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Abstract

The Brazilian Amazon contains approximately 40% of the world’s tropical rainforest and plays a
critical role in preserving biodiversity and regulating water, energy and carbon cycles. However,
deforestation and increasingly frequent droughts, heatwaves and wildfires threaten these rain-
forests. Amazonian fires are generally assumed to be entirely anthropogenic, which has led to
lightning-ignited fires being underexplored. Here, we present the first detailed assessment of the
spatiotemporal patterns of lightning-ignited fires in the Amazon rainforest to elucidate the role of
lightning and human ignitions in shaping Amazon fire dynamics. To do this, we matched cloud-
to-ground lightning strokes from the Global Lightning Dataset (GLD360) with individual fire
events between 2019 and 2024 to obtain a probability of lightning ignition for each fire. We also
calculated a human-ignition probability index using proximity to roads, waterways, and human
land cover as proxies for human activity. By combining both probabilistic indices with ground-
observed lightning ignitions from eight protected areas, we could optimize the threshold that
determines if an ignition is more likely to be caused by lightning or human activities. We estim-
ate that in the Brazilian Amazon, lightning caused on average 0.2%-0.4% of all fires each year
(234407 ignitions per year) and 1.1%-1.2% of the annually burned area (1226-1358 km? per
year) between 2019 and 2024. More than 89% of these fires occurred in the late dry season between
August and November, peaking in September and October. Despite lightning-ignited fires con-
tributing a small proportion of all Amazonian fires, they constitute over 25% of the fires in iden-
tified grid clusters in parts of the states of Pard (particularly in the Breves region), Amazonas, and
Rondonia. This study provides the first estimation of the role of natural ignitions in Amazon fire
dynamics and a scientific basis for understanding their contribution within the region.

1. Introduction

The Amazon accounts for 40% of the global trop-
ical forest area, making it the largest tropical forest in
the world (Laurance et al 2001, Aragao et al 2014). It
is a vital component of the global carbon cycle and
a biodiversity hotspot that harbors millions of spe-
cies (Cardoso et al 2017). In addition, the Amazon
plays a crucial role in regulating the global climate

© 2026 The Author(s). Published by IOP Publishing Ltd

as it is an important driver of global water, carbon
and energy cycles (Sampaio et al 2007, Spracklen and
Garcia-Carreras 2015, Nobre et al 2016).

The Amazon forest typically maintains high mois-
ture levels in both the soil and the litter layer through-
out the year (Leigh 1975). The dense and complex
canopy further contributes to preserving a micro-
climate with high atmospheric humidity, making
fire occurrence relatively rare (Kapos 1989, Uhl and
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Kauffman 1990a). Even when fires occur, their eco-
logical impact is usually limited, because canopy—
atmosphere decoupling sustains a humidity micro-
climate (Ray et al 2005). However, droughts and
heatwaves have become more frequent and more
severe in Amazonia in the last decades resulting
from intensifying climate change and amplified by
large-scale climate modes such as El Nifio Southern
Oscillation (ENSO) and the Atlantic Multidecadal
Oscillation (AMO), alongside reduced regional mois-
ture recycling resulting from large-scale deforesta-
tion (Khanna et al 2017, Janssen et al 2020, Libonati
etal 2022). Furthermore, forest degradation and frag-
mentation also directly promote fire occurrence by
creating more forest edge where vegetation is dir-
ectly exposed to sunlight and can desiccate, though
fires rarely spread into the intact forest interior
(Lapola 2023). During prolonged drought, leaf litter-
fall increases substantially in the Amazon, contrib-
uting to rare dry surface fuels (Janssen et al 2021).
Furthermore, during prolonged drought even typ-
ically interior fuels can dry out and become flam-
mable, allowing ignitions to potentially trigger large
wildfires (Cochrane 2003, Brando et al 2019). Despite
their lower fire occurrence, tropical humid forest and
rainforest vegetation are relatively vulnerable to fire
because many tree species did not co-evolve with
fire, lacking fire-adaptive traits such as thick bark
and resprouting (Pivello et al 2021). This makes
rainforest tree species suffer much higher mortality
rates from fires compared to fire-adapted tree species
from savanna and tropical dry forest ecosystems (Uhl
and Kauffman 1990a, Bush et al 2011, Hendricks

etal 2024).

During the pre-Columbian period (before 1492
CE), Amazonian forest fires are estimated to have
recurred only once every 400-1000 years, mainly dur-
ing rare extreme droughts associated with excep-
tional ENSO events (Thonicke et al 2001, Bush et al
2008, Alencar et al 2015). However, fire frequency in
the Amazon region has been substantially higher in
recent decades, mainly because of deforestation, agri-
cultural expansion and forest degradation (Schmidt
and Eloy 2020, Libonati et al 2021, Silveira et al 2022,
Flores et al 2024). Furthermore, fire risk has been
exacerbated by climate change-induced droughts and
heatwaves (Marengo et al 2018, Costa et al 2022,
Libonati et al 2022), often amplified by large—scale
modes of climate variability such as ENSO and AMO
(Jiménez-Mufioz et al 2016, Zhao et al 2018, Singh
etal 2022).

Fires are ignited either by humans or by nat-
ural phenomena, which is almost exclusively light-
ning (Janssen et al 2023). The Brazilian Amazon
experiences some of the highest lightning activity
globally (Pinto and Pinto 2003), with potentially
large effects on tree mortality and biomass stocks
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(Almeida et al 2012, Gora et al 2025, Veraverbeke
et al 2025). Although studies have examined the
impact of lightning strokes on tropical tree mor-
tality and damage (Yanoviak et al 2020, Gora et al
2020a, 2020b), no studies have formally quanti-
fied their role in fire ignitions in tropical forests.
Addressing this gap is essential for better under-
standing Amazon fire regimes, including the role
of natural fires in these ecosystems, such as their
dynamics, frequency, drivers, risks and carbon
emissions.

This study presents the first comprehensive ana-
lysis of lightning fires throughout the entire Brazilian
Amazon rainforest. We used a global lightning net-
work dataset and remotely sensed fire data between
2019 and 2024. First, we evaluated the temporal
and spatial concurrence of lightning strokes and
fire ignition events to estimate a probability-based
index of lightning fire ignitions. Second, we cal-
culated a similar ignition probability but then res-
ulting from human activities by evaluating nearby
land use and infrastructure. We assessed the uncer-
tainty in our attribution by comparing the probab-
ility indices of lightning and human fires using offi-
cially recorded ground-based fire cause data. This
allowed us to map and understand the spatiotemporal
patterns of lightning fires in the Brazilian Amazon
rainforest.

2. Materials and methods

2.1. Study area

Our study focuses on the Brazilian Amazon in South
America (figure 1), which covers approximately
4.0 million km? (Souza et al 2020). This represents
about 60% of the Amazon rainforest’s total estim-
ated 6.7 million km? (Aragao et al 2014). The region’s
vast size contributes to considerable climate variabil-
ity across the basin with a relatively long dry season
of up to six months (defined as months with less than
100 mm of precipitation) in the south-east and no dry
season in the north-west (Sombroek 2001). However,
the climate is generally warm and humid resulting in
intense convective activity, modulated by the influ-
ence of synoptic systems (Moura et al 2019, da Silva
et al 2023). Consequently, annual rainfall generally
falls between 2000 mm and 2500 mm, supplied by the
South Atlantic Ocean and regional recycling of evapo-
transpiration (Moura et al 2019, Marengo et al 2024).
Mean annual temperatures range from 25.0 °C to
27.8 °C (Almeida et al 2017). Rising temperatures and
increasingly frequent droughts associated with cli-
mate change have recently intensified fire-conducive
conditions during the dry season months, increas-
ing the region’s vulnerability to wildfires (Feron et al
2024, Flores et al 2024).
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Figure 1. Location of the Brazilian Amazon (black polygon) in South America. The green and brown areas represent natural and

anthropogenic land cover respectively, based on MapBiomas Collection 9 land cover data (MapBiomas Project 2024). The white
polygons represent eight selected protected areas where ground-based fire cause data were available, with numbers indicating the
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2.2. Datasets

2.2.1. Remotely sensed fire data

We used the fire event dataset from the Amazon
Fire Dashboard (AFD). The AFD is a comprehens-
ive resource that clusters Visible Infrared Imaging
Radiometer Suite (VIIRS) active fire detections
(Schroeder et al 2014) into individual fire events using
a near-real time fire tracking methodology (Andela
et al 2022). In this dataset, each event is classified into
four fire types typical for the Amazon: deforestation
fire, understory forest fire, small clearing and agricul-
tural fire, and savanna fire. To provide an assessment
that is independent from the AFD fire type classific-
ation, we included all fires detected within the AFD.
The dataset provides detailed information for each
fire event, including data on event start day, dura-
tion, tree cover, vegetation biomass, historical defor-
estation rates, fire radiative power, size, fire polygon
geometry, etc.

Accurate attribution of fire ignitions requires
assessing the temporal and spatial coherence of light-
ning and fire events. Although the AFD is compre-
hensive in coverage, it provides fire detections at a
daily temporal resolution, posing challenges for tem-
poral matching with lightning strokes, which have a
sub-second temporal resolution. To address this lim-
itation, we integrated AFD fire event data with the
native temporal resolution of VIIRS active fire data,
which provides data twice per day, to provide a more
accurate timestamp of the first fire detection (defined
as ignition time).

For the integration, we used the 375 m VIIRS
active fire product (level 2, VNP14IMG) derived
from both the Suomi National Polar-orbiting

Partnership and National Oceanic and Atmospheric
Administration-20 (NOAA-20) platforms (Schroeder
et al 2014). This dataset includes the time of active
fire detection, geolocation and fire radiative power.
For each AFD fire polygon, we identified the earli-
est VIIRS active fire detection within the polygon.
Often, multiple VIIRS fire detections were selected as
the earliest fire detection, as the earliest observations
covered multiple VIIRS pixels. To estimate the loc-
ation of the fire ignition for each AFD fire polygon,
we created a buffer with a 375 m radius around all
the active fire detections selected for that polygon.
In such a manner, for each AFD fire polygon, we
delineated the minimum bounding rectangle con-
taining the buffers of the earliest VIIRS detections.
This VIIRS-based rectangle was defined as the area of
ignition (Aol) and represents the smallest area where
the ignition could have taken place. The centroid of
the Aol was used as a reference ignition point.

2.2.2. Lightning data

The Vaisala Global Lightning Dataset (GLD360) is
derived from a global network of ground-based
sensors that detect very low frequency (VLF) radio
waves emitted by lightning in real time (Cummins
et al 1998, Said et al 2010). GLD360 predominantly
detects cloud-to-ground (CG) lightning strokes and
also captures some intra-cloud flashes. Between 2019
and 2024, over 200 million (205 781 952) CG strokes
were recorded within the study area (figure 2). Of this
grand total, about 84 million (84 292 890) CG strokes
were matched to fire ignitions because of spatial and
temporal proximity (see section 2.3.1. For additional
details). CG lightning stroke density between 2019
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Figure 2. Average annual cloud-to-ground lightning stroke density over the Brazilian Amazon. Data are derived from the Global
Lightning Dataset (GLD360) and were detected between 2019 and 2024. Cloud-to-ground lightning events were spatially aggreg-
ated to a 0.25° regular grid.

and 2024 was significantly higher in the southwestern
Amazon than in the northeast (figure 2). In the south-
west, moisture—laden convection driven by regional
monsoon dynamics and substantial moisture recyc-
ling leads to vigorous thunderstorms. In contrast,
the northeast receives most of its precipitation as
more stable, stratiform Atlantic-dominated rainfall,
resulting in much lower lightning activity (Yoon and
Zeng 2010). The GLD360 dataset provides the loca-
tion, timestamp, polarity and amplitude of each CG
stroke, along with its spatial uncertainty, represented
by a 50% confidence ellipse defined by its orientation
angle and the lengths of the semi-major and semi-
minor axes.

2.2.3. Land cover and infrastructure data

To estimate the likelihood of human fire ignitions,
we compared the fractions of natural and human-
modified land cover types in the vicinity of each
fire ignition location. We used land cover inform-
ation from 2019 to 2024 from the annual land
cover maps of Brazil produced by the MapBiomas
Project (Collection 9, 2023) (Souza et al 2020,
MapBiomas Project 2024). This land cover data,
with a spatial resolution of 30 m, provides pre-
defined natural and anthropogenic land cover types
(table S1). The class labeled as ‘Not Observed’ was
excluded from the analysis. We created a circular
buffer with a 0.01° (approximately 1 km) radius
surrounding each ignition centroid and then calcu-
lated the fractions of natural and human-modified
land cover within the buffer. To further evaluate

the proximity of ignitions to human activity, we
used data on roads, waterways, villages, and power-
lines from OpenStreetMap (OpenStreetMap 2021)
and the ‘Departamento Nacional de Transportes’
(the Brazilian National Transport Department 2024),
(figure S1).

2.2.4. Meteorological data

To characterize the weather conditions at the time
of fire ignition, we analyzed precipitation and vapor
pressure deficit (VPD). We obtained hourly total pre-
cipitation, 2 m air temperature and dewpoint tem-
perature data at 0.1° spatial resolution from the
fifth generation of the European Centre for Medium-
Range Weather Forecast (ECMWF) reanalysis (ERA5-
Land) dataset (Munoz-Sabater et al 2021). We extrac-
ted total daily precipitation and hourly VPD val-
ues surrounding each fire ignition day. VPD was
calculated from hourly air temperature and dew-
point temperature using Tetens equation following
Monteith and Unsworth (Otto Tetens 1930, Monteith
and Unsworth 2013). We also computed the total pre-
cipitation accumulated over the five days preceding
the ignition date. From the hourly VPD, we calcu-
lated the daily average and maximum VPD over the
same 5 d period, to capture variability in atmospheric
aridity.

2.2.5. Ground reference data on fire cause

We used reference data from eight protected areas
in the Brazilian Amazon for our lightning igni-
tion attribution calibration (figure 1). This data
was documented by the ‘Instituto Chico Mendes de

4



10P Publishing

Environ. Res. Lett. 21 (2026) 024025

Conservacao da Biodiversidade’ (ICMBio), the fed-
eral agency responsible for managing and protecting
Brazil’s conservation units and biodiversity (ICMBio
2025). The ICMBio dataset provides ground-verified
fire records, including precise ignition locations, dates
and documented causes based on visual confirma-
tion. The ICMBio dataset documents 20 visually con-
firmed lightning-ignited fire events recorded between
2019 and 2023 across the eight protected areas. When
cross-referenced with the AFD fire dataset from the
same period, seven of these fires were successfully
matched to AFD lightning fire events, while the
remaining 13 had no corresponding record in the
AFD. In addition, 892 other fire events detected by
AFD within these protected areas during 2019-2023
showed no indication of lightning ignition in the
ICMBio records and were therefore assumed to be
anthropogenic in origin (table 1).

2.3. Methods

2.3.1. Lightning ignition probability

The relationship between CG lightning and fire igni-
tions between 2019 and 2024 was investigated using
spatio-temporal probability matching (Moris et al
2024b). This approach introduces a probabilistic
index (Pp,) to determine the probability that light-
ning stroke ignited a wildfire, which is the product of
a spatial probability (Ps) and a temporal probability
(Py). In this method, a spatial bivariate Gaussian dis-
tribution is constructed for each CG stroke using the
recorded stroke location and the confidence ellipse
parameters. The obtained probability density func-
tion is then integrated over the (Aol, section 2.2.1)
to compute the spatial probability (Ps) of lightning
stroke occurrence within the Aol (Moris et al 2024b).
Subsequently, the temporal probability (P;) was cal-
culated for each stroke, which is based on the tem-
poral proximity between the lightning stroke and
the ignition. After initial lightning ignition, fires can
smolder undetected and it can take up to several days
before the fire develops into a flaming fire detect-
able by satellite sensors such as VIIRS (Moris et al
2023). This period between lightning stroke detection
and first fire detection is called holdover time. We set
the maximum holdover at seven days, as the occur-
rence of lightning-ignited fires beyond this period is
assumed to be minimal. Moris et al (2024a) developed
survival functions to compute the temporal probabil-
ity P;. While specific survival functions are currently
available for three biomes (boreal, temperate conifer-
ous forests, and Mediterranean ecosystems), this is
not the case for tropical forests, and hence we used a
general survival function (parameters: shape = 0.369
and rate = 0.235) that can be applied to other biomes
(Moris et al 2024a). The probability index Py, quan-
tifies the likelihood that a single CG stroke ignited a
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particular wildfire by multiplying the spatial and tem-
poral probabilities:

Py =P, x P,. (1)

In this study, we calculated the lightning ignition
probability for all CG strokes within a 10 km buffer
around the Aol, which is a common distance used
in fire-lightning matching studies and accounts for
potential large location errors in both fire and light-
ning data (Moris et al 2020). Among these strokes, we
selected the one with the highest Py, value as the most
likely candidate lightning stroke responsible for the
ignition. Finally, for each fire, we computed the prob-
ability that the ignition was caused by lightning (P;)
by using the inclusion—exclusion principle on the Py,
values of all lightning strokes matched to the ignition
(Larjavaara et al 2005, Menezes et al 2022):

P=1- <H1—Pm,i>. (2)
i=1

2.3.2. Anthropogenic ignition probability

Given the high frequency of lightning in the Amazon,
a large number of CG strokes may spatially and tem-
porally overlap fire ignition areas purely by chance. To
minimize lightning ignition commission errors, we
also calculated a probability index of anthropogenic
fireignition (P,). To analyze the spatial distribution of
fire ignitions relative to human activities, we first cal-
culated the shortest distance from each ignition loca-
tion to the nearest anthropogenic feature, including
infrastructure, transport waterways, built-up areas,
roads, villages and powerlines. We aggregated fire
ignition numbers per distance class to construct the
raw ignition distribution, which shows an exponen-
tial decline in ignitions with increasing distance to
anthropogenic features (figure S2(a)). However, this
decline can be largely attributed to the distribution of
land area rather than human influence as more land
area (in km?) is close to anthropogenic features and
less land area is far away from them, showing a sim-
ilar exponential decline (figure S2(a)). To remove the
spatial bias, we calculated the ignition density as the
total number of ignitions divided by the total land
area within each distance class. To do this, the geospa-
tial features were rasterized into 30 m resolution grids,
and proximity distances were calculated for each grid
cell. We then fitted an exponential decay model to the
normalized ignition density distribution to derive an
anthropogenic ignition probability based on distance
to human activity and accessibility features (P;) for
each fire event (figure S2(b)). The rationale behind
this method is that the spatial distribution in light-
ning ignitions is assumed to be largely independent
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Table 1. Number of lightning-ignited and anthropogenic fire events in eight protected areas of the Brazilian Amazon between 2019 and
2023. Values are reported as the number of lightning-ignited fires/the number of anthropogenic fires. ID numbers correspond to the

protected area locations shown in figure 1.

Lightning/anthropogenic fires

ID Protected area 2019 2020 2021 2022 2023  Total
1 Parque Nacional do Pico da Neblina 0/17  0/14  0/9 0/11 0/12  0/63
2 Parque Nacional Mapinguari 3/16 1/24  0/34 1/35  0/27  5/136
3 Parque Nacional dos Campos Amazonicos  0/40  0/41 0/45  0/40  0/43  0/209
4 Parque Nacional de Pacads Novos 0/15 0/15 0/6 0/14 1/8 1/68
5 Reserva Biolégica do Guaporé 0/23 0/61 0/50  0/28  0/61 0/223
6 Parque Nacional do Jamanxim 0/24 0/34 0/16 0/24 0/36 0/124
7 Floresta Nacional de Carajas 0/0 0/21 0/2 0/1 0/0 0/24
8 Parque Nacional do Cabo Orange 0/9 0/1 1/4 0/4 0/27 1/45

Total

3/144 1/211 1/166 1/157 1/214 7/892

of anthropogenic features while human ignitions are
strongly dependent on the proximity to anthropo-
genic features. In addition, we used the MapBiomas
land use dataset with two predefined categories, nat-
ural and human-modified land (table S1), and cal-
culated the fraction of each land cover type within
a 0.01° (approximately 1 km) radius buffer around
the ignition centroid (Py). Based on the inclusion—
exclusion principle (Dorph et al 2022), we calculated
a probability index of anthropogenic fires (P,) as fol-
lows:

Pa:1—(l—Pr)><(1—Phl) (3)

where P, is the probability based on the shortest
distance between ignition centroids and human or
accessibility features, and Py is the proportion of
human land cover within the buffer zone around the
ignition centroid.

2.3.3. Uncertainty analysis

In our ignition attribution framework, ignitions can
exhibit both high lightning and high anthropogenic
probability index values. This is the case, for example,
when an ignition is located next to a road while
also being matched to multiple co-occurring light-
ning strokes. Because the two probability indices are
derived from different methodologies and datasets,
they cannot be directly compared and do not share a
common scale, even though both range from zero to
one. To enable confident attribution of ignitions, we
defined a probability difference index (A,) between
the two probability indices. This index (A,) was sub-
sequently used for calibration against the reference
data described in the section 2.2.5.:

A, =P —P, (4)

We performed best threshold (BT) selection to max-
imize the detection of relatively rare lightning igni-
tions while minimizing overall misclassification. We
also conducted an uncertainty range (4A,) analysis
to provide a measure of attribution uncertainty and

enhance the robustness of the results. The ground
reference data from eight protected areas within the
Brazilian Amazon were labeled as true observed data,
while different thresholds of A, values served as pre-
dicted classifications. This approach resulted in four
possible classifications:

e True positive (TP): a fire actually caused by light-
ning is correctly identified.

e False negative (FN): a fire actually caused by light-
ning is incorrectly identified as human-caused.

e Truenegative (TN): a fire actually caused by human
activity is correctly identified.

e False positive (FP): a fire actually caused by human
activity is incorrectly identified as lightning-
caused.

We used the receiver operating characteristics (ROC)
curve (Fawcett 2006) to characterize the ability to
differentiate between TP rates (TPRs) and FP rates
(FPRs) (equation (5) and (6)). ROC curves have FPR
on the horizontal axis and TPR on the vertical axis,
and the ideal point is (0, 1), which would mean that
the ability to differentiate between both fire causes is
correctly assessed in all cases (figure S3(a)),

TP

TPR= —— 5

TP +EN (5)

FPR = il (6)
 FP4+ TN’

We calculated FPRs, TPRs and their correspond-
ing A, thresholds along the ROC curve. The BT
was selected by identifying the A, threshold with
the shortest distance to the ideal point on the ROC
curve, as given by equation (7). To obtain the optimal
A;, we first examined the performance of adjacent
thresholds around the BT to determine the first
uncertainty range A (figure S3(b)). Additionally, we
employed a bootstrap method (DiCiccio and Efron
1996) to randomly resample the calculated set of
FPRs, TPRs, and A, thresholds 1000 times, generat-
ing several ROC curves and corresponding BTs. We
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obtained the second uncertainty range A, by analyz-
ing the distribution of the BTs across all resampling
results and using the 95% confidence interval. By tak-
ing the intersection of these two ranges, we defined
the uncertainty range A, (equation (8)),

Distance = \/FPR2 +(1— TPR)2 (7)

At = AtlmAtZ- (8)

In this study, the BT was A, = —0.012, with an uncer-
tainty range between —0.012 and 0.004. The lower
bound of the uncertainty threshold was the same as
the optimal value due to the limited number of refer-
ence data points. The obtained BT range around zero
indicates that, despite using different data and meth-
odologies to obtain the two probabilistic indices, they
remain closely comparable. We applied this BT and
A to the reference data and all the remotely sensed
fire events to attribute these ignitions to either light-
ning strokes or human activities (table 2, figure S4).
The upper bound threshold may help reduce com-
mission errors by limiting the number of fires clas-
sified as lightning-caused, but it may also result in
some lightning ignitions being incorrectly attributed
to human activities.

3. Results

3.1. Spatiotemporal patterns of different fire causes
We estimate that lightning-ignited fires accounted
for 0.4% (uncertainty range: 0.2%-0.4%) of all fires
(234-407 ignitions per year) in the Brazilian Amazon
between 2019 and 2024, while the corresponding
burned area was 1.3% (uncertainty range: 1.1%-—
1.3%) of the total burned area (1226-1358 km? per
year). As expected, human activities were the dom-
inant cause of fire ignitions in the Brazilian Amazon,
accounting for 99.6% of the ignitions and 98.7% of
the burned area. Although lightning was generally a
minor source of fire ignition, lightning-ignited fires
showed distinct spatial patterns. Gridded clusters of a
higher (>25%) lightning fire contribution were vis-
ible across the Brazilian Amazon in the states of Para
(specifically in the Breves region), Amazonas, and
Rondodnia (figures 3, S5 and S6). These areas also
accounted for 90.6% of the total burned area attrib-
uted to lightning (figure 3(b)). Conversely, lightning
fire activity and associated burned areas were rel-
atively sparse in the northern part of the Brazilian
Amazon.

Between 2019 and 2024, the annual number of
human ignitions averaged approximately 100 000
events per year (figure 4(a)). In contrast, lightning
ignitions were comparatively rare, with an average of
approximately 400 ignitions per year (table 2). The
lowest number of lightning ignitions was observed in
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2022 (288 of the total 107 407 ignitions), compared
to the highest number of 558 (of a total 107 479 igni-
tions) in 2024. Lightning activity in the Amazon peaks
between September and December (figure 4(b)), at
the end of the dry season and beginning of the
wet season for most regions within the Amazon
Basin. This lightning seasonality is partly mirrored
by the seasonal variation of lightning-ignited fires,
which peaks in September—October (figure 4(d)).
Compared with anthropogenic fires, lightning fires in
the region tend to occur within a narrower seasonal
window, despite both showing comparable seasonal
dynamics.

To verify whether the regional-scale patterns
observed across the entire study area were consist-
ent across different latitudinal zones, we divided the
region into four latitudinal bands (figure S7). In
the southern hemisphere zones, both anthropogenic
and lightning-ignited fire exhibited similar seasonal
dynamics, with most fires occurring between August
and November. Human-ignited fires typically star-
ted in June, while lightning-ignited fires tended to
occur later in July. In the northern hemisphere zones,
anthropogenic fires exhibited a bimodal seasonal pat-
tern, with distinct peaks in March and October. In
contrast, lightning-ignited fires occurred in very lim-
ited numbers, yet they also follow a comparable sea-
sonal pattern.

3.2. Fire drivers and impacts

We find that the average VPD for both human-ignited
and lightning-ignited fires generally increases dur-
ing the five days preceding fire detection, reaching a
peak on the first day of fire detection (figure 5(a)).
VPD associated with human ignitions was on aver-
age higher than that for lightning ignitions. A sim-
ilar pattern is observed in the precipitation analysis,
where median and mean cumulative precipitation in
the five days before fire detection is generally lower
for human ignitions than for lightning ignitions, but
the difference on the ignition day is not statistically
significant (figure 5(b)). These results suggest that
lightning ignitions generally occur under wetter con-
ditions compared to human ignitions, likely because
lightning can co-occur with substantial rainfall dur-
ing thunderstorms. Mean VPD and mean monthly
lightning ignition counts show a strong exponen-
tial relationship (figure 5(c)), indicating that the
probability of lightning ignition occurrence increases
exponentially with drier atmospheric conditions. The
months September and October showed on average
the highest monthly VPD and the highest lightning
fire occurrence (figure 5(c)). For lightning ignitions,
daily average VPD reached the lowest value three days
before first fire detection (figure 5(a)). This temporal
pattern is consistent with the peak in holdover time of
three days (figure S8), suggesting that many lightning
fires in the Amazon are ignited under relatively wet
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Table 2. Fire classification accuracy in eight protected areas of the Brazilian Amazon, and estimated number of lightning-ignited fires
and their burned area across the entire study region between 2019 and 2024 under different classification thresholds (A).

Uncertainty
lower bound (and
best threshold) Uncertainty upper

Scenario Metric/category A, =—0.012 bound A, = 0.004
Protected areas Total ignitions 899 899

Predicted positive 127 65

Predicted negative 772 834

Positive 7 7

Negative 892 892

True positive 5 4

True negative 770 831

False positive 122 61

False negative 2 3

True positive rate 71.4% 57.1%

False positive rate 13.7% 6.8%

Precision 3.9% 6.2%

Accuracy 86.3% 93.0%
Entire region Total Ignitions 638 525

Burned area 639 779 km?

Annual average Lightning fire
ignitions

Burned area from

lightning fires

407 (0.4%) 234 (0.2%)

1358 km? (1.3%) 1226 km? (1.1%)

conditions during thunderstorms, after which they
smolder for a few days before emerging as flaming
fires when weather conditions become drier.

Furthermore, to compare environmental con-
ditions associated with different lightning stroke
outcomes, we used a random 1% subsample
(n =842 929) of the matched CG strokes. This sample
included both fire-igniting and non-igniting strokes,
with the igniting strokes representing a much smal-
ler fraction (0.5%), consistent with the high lightning
stroke count and inherent rarity of lightning fire igni-
tions. Fire-igniting strokes were generally preceded by
higher VPD values, indicating drier conditions, and
experienced slightly less precipitation on the day of
occurrence compared to strokes not resulting in fire
ignition (figure S9).

We found that the distributions of the individual
fire metrics (fire size, carbon emissions, and fire radi-
ative power) differed markedly between the two fire
types (figure 6). These differences were quantified by
the power-law exponent /3 (figure 6, Xu et al 2022),
which describes the relative frequency of large versus
small fires. Higher /3 values indicate that smaller fires
dominate the overall frequency, whereas extremely
large-scale events are comparatively rare. Lightning-
ignited fires exhibited significantly smaller 5 val-
ues than human-ignited fires across all three impact
metrics. This was particularly the case for fire size,
showing that rare, high-impact events disproportion-
ately shape the lightning fire regime in the Brazilian
Amazon. This relatively small 3 value of 1.91 further
suggests that within the lightning fire distribution,

large events constitute a relatively higher proportion
of all lightning fires. Consequently, although light-
ning fires are fewer overall, larger lightning fires dom-
inate their total burned area and carbon emissions,
and high fire radiative power events are more frequent
for lightning fires compared to anthropogenic fires.

4, Discussion

4.1. Lightning and anthropogenic fires in the
Brazilian Amazon

Lightning-ignited fires in the Brazilian Amazon have
been largely overlooked because most documented
fires in the region have been attributed to human
causes. Our analysis shows that lightning fires do
occur annually in the Brazilian Amazon, although
they comprise a small fraction (0.4%) of all remotely
sensed fires between 2019 and 2024. Using ground
observations of confirmed lightning ignitions from
eight protected areas within the Brazilian Amazon,
we optimized our matching algorithm and provided
the first estimate of the number of lightning ignitions
and their spatial and temporal distribution across
this vast area. These ignitions are most common
in Pard, Amazonas, and Rondoénia states (figure 3),
which are to a large extent covered by remote tropical
forest with relatively little human activity. However,
also in less remote regions with human-dominated
fire regimes, we found that a small portion of igni-
tions can be attributed to lightning. Most areas
within the Brazilian Amazon therefore experience
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both human-ignited and lightning-ignited fires. We
also found that lightning and human ignitions exhibit
similar seasonal patterns, generally peaking in the
dry season (September—October), although the pre-
cise timing differed between climatic zones within
the extensive Brazilian Amazon region (figure S7).
The spatio-temporal alignment of lightning and
human ignitions points to their shared environmental

drivers, such as increased soil and atmospheric
drought conditions, vegetation desiccation, and fuel
accumulation (Longo et al 2025, Moreira et al 2025).

In our analysis, we estimated the probabil-
ity of an ignition being caused by human activ-
ities using nearby human land cover and the
proximity to human infrastructure. However,
human activities may also indirectly increase the
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probability of lightning fire occurrence and its
impact. Deforestation and forest degradation not
only directly reduce vegetation cover but also res-
ult in indirect impacts on fuel loads and microcli-
mate. A decline in canopy cover leads to increased
solar radiation reaching the forest floor, increasing
surface air temperatures and VPD during the day,
drying out the previously humid forest floor and

making surface fuels more flammable (Liu et al 2025).
Furthermore, forest degradation and logging in the
Amazon result in an increase of surface fuels, both in
the form of woody debris (Keller et al 2004) as well
as grass encroachment (Brando et al 2014). These
changes in microclimate and fuel availability signi-
ficantly increase the probability of fire ignition and
spread. Additionally, fires associated with agricultural

10



10P Publishing

Environ. Res. Lett. 21 (2026) 024025

]
=2

C Zhang et al

n

106 <

103 {
104

10t 4

10-1

100 |

103 4

Human fires
f(BA) = 3.0 x10* BA?, = 0.99 @)
@ Lightning fires
f(BA) = 1.3 x102 BA™®! 2= 0.99
T

102 4 Human fires

Frequency density (fires/km?/year)
Frequency density (fires/Mg C/year)

1® Lightning fires

f(CE) = 1.7 10 CE"™, P = 0.95

f(CE)=3.2x CE™8, 2= 0.95 ']

Human fires
f(FRP) = 3.8 x10° FRP™-, ¥ = 0.60 o

7@ Lightning fires ®
f(FRP) = 3.0 x 10 FRP""'6, 2 = 0.69 °

Frequency density (fires/MW/year)

10° 10t 10% 10° 10t 102
Fire size (km?)

10° 104 10° 10° 107t 10° 10t 102
Carbon emissions (Mg C)

Fire radiative power (MW)

Figure 6. Distribution of (a) fire size (burned area), (b) carbon emissions and (c) fire radiative power for human-ignited fires

(gray) and lightning-ignited fires (red) between 2019 and 2024. Circles represent frequency densities f(x), defined as the number
of fires per unit bin (1 km? for fire size, 1 Mg C for carbon emissions, 1 MW for fire radiative power) per year. Solid lines indicate
the best least-squares fit to log[f(x)] = — 8 log[x] +loga, with the coefficient of determination r°. The coefficients o and 3 were

derived from liner regression in log—log space.

expansion often escape containment, particularly
during extreme drought years, and may spread into
adjacent degraded forest areas (Libonati et al 2022).
This overlap between human and lightning ignition
susceptibility can lead to increased fire frequency,
extent and severity (Jones et al 2024).

Besides local environmental changes, climate
change is also contributing to elevated fire risk in the
Brazilian Amazon by extending the dry season and
altering rainfall patterns (Bottino et al 2024). This
may result in a feedback loop in which anthropo-
genic disturbances, fire activity and their associated
carbon emissions amplify global climate change, fur-
ther intensifying fire risk in the region. Moreover,
evidence suggests that fires in the Amazon alter light-
ning occurrence through the injection of smoke into
the atmosphere, which in turn alters cloud micro-
physical processes and, consequently, thunderstorm
electrification (Fernandes et al 2006, Pinto Neto et al
2023). Future research should not only account for
the potential increase in lightning-ignited fires driven
by more frequent droughts associated with climate
and deforestation (Bekenshtein et al 2023), but also
further explore the interactions and feedback between
anthropogenic and lightning ignitions, particularly in
regions where they co-occur, to better capture com-
pound fire dynamics.

4.2. Potential influence of ENSO on lightning fires

Although the limited length of our study period pre-
vented a comprehensive analysis of ENSO impacts on
lightning fire dynamics, we hypothesize that ENSO
phases could potentially influence lightning and fire
patterns. Previous research suggests that lightning
activity may increase during La Nifia phases due
to enhanced convective activity over parts of the
Amazon (Williams et al 2002, Sétori et al 2009).
However, La Nifia years are also typically wetter in the
Amazon, which may suppress fire occurrence despite
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increased lightning. Conversely, El Nifio conditions
are often associated with severe drought and reduced
precipitation across the Amazon, potentially lowering
lightning frequency but rising flammable conditions
(Jacobson and Streets 2009, Clark et al 2017, Finney
et al 2018, 2020). In this context, a smaller number
of lightning strokes may lead to more lightning igni-
tions during El Nifo events due to a higher light-
ning ignition efficiency (Hessilt et al 2022, Coogan
et al 2025). During our study period, La Nifa con-
ditions prevailed during 2020-2022 followed by a
moderately strong El Nifno in 2023-2024. Our ana-
lysis showed lower numbers of lightning-ignited fires
during the La Nina phase compared to the El Nifio
phase (figure 4(a)). The 2023-2024 El Nifo event,
combined with other climatic factors that intensified
the severity and duration of drought (Espinoza et al
2024), was associated with nearly a twofold increase in
lightning fires in 2024 (a total of 558 vs 288 in 2022).
These ignitions occurred throughout the fire sea-
son, peaking in September and October (figure 4(d)),
indicating a persistent climatic driver rather than isol-
ated weather events. While these observations may be
too anecdotal to draw strong conclusions, they under-
score the possibility of interactions between ENSO
phases, lightning activity, and fire dynamics. The rel-
atively short time series limits our ability to draw
further conclusions on relationships between ENSO
phases, lightning activity, and fire dynamics. Longer-
term records of fire ignition attribution are needed to
better quantify the influence of ENSO on lightning
fire regimes across the Amazon (Goodman et al 2000,
Hamid et al 2001, Yoshida et al 2007).

4.3. Limitations

While our study confirms the occurrence of some
lightning-ignited fires in the Brazilian Amazon, con-
siderable uncertainty remains in the attribution at
large spatial scales. One key limitation stems from
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the spatial and temporal resolutions in satellite fire
products, which can result in many fire events
observed in the reference dataset going undetected,
especially those of smaller size or shorter duration.
Lightning-ignited fires in this region may often be
low-intensity understory fires, making them more
difficult to detect than the high-intensity fires typ-
ically associated with anthropogenic deforestation.
In our study, we were unable to match 13 ground-
verified lightning fires with fire events from the AFD.
Hence, a relevant proportion of lightning fires in the
region might be undetected in the AFD.

In addition, the imbalance between lightning and
anthropogenic fires posed limitations on defining the
threshold criteria and comparing ignition probabil-
ities between the two fire types with equal confid-
ence, and inevitably constrained the overall precision
of the attribution. Moreover, even when lightning
fire events were detected by satellites, some of them
could not be matched with lightning strokes within
the defined spatial and temporal windows. This mis-
match introduces further attribution uncertainty and
may be related to several factors, including the spa-
tiotemporal resolution of remotely sensed fire data
(Moris et al 2023), the detection efficiency of the
lightning detection systems (Said and Murphy 2016),
and the spatiotemporal limits applied to match fire
and lightning data (Moris et al 2020).

5. Conclusions

Our study presents the first assessment of the
spatio-temporal distribution of lightning fires in
the Brazilian Amazon. Our findings suggest that
lightning fires accounted for 0.2%-0.4% of all fires
and 1.1%-1.3% of the total burned area between
2019 and 2024. Fire clusters with a higher light-
ning contribution (over 25% within a grid cell)
were spatially concentrated in parts of the states of
Pard, Amazonas, and Rondénia. Lightning-ignited
and human-ignited fires exhibited comparable sea-
sonal patterns, peaking in the dry season between
September and October. As lightning occurs mostly
in concurrence with heavy rainfall during thunder-
storms, we found that lightning ignitions gener-
ally occur under wetter climatic conditions com-
pared to human ignitions. Furthermore, compared
to human-ignited fires, lightning-ignited fires con-
stituted rare, large-scale, and high-intensity events.
Although lightning-ignited fires account for only a
small fraction of the total number of fires in the
Brazilian Amazon, our results provide the first quant-
itative evidence of their existence, the environmental
conditions surrounding their occurrence, their beha-
vior and their possibly important role in shaping local
fire dynamics in remote tropical forest regions.
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