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TWENTY-FIRST CENTURY HYDROLOGICAL CHALLENGES AND OPPORTUNITIES IN AFRICA

Evaluating reanalysis datasets as meteorological input for estimating reference 
evapotranspiration in Africa and Southwest Asia
Bich Ngoc Tran a,b, Suzan Dehatia,c, Solomon Seyouma, Johannes van der Kwasta, Graham Jewittb,d, 
Remko Uijlenhoetb and Marloes Mul a
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University of Technology, Delft, the Netherlands; cEnvironmental Sciences Department, Wageningen University and Research, Wageningen, the 
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ABSTRACT
Recent developments of higher-resolution and lower-latency reanalysis data allow mapping reference 
evapotranspiration (ETo) over large areas in a near real-time manner. This study evaluates the ERA5, 
AgERA5 and GEOS5 reanalysis datasets for meteorological input in Africa and Southwest Asia by 
comparing between data products and with 174 in situ sites. The inter-comparison reveals non- 
stationary differences between datasets and highlights temporal inconsistencies in the GEOS5 data. 
When evaluated against in situ measurements, GEOS5 demonstrates lower accuracy compared with ERA5 
and AgERA5. Additionally, while all datasets accurately estimate air temperature and pressure, they 
overestimate windspeed and solar radiation, and underestimate vapour pressure. The propagation of 
uncertainty estimates of ERA5 through the FAO56 ETo equation shows particularly high uncertainty in the 
tropics. This study emphasizes the importance of applying multiple uncertainty assessment methods for 
better-informed use of reanalysis data, especially in data-scarce regions.
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1 Introduction

In many regions across Africa and Southwest Asia, a high per
centage of the population experiences water shortage and water 
stress (Kummu et al. 2016). Climate change is projected to cause 
further water stress (Lelieveld et al. 2012, Kusangaya et al. 2014, 
Leal Filho et al. 2022), including regions with currently low 
physical water stress, such as Eastern and Central Africa 
(Adhikari et al. 2015, Abernethy et al. 2016). Agriculture, a key 
sector in Africa and Southwest Asia, is especially vulnerable to 
water stress, despite also being the largest consumer of water (de 
Pauw 2005, Hejazi et al. 2023). Thus, just and sustainable water 
management in agriculture is critically important for food and 
water security in these regions. This requires hydrological and 
meteorological information for estimating water demands and 
consumption, which is often limited and unevenly distributed 
over a vast land surface (Kusangaya et al. 2014).

In this context, estimating and mapping evaporation is 
instrumental in informing decisions to respond to water stress 
and ensure food security (Fisher et al. 2017). Evaporation is the 
transfer of water from liquid form to vapour in the atmosphere, 
which includes open water evaporation, soil water evaporation, 
plant transpiration and evaporation from canopy interception. 
This process is driven by the atmosphere’s capacity to evaporate 
water when water is abundantly available, a concept introduced 
as potential evapotranspiration (ETp) by Thornthwaite (1948). 

The term “potential” is sometimes confused with “reference” ET 
as described by Hargreaves and Samani (1982, 1985) (Xiang 
et al. 2020). However, these two terms need to be distinguished 
to avoid confusion and improper application (Xiang et al. 2020, 
Raza et al. 2022). The definition of PET lacks a strict definition 
of the evaporating surface. Because of its ambiguous definition, 
Allen et al. (1998) discouraged using the term PET when deter
mining crop water requirement. Instead, reference ET (ETo) is 
recommended, which is defined as the evapotranspiration rate 
of a hypothetical reference crop surface (e.g. grass or alfalfa) with 
uniform characteristics (i.e. surface albedo and crop height), 
without any water shortage or biophysical stress. The guideline 
to calculate ETo as reported in the Irrigation and drainage paper 
56 published by the Food and Agriculture Organization (FAO) 
(Allen et al. 1998, Equation 6) is based on Penman–Monteith 
equation, hereafter called FAO56. The FAO56 report also 
provides a standard method to calculate crop water con
sumption or actual ET (ETa) based on ETo values and crop 
coefficients. The FAO56 method has been popularized and 
applied extensively across multiple disciplines, especially 
for determining crop water requirement and consumption 
(Raza et al. 2022).

Almost all of the methods to calculate ETo (as well as ETa), 
including the FAO56 method, require data of at least some 
meteorological variables that are often measured with standard 
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weather stations, such as air temperature, pressure, humidity, 
windspeed and solar radiation. Since some variables are not 
always available, the FAO56 guideline provides alternative 
equations to estimate missing meteorological variables (Allen 
et al. 1998). Still, many regions lack weather stations, especially 
Africa and Southwest Asia (van de Giesen et al. 2014, Dinku  
2019). Therefore, mapping ETo over large regions depends on 
either interpolated gridded weather datasets or climate reana
lysis data (Abatzoglou et al. 2018, Singer et al. 2021). At the 
same time, the estimation of ETa aided by satellite 
observations is also dependent on models and forcing inputs 
(McCabe et al. 2017, Tran et al. 2023). Meteorological data are 
therefore essential forcing inputs for both ETo and ETa calcu
lations. Despite the increasing development and use of spatial 
ETo data, there is limited understanding of the accuracy and 
precision of these data, and how they are related to the uncer
tainties of the meteorological input data.

Reanalysis is a compelling alternative to interpolated 
gridded weather datasets for mapping ETo. Reanalysis is 
data generated using data assimilation techniques to couple 
numerical weather prediction (NWP) models with past 
observations. Recent developments in atmospheric reanaly
sis have greatly improved spatial resolution, notably the 
fifth generation of the European Centre for Medium- 
Range Weather Forecasts (ECMWF) atmospheric reanalysis 
(ERA5) and its derived dataset AgERA5 (up to about 
11 km resolution). In addition, the short latency of some 
NWP models and data assimilation systems facilitates 
operational near real-time monitoring of ETo and ETa. 
For example, the FAO’s portal to monitor Water 
Productivity through Open access of Remotely sensed 
derived data (WaPOR) provides global daily ETo updated 
within 3 days calculated using the Goddard Earth 
Observing System version 5 (GEOS5) dataset, which has 
a latency of less than a day (FAO 2024). However, Parker 
(2016) forewarned that the reliability of reanalysis is 
unclear due to partial understanding of the errors and 
uncertainties in NWP models and thus advocated both 
quantitative and qualitative assessment of uncertainties in 
reanalysis data. The explicit and standardized quantifica
tion of uncertainties in NWP models and input parameters 
is often overlooked (Wang et al. 2024b). For example, 
Wang et al. (2024b) emphasized that uncertainties in 
cloud optical thickness, aerosol optical depth and ozone 
significantly impact solar radiation estimates, a key input 
for ETo and ETa calculation. Lang et al. (2024) demon
strated that coarse-resolution reanalysis data can introduce 
substantial errors in solar radiation estimates, due to 
mixed-pixel effects, especially under cloudy conditions 
(Wang et al. 2024a).

Since the sensitivity of ETo models to errors in meteorolo
gical forcing varies with different models, space and time 
(Fisher et al. 2017), it is important to analyse uncertainty in 
each ETo model when using reanalysis data. Furthermore, 
climate reanalysis and reanalysis-based evaporation estimates 

are increasingly used to study hydrological processes, which 
may lead to errors in these estimates being amplified and 
misinterpreted in hydrological studies. This necessitates 
a comprehensive review and description of both evaporation 
retrieval models and their forcing components (McCabe et al.  
2017). The reliability of ETo calculated using particular reana
lysis datasets has been investigated, mainly in southern Europe 
and China (e.g. Martins et al. 2017, Ippolito et al. 2024, Xu 
et al. 2024) where past weather observations for reanalysis are 
more available than in other parts of the world (Brönnimann 
et al. 2018, Soci et al. 2024). For instance, in Africa and 
Southwest Asia, where weather observations are scarce, the 
reanalysis data quality is largely unknown as well as the impact 
of the meteorological uncertainty on ETo calculations.

The objective of this article is therefore, to assess the uncer
tainty of meteorological forcing from reanalysis products 
(namely GEOS5, ERA5 and AgERA5) and the resulting uncer
tainty in ETo over Africa and Southwest Asia regions. In this 
study, we focused on ETo since the definition and calculation 
of ETo depends only on meteorological forcing. However, we 
also extend our discussion to the impact of uncertainty in 
meteorological forcing on ETa estimation where relevant.

2 Materials and methods

In this study, we assessed the uncertainty of three reanalysis 
data products (GEOS5, ERA5, AgERA5) for five meteorologi
cal inputs in the FAO56 ETo calculation: air temperature, 
atmospheric pressure, windspeed, vapour pressure and solar 
radiation for a five-year period (from 2018 to 2022). Our 
assessment entails three components: uncertainty between 
products, nominal accuracy and quantitative impact of uncer
tainty in inputs on ETo (Fig. 1). The uncertainty between 
products was assessed by spatial and temporal pair-wise com
parison. The nominal accuracy1 was assessed by comparison 
with time-series data from in situ measurements. Finally, the 
impact of uncertainty in inputs on ETo was assessed by two 
error propagation methods (Monte Carlo simulations and 
Taylor expansion).

2.1 Study area and in situ data

This study covers the land mass of Africa and Southwest Asia 
(30°S–60°N, 40°W–40°E) with a wide range of climates from 
arid to tropical (Fig. 2). About half of the study area is arid 
desert in the North Africa and Southwest Asia regions. There 
are a few climate monitoring networks that cover only frac
tions of the study area. The Trans-African Hydro- 
Meteorological Observatory (TAHMO) is an initiative that 
has successfully extended a network of meteorological and 
hydrological stations in sub-Saharan Africa (van de Giesen 
et al. 2014). Currently, TAHMO provides hydro- 
meteorological measurements from the largest number of sta
tions in the region of interest.

In situ climate data were collected from 174 TAHMO 
stations (Fig. 2 and Table S3, see Supplementary material). 

1The result from comparison with in situ measurement is considered nominal accuracy since in situ measurements also have errors and do not necessarily present true 
values of the grid cells due to spatial scale mismatch.
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Table S1 (see Supplementary material) shows the distribu
tion of TAHMO stations by climate classes. The dataset 
includes hourly measurement of standard meteorological 
variables (i.e. air temperature, relative humidity, wind 
speed and direction, solar radiation and atmospheric pres
sure) from ATMOS 41 sensors (METER 2023). Daily mean 

air temperature (°C), relative humidity (%), wind speed at 
2 m (m s−1), air pressure (mbar) and solar radiation 
(W m−2) were computed by averaging hourly data 
(TAHMO 2023).

The quality of in situ data varies and depends on the 
accuracy specification of sensors (see Supplementary material, 

Figure 1. Schematization of the methodological framework. Collected reanalysis data (GEOS5, AgERA5 and ERA5) were resampled and processed for spatio-temporal 
pair-wise comparison to calculate difference between products, which represents uncertainty between products. Time-series were extracted at grid cells for 
comparison with in situ measurements, to calculate performance metrics, which represent nominal accuracy. The ensemble spread of ERA5, which represents 
uncertainty within ERA5 product, was used to propagate errors in FAO56 reference evapotranspiration (ETo) calculation using Monte Carlo and Taylor expansion 
methods.

Figure 2. Climate classification map of study area and the locations of in situ observations. Data source: TAHMO, Köppen–Geiger map (Beck et al. 2023). Base map: 
Natural Earth NE1_50M_SR_W.

HYDROLOGICAL SCIENCES JOURNAL 3



Table S2), sensor performance and operation continuity. We 
acquired data from stations with the best quality flags provided 
by the TAHMO quality control procedure (van de Giesen et al.  
2014). Quality control procedure for TAHMO stations is 
extended from the procedures in the Oklahoma 
Mesonetwork (Shafer et al. 2000). TAHMO employs both 
automated and manual methods to ensure data quality, includ
ing tests for range, sensor accuracy, climate condition, tem
poral changes, dips and spikes, changes in variance (Annor  
2023, p. 125). In addition, we evaluated the quality and integ
rity of the acquired dataset by visually checking the timeseries 
of each climatic variable at each station.

2.2 Reanalysis data

2.2.1 Datasets description
We selected and retrieved data for a study period of 5 years 
from 1/1/2018 to 31/12/2022, which we considered a sufficient 
sample of daily values for analysing spatio-temporal pattern of 
data uncertainty (1826 data points per time-series). This is also 
the period for which we have access to TAHMO climate data. 
The hourly GEOS5 and ERA5 data and daily AgERA5 data 
were retrieved from the sources that are provided in Table 1.

GEOS5 stands for the Goddard Earth Observing System 
version 5, a global atmospheric model, developed by the 
NASA Global Modelling and Assimilation Office (GMAO) 
(Rienecker et al. 2008). The GEOS Data Assimilation System 
is the integration of GEOS5 Atmospheric General Circulation 
Model and the Gridpoint Statistical Interpolation Analysis 
(Rienecker et al. 2008). GMAO runs the GEOS Forward 
Processing stream, which generates both forecasts and assim
ilation products. The meteorological variables from the time- 
average 1-hourly data, 2-dimensional, single-level2 atmo
spheric state variables (tavg1_2d_slv_Nx) and radiative fluxes 
(tavg1_2d_rad_Nx) data products were retrieved. The GEOS5 
dataset includes the following variables: hourly air temperature 
at 2 m (K), northward and eastward components of wind at 
10 m (m s−1), specific humidity at 2 m (kg kg−1), sea level 
pressure (Pa), surface pressure (Pa) and surface incoming 
shortwave flux (J m−2 h−1). The GEOS5 system derives air 
pressure at surface level from mean sea level pressure using 

the United States Geological Survey’s 1-km Global Elevation 
(GTOPO30) raster data (Rienecker et al. 2008).

ERA5 is the fifth generation of the ECMWF atmospheric 
reanalysis of the global climate. ERA5 is generated by combin
ing the model forecasts from the Integrated Forecasting 
System Cy41r2 with vast amounts of historical observations 
using the 4D-Var assimilation scheme (Hersbach et al. 2020). 
ERA5 provides data products for several climate variables at 
137 pressure levels from the surface up to 80 km. In this study, 
the ERA5 hourly data on single levels (Hersbach et al. 2023) 
was retrieved from ECMWF’s Climate Data Store (CDS). The 
ERA5 dataset includes the following variables: hourly 2 m 
temperature (K), 2 m dewpoint temperature (K), 10 m v-com
ponent and u-component of wind speed (m s−1), mean sea 
level pressure (Pa), surface pressure (Pa) and surface solar 
radiation downwards (J m−2 h−1). ERA5 surface pressure was 
computed using surface elevation data interpolated from the 
Shuttle Radar Topography Mission Digital Elevation 30 m data 
(SRTM30) combined with other surface elevation datasets 
(ECMWF, 2023a).

AgERA5 comprises agrometeorological indicators derived 
from reanalysis, providing input needed for most crop growth 
models. Daily AgERA5 data is produced by aggregating ERA5 
to daily time steps at the local time zone and downscaling 
towards a finer topography at a 0.1° spatial resolution. The 
ERA5 data was corrected using regression equations that were 
calibrated with the ECMWF’s operational high-resolution 
atmospheric model (HRES) for each variable and grid 
(Boogaard et al. 2020). AgERA5 provides data products for 
12 agro-meteorological variables at the surface level and daily 
timestep. The AgERA5 dataset was collected from ECMWF’s 
CDS, which includes the following variables: daily 2 m tem
perature (K), 2 m dewpoint temperature (K), 10 m wind speed 
(m s−1) and solar radiation flux (J m−2 d−1).

2.2.2 Reanalysis data pre-processing
Prior to our analyses, we applied a pre-processing proce
dure on the retrieved reanalysis data products to ensure 
consistency among variables and units for accurate com
parisons. Simple linear temporal and spatial aggregation 
were applied to achieve the same resolution for comparison 
of different input datasets. For spatial and temporal 

Table 1. Spatial and temporal resolution of the three reanalysis datasets used in the study. The specific data products were acquired from the data source given in 
parentheses.

Dataset name Spatial resolution Temporal resolution Product name (data source)

GEOS5 0.31° × 0.25° 
(~30 km at the equator)

hourly GEOS-FP tavg1_2d_slv_Nx 
(https://opendap.nccs.nasa.gov/dods/GEOS-5/fp/0.25_deg/assim/tavg1_2d_slv_Nx.info)

GEOS-FP tavg1_2d_rad_Nx 
(https://opendap.nccs.nasa.gov/dods/GEOS-5/fp/0.25_deg/assim/tavg1_2d_rad_Nx.info)

ERA5 0.25° × 0.25° 
(~28 km at the equator)

hourly ERA5 hourly data on single levels from 1940 to present 
(https://doi.org/10.24381/cds.adbb2d47) 
(Hersbach et al. 2023)

AgERA5 0.1° × 0.1° 
(~11 km at the equator)

daily Agrometeorological indicators from 1979 to present derived from reanalysis 
(https://doi.org/10.24381/cds.6c68c9bb) 
(Boogaard et al. 2020)

2In the context of climate reanalysis, single level data includes variables measured or modelled close to the surface.

4 B. N. TRAN ET AL.

https://opendap.nccs.nasa.gov/dods/GEOS-5/fp/0.25_deg/assim/tavg1_2d_slv_Nx.info
https://opendap.nccs.nasa.gov/dods/GEOS-5/fp/0.25_deg/assim/tavg1_2d_rad_Nx.info
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.6c68c9bb


comparison, we analysed meteorological variables at the 
coarser resolution of the data products to avoid introdu
cing errors due to spatial downscaling and elevation cor
rection. Reanalysis data was converted to the same unit as 
in situ data.

The average windspeed at 10 m is derived from the wind
speed components collected from ERA5 and GEOS5: 

where u10 is wind speed at 10 m (m s−1), u10x is 10 m eastward 
wind or u-component (m s−1) and u10y is 10 m northward 
wind or v-component (m s−1).

The wind speed at 2 m was estimated from reanalysis wind
speed at 10 m using the logarithmic wind speed profile (Allen 
et al. 1998, Eq. 47): 

where u10 wind speed at 10 m (m s−1), u2 wind speed at 2 m 
(m s−1) and z = 10 m is the height at which wind speed is 
calculated.

Notably, the reanalysis datasets do not have relative humid
ity except for AgERA5. Therefore, we compared vapour pres
sure derived from ERA5 and AgERA5 dew-point temperature 
and from GEOS5 specific humidity, which is required for the 
calculation of ETo. The calculation of vapour pressure from 
specific humidity is: 

where ea is vapour pressure (kPa), qv is specific humidity 
(kg kg−1), P is air pressure (kPa) and ε is the ratio of molecular 
weight of water to dry air (ε = 0.622).

The saturation vapour pressure at actual temperature was 
calculated following Allen et al. (1998, Eq. 11): 

where es Tð Þ is saturated vapour pressure (kPa) at the actual air 
temperature (oC).

The actual vapour pressure ea (kPa) equals the saturated 
vapour pressure es at the dewpoint temperature Td (oC): 
ea ¼ es Tdð Þ. Therefore, the saturated vapour pressure was cal
culated by substituting Td from reanalysis data for T in 
Equation (4) following Allen et al. (1998, Eq. 14).

For in situ dataset, vapour pressure was derived from 
minimum and maximum relative humidity following Allen 
et al. (1998, Eq. 17) since dew-point temperature was not 
available: 

where RHmin is daily minimum relative humidity (%), RHmax 
is daily maximum relative humidity (%) and es Tð Þ is the 
saturation vapour pressure (kPa) at the same temperature (T).

2.3 Spatial and temporal pair-wise comparison

The uncertainty between products was assessed by pair-wise 
comparison. Before that, we aggregated hourly reanalysis data 
to daily, daily to monthly, and monthly to yearly by arithmetic 
averaging. The higher-resolution datasets (GEOS5 and 
AgERA5) were resampled to the spatial resolution of ERA5 
to ensure that all datasets represent the same level of detail, 
allowing for an unbiased comparison. For spatial comparison, 
we computed the yearly average of the differences between 
each pair for mean air temperature at 2 m, wind speed at 10 m, 
vapour pressure and solar radiation. For atmospheric pressure, 
we compared the pressure at sea level and the pressure at 
surface originally retrieved from GEOS5 and ERA5. Since the 
AgERA5 dataset does not include data of air pressure, it was 
excluded from air pressure comparison. For spatio-temporal 
comparison, we used the latitude-time Hovmöller diagrams of 
monthly average maps (Hovmöller 1949), which helps visually 
detect seasonal anomalies or any dynamics of the discrepancy 
between datasets.

2.4 Comparison with in situ data and performance 
metrics

The nominal accuracy of reanalysis data was evaluated by 
comparison with in situ measurements. Daily time-series of 
air temperature, air pressure, windspeed at 2 m, vapour 
pressure and solar radiation were extracted from the rea
nalysis datasets at the grids containing observation stations. 
The performance metrics we used to validate reanalysis 
data against in situ data include the coefficient of determi
nation (r2); the root mean square error (RMSE), the bias 
and the relative bias (PBIAS) (Table 2). The r2 metric is the 
square of Pearson correlation coefficient, which measures 
how well the variables from in situ data are correlated to 
the temporal variation of variables derived from reanalysis 

Table 2. Performance metrics used to validate the reanalysis data with in situ observations. For all equations, x represents the value from reanalysis product, 
y represents the value from in situ data and i represents the time step.

Evaluation metrics Formula Unit Value range Best value

Coefficient of determination
r2 ¼

Pn

i¼1
xi � �xð Þ yi � �yð Þ½ �

2

Pn

i¼1
xi � �xð Þ

2ð Þ
Pn

i¼1
yi � �yð Þ

2ð Þ

– [0,1] 1

BIAS
BIAS ¼

Pn

i¼1

xi � yið Þ

n

Same unit as x and y (-∞, +∞) 0

PBIAS PBIAS ¼ BIAS � 100
�x

% (-∞, +∞) 0
Root Mean Square Error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

xi � yið Þ
2

n

s
Same unit as x and y [0, +∞) 0
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products. The bias measures mean residuals, while the 
RMSE measures the root mean square difference between 
reanalysis and in situ data. These metrics are widely used 
in in situ validation of earth observation data (Mayr et al.  
2019, Tran et al. 2023).

2.5 Error propagation methods

We analysed the impact of uncertainty in ETo propagated from 
the meteorological inputs from reanalysis on ETo by applying 
error propagation methods in the FAO56 calculation of ETo. 
We applied and compared the Monte Carlo (MC) method with 
the Taylor method.

The MC method is a statistical approach to estimate the 
uncertainty in a complex mathematical model by perform
ing random sampling. It entails randomly simulating 
inputs based on known or assumed probability distribu
tions, applying these inputs to the model, and deriving the 
uncertainty and variability from the resulting outputs. The 
MC method is well-suited for non-linear functions and 
models with multiple variables. However, it can be compu
tationally expensive and time-consuming when a large 
number of simulations are needed to obtain accurate esti
mates of the probability distribution.

The Taylor method is based on the theory of error 
propagation, which applies the Taylor expansion for linear 
approximation of non-linear functions (Taylor 1997). The 
main advantages of using the Taylor method are efficient 
computation and the analytical form of the variance of the 
output error. However, when the operation g �ð Þ is strongly 
non-linear or involves many inputs, like the ETo calcula
tion, the approximation error may increase and computa
tional efficiency may decrease (Heuvelink 1998, p. 43). 
Therefore, comparing the Taylor method and the MC 
method can provide more insights to guide future applica
tions of ETo error propagation. Our intention was to eval
uate whether the Taylor method can be an alternative to 
the MC method for operational ETo uncertainty 
estimation.

2.5.1 Calculation of FAO56 reference evapotranspiration
The daily ETo (mm d−1) was calculated following the FAO56 
Penman–Monteith equation for reference crop following the 
procedure described by Allen et al. (1998): 

where Δ is the slope of saturation vapour pressure curve 
(kPa oC−1), Rn is the net radiation at the reference crop 
surface (MJ m−2 d−1), G is the soil heat flux density 
(MJ m−2 d−1) assumed to be zero for day period, Tmean is 
the daily mean air temperature (oC), γ is the psychrometric 
constant (kPa oC−1), es is saturation vapour pressure (kPa), 
u2 is daily average wind speed at 2 m (m s−1) and ea is 
actual vapour pressure (kPa). Tmean was calculated as the 
average of minimum and maximum air temperature (Tmin 
and Tmax): 

The slope of saturation vapour pressure curve (Δ) was calcu
lated following Allen et al. (1998, Eq. 13). The psychrometric 
constant (γ) was calculated following Allen et al. (1998, Eq. 8).

The net radiation (Rn) was calculated by subtracting the net 
longwave radiation (Rnl) from the net shortwave solar radia
tion (Rns): 

where α ¼ 0:23 is surface albedo for the hypothetical grass 
reference and Rs is the incoming solar radiation from reana
lysis data (MJ m−2 d−1). was calculated following Allen et al. 
(1998, Eq. 39): 

where σ ¼ 4:903 � 10� 9 MJ K−4 m−2 d−1 is Stefan–Boltzmann 
constant, 0:34 � 0:14 ffiffiffiffiea

p� �
and 1:35 Rs

Rso
� 0:35

� �
are correc

tion terms for air humidity and cloudiness respectively and Rso 
is the clear-sky radiation (MJ m−2 d−1) calculated from the 
extraterrestrial radiation Ra, which was, in turn, calculated 
following Allen et al. (1998, Eq. 21).

2.5.2 Uncertainty estimation of reanalysis datasets
Since only the ERA5 data product comes with uncertainty 
estimation, we focused on the propagation of ERA5 data 
uncertainty estimates in the FAO56 ETo calculation. The 
uncertainty estimates of the ERA5 data product was produced 
by ECMWF by sampling from 10 underlying ensemble mem
bers every 3 hours (ECMWF 2023b). This uncertainty estima
tion addresses mostly random errors in the observations and 
sea surface temperature model parameterization. The esti
mates are closely related to the uncertainty of the assimilated 
observations, which have evolved considerably over time. The 
ERA5 uncertainty estimates vary in different zones due to the 
uneven distribution of measurements that are used to correct 
the forecasting model through data assimilation. However, the 
systematic errors were not addressed and not correlated to the 
computed uncertainty estimates (ECMWF, 2023b).

The mean and spread (standard deviation) of the ERA5 
ensemble (see Supplementary material, Fig. S1) were 
retrieved from ECMWF’s CDS (Hersbach et al. 2023). We 
considered each meteorological variable as a quantitative 
spatial attribute A �ð Þ ¼ fA xð Þjx 2 Dg where D is the domain 
of interest in a 3-dimensional space (longitude-latitude- 
time). Then, A xð Þ is the value of A �ð Þ at a certain point in 
time and space. An error model of that variable was 
assumed: A xð Þ ¼ b xð Þ þ V xð Þ, where b xð Þ is 
a deterministic function of x, and A xð Þ and V xð Þ are random 
variables (Heuvelink 1998, p. 10). We assumed that V xð Þ
were the random errors that follow a normal distribution 
N μ; σ2ð Þ, where μ is the mean (equal to zero) and σ2 is the 
variance. Instead of assuming an error model for σ xð Þ, we 
utilized the hourly ensemble spread σ xð Þ at each ERA5 grid, 
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which presents the temporal and spatial variability of errors, 
the covariance of meteorological variables and 
autocorrelation.

2.5.3 Monte Carlo method
The Monte Carlo (MC) method was applied to propagate the 
random errors from the aforementioned five meteorological 
variables to ETo. Since each daily output ETo map is computed 
from the five input maps Ai �ð Þ i ¼ 1; . . . ; 5ð Þ, the output ETo 
maps are also random functions: U �ð Þ ¼ gðA1 �ð Þ; . . . ;A5 �ð ÞÞ, 
where g �ð Þ is the FAO56 ETo calculation. The MC method 
randomly samples N sets of realizations ai;j xð Þ j ¼ 1; . . . ;Nð Þ

from the distribution of Ai xð Þ described by the daily ERA5 
ensemble mean and standard deviation maps. For each set of 
realizations, an ETo map uj xð Þ ¼ gða1;j xð Þ; . . . ; a5;j xð ÞÞ was 
calculated. The error of ETo was estimated by calculating the 
statistics of N outputs uj xð Þ, including standard deviation 
normalized with mean values (σnorm), and percentiles.

Although the MC method can generate the entire distribu
tion of uj xð Þ, the level of accuracy may be arbitrary depending 
on the method of the random generator and number of simu
lations. Since the efficiency of MC method is proportional to 
ffiffiffiffi
N
p

(Heuvelink 1998, p. 106), we experimented with 
N between 100 to 10,000 (10 times less efficient) to assess the 
impact of N on the results. Due to the computational burden of 
random sampling, we employed Latin-Hypercube sampling 
(LHS) (Stein 1987, Lee et al. 2014) to improve computational 
efficiency.

2.5.4 Taylor method
For implementing the Taylor method, we utilized the Python 
package uncertainties (Lebigot 2017) to facilitate the calcula
tion of derivatives. For that, we defined the daily ensemble 
mean and ensemble spread of ERA5 reanalysis products as the 
nominal mean and standard deviation of uncertain arrays 
(uncertainties.unumpy.uarray) for each meteorological vari
able. The uarray objects of each meteorological variable were 
used directly as inputs in each equation in the FAO56 ETo 
calculation procedure to estimate the uncertain arrays of daily 
ETo over the study area. The advantage of this step-wise 
calculation is that we can analyse also the propagated errors 
of intermediate variables, such as γ and Rn.

3 Results and discussion

3.1 Spatio-temporal comparison of reanalysis datasets

The scatterplots of meteorological variables show that all pro
ducts are well correlated grid by grid (Fig. 3). The correlation 
between paired datasets for air pressure, air temperature and 
vapour pressure are very high (0.97 to above 0.99). Meanwhile, 
windspeed (0.85–0.94) and solar radiation (0.82–0.98) show 
slightly lower correlation, especially between GEOS5 and other 
two products. The data points in the scatterplot exhibit the 
largest spread for solar radiation, followed by windspeed, 
vapour pressure, air temperature and air pressure. The highest 
correlation in the three pairs is between AgERA5 and ERA5 
(Fig. 3(a, d, g, j)), which is expected since AgERA5 is derived 
from ERA5. However, the comparison between AgERA5 and 

ERA5 shows the largest mean bias of air temperature 
(−0.41oC) and windspeed (0.14 m s−1) among three pairs 
(Fig. 3(a, d)).

The difference between datasets varies with location 
(Fig. 4). In case of air temperature, the largest difference 
between AgERA5 and ERA5 can be seen in areas with variable 
elevation (e.g. the Great Rift Valley and the Iranian highlands) 
(Fig. 4(a) and Fig. S3a, see Supplementary material). This can 
be explained by the fact that an elevation correction using 
vertical lapse rate is applied to derive AgERA5 from ERA5 
(Boogaard et al. 2023). GEOS5 air temperature is lower near 
the equator, while it is higher at mid-latitude when compared 
with both ERA5 and AgERA5 (Fig. 4(b, c)).

The difference between AgERA5 and ERA5 windspeed is 
close to zero in the majority of the grid cells, and slightly 
negative near the coastline and mountainous areas (Fig. 4 
(d)). This is likely due to the topographical correction algo
rithm of AgERA5. Compared with GEOS5, both AgERA5 and 
ERA5 show greater windspeed below the Sahel, in Iran and in 
Southern Africa and lower windspeed in the Sahara and Congo 
rainforest, with differences up to 3 m s−1 (Fig. 4(e, f)). 
Moreover, the difference between the products over the 
Congo rainforest increases below the equator. Given that 
GEOS5 is prone to a larger error (Rienecker et al. 2008, 
p. 25) and ERA5 exhibits lower uncertainty (see 
Supplementary material, Fig. S1) in the southern hemisphere, 
the larger difference between the two products is likely due to 
the errors in GEOS5.

In the case of vapour pressure, the difference between 
products is greater in the middle range (between 20 and 
25 mbar) (Fig. 3(g–i)). The difference between AgERA5 and 
ERA5 is slightly positive over the majority of the area (lower 
than 2 mbar) and greater in Western Africa and the coastline 
of the Red Sea (Fig. 4(g)). The difference in vapour pressure 
between GEOS5 and ERA5 is highest among the three pairs. 
GEOS5 vapour pressure is found to be higher than ERA5 and 
AgERA5 in the Sahel and Congo rainforest, but lower in the 
Ethiopian highlands (Fig. 4(h, i)).

GEOS5 estimates higher solar radiation values than do 
ERA5 and AgERA5 in the humid tropical parts of Western 
and Central Africa (10°S–20°N, 0°–30°E), and lower over the 
rest of the continent (Fig. 4(k, l)). Although AgERA5 is derived 
from ERA5, it shows slightly lower solar radiation values than 
ERA5 in most areas, except for the mountainous areas around 
Lake Victoria and Ethiopia (Fig. 4(j)). This is likely due to the 
topographic correction used for AgERA5.

When comparing air pressure at the surface, ERA5 and 
GEOS5 exhibit greater similarity than for other variables 
(Fig. 3(m)). Differences between the two products are primar
ily observed in regions with high elevation and coastlines 
(Fig. 4(m)). However, these differences appear to be random 
and only present in a small number of grid cells, which does 
not affect the overall correlation. The difference between the 
two datasets for air pressure at the surface is much smaller than 
the difference in air pressure at sea level (see Supplementary 
material, Fig. S2), which underlines the effect of topographical 
correction of air pressure for both datasets.

The differences between the datasets vary seasonally, espe
cially for air temperature, vapour pressure and solar radiation 
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(Fig. 5). The highest discrepancy in air temperature between 
the GEOS5 and ERA5 or AgERA5 products occurs between 
May and July (up to 2°C). Moreover, during these months, the 
differences of air temperature near the equator are larger than 
the other months. In the case of vapour pressure, the largest 
difference between GEOS5 and the other two products occurs 
between May and July below the equator and between July and 
September above the equator. The vapour pressure difference 
shows a seasonal pattern aligning with air temperature differ
ences, but it has an inverse relationship – positive air tempera
ture differences correspond to negative vapour pressure 

differences, and vice versa. The difference in solar radiation 
between GEOS5 and the other two products also varies sea
sonally. From June to October, GEOS5 provides higher solar 
radiation values, whereas for the rest of the year, GEOS5 values 
of solar radiation are lower below the equator. In the case of 
windspeed, the latitudinal pattern of differences between the 
products is mostly consistent throughout the year. The differ
ence in air pressure at the surface is also very low (<5 mbar) 
and not seasonally variable.

The time-series of air temperature, windspeed and vapour 
pressure difference between GEOS5 and the other two datasets 

Figure 3. Comparison of mean annual air temperature, windspeed, vapour pressure, solar radiation and air pressure at the surface from ERA5, AgERA5 and GEOS5 for 
the period 2018–2022. The scatterplots show the correlation between each pair of two datasets (column) for each meteorological variable (row). The performance 
metrics (r2, RMSE, BIAS, PBIAS) and linear regression coefficients were calculated grid-wise by reshaping mean annual 2-dimensional arrays into 1-dimensional series, 
showing the spatial correlation between two products.
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Figure 4. Mean annual difference of air temperature, windspeed, vapour pressure, solar radiation and air pressure at the surface from ERA5, AgERA5 and GEOS5 for the 
period 2018–2022.
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show a shift in pattern from March 2020 (Fig. 6). This shift also 
coincides with an increase in the spatial difference between the 
data products, where GEOS5 air temperature becomes even 
lower near the equator and higher at mid-latitude compared 
with ERA5 and AgERA5. After the shift, the difference in 
windspeed between the data products becomes more positive 
in the tropics (between 20°N and 20°S), where the values of 
GEOS5 become smaller than ERA5 and AgERA5. In the case 
of vapour pressure, this shift causes GEOS5 values to become 
lower than ERA5 and AgERA5 between 10°S and 10°N. For 
other latitudes, the shift has less impact on vapour pressure 
differences.

According to the notices from Global Modelling and 
Assimilation Office (GMAO), the developer of GEOS5, the 
GEOS-FP model was updated on 7 April 2020. This upgrade 
introduced two changes that addressed (1) a bias in the heating 
tendency within the stratosphere and (2) errors in the diag
nostics of convective mass flux (GMAO, 2020). Although it 
was not clearly mentioned how this upgrade affected each 
variable in the final data product, the shift observed in Fig. 6 
suggests that these changes might have caused the temporal 
inconsistency of the reanalysis datasets. The Hovmöller plots 
for solar radiation and air pressure at the surface do not show 
any discernible shift between GEOS5 and the other two 

Figure 5. Hovmöller diagrams showing the monthly and latitudinal variation of mean difference in air temperature, windspeed, vapour pressure, solar radiation and air 
pressure at the surface between GEOS5, AgERA5 and ERA5 for the period 2018–2022.
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products. Since GEOS5 derives solar radiation data from the 
tavg1_2d_rad_Nx product and other variables originate from 
tavg1_2d_slv_Nx, the discrepancy suggests a systematic 
change within the GEOS5 model that specifically affects the 
tavg1_2d_slv_Nx product.

3.2 Comparison with in situ measurements at TAHMO 
sites

In terms of nominal accuracy, the comparison with TAHMO 
stations shows that all datasets exhibit comparable 

performance (Fig. 7). ERA5 and AgERA5 show slightly better 
performance metrics than GEOS5 (Fig. 7 and Table S4, see 
Supplementary material). AgERA5 performs slightly better 
than ERA5 for all variables, except for vapour pressure. 
Among the five variables, reanalysis datasets perform best for 
air pressure at surface and air temperature, showing bias close 
to zero and high correlation. Meanwhile, the nominal accuracy 
for windspeed, vapour pressure and solar radiation is much 
lower. In general, all three datasets overestimate windspeed 
and solar radiation, and underestimate vapour pressure. In the 
case of windspeed and solar radiation, the reanalysis datasets 

Figure 6. Hovmöller diagrams showing the temporal and latitudinal variation of mean difference in air temperature, windspeed, vapour pressure, solar radiation and air 
pressure at the surface between GEOS5, AgERA5 and ERA5 for the period 2018–2022.
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show very low correlation (r2 < 0.5) at almost all stations. Some 
outlier stations have windspeed PBias up to −200%, while solar 
radiation PBIAS is up to +100%. For vapour pressure, the 
correlation between reanalysis and in situ data is similar to 
air temperature (r2 > 0.6), although PBIAS is generally from 
−5% to −10%. The overestimation of windspeed and solar 
radiation, and the underestimation of vapour pressure derived 
from dew-point temperature is also observed in validation 
studies of other reanalysis data in Iran (Radmanesh et al.  
2023), Spain and Portugal (Martins et al. 2017) and China 
(Xu et al. 2024).

Figure 8 shows the spatial variability of the average r2 at 
the TAHMO sites, averaged over the three reanalysis 

datasets. The maps for RMSE, BIAS and PBIAS are 
shown in Figs. S4–6 (see Supplementary material). 
Overall, the area with the best performance is Southern 
Africa, with fewer stations covering a smaller surface area. 
The other two areas have a lower performance, due to their 
complex topography (Eastern Africa) and proximity to the 
coast (Western Africa). These observations are aligned with 
findings from validation of reanalysis datasets in other 
regions (Pelosi et al. 2020, Pelosi and Chirico 2021). In 
the case of air temperature and vapour pressure, the aver
age r2 of the reanalysis datasets shows a decreasing pattern 
towards the coastline, which is not observed for solar 
radiation, air pressure and windspeed.

Figure 7. Performance metrics of meteorological variables from reanalysis datasets (indicated by different colours) compared with measurements at 174 TAHMO sites. 
The box-and-whiskers plots represent the 25th (Q1), 50th (median), 75th (Q3) percentiles of the probability distribution. The orange circles inside the box-and-whisker 
plots represent the mean value. The White circles represent outliers, which exceed the range [Q1 − 1.5 × IQR, Q3 + 1.5 × IQR], where IQR = Q3 − Q1 is the interquartile 
range.
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Figure 8. Spatial variability of the average r2 computed at the TAHMO sites, averaged over the three reanalysis datasets, AgERA5, ERA5 and GEOS5. Base map: Natural 
Earth Shaded Relief and Rivers.
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3.3 Comparing the uncertainty of reanalysis from 
multiple assessments

The uncertainties associated with the meteorological variables 
from the reanalysis datasets were assessed by different 
approaches. The uncertainty estimates from the ERA5 ensem
ble represent the random errors within ECMWF’s NWP model 
and its data assimilation system. Meanwhile, the discrepancy 
between different reanalysis datasets indicates the relative 
errors between the different NWP models. The performance 
metrics calculated using in situ measurements as reference 
indicate the nominal accuracy of the reanalysis data. Here, 
we compare and discuss the findings from the three 
approaches to identify commonalities.

The uncertainty estimates for the ERA5 reanalysis show 
that all variables have the largest ensemble spread between 
May and September, especially around 20°N (see 
Supplementary material, Fig. S1). The seasonal variability of 
the discrepancy between reanalysis datasets is also higher 
between May and September, but only for air temperature 
and between the equator and 20°S (Fig. 5). While ERA5 has 
a larger ensemble spread in the northern hemisphere than in 
the southern hemisphere in general, the differences between 
the reanalysis products do not show the same pattern. This 
spatial variability between products is more aligned with the 
reported errors from the GEOS5 NWP initial estimates and 

assimilated observations for wind and humidity, which is 
larger in the southern hemisphere than in the northern hemi
sphere (Rienecker et al. 2008, p. 25). Unfortunately, the 
GEOS5 data products do not include uncertainty estimates 
or quality indicators for quantitative analysis.

The spatial variability of the ERA5 ensemble spread is 
different for each variable (see Supplementary material, Fig. 
S1). Air temperature has the largest yearly average uncertainty 
estimates in the tropics. Dew point temperature and wind 
component speed are most uncertain in the Sahara and semi- 
arid Southern Africa and air pressure in Central Africa (see 
Supplementary material, Fig. S1). The discrepancy between the 
datasets also tends to be higher in the tropics for air tempera
ture (Fig. 4). However, for vapour pressure and windspeed, the 
discrepancy is higher in the Congo rainforest and below the 
Sahel.

The spatial difference between ERA5 and AgERA5 is 
mainly observed in mountainous and coastal areas. This is 
likely because AgERA5 is derived by calibrating ERA5 data 
with ECMWF’s operational high-resolution atmospheric 
model (HRES). According to Boogaard et al. (2023), the great
est enhancements of AgERA5 compared with HRES are 
observed at grid points situated in mountainous regions or 
along coasts and lakes, improved particularly for the variables 
of temperature, humidity and windspeed. However, AgERA5 
data is still limited by the accuracy of the HRES operational 

Figure 9. Yearly average and monthly-latitudinal variation of normalized standard deviation σnorm of daily reference evapotranspiration estimated by Monte Carlo 
method (first row), Taylor method (second row) and their ratio (third row).

14 B. N. TRAN ET AL.



Figure 10. Standard deviation of daily reference evapotranspiration (ETo) resulted from 500 Monte Carlo simulations, averaged for 5 years (top left) and normalized 
with daily mean ETo (bottom left), and the 10-day ETo in four specific areas indicated in the maps, with 90% confidence interval (right column).

Figure 11. Kolmogorov–Smirnov normality test comparing Monte Carlo sample of calculated ETo (N = 500) to the normal distribution N μ; σ2ð Þ with μ and σ obtained 
from the Taylor method (significance level of α = 0.05). The Q-Q plot and histogram at location [1] and [3] (normal distribution is rejected) and location [2] (not rejected) 
are on the right panel.
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model, since it is assumed that HRES represents actual condi
tions the best. The performance metrics at coastal stations (see 
Supplementary material, Fig. S7) show AgERA5 performs bet
ter for windspeed, but worse for air temperature, and the same 
for solar radiation and vapour pressure in comparison with all 
stations (Fig. 7). In case of stations at elevations higher than 
1000 m (see Supplementary material, Fig. S8), the performance 
metrics of AgERA5 relative to ERA5 are not much improved 
compared with all stations.

3.4 Propagation of reanalysis error in reference 
evapotranspiration calculation

The ETo uncertainty estimated using the Taylor method shows 
the exact same spatial and temporal pattern compared with the 
MC method (Fig. 9). However, it overestimates the normalized 
standard deviation up to about 20% in the Sahara, especially in 
the summer months (Fig. 9). In areas with a high uncertainty 
of ETo, such as the west coast of Central Africa, the Taylor 
method shows better agreement with the MC method 
(σnorm;MC=σnorm;T � 1). The MC simulation result with N = 
500 realizations were found to be optimal, as they provided 
similar outcomes to simulations with larger sample size, while 
significantly reducing computational time, which is slightly 
more than using the Taylor method (see Supplementary mate
rial, Fig. S9).

The advantage of the MC method is that a probability 
density function (PDF) and confidence interval can be 
estimated from the sampled realizations. Daily ETo was 
calculated for 500 MC simulations of ERA5 meteorological 
inputs by Latin-Hypercube sampling (LHS). From the 
ensemble of ETo, the standard deviation () and 90% con
fidence interval of the ETo values were estimated for each 
grid cell. Figure 10 shows the spatial and temporal varia
tion of the estimated ETo uncertainty. The Sahara shows 
the highest standard deviation (mm d−1) but a relatively 
lower normalized standard deviation (σnorm) compared 
with other regions. This is likely due to higher ETo values 
in the Sahara (Fig. 10 Area [1]). The tropics shows a high 
σnorm, especially at the west coast of Central Africa (Fig. 10 
Area [3]) and the Congo rainforest (Fig. 10 Area [4]). The 
time-series of 90% confidence intervals shows that this high 
uncertainty is consistent throughout the years for these 
regions (Fig. 10). Meanwhile, for other regions, the esti
mated uncertainty varies with season (Fig. 10 Area [1] and 
Area [2]).

Since the month of June is where the MC method and the 
Taylor method show the largest difference in estimated 
σnorm (Fig. 9), we compared the PDF of the MC samples to 
a normal distribution N μ; σ2ð Þ characterized by the μ and σ 
obtained from the Taylor method on one day of June 
(Fig. 11). In general, the PDF obtained from the MC method 
fits quite well with the normal distribution obtained from 
the Taylor method, even when the ETo model involves 
a non-linear combination of input variables. At locations 
where the normal distribution is rejected by the 
Kolmogorov–Smirnov test, the Q-Q plot and histogram 
show that the largest discrepancy is observed in the tail 

quantiles, where ETo is extremely low (Fig. 11 location [1] 
and [3]). This suggests that while the Taylor method pro
vides a reasonable estimate of the PDF for the central part of 
the ETo values range, it overestimates the occurrence of 
extremely low ETo values. Therefore, in cases where accurate 
estimation of tail quantiles is critical, the MC method is 
preferred over the Taylor method. Since the MC results are 
not in analytical form, it is not feasible to analyse the effect 
of changing the input error on the output without running 
the entire simulation again (Heuvelink 1998, pp. 44–45). For 
this reason, where the Taylor method matches well with the 
MC result in the central quantiles, it can be applied to 
update uncertainty estimates when more information about 
input errors becomes available.

3.5 Impact of uncertainties in meteorological data from 
reanalysis

The uncertainties associated with meteorological variables 
from reanalysis datasets can affect the accuracy and precision 
of ETo estimation. The propagation of ERA5 errors in ETo 
estimates shows that random errors are particularly high in the 
tropics and the Sahel (Fig. 9). The estimated uncertainty in ETo 
also varies seasonally, following similar patterns to the errors 
in input variables (see Supplementary material, Fig. S1). This 
indicates that non-stationary uncertainty in the reanalysis data 
also leads to non-stationary uncertainty in ETo calculations.

Since ETo estimates are used to calculate crop water 
requirement, high uncertainty in ETo can affect irrigation 
recommendations. Given that ETa in arid and semi-arid cli
mates is predicted to be primarily controlled by water supply 
(rainfall or irrigation) (Zhang et al. 2016), effective irrigation 
management is essential to limit agricultural water consump
tion. Therefore, precise and accurate ETo estimates are crucial 
in these regions. The estimated uncertainty of ETo propagated 
from input reanalysis data is generally less than 15% of ETo, 
based on σnorm (Fig. 9). In terms of mm year−1, this uncertainty 
is highest in the Sahel (Fig. 10). Therefore, application of ETo 
for irrigation in this region could be improved considerably 
with more accurate input meteorological data.

Furthermore, the differences between reanalysis datasets 
indicate that the choice of input dataset may influence the 
estimated ETo, particularly for solar radiation, vapour pressure 
and wind speed (Fig. 3). Since the nominal accuracy of ERA5 
and AgERA5 at TAHMO sites is generally better than that of 
GEOS5 (Fig. 7), these datasets are more recommended for 
field-scale estimation. If GEOS5 is needed for high-latency 
applications, the error propagation methods employed in this 
study can be applied to GEOS5, assuming its uncertainty 
quantification is feasible. This will provide more robust results 
with a clearer understanding of the confidence or reliability of 
the estimates.

3.6 Limitations of uncertainty assessment methods

The multiple uncertainty assessment methods used in this 
study have certain limitations. Firstly, the inter-comparison 
approach requires all datasets to have equivalent spatial reso
lution (grid size), temporal resolution and physical quantity. 
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We resampled a higher-resolution dataset to coarser resolution 
to avoid bias caused by the loss of detail in the coarser- 
resolution dataset. However, it is difficult to separate the 
impact of spatial resampling from the differences between 
datasets. For example, AgERA5 data is derived from ERA5 
by applying both spatial downscaling and bias correction for 
topographical condition and coastal areas (Boogaard et al.  
2024). As a result, the differences between AgERA5 and 
ERA5 represent both these corrections and the errors intro
duced by downscaling and subsequently upscaling processes.

Secondly, comparing reanalysis data with in situ measure
ments only provides nominal accuracy at a few clusters of 
TAHMO sites, mainly in tropical savannah climate. These 
clusters do not cover the tropics and the Sahara, which are 
the areas with the largest uncertainties indicated by spatio- 
temporal comparison and ERA5 ensemble spread. 
Furthermore, the accuracy of in situ measurements is also 
a factor influencing the resulting performance metrics. For 
example, in situ windspeed measurement at 2 m can be 
affected by local terrain effects at some sites (Pelosi and 
Chirico 2021). For equivalent comparison, the reanalysis 
windspeed at 10 m was used to derive windspeed at 2 m 
using a logarithmic windspeed profile (Equation 2), however, 
this cannot account for local terrain effects.

Thirdly, the error propagation method requires an assump
tion for the error models of input variables. In this study, we 
assumed that the errors in meteorological variables from rea
nalysis data follow a normal distribution. For ERA5, we char
acterized the error distribution using the mean and standard 
deviation provided by its ensemble uncertainty quantification. 
However, in the case of AgERA5 and GEOS5, where such 
uncertainty quantification is not available, making assump
tions about the mean and standard deviation of errors would 
be inherently incomplete, as they vary for every grid cell and 
every time step. Additionally, none of these approaches 
account for systematic error and uncertainty due to different 
NWP models. Lastly, it is important to note that the metho
dological uncertainties associated with the FAO56 ETo equa
tion (Equation (6)) were not evaluated in this study. Given that 
the FAO56 definition of ETo is based on idealized conditions, 
ambiguity regarding the consideration of local advection 
effects may introduce biases in FAO56 ETo estimates when 
applied to arid and semiarid regions with non-ideal or smaller 
fields (de Bruin et al. 2016, Pereira et al. 2021). Therefore, 
updates on the FAO56 ETo equation still need to be considered 
for its use in estimating water demand.

4 Conclusion

The present study aimed to evaluate the uncertainty of meteor
ological data inputs for FAO56 ETo calculation from GEOS5, 
ERA5 and AgERA5 reanalysis data products through spatio
temporal inter-comparison (between-product uncertainty), 
comparison with in situ measurements (nominal accuracy) 
and ensemble spread (within-product uncertainty). The 
study also analyses the error propagation in the FAO56 ETo 
calculation using reanalysis as meteorological forcing. The 
spatio-temporal inter-comparison of all data products 
shows that the differences between products are non- 

stationary. The major differences between climatic input data
sets are in Central and Southern Africa, and Southwest Asia. 
This uncertainty between reanalysis datasets is due to the 
model uncertainty of the employed numerical weather predic
tion model and estimated errors of observations in data assim
ilation systems. All reanalysis datasets predict air temperature 
and air pressure well, but overestimate windspeed and solar 
radiation and underestimate vapour pressure at the reference 
sites in the TAHMO network. Comparison with in situ data 
shows that all reanalysis datasets have comparable perfor
mance, but ERA5 and AgERA5 perform slightly better. 
Although having better latency, GEOS5 has lower nominal 
accuracy and some temporal inconsistency due to changes 
in the data assimilation system. Therefore, near-real time 
applications that depend on the GEOS5 dataset are subject 
to more errors and not recommended to be used for trend 
analysis. The error propagation results show that the 
uncertainty in ETo estimates propagated from the estimated 
uncertainty in the ERA5 reanalysis dataset is consistently 
higher in the tropics. The Taylor method showed 
a consistent spatial and temporal pattern of uncertainty 
and adequate accuracy compared with the Monte Carlo 
method. Since every uncertainty assessment method has 
its limitations, applying multiple approaches and compar
ing their results could help identify the limitation in rea
nalysis data and better inform the application of reanalysis 
data, especially in data-scarce regions like Africa and 
Southwest Asia.
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The computational notebooks for analyses and result visualization are 
available at https://doi.org/10.5281/zenodo.13970799. ERA5 data are 
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