig. 6). This shift also
coincides with an increase in the spatial difference between the
data products, where GEOS5 air temperature becomes even
lower near the equator and higher at mid-latitude compared
with ERA5 and AgERAS5. After the shift, the difference in
windspeed between the data products becomes more positive
in the tropics (between 20°N and 20°S), where the values of
GEOS5 become smaller than ERA5 and AgERAS5. In the case
of vapour pressure, this shift causes GEOS5 values to become
lower than ERA5 and AgERA5 between 10°S and 10°N. For
other latitudes, the shift has less impact on vapour pressure
differences.

According to the notices from Global Modelling and
Assimilation Office (GMAO), the developer of GEOS5, the
GEOS-FP model was updated on 7 April 2020. This upgrade
introduced two changes that addressed (1) a bias in the heating
tendency within the stratosphere and (2) errors in the diag-
nostics of convective mass flux (GMAO, 2020). Although it
was not clearly mentioned how this upgrade affected each
variable in the final data product, the shift observed in Fig. 6
suggests that these changes might have caused the temporal
inconsistency of the reanalysis datasets. The Hovmoller plots
for solar radiation and air pressure at the surface do not show
any discernible shift between GEOS5 and the other two
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Figure 6. Hovmoller diagrams showing the temporal and latitudinal variation of mean difference in air temperature, windspeed, vapour pressure, solar radiation and air
pressure at the surface between GEOS5, AGERA5 and ERAS5 for the period 2018-2022.

products. Since GEOS5 derives solar radiation data from the
tavgl_2d_rad_Nx product and other variables originate from
tavgl_2d_slv_Nx, the discrepancy suggests a systematic
change within the GEOS5 model that specifically affects the
tavgl_2d_slv_Nx product.

3.2 Comparison with in situ measurements at TAHMO
sites

In terms of nominal accuracy, the comparison with TAHMO

stations shows that all datasets exhibit comparable

performance (Fig. 7). ERA5 and AgERAS5 show slightly better
performance metrics than GEOS5 (Fig. 7 and Table S4, see
Supplementary material). AgGERAS5 performs slightly better
than ERA5 for all variables, except for vapour pressure.
Among the five variables, reanalysis datasets perform best for
air pressure at surface and air temperature, showing bias close
to zero and high correlation. Meanwhile, the nominal accuracy
for windspeed, vapour pressure and solar radiation is much
lower. In general, all three datasets overestimate windspeed
and solar radiation, and underestimate vapour pressure. In the
case of windspeed and solar radiation, the reanalysis datasets
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Figure 7. Performance metrics of meteorological variables from reanalysis datasets (indicated by different colours) compared with measurements at 174 TAHMO sites.
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show very low correlation (r* < 0.5) at almost all stations. Some
outlier stations have windspeed PBias up to —200%, while solar
radiation PBIAS is up to +100%. For vapour pressure, the
correlation between reanalysis and in situ data is similar to
air temperature (r* > 0.6), although PBIAS is generally from
—5% to —10%. The overestimation of windspeed and solar
radiation, and the underestimation of vapour pressure derived
from dew-point temperature is also observed in validation
studies of other reanalysis data in Iran (Radmanesh et al.
2023), Spain and Portugal (Martins et al. 2017) and China
(Xu et al. 2024).

Figure 8 shows the spatial variability of the average r* at
the TAHMO sites, averaged over the three reanalysis

datasets. The maps for RMSE, BIAS and PBIAS are
shown in Figs. S4-6 (see Supplementary material).
Overall, the area with the best performance is Southern
Africa, with fewer stations covering a smaller surface area.
The other two areas have a lower performance, due to their
complex topography (Eastern Africa) and proximity to the
coast (Western Africa). These observations are aligned with
findings from validation of reanalysis datasets in other
regions (Pelosi et al. 2020, Pelosi and Chirico 2021). In
the case of air temperature and vapour pressure, the aver-
age r* of the reanalysis datasets shows a decreasing pattern
towards the coastline, which is not observed for solar
radiation, air pressure and windspeed.
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3.3 Comparing the uncertainty of reanalysis from
multiple assessments

The uncertainties associated with the meteorological variables
from the reanalysis datasets were assessed by different
approaches. The uncertainty estimates from the ERA5 ensem-
ble represent the random errors within ECMWF’s NWP model
and its data assimilation system. Meanwhile, the discrepancy
between different reanalysis datasets indicates the relative
errors between the different NWP models. The performance
metrics calculated using in situ measurements as reference
indicate the nominal accuracy of the reanalysis data. Here,
we compare and discuss the findings from the three
approaches to identify commonalities.

The uncertainty estimates for the ERA5 reanalysis show
that all variables have the largest ensemble spread between
May and September, especially around 20°N (see
Supplementary material, Fig. S1). The seasonal variability of
the discrepancy between reanalysis datasets is also higher
between May and September, but only for air temperature
and between the equator and 20°S (Fig. 5). While ERA5 has
a larger ensemble spread in the northern hemisphere than in
the southern hemisphere in general, the differences between
the reanalysis products do not show the same pattern. This
spatial variability between products is more aligned with the
reported errors from the GEOS5 NWP initial estimates and

assimilated observations for wind and humidity, which is
larger in the southern hemisphere than in the northern hemi-
sphere (Rienecker et al. 2008, p. 25). Unfortunately, the
GEOS5 data products do not include uncertainty estimates
or quality indicators for quantitative analysis.

The spatial variability of the ERA5 ensemble spread is
different for each variable (see Supplementary material, Fig.
S1). Air temperature has the largest yearly average uncertainty
estimates in the tropics. Dew point temperature and wind
component speed are most uncertain in the Sahara and semi-
arid Southern Africa and air pressure in Central Africa (see
Supplementary material, Fig. S1). The discrepancy between the
datasets also tends to be higher in the tropics for air tempera-
ture (Fig. 4). However, for vapour pressure and windspeed, the
discrepancy is higher in the Congo rainforest and below the
Sahel.

The spatial difference between ERA5 and AgERAS is
mainly observed in mountainous and coastal areas. This is
likely because AgERA5 is derived by calibrating ERA5 data
with ECMWF’s operational high-resolution atmospheric
model (HRES). According to Boogaard et al. (2023), the great-
est enhancements of AgERA5 compared with HRES are
observed at grid points situated in mountainous regions or
along coasts and lakes, improved particularly for the variables
of temperature, humidity and windspeed. However, AGERA5
data is still limited by the accuracy of the HRES operational
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model, since it is assumed that HRES represents actual condi-
tions the best. The performance metrics at coastal stations (see
Supplementary material, Fig. S7) show AgERA5 performs bet-
ter for windspeed, but worse for air temperature, and the same
for solar radiation and vapour pressure in comparison with all
stations (Fig. 7). In case of stations at elevations higher than
1000 m (see Supplementary material, Fig. S8), the performance
metrics of AgERA5 relative to ERA5 are not much improved
compared with all stations.

3.4 Propagation of reanalysis error in reference
evapotranspiration calculation

The ET,, uncertainty estimated using the Taylor method shows
the exact same spatial and temporal pattern compared with the
MC method (Fig. 9). However, it overestimates the normalized
standard deviation up to about 20% in the Sahara, especially in
the summer months (Fig. 9). In areas with a high uncertainty
of ET,, such as the west coast of Central Africa, the Taylor
method shows better agreement with the MC method
(normMC/Onormt =~ 1). The MC simulation result with N =
500 realizations were found to be optimal, as they provided
similar outcomes to simulations with larger sample size, while
significantly reducing computational time, which is slightly
more than using the Taylor method (see Supplementary mate-
rial, Fig. S9).

The advantage of the MC method is that a probability
density function (PDF) and confidence interval can be
estimated from the sampled realizations. Daily ET, was
calculated for 500 MC simulations of ERA5 meteorological
inputs by Latin-Hypercube sampling (LHS). From the
ensemble of ET,, the standard deviation () and 90% con-
fidence interval of the ET, values were estimated for each
grid cell. Figure 10 shows the spatial and temporal varia-
tion of the estimated ET, uncertainty. The Sahara shows
the highest standard deviation (mm d~') but a relatively
lower normalized standard deviation (0norm) compared
with other regions. This is likely due to higher ET, values
in the Sahara (Fig. 10 Area [1]). The tropics shows a high
Onorm> €specially at the west coast of Central Africa (Fig. 10
Area [3]) and the Congo rainforest (Fig. 10 Area [4]). The
time-series of 90% confidence intervals shows that this high
uncertainty is consistent throughout the years for these
regions (Fig. 10). Meanwhile, for other regions, the esti-
mated uncertainty varies with season (Fig. 10 Area [1] and
Area [2]).

Since the month of June is where the MC method and the
Taylor method show the largest difference in estimated
Onorm (Fig. 9), we compared the PDF of the MC samples to
a normal distribution N (y, 0?) characterized by the y and o
obtained from the Taylor method on one day of June
(Fig. 11). In general, the PDF obtained from the MC method
fits quite well with the normal distribution obtained from
the Taylor method, even when the ET, model involves
a non-linear combination of input variables. At locations
where the normal distribution 1is rejected by the
Kolmogorov-Smirnov test, the Q-Q plot and histogram
show that the largest discrepancy is observed in the tail

quantiles, where ET, is extremely low (Fig. 11 location [1]
and [3]). This suggests that while the Taylor method pro-
vides a reasonable estimate of the PDF for the central part of
the ET, values range, it overestimates the occurrence of
extremely low ET, values. Therefore, in cases where accurate
estimation of tail quantiles is critical, the MC method is
preferred over the Taylor method. Since the MC results are
not in analytical form, it is not feasible to analyse the effect
of changing the input error on the output without running
the entire simulation again (Heuvelink 1998, pp. 44-45). For
this reason, where the Taylor method matches well with the
MC result in the central quantiles, it can be applied to
update uncertainty estimates when more information about
input errors becomes available.

3.5 Impact of uncertainties in meteorological data from
reanalysis

The uncertainties associated with meteorological variables
from reanalysis datasets can affect the accuracy and precision
of ET, estimation. The propagation of ERA5 errors in ET,
estimates shows that random errors are particularly high in the
tropics and the Sahel (Fig. 9). The estimated uncertainty in ET,,
also varies seasonally, following similar patterns to the errors
in input variables (see Supplementary material, Fig. S1). This
indicates that non-stationary uncertainty in the reanalysis data
also leads to non-stationary uncertainty in ET,, calculations.

Since ET, estimates are used to calculate crop water
requirement, high uncertainty in ET, can affect irrigation
recommendations. Given that ET, in arid and semi-arid cli-
mates is predicted to be primarily controlled by water supply
(rainfall or irrigation) (Zhang et al. 2016), effective irrigation
management is essential to limit agricultural water consump-
tion. Therefore, precise and accurate ET,, estimates are crucial
in these regions. The estimated uncertainty of ET, propagated
from input reanalysis data is generally less than 15% of ET,,
based on 0porm (Fig. 9). In terms of mm year™ ', this uncertainty
is highest in the Sahel (Fig. 10). Therefore, application of ET,
for irrigation in this region could be improved considerably
with more accurate input meteorological data.

Furthermore, the differences between reanalysis datasets
indicate that the choice of input dataset may influence the
estimated ET,, particularly for solar radiation, vapour pressure
and wind speed (Fig. 3). Since the nominal accuracy of ERA5
and AgERA5 at TAHMO sites is generally better than that of
GEOS5 (Fig. 7), these datasets are more recommended for
field-scale estimation. If GEOS5 is needed for high-latency
applications, the error propagation methods employed in this
study can be applied to GEOS5, assuming its uncertainty
quantification is feasible. This will provide more robust results
with a clearer understanding of the confidence or reliability of
the estimates.

3.6 Limitations of uncertainty assessment methods

The multiple uncertainty assessment methods used in this
study have certain limitations. Firstly, the inter-comparison
approach requires all datasets to have equivalent spatial reso-
lution (grid size), temporal resolution and physical quantity.



We resampled a higher-resolution dataset to coarser resolution
to avoid bias caused by the loss of detail in the coarser-
resolution dataset. However, it is difficult to separate the
impact of spatial resampling from the differences between
datasets. For example, AgERA5 data is derived from ERA5
by applying both spatial downscaling and bias correction for
topographical condition and coastal areas (Boogaard et al.
2024). As a result, the differences between AgERA5 and
ERA5 represent both these corrections and the errors intro-
duced by downscaling and subsequently upscaling processes.

Secondly, comparing reanalysis data with in situ measure-
ments only provides nominal accuracy at a few clusters of
TAHMO sites, mainly in tropical savannah climate. These
clusters do not cover the tropics and the Sahara, which are
the areas with the largest uncertainties indicated by spatio-
temporal comparison and ERA5 ensemble spread.
Furthermore, the accuracy of in situ measurements is also
a factor influencing the resulting performance metrics. For
example, in situ windspeed measurement at 2 m can be
affected by local terrain effects at some sites (Pelosi and
Chirico 2021). For equivalent comparison, the reanalysis
windspeed at 10 m was used to derive windspeed at 2 m
using a logarithmic windspeed profile (Equation 2), however,
this cannot account for local terrain effects.

Thirdly, the error propagation method requires an assump-
tion for the error models of input variables. In this study, we
assumed that the errors in meteorological variables from rea-
nalysis data follow a normal distribution. For ERA5, we char-
acterized the error distribution using the mean and standard
deviation provided by its ensemble uncertainty quantification.
However, in the case of AgERA5 and GEOS5, where such
uncertainty quantification is not available, making assump-
tions about the mean and standard deviation of errors would
be inherently incomplete, as they vary for every grid cell and
every time step. Additionally, none of these approaches
account for systematic error and uncertainty due to different
NWP models. Lastly, it is important to note that the metho-
dological uncertainties associated with the FAO56 ET, equa-
tion (Equation (6)) were not evaluated in this study. Given that
the FAO56 definition of ET,, is based on idealized conditions,
ambiguity regarding the consideration of local advection
effects may introduce biases in FAO56 ET, estimates when
applied to arid and semiarid regions with non-ideal or smaller
fields (de Bruin et al. 2016, Pereira et al. 2021). Therefore,
updates on the FAO56 ET,, equation still need to be considered
for its use in estimating water demand.

4 Conclusion

The present study aimed to evaluate the uncertainty of meteor-
ological data inputs for FAO56 ET, calculation from GEOS5,
ERA5 and AgERAS reanalysis data products through spatio-
temporal inter-comparison (between-product uncertainty),
comparison with in situ measurements (nominal accuracy)
and ensemble spread (within-product uncertainty). The
study also analyses the error propagation in the FAO56 ET,
calculation using reanalysis as meteorological forcing. The
spatio-temporal inter-comparison of all data products
shows that the differences between products are non-
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stationary. The major differences between climatic input data-
sets are in Central and Southern Africa, and Southwest Asia.
This uncertainty between reanalysis datasets is due to the
model uncertainty of the employed numerical weather predic-
tion model and estimated errors of observations in data assim-
ilation systems. All reanalysis datasets predict air temperature
and air pressure well, but overestimate windspeed and solar
radiation and underestimate vapour pressure at the reference
sites in the TAHMO network. Comparison with in situ data
shows that all reanalysis datasets have comparable perfor-
mance, but ERA5 and AgERA5 perform slightly better.
Although having better latency, GEOS5 has lower nominal
accuracy and some temporal inconsistency due to changes
in the data assimilation system. Therefore, near-real time
applications that depend on the GEOS5 dataset are subject
to more errors and not recommended to be used for trend
analysis. The error propagation results show that the
uncertainty in ET, estimates propagated from the estimated
uncertainty in the ERA5 reanalysis dataset is consistently
higher in the tropics. The Taylor method showed
a consistent spatial and temporal pattern of uncertainty
and adequate accuracy compared with the Monte Carlo
method. Since every uncertainty assessment method has
its limitations, applying multiple approaches and compar-
ing their results could help identify the limitation in rea-
nalysis data and better inform the application of reanalysis
data, especially in data-scarce regions like Africa and
Southwest Asia.
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Code and data availability

The computational notebooks for analyses and result visualization are
available at https://doi.org/10.5281/zenodo.13970799. ERA5 data are
accessible at https://doi.org/10.24381/cds.adbb2d47. AgERA5 data are
accessible at https://doi.org/10.24381/cds.6c68c9bb. GEOS5 data are
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