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Automated Machine Learning kan een efficiénte en overdraagbare manier bieden om
grondwaterstanden in dijken te voorspellen. Door automatisch modellen te kiezen en de
juiste peilbuizen te combineren, verbetert de voorspelkwaliteit zonder handmatige
afstemming per locatie. Een aanvullende piekbewuste aanpak vergroot de nauwkeurigheid
juist tijdens kritiecke toenames van de stijghoogte. Daarmee ontstaat een praktisch
toepasbare basis voor betere monitoring, vroegtijdige signalering en risicogestuurd
dijkbeheer in Nederland.

De gevolgen van klimaatverandering worden ook in het Nederlandse dijkbeheer steeds
zichtbaarder. Langdurige droogte en perioden met extreme neerslag hebben een negatieve
invlioed op de stabiliteit van dijken, die cruciaal zijn voor de waterveiligheid.

De dijken in Nederland worden periodiek beoordeeld op hun veiligheid door de faalkans van
de dijk onder extreme omstandigheden te berekenen. Voor de berekening van de
grondmechanische stabiliteit is de grondwaterstand, of stijghoogte, in de waterkering een
belangrijke parameter. Een snelle of langdurige toename van deze stijghoogte leidt tot een
afname van de stabiliteit van de dijk, met mogelijke afschuiving van het grondlichaam tot
gevolg [1].

Moderne monitoringssystemen meten de grondwaterstanden dagelijks met peilbuizen.
Daarmee kunnen trends en het gedrag van het freatisch vlak worden geanalyseerd. Het
voorspellen van dit gedrag onder toekomstige of extreme omstandigheden blijft echter
complex, doordat de stijghoogte wordt beinvloed door neerslag, verdamping,
seizoensinvloeden en lokale bodemopbouw [2]. Hierdoor reageert elke dijk anders en zijn
modellen vaak beperkt overdraagbaar tussen locaties.
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De metingen van iedere peilbuis resulteren in een tijdreeks, waarbij ieder punt de freatische
grondwaterstand op een specifiek moment aangeeft, bijvoorbeeld per dag. Om de waarden
van deze meetpunten in de toekomst te voorspellen, gegeven de belastingsparameters
(neerslag, verdamping etc.), kan een voorspellend model worden gebruikt. Moderne
voorspellende modellen zijn gebaseerd op machine learning; deze modellen leren op een
slimme manier het gedrag van een of meerdere tijdreeksen te benaderen, waardoor ze zeer
effectief voorspellingen kunnen doen. Machine learning-modellen kunnen zeer accuraat
voorspellen, maar voor het afstemmen van het model is veel expertise nodig (zie ook [3], [4]).
In deze studie is onderzocht hoe Automated Machine Learning (AutoML) [5] kan helpen bij het
voorspellen van stijghoogten in dijken. AutoML-systemen automatiseren de keuze van
algoritmen en het afstemmen van de modellen, zodat nauwkeurige modellen kunnen worden
ontwikkeld zonder handmatige afstemming per locatie. Dit is interessant voor het dijkbeheer,
aangezien er veel lokale verschillen bestaan tussen dijken in Nederland en het aantal
meetpunten in de toekomst verder zal toenemen.

Er is al veel onderzoek gedaan naar het voorspellen van het grondwaterpeil op verschillende
plekken in de wereld, maar al het eerdere onderzoek richtte zich op het afstellen van losse
modellen voor één specifieke locatie [6], [7]. Deze aanpak heeft geleid tot een groot aantal
specifieke modellen waarvan de resultaten niet overdraagbaar zijn naar andere locaties.
Daarnaast zijn er meerdere modelleringsscenario’s voor voorspellende modellen, die nog
onvoldoende zijn onderzocht in de literatuur. Om deze tekortkomingen aan te pakken testen
we in dit onderzoek of de AutoML-methodiek van Universiteit Leiden en Hoogheemraadschap
Hollands Noorderkwartier (HHNK) een betere, schaalbare aanpak is voor het voorspellen van
het freatisch vlak in dijken. We vergelijken AutoML-modellen met klassieke machine learning-
modellen, testen verschillende scenario’s en stellen een nieuwe methode voor die de
prestaties van het best gevonden model tijdens (extreme) piekmomenten verbetert. Het doel
is te onderzoeken in hoeverre AutoML, met deze uitbreidingen, nauwkeurige en operationeel
bruikbare voorspellingen kan leveren voor het Nederlandse dijkbeheer.

Tijdreeksen modelleren

We bespreken drie manieren om de tijdreeksen van pijlbuizen te modelleren: lokaal eenvoudig,
globaal eenvoudig en globaal meervoudig.

‘Lokaal enkelvoudig’ gebruikt een specifiek model voor iedere pijlbuis apart. ‘Globaal
enkelvoudig’ gebruikt meerdere pijlbuizen, maar voorspelt alleen de tijdreeks van een
zogeheten doelpijlbuis.

Het globale meervoudige model gebruikt alle tijdreeksen van een dwarsprofiel en voorspelt
deze gelijktijdig.
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Afbeelding 2. De drie modelleringsscenario’s voor tijdreeksen

Lokaal enkelvoudig

De traditionele benadering in tijdreeksvoorspelling is lokaal: voor iedere tijdreeks wordt een
afzonderlijk model getraind met historische meetgegevens. Deze aanpak sluit goed aan bij
het idee dat het gedrag van de grondwaterstand binnen elke peilbuis uniek is. Methoden als
ARIMA [8] of ‘Exponential Smoothing’ [9] gebruiken alleen de eigen waarden van de tijdreeks
om toekomstige waarden te schatten.

Het voordeel van lokale modellen is dat zij specifieke patronen zoals seizoensinvloeden goed
vastleggen. Een belangrijk nadeel is dat informatie uit andere peilbuizen onbenut blijft. Bij
meerdere peilbuizen in één dwarsprofiel leidt dit tot versnippering van data, waardoor het
model zeldzame gebeurtenissen als extreme pieken minder goed leert.

Globaal enkelvoudig

Een globaal model wordt getraind met de gegevens van meerdere tijdreeksen om gedeelde
patronen te leren. In dit geval blijft het globale model enkelvoudig: elke peilbuis-tijdreeks wordt
nog steeds afzonderlijk voorspeld, maar het model leert ook van andere tijdreeksen, zoals de
invlioed van neerslag of verdamping. Wanneer we meerdere tijdreeksen gebruiken om één
enkele tijdreeks te voorspellen, spreken we van een doeltijdreeks.

Het voordeel van deze aanpak is dat schaarse data beter kunnen worden benut. Uit tijdreeksen
die vergelijkbaar reageren op regenval kan het model patronen leren die het wellicht had
gemist door naar een enkele tijdreeks te kijken. Het maakt met deze methode dan ook niet uit
of een tijdreeks uit hetzelfde dwarsprofiel of van een compleet andere locatie komt; zolang de
tijdreeks maar relevant is voor de doeltijdreeks. Het risico is echter dat niet alle reeksen
relevant gedrag vertonen; sommige dijken reageren trager of juist gevoeliger. Als het model
wordt blootgesteld aan niet-relevante tijdreeksen kan de prestatie juist slechter worden.

Globaal meervoudig

Bij meervoudige modellen worden meerdere peilbuizen van één dwarsprofiel gelijktijdig
voorspeld. Deze benadering maakt gebruik van de samenhangende processen binnen het
dijkprofiel: veranderingen in de grondwaterstand bij een van de peilbuizen kunnen ook invloed
hebben op de waterstand in de andere peilbuizen. Door de reeksen samen te modelleren kan
het model de samenhang tussen de peilbuizen leren. Dit kan leiden tot verbeterde prestaties.
Meervoudige modellen zijn conceptueel aantrekkelijk, maar hebben alleen toegevoegde
waarde als er daadwerkelijk een relatie is tussen het gedrag van meerdere peilbuizen. Omdat
de meervoudige modellen in dit onderzoek zijn getraind op alle peilbuizen binnen één
dwarsprofiel zonder verdere selectie, werkt afwijkend gedrag van een enkele peilbuis direct
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door in het model. Dit kan ruis en prestatieverlies veroorzaken en maakt meervoudige
modellen in deze opzet kwetsbaarder.

Methoden

De drie modelleringsscenario’'s — lokaal enkelvoudig, globaal enkelvoudig en globaal
meervoudig — kunnen worden uitgevoerd door een breed scala aan algoritmes. De keuze van
een passend algoritme vraagt tijd en expertise. Daarnaast moet elk gekozen algoritme
zorgvuldig worden afgestemd op basis van de beschikbare gegevens om goede
voorspellingen te kunnen doen. AutoML-systemen als AutoGluon-Timeseries [10]
automatiseren dit proces. In plaats van één model te optimaliseren, traint AutoGluon-
Timeseries automatisch meerdere modellen van verschillende modeltypen, waaronder
klassieke tijdreeksmodellen, complexe beslisbomen en neurale netwerken.
AutoGluon-Timeseries is ontworpen om efficiént tot goed presterende voorspelmodellen te
komen, zonder dat per tijdreeks model- en parameterselectie nodig is. De aanpak gebruikt
bewezen standaardinstellingen die in uiteenlopende toepassingen goede prestaties laten
zien. Een uitgebreide technische onderbouwing van de keuzes waarop AutoGluon-Timeseries
is gebaseerd, evenals de bijbehorende code, is te vinden in het masterthesis-onderzoek
waarop dit artikel is gebaseerd [11].

Een nadeel van automatische modelkeuze is dat de transparantie voor niet-experts kan
afnemen. Daartegenover staat dat het systeem direct toepasbaar is op tijdreeksen van
verschillende locaties en consistente, nauwkeurige voorspellingen kan leveren zonder
specialistische modelkennis. In dit onderzoek vergelijken we de drie modelleringsscenario’s,
met lokaal enkelvoudige modellen als referentie. Vervolgens analyseren we globaal
enkelvoudige modellen met selectie van informatieve tijdreeksen en evalueren we globaal
meervoudige modellen binnen één dwarsprofiel. Tot slot onderzoeken we hoe de prestaties
van het best presterende model kunnen worden verbeterd tijdens piekmomenten, waarbij de
grondwaterstand plotseling sterk stijgt, wat waarschijnlijk een belangrijke bijdrage levert aan
de faalkans van de dijk.

Relevante tijdreeksen voor globale modellen

Uit eerder onderzoek blijkt dat globale modellen alleen goed werken wanneer ze worden
getraind op een passende selectie van tijdreeksen. Tijdreeksen die sterk afwijken in hun
gedrag, bijvoorbeeld in hoe zij reageren op neerslag, kunnen de prestaties van het model
negatief beinvlioeden. De kern van het probleem is daarom het bepalen welke tijdreeksen
gebruikt moeten worden bij het trainen van een globaal model.

Om deze selectie te automatiseren hebben we ‘Bayesian Optimization for Selective Pooling’
(BOSP) ontwikkeld. Deze aanpak bepaalt per meetpunt welke andere tijdreeksen het meest
informatief zijn. Hiervoor berekenen we eerst kenmerken van elke tijdreeks, zoals variatie in
de waterstand en de gemiddelde stijghoogte over de tijd, en vatten deze samen tot een
compacte representatie. Vervolgens schatten we met een probabilistisch model in welke
combinaties van tijdreeksen naar verwachting de beste voorspellingen opleveren. In een
iteratief proces evalueren we steeds nieuwe combinaties, waarbij de methode gericht zoekt
naar verbeteringen ten opzichte van eerder geteste selecties. Een uitgebreide beschrijving van
de methode en de technische uitwerking is te vinden in eerdergenoemde thesis.
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Piekmomenten voorspellen

Een tweede ontwikkeling richt zich op een praktisch probleem: plotselinge pieken in de
stijghoogte. Zo’'n piek kan optreden wanneer de ondergrond van de dijk vrijwel volledig
verzadigd is, waarbij bijna alle porién met water zijn gevuld. Een hevige periode van regenval
kan het grondwaterpeil dan zeer snel doen stijgen, wat problematisch is voor de dijkveiligheid.
Er bestaan echter veel verschillende oorzaken voor deze pieken, wat voorspellen lastig maakt
[12]. Bovendien zijn pieken zeldzaam in de trainingsdata, waardoor standaardmodellen ze
vaak onderschatten.

Onze Piekbewuste aanpak bestaat uit twee stappen. Eerst wordt een apart model (een
XGBoost-classifier [13]) getraind met de specifieke taak om per dag te voorspellen of er een
piek zal optreden. Dit gebeurt op basis van historische trends, neerslag- en
verdampingsgegevens. Eerder onderzoek laat zien dat dit de dominante factoren zijn voor de
stijghoogte [12]. Andere mogelijke verklarende variabelen, zoals de buitenwaterstand, zijn
daarom in dit onderzoek buiten beschouwing gelaten. We gebruiken dit model vervolgens om
voor iedere toekomstige dag de kans op een piek te voorspellen. Deze voorspelde piekkans
wordt toegevoegd als extra invoervariabele aan het AutoML-systeem. Op deze manier krijgt
het voorspelmodel ook een expliciete indicatie dat een piek waarschijnlijk is. Dit helpt het
model om beter rekening te houden met plotselinge stijgingen in de stijghoogte.

Een belangrijk aandachtspunt bij deze aanpak is dat ook het piekmodel fouten kan maken.
Onjuiste piekvoorspellingen zouden in theorie de kwaliteit van de uiteindelijke voorspelling
juist kunnen verslechteren. Dit is getest. De resultaten worden hier beschreven.

Resultaten

Om de prestaties van de gebruikte tijdreeksmodellen te beoordelen, passen we een vaste
evaluatieprocedure toe. Afbeelding 3 illustreert deze werkwijze aan de hand van één
voorbeeldtijdreeks.
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Afbeelding 3. Het evaluatieproces van tijdreeksmodellen

We beginnen met een complete tijdreeks. Van deze tijdreeks houden we het laatste deel apart
als testperiode, zodat het model hier geen kennis van heeft. Het eerdere deel vormt de
trainingsset en wordt aangeboden aan het voorspelmodel. Op basis van deze trainingsdata
genereert het model voorspellingen voor de periode die bewust is achtergehouden. Deze
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voorspellingen vergelijken we daarna met de daadwerkelijk gemeten waarden in de
testperiode.

Het verschil tussen de gemeten en voorspelde waarden wordt de fout of foutmarge genoemd.
Hoe kleiner deze fout, hoe beter het model de tijdreeks heeft weten te voorspellen. In dit
onderzoek gebruiken we twee veel toegepaste foutmaten. De Mean Absolute Error (MAE)
geeft het gemiddelde absolute verschil tussen gemeten en voorspelde waarden en drukt dit
uit in centimeters. De Mean Absolute Percentage Error (MAPE) relateert de fout aan de grootte
van de gemeten waarden. Wanneer de variatie in het waterpeil klein is, is het bijvoorbeeld
interessant om naar de relatieve fout te kijken, aangezien de absolute fout altijd kleiner is dan
bij een peilbuis waar het waterpeil zeer sterk fluctueert.

Deze evaluatie herhalen we systematisch voor alle tijdreeksen, waarna we de resultaten
samenvatten en vergelijken tussen de verschillende modelvarianten.

Vergelijking van modelleringsstrategieén

In afbeelding 4 is te zien hoe de drie verschillende manieren van modelleren zich tot elkaar
verhouden. De experimenten zijn gestart met lokale modellen, die per peilbuis apart worden
getraind. Deze aanpak levert stabiele resultaten, maar benut geen informatie van andere
meetpunten langs de dijk.

Lokaal, globaal enkelvoudig en meervoudig

B BOSP mmm  Lokaal enkelvoudig mmm Meervoudig
44 312

3.44

Fout (gemiddeld + sd)

MAE MAPE

Afbeelding 4. Overzicht van de verschillende modelleringsscenario’s. Waarden tonen de resultaten van
de modelleringsscenarios in twee foutmaten (MAE en MAPE), berekend over een driedaagse
voorspelhorizon

Door meerdere tijdreeksen gezamenlijk te gebruiken in één model kunnen gedeelde patronen
worden herkend, bijvoorbeeld in de reactie op neerslag of seizoensinvloeden. Dit werkt echter
alleen goed wanneer de juiste tijdreeksen worden gecombineerd. De hier voorgestelde BOSP-
aanpak selecteert automatisch welke meetreeksen informatief zijn voor elkaar. Deze globale
enkelvoudige aanpak resulteert in de kleinste gemiddelde fout en presteert duidelijk beter dan
zowel de lokale enkelvoudige als de meervoudige modellen.

Bij meervoudige modellering worden meerdere peilbuizen binnen één dwarsprofiel gelijktijdig
voorspeld. Hoewel dit intuitief aantrekkelijk klinkt, blijkt het in de praktijk geen structurele
verbetering op te leveren. De onderlinge samenhang tussen de peilbuizen is vaak te beperkt,
waardoor de extra complexiteit niet wordt terugverdiend in betere voorspellingen. Wel laten
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de MAPE-resultaten zien dat meervoudige modellen relatief goed presteren op dijken met
kleine waterstandsfluctuaties. Dit suggereert dat deze aanpak potentie heeft in specifieke
situaties, maar niet als algemene oplossing.

Voorspellen van piekmomenten

Afbeelding 5 toont het effect van het toevoegen van piekinformatie aan het voorspelsysteem.
In de linkerkolom is te zien dat de foutmarge over de complete testset vrijwel gelijk blijft. Dit
laat zien dat het extra piekmodel de algemene prestaties niet verslechtert, ondanks het feit
dat het ook onzekerheden introduceert.

Piekmomenten

mmm BOSP

10 BOSP+Piek

1.74

1

Fout (gemiddeld + sd)
o

24

o

Totale MAE Piek-MAE

Afbeelding 5. Overzicht van de resultaten van het model, gericht op piekmomenten. Waardes tonen de
gemiddelde MAE in centimeters (cm), berekend over een diedaagse voorspelhorizon

Tijdens piekmomenten is echter wel een duidelijke verbetering zichtbaar: in de rechterkolom
zien we dat de foutmarge tijdens de specifieke piekmomenten significant lager is. De fout
neemt daar met ongeveer 18 procent af. In driekwart van alle tijdreeksen worden pieken beter
benaderd wanneer deze extra informatie wordt gebruikt.

Dit betekent dat de uitbreiding met piekinformatie een gerichte verbetering oplevert voor de
meest kritieke situaties in termen van dijkstabiliteit, zonder dat dit ten koste gaat van de
algemene voorspelkwaliteit. Daarmee vormt deze aanpak een veelbelovende stap richting
praktisch inzetbare voorspelmodellen voor dijkmonitoring en risicogestuurde inspecties en
beoordelingen.

Discussie en betekenis voor het dijkbeheer

De resultaten laten zien dat AutoML zeer waardevol kan zijn om stijghoogten in dijken te
voorspellen. In tegenstelling tot methoden waar een enkel model moet worden
geoptimaliseerd per locatie, biedt AutoML de mogelijkheid om één systeem te gebruiken dat
automatisch de beste combinatie van modellen kiest per tijdreeks.

Het onderzoek toont drie belangrijke inzichten voor de praktijk:

e Efficiéntie en overdraagbaarheid: AutoGluon-Timeseries kan zonder handmatige
afstemming direct op verschillende dijklocaties worden toegepast. Dit maakt de
techniek interessant voor operationele monitoring.

e Selective pooling belangrijk voor prestaties: de resultaten laten zien dat slimme
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selectie van vergelijkbare tijdreeksen de prestaties van het model verbetert. Met BOSP
kan een systeem automatisch bepalen welke tijdreeksen informatief zijn, zodat de
doeltijdreeks beter kan worden voorspeld.

e Betere prestaties bij pieken: door de voorspelde kans op een piek te integreren als
aanvullende informatie, presteert het model beter tijdens piekmomenten. De
piekbewuste uitbreiding is eenvoudig te implementeren en kan direct worden
gekoppeld aan bestaande AutoML-modellen, zonder dat de algemene prestaties
eronder lijden.

Praktisch gezien betekent dit dat waterschappen in de toekomst kunnen beschikken over
automatische voorspelsystemen die niet alleen trends volgen, maar ook waarschuwen voor
plotselinge stijgingen in de stijghoogte. Zo kan de informatie uit peilbuizen sneller worden
omgezet in beslissingen, bijvoorbeeld over extra dijkinspecties of als invoer voor toetsingen.
Voor toepassing in de dagelijkse praktijk van het dijkbeheer is aanvullend onderzoek nodig,
onder andere naar robuustheid bij verschillende meetfrequenties, omgang met ontbrekende
metingen en aansluiting bij bestaande beoordelingsprocessen. Dit werk laat zien dat op
AutoML gebaseerde tijdreeksmodellen hiervoor een geschikt uitgangspunt vormen, maar het
is geen afgerond operationeel systeem. De resultaten bieden daarmee een onderbouwde basis
voor vervolgonderzoek en pilotstudies in het dijkbeheer.

Dit artikel is gebaseerd op de masterscriptie van Bram van Eerden in computer science: data
science aan de Universiteit Leiden.
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