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Background
High-throughput sequencing technologies have become more cost-efficient over time, 
significantly reducing the price per sample. This reduction allows for higher number of 
sample sizes, increasing statistical power in further analyses.
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Abstract
Background  Genotyping-by-Sequencing with Methylated DNA Immunoprecipitation 
(GBS-MeDIP) is an emerging method for cost-effective DNA methylation analysis. 
However, due to its unique sequencing output, conventional bioinformatics pipelines 
used for RNA-seq and MeDIP-seq are not fully adequate for analyzing GBS-MeDIP 
data. Selecting the appropriate statistical methods for differential methylation analysis 
remains a challenge, as existing approaches may introduce bias or false positives.

Results  We benchmarked multiple statistical methods for analyzing GBS-MeDIP data 
using previously generated datasets from chickens, dogs, and pigs. FeatureCounts 
was identified as the most reliable tool for count matrix generation, outperforming 
MEDIPS, which introduced biases in count estimation. For differential methylation 
analysis, we evaluated EdgeR, limma, DESeq2, and the Mann-Whitney test. Our results 
demonstrated that Mann-Whitney provided the lowest false positive rate and highest 
true positive rate, outperforming both EdgeR, DESeq2, and limma. EdgeR’s quasi-
likelihood method exhibited a high false positive rate, making it unsuitable for GBS-
MeDIP analysis.

Conclusions  Our findings highlight that GBS-MeDIP data should not be analyzed 
using standard RNA-seq or MeDIP-seq pipelines, as these approaches lead to statistical 
artifacts. Instead, we recommend featureCounts for count matrix creation and 
Mann-Whitney for differential methylation analysis, ensuring accurate detection of 
differentially methylated windows. This study provides a bioinformatics framework for 
analyzing GBS-MeDIP data, minimizing biases and improving reliability in epigenomic 
research.
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 Genotyping-By-Sequencing (GBS) was developed to enable researchers to genotype 
many individuals and improve the reliability of population genomic studies [1]. This 
method has been used in plant and animal breeding for over 20 years [2] as a reliable tool 
to study diversity, perform genome-wide association studies (GWAS), conduct general 
population genomics research in a variety of taxa [3, 4], and elucidate genetic relation-
ships in farm animals [5]. The method involves enzymatic digestion of the DNA followed 
by size selection to obtain a reduced representation of the genome, thus enabling the 
genotyping of populations in a cost-effective manner [3].

Beyond genomics, studying DNA methylation, one of the most study epigenetic modi-
fications for its impact on gene expression regulation, is of great interest to the research 
community. Whole Genome Bisulfite-sequencing (WGBS) is the gold-standard method 
for methylomic analysis. It involves the conversion of all non-methylated cytosines to 
uracil using bisulfite treatment, which are then recognized as thymines upon amplifica-
tion. Although WGBS offers single base resolution, the significant nucleotide imbalance 
that is produced poses a major challenge [6]. Another disadvantage of this method is its 
high cost, as a large portion of the data sequenced can be uninformative [7]. As the need 
for cost-effective methods is of great interest, various options to study genome meth-
ylation have been developed. This includes Reduced Representation Bisulfite Sequenc-
ing (RRBS) [8], which examines methylation patterns in targeted regions in the genome. 
This protocol uses bisulfite conversion on DNA digested by a methylation-sensitive 
restriction enzyme, and is by design biased against higher cytosine-guanine dinucleotide 
(CpG)-dense regions of the genome (≥ 3 CpG/100 bp) [9, 10]. While RRBS is used on a 
wide range of species, an alternative method popular for its simplicity, both in analysis 
and interpretation, is the Illumina BeadChip array (either Infinium or the HumanMeth-
ylation450 BeadChip) [11]. This method consists of a set of predefined location across 
the genome where bisulphite converted DNA attaches to probes. Highly used in clinical 
research, this method is consistent but lacks species diversity and is subjected to fixed 
number of locations in a similar manner as genotyping, where new variations are not 
taken into account.

An alternative non-bisulphite conversion method is Methylated DNA immunopre-
cipitation followed by sequencing (MeDIP-seq), where the DNA is fragmented via soni-
cation and then immunoprecipitated with antibodies against 5-mehtyl cytosine (5mC) 
[12]. However, whole genome MeDIP-seq is also costly, thereby limiting its use for a 
large number of samples. A recently published method, GBS-MeDIP [13], provides a 
cost-effective solution by combining features of both GBS and MeDIP. Briefly, in this 
method the DNA is fragmented with the enzyme PstI, barcoded, pooled and then the 
pooled barcoded DNA is immunoprecipitated with 5mC-antibodies. Therefore, immu-
noprecipitation is performed on a pool of samples and not on individual samples. 
Advantages of the GBS-MeDIP include its cost effectiveness due to the use of reduced 
genomes and inclusion of many individuals in sequencing libraries. Another advan-
tage is the ability to investigate genetic and methylomic variants in the same genomic 
regions, as the methylomic library is the immunoprecipitated pool that is originated 
from the genetic library. This advantage is crucial in multigenerational and transgenera-
tional projects, where there is an interest on obtaining the same genomic regions across 
individuals and generations. Another advantage of this method is that there is no bias 
against CpG islands, but it has been noticed an enrichment in repeated elements (RE), 
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as usually RE are systematically silenced by methylation [14]. One potentially drawback 
in GBS-MeDIP is that it can only be used in comparison studies, and as GBS, can suffer 
from polymorphisms around the restriction enzyme when comparing different popula-
tions. Nevertheless, GBS-MeDIP produces a library that is count-based, meaning that 
the level of methylation is assumed to be proportional to the number of reads assigned to 
that specific region. Because of the uniqueness of the sequencing output, which includes 
stacked reads of fix regions due to the enzymatic cut from PstI, the bioinformatic pipe-
lines developed to analyse sequencing data generated by other techniques, such as gene 
expression or MeDIP, are not fully adequate for data generated via GBS-MeDIP. In the 
present paper, we investigate different options to optimize the pipeline to analyse GBS-
MeDIP data using both simulations and publicly available data.

In count data analysis, the two critical steps are (i) creating the count matrix and (ii) 
performing differential statistical analysis. Counts can be assigned in two different ways: 
by using a pre-existing list of genomic features, as it is done in RNA-seq, or by defin-
ing the window of interest within the library based on the location of peaks of reads as 
performed in the Assay for Transposase-Accessible Chromatin (ATAC-seq), Chromatin 
Inmunoprecipitation-sequencing (ChIP-seq) and MeDIP-seq. Once the count matrix is 
created, differential analyses can be conducted. Table 1 summarizes the statistical meth-
ods used for differential analysis of RNA-seq, MeDIP-seq, and other related statistical 
tests. The listed methods were chosen due to their established use in biological count 
data analysis or because they require minimal statistical assumptions.

EdgeR, DESeq2 and limma are software widely used for analyzing count data derived 
from short-read sequencing. EdgeR fits data into a negative binomial distribution using 
different approaches, depending on the data dispersion. It uses General Linear Mod-
els (GLM), where the null hypothesis represents a simpler model than the alternative 
hypothesis [15]. In a case-control study design, the null hypothesis posits that there is 
no difference between the two groups. The DESeq2 package also utilizes GLMs and the 
negative binomial distribution. The limma package approach for read count normaliza-
tion is based on logarithmic conversion to counts per million (log2CPM) followed by 
differential analysis through moderated t-test, where the standard error is taken from 
all input genomic locations. The null hypothesis for the moderated t-test is that there 
are no differences between the means [17]. The Mann-Whitney U-test is also a suitable 
approach since it is a non-parametric test, thus with less assumptions on the data distri-
bution. Mann-Whitney compares the ranks distributions between groups, with the null 

Table 1  Summary of all the methods considered to perform statistical differences on GBS-MeDIP 
data
Method R package Author Number of 

citations
Distribution Test statistic Input data

Maximum 
likelihood

EdgeR [15] 31,395 Negative 
binomial

Likelihood 
ratio test

RNA-seq/
MeDIP-seq

Quasi likelihood EdgeR [16] 706 Negative 
binomial

Likelihood 
ratio test

RNA-seq

Moderated t-test limma [17] 769 Not applicable Moderated 
t-test

RNA-seq

Mann-Whitney Stats [18] 15,127 Not applicable Mann-whitney Applied to many 
biology fields

DESeq2 DESeq2 [19] 84,039 Negative 
binomial

Likelihood 
ratio test

RNA-seq
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hypothesis stating that there are no differences between them, thus it is the non-para-
metric equivalent of the t-test for comparing the mean [18].

In this article, we present a benchmark of count and statistical methods for analys-
ing GBS-MeDIP data using simulated data and previously generated datasets from three 
different animal models: chickens [20], dogs [21], and pigs [22]. Despite the fact that 
GBS-MeDIP data have features that resemble data derived from RNA-seq, we showed 
that GBS-MeDIP data cannot be analysed with methods designed for RNA-seq nor 
MeDIP-seq. Based on our analyses, we have created an optimized pipeline to analyse 
GBS-MeDIP generated data.

Methods
GBS-MeDIP data

Publicly available datasets from GBS-MeDIP were retrieved from the European Nucleo-
tide Archive (ENA). The datasets included four different species: chicken, with compari-
sons of the same breed (White Leghorn) in two different environments (total N = 12) 
(ENA ID: PRJEB34868) [20]; dog and wolf, with comparisons of their epigenome (total N 
= 6) (ENA ID: PRJEB32791) [21]; and pig, with comparison of Landrace and Large White 
breeds (total N = 26) (ENA ID: PRJEB43108) [22]. The data were downloaded as bam 
files, thus the sequencing reads were already mapped to the chicken (Gallus_gallus 5.0) 
[23], dog (CanFam3) [24] and pig (Sus scrofa 11.1) [25] genome, respectively, using Bow-
tie2 v.2 [26] with default parameters. All bam files were filtered for mapping quality MQ 
>10 with samtools v.1.14 [27]. The bam files were merged, and the genomic coordinates 
of all concordant pair of reads were extracted. The mean length of the extracted genomic 
coordinates was calculated, and windows exceeding 300 bp were subset and fragmented 
to the mean length. This step ensures that no window exceeds the mean length of the 
library, as resolution would be compromised. All windows were then merged and 
ordered in a SAF format (tabulated table including chromosome, start, end position and 
an identifier) using a custom script.

Count matrix assessment

To test the performance of the different count methods the generated saf files were 
queried against the filtered bam files using three different software. First, the MEDIPS.
meth from the R package MEDIPS v1.52.0 [28] was tested. This package was used only 
in the windows defined by the SAF file previously created, by using paired-end mode 
and the parameter uniq set to 0. The reason for this is that with the GBS-MeDIP method 
the start and end site are consistently positioned, due to its unique enzymatic cut site 
(5′-CTGCA/G-3′). The second approach tested was performed using featureCounts 
v2.0.3 [29]. The SAF file was used as input, and flags were set for paired-end reads, 
proper alignment, and fragment length ≤ 1500 bp. In both cases, a count matrix was cre-
ated, with individuals as columns and windows of interest as rows. These two software 
were then compared to bedtools multicov, a function from the BEDTools software [30] 
that calculates coverage in a certain region provided a bed file. Raw counts from each 
method were plotted against the bedtools output using ggplot2 v.3.5.1 [31] in R v.4.3.1.
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GBS-MeDIP window distribution

In order to assess the most appropriate statistical distribution of the windows from all 
datasets, as both MEDIPS and EdgeR use a negative binomial distribution, the Akaike 
Information Criterion (AIC) was computed [32] for several distributions: normal, pois-
son and negative-binomial on all windows from the three datasets on the non-normal-
ized counts. To evaluate whether the distribution was preserved after normalization, 
read counts were adjusted by effective library size. This method corrects for read depth 
per individual, followed by the application of the trimmed mean of M-values (TMM). 
The TMM factors are multiplied by the library size, and the raw counts are divided by 
the resulting value to obtain normalized counts. Afterwards the AIC was computed for 
several discrete and continuous distributions: normal, poisson, negative-binomial, uni-
form, and logistic on all windows from the three datasets. This two calculations were 
done using the R package fitdistrplus v.1.1–11 [33]. The AIC values for both tests were 
visualized in Fig. 2 using ggplot2 in R.

Statistical method performances

To assess if the statistical methods fit the data correctly, null distributions of p-values 
were created for all the statistical methods considered, as p-values derived from com-
parisons of a random distribution are expected to have equiprobability, thereby gener-
ating a uniform theoretical distribution. Using the count matrix of all datasets, we ran 
1,000 iterations subsetting 10,000 windows and randomizing the raw counts, to create a 
random dataset. Each subset ran all the methods. EdgeR, limma and DESeq2 have a nor-
malization step before performing differential analysis whereas Mann-Whitney was sup-
plied with a normalized count matrix which was obtained following the same method 
EdgeR uses (calcNormFactors), and 10,000,000 p-values were extracted per running 
method. The null distribution of p-values was then visualized against the theoretical 
quantiles of a uniform distribution using ggplot2 in R and their density was represented 
on bins representing 1% of the data from 0 to 1. After the False Positive Rate (FPR) [34] 
was calculated for each method in each dataset.

To calculate the True Positive Rate (TPR) [35], and Receiver Operating Characteristic 
(ROC) curves [35], a simulated dataset was created to reflect the unique characteris-
tics the wet lab method has, such as, windows with high, medium and low coverage, 
and windows that are highly-, low-, and non-differentially expressed. Under the nega-
tive binomial distribution, 17,100 windows were created for 10 individuals mimicking 
high-, low-, and non- Differentially Methylated Regions (DMRs) based on the differ-
ent percentages of methylation, expressed in the mean (mu) parameter in the negative 
binomial distribution. High DMRs comprised of 8,100 windows, divided into sections 
with fold change (i.e., ratio between probabilities between each of the groups) 7, 2.5 and 
1.23, low DMRs comprised of 7,200 windows, divided into sections with fold change 
0.96, 0.8 and 0.62, and non DMRs comprised of 1,800 windows, divided into sections 
with fold change 0.43, 0.2 and 0.13. The different fold changes were tested across sev-
eral coverages: 0.1, 0.5, 0.7, 0.9, 1,5, 10, 20 and 50. Coverage was modeled using a nor-
mal distribution to provide the dispersion parameter in the negative binomial model. 
After the count matrix had been created, each model was run and the p-values were 
collected. Benjamini-Hochberg and Bonferroni multiple test correction methods were 
applied in parallel. A confusion matrix was generated for each model with each multiple 
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test correction method. In the confusion matrix, adjusted p-values less than 0.05 from 
the high and low DMR groups were considered as correct, as well as adjusted p-values 
above 0.05 if they belonged to the non DMR windows. Visualizations were created with 
ggplot2 in R.

Results
To correctly assess differential methylation in any study, it is crucial to ensure that the 
count matrix is constructed properly and that counts reflect the reality of the sequenced 
library. For the datasets used in this study, the remaining number of mapping reads with 
MQ > 10 were as follows: for the chicken dataset, a total of 22.83 M reads were obtained, 
with average of 3.97 M; for the pig dataset a total of 7.51 M reads were obtained, with 
average of 0.57 M; for the dog and wolf dataset, a total of 15.54 M reads were obtained, 
with average of 5.18  M. Supplementary Table 1 provides detailed information on the 
average reads per individuals.

Count matrix performance

Based on the reads of these datasets, we performed the benchmarking of tools to create 
the count matrix, with the objective of performing differential methylation analysis to 
accurately represent each covered window. MEDIPS and featureCounts were compared 
against BEDTools, which generates coverage of regions outputs. While BEDTools does 
not have any filter, the comparison with featureCounts mostly aligns in a diagonal, thus 
showing that featureCounts reports accurate counts. Contrastingly, the comparison with 
MEDIPS showed counts either higher or lower than the actual coverage of the library 
(Supplementary Fig. 1). While MEDIPS involves a fitting of the counts with a poisson 
distribution, featureCounts does not involve any fitting of the counts. Instead, feature-
Counts filters for all reads properly aligned in pair end mode, which can be observed 
on the few discrepant windows. Since featureCounts effectively handled the type of 
data produced by GBS-MeDIP, it was chosen as the most fitting count tool. A total of 
209,452, 56,694 and 99,328 windows were generated for the chicken, dog, and wolf, and 
pig datasets, with assigned 1.43 M, 1.49 M, and 0.27 M reads on average, respectively. 
Supplementary Tables 3, 4, and 5 shows specific information on the number of assigned 
reads per individual for each of the datasets.

Nature of GBS-MeDIP windows

With the count matrix established using featureCounts, the next step involved evaluat-
ing how statistical models fit the data to assess differential methylation. EdgeR, DESeq2 
and MEDIPs attempt to fit the data into a negative binomial distribution to later on 
assess significance. Data that do not follow a negative binomial distribution cannot be 
assessed for DMR with those methods, as it would lead to bias. In order to check the 
distribution of the GBS-MeDIP data, the non-normalized windows were tested for the 
fitting to poisson, negative binomial and normal distributions using the AIC, which is a 
relative measure of the fitness between the compared distributions. The negative bino-
mial distribution turned out to be the best fitting distribution for the majority of the 
windows (91.90% for the chicken dataset, 91.10% in the dog and wolf dataset and 88.72% 
in the pig dataset) (Supplementary Fig. 2). This distribution models a generalization of 
the times in our libraries where a methylated CpG is encountered. It is not expected to, 
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nonetheless, the distribution can change when read count normalizing data. For this, 
all read count normalized windows from all datasets were tested again using the AIC. 
The AICs for most of the known distributions (normal, poisson, negative-binomial, uni-
form and logistic) are shown in Fig. 1. The majority of the read count normalized win-
dows can be fitted into a negative binomial distribution, as the most significant AIC for 
the majority of the datasets is the negative binomial distribution (85.64%, 64.04% for the 
chicken and dog and wolf dataset, respectively). However, a number of windows break 
the assumptions of this distribution, one example being the pig dataset in which the 
majority of the windows have a lower AIC following the logistic distribution. This cre-
ates a difficulty in choosing MEDIPS or EdgeR as their read count normalization would 
lead to bias in the analysis.

Statistical method performances

Building on this initial evaluation of data fitting into statistical distributions, the next 
step involves assessing the performance of the methods by examining the uniformity of 
p-value distributions derived from randomization of counts to ensure their reliability in 

Fig. 1  AIC representation in all read count normalized windows from the three datasets collected for this study. 
In red is represented the most significant AIC for the distributions compared: normal, poisson, negative-binomial, 
uniform and logistic. With the colour black is represented those windows which broke assumptions for the per-
tained distribution. Across all datasets the negative binomial distribution is the one with the most significant AIC 
(the lowest). Note that there are a significant number of windows where the assumptions for the negative bino-
mial distribution are not met
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identifying DMRs. For this, p-values were generated for 10,000 windows over 1,000 iter-
ations for the datasets and plotted against the quantiles of a uniform distribution (0,1). 
The expectation for an unbiased method is that the p-values would lie on the diagonal. 
Figure  2 shows the Mann-Whitney test displayed a uniform distribution, although an 
increased staggering of observed p-values was noted. However, the distribution of null 
p-values generated by EdgeR using maximum likelihood and quasi-likelihood, and by 
limma, did not adhere to the diagonal, therefore representing a biased distribution. 
DESeq2 displays very little bias where the number of individuals are bigger than 10, this 
can also be noted in Supplementary Fig.  2, were the density of p-values derived from 
each method can be observed in 1% bins.

For random datasets of methylated counts, approximately 5% of false positives (p-val-
ues lower than 0.05) are expected. A method that handles correctly the data should 
adhere to this rate. Using the same random datasets, we calculated the FPR. The aver-
age FPR values across datasets were: 2.13% for Mann-Whitney; 2.53% for EdgeR using 
maximum-likelihood, 33.26% for EdgeR using quasi-likelihood, for DESeq2 11.64%, and 
3.28% for limma using the moderated t-test. The individual FPR values of each dataset 
employing different methods are shown in Supplementary Table 2. The different sample 
sizes (N) in each dataset affected the statistical power in all the models. For example, in 
the dog and wolf dataset with N = 3 per group, the FPR was near 0 or very low for each 
method. EdgeR with maximum likelihood also produced FPR below 5%, yet, as seen in 
Fig. 2, displayed a bias. The quasi-likelihood method in EdgeR produced a high number 
of false positives. DESeq2 displayed very high FPR but adhered to the diagonal the best. 
Lastly, limma was the second-best performing method with a FPR (3.28%) very close to 
that of Mann-Whitney, the top performer.

In addition to observing the FPR for each method, it is also important to determine 
which method has sufficient power for a high TPR, which entails assurance of obtain-
ing true DMRs when analysing GBS-MeDIP data. As the wet lab method does not have 
a validated dataset, a simulation was devised with window counts for high DMRs, low 
DMRs and no DMRs. Each of the methods were also compared using the two most com-
monly used multiple test correction methods, namely Benjamini-Hochberg (FDR) and 
Bonferroni. With either correction, Mann-Whitney, had a TPR over 76%, limma and 
DESeq2 performed intermediately with a TPR of 66% and 70% respectively, whereas 
EdgeR performed below 66%. Table 2 provides a detailed description of each individual 
method with FDR and Bonferroni correction.

Once the TPR values were calculated, the methods could be compared by their ROC 
curves (Fig. 3). The ROC curve is a visualization of the best method to detect DMR: the 
higher the area under the curve a method displays, the more accurate the method is. 
Figure 3 shows that Mann-Whitney displays a higher area under the curve than the rest 
of the methods tested. It is also interesting to note that Bonferroni and FDR display very 
similar pattern with all the methods. With a higher area under the curve, Mann-Whit-
ney is shown to be the best discriminant method for detecting DMRs.
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Fig. 2  P-value uniformity test of Mann-Whitney, EdgeR using Maximum-likelihood (ML), EdgeR using Quasi-like-
lihood (QL), DESeq2, and limma. 1,000 iterations of 10,000 randomized windows from each of the datasets used 
in this study were tested. 10,000,000 reported p-values were plotted against the theoretical quantile. A P-value 
uniformity test of a random distribution of N = 12 using the chicken dataset, B P-value uniformity test of a random 
distribution of N = 26 using the pig dataset, C P-value uniformity test of a random distribution of N = 6 using the 
dog and wolf dataset
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Discussion
In this article, several methods to analyse data derived from GBS-MeDIP were bench-
marked. This study also demonstrates that common statistical methods employed to 
perform differential methylation analysis based on RNA-seq analysis or MeDIP-seq are 
not suitable for GBS-MeDIP data, as they exhibit a high false positive rate.

The selected tool for creating the count matrix from data derived from GBS-MeDIP 
libraries must accurately represent each covered window. Therefore, two widely used 
count features employed in gene expression analyses and MeDIP-seq were compared in 
this article to determine which one accurately reports counts from GBS-MeDIP data. 
featureCounts is one of the most popular count feature tools available for differential 
gene expression analysis, while MEDIPS is the gold standard for analyzing MeDIP-
seq data. MEDIPS failed to accurately report counts compared to BEDTools. To avoid 
exacerbating numbers from potential duplication obtained after the PCR procedure in 
the bench work, MEDIPS models the count with a poisson distribution. Due to this, 
MEDIPS appears to shrink the counts of some windows while exacerbating others, with 
no apparent pattern observed, making it unsuitable for GBS-MeDIP data analysis (Sup-
plementary Fig. 1). The other count method evaluated, featureCounts, which does not 
involve any calculation of PCR duplicates, accurately reported counts across the differ-
ent datasets. Only a small fraction of the counts diverged from the reporting of coverage 
of BEDTools, likely due to the advanced filtering featureCounts discarding bad quality or 
misaligned reads.

Complex statistical tests often involve fitting the data into a particular distribution 
after read count normalization. In this article, we evaluated the EdgeR and DESeq2 
software, which follow this pattern when attempting to fit the data given into a nega-
tive binomial distribution for later assessment of significance. It might seem as the read 
count normalization step followed by EdgeR is altering the distribution of the data (Fig. 
1), making it unsuitable for differential analysis using a negative binomial (Fig. 2 and 
Supplementary Fig. 3). On the other hand, it seems the read count normalization of 
DESeq2 suits better GBS-MeDIP data as the null p-value distribution is quite uniform, 
even if it encounters a high FPR. We have shown that GBS-MeDIP data do not follow a 
negative binomial distribution in the tested datasets after read count normalization from 
EdgeR. Thus, GBS-MeDIP data cannot be assessed for DMR with EdgeR methods, as it 
would lead to bias; currently there is no alternative of model fitting. Noteworthy is the 
observation that the non-normalized counts indeed follow a negative binomial distribu-
tion, which is relevant, as it is widely used in methylation data [36].

This study analysed the reliability of various statistical methods for detecting differ-
ential methylation in three different datasets spanning four species. To ensure a correct 
assessment of DMRs, the p-values obtained from a random set of methylated windows 
should be uniformly distributed uniformly. Any deviation suggests that the method is 
not appropriate to model the data correctly, or that the assumptions are not met. In this 
article, we show that presented how Mann-Whitney generates staggering p-values in the 
uniformity test (due to the discrete nature of its distribution) while still adhering to the 
diagonal in contrast to the bias that displayed the rest of the methods. DESeq2 also dis-
played a very uniform distribution, but the FPR produced by this method surpasses 15%. 
The Mann-whitey test outperformed in the TPR and was slightly conservative in the 
FPR, with a value of 2.13%, well below the 5% threshold. Even with a small sample size, 



Page 12 of 15Anca Prado de et al. BMC Bioinformatics           (2026) 27:17 

the Mann-Whitney test did not show bias in the null distribution of p-values, but pro-
duced conservative p-values, concordant with being a non-parametric test. In contrast, 
EdgeR and limma had low TPRs (66% and 65% respectively), making them unreliable for 
analysing GBS-MeDIP derived data. The EdgeR quasi-likelihood method produced the 
highest FPR, likely due to the overdispersion parameter introduced by the quasi-like-
lihood method, which can lead to a high level of false positives, as overparameteriza-
tion can occur when applied to certain data [36, 37]. Alternative methods to the ones 
investigated in this article have also been used in genomic data, for example permuta-
tion test [38]. Permutation test compares the observed data to a distribution generated 
by permuting the same data randomly. The main drawback encountered when applying 
this method to GBS-MeDIP data is that it requires the permutations to have the same 
distribution, which was not the case in the tested datasets across all the windows.

Similar type of benchmarking studies can be found for Illumina methylation arrays and 
RNA-seq [39, 40] and also focusing on the importance of identify and minimize statisti-
cal artifacts when possible [41, 42]. Surprisingly, those studies are not found for MeDIP-
seq, one of the most widely employed method to investigate DNA methylation. Even 
though an immunoprecipitation is performed in the process of GBS-MeDIP, the results 
presented in this article cannot be applied to MeDIP-seq, as it involves DNA sonication, 
forming a completely different library distribution from what GBS-MeDIP creates.

Conclusions
In conclusion, this study shows that bioinformatic analyses tailored to MeDIP-seq or 
RNA-seq data should not be employed to analyse GBS-MeDIP generated data, as this 
will most likely result in false positives or casual relations. This study also shows that the 
best performing tools to analyse GBS-MeDIP derived data is featureCounts for count 
matrix creation and Mann-Whitney for differential analysis.

Fig. 3  Receiver operating characteristic (ROC) curve. Each statistical method was tested with a simulation of 
17,100 windows mimicking high DMRs, low DMRs, and not differentially methylated
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