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Automated Machine Learning kan een efficiënte en overdraagbare manier bieden om 

grondwaterstanden in dijken te voorspellen. Door automatisch modellen te kiezen en de 

juiste peilbuizen te combineren, verbetert de voorspelkwaliteit zonder handmatige 

afstemming per locatie. Een aanvullende piekbewuste aanpak vergroot de nauwkeurigheid 

juist tijdens kritieke toenames van de stijghoogte. Daarmee ontstaat een praktisch 

toepasbare basis voor betere monitoring, vroegtijdige signalering en risicogestuurd 

dijkbeheer in Nederland. 

 

De gevolgen van klimaatverandering worden ook in het Nederlandse dijkbeheer steeds 

zichtbaarder. Langdurige droogte en perioden met extreme neerslag hebben een negatieve 

invloed op de stabiliteit van dijken, die cruciaal zijn voor de waterveiligheid.  

De dijken in Nederland worden periodiek beoordeeld op hun veiligheid door de faalkans van 

de dijk onder extreme omstandigheden te berekenen. Voor de berekening van de 

grondmechanische stabiliteit is de grondwaterstand, of stijghoogte, in de waterkering een 

belangrijke parameter. Een snelle of langdurige toename van deze stijghoogte leidt tot een 

afname van de stabiliteit van de dijk, met mogelijke afschuiving van het grondlichaam tot 

gevolg [1]. 

Moderne monitoringssystemen meten de grondwaterstanden dagelijks met peilbuizen. 

Daarmee kunnen trends en het gedrag van het freatisch vlak worden geanalyseerd. Het 

voorspellen van dit gedrag onder toekomstige of extreme omstandigheden blijft echter 

complex, doordat de stijghoogte wordt beïnvloed door neerslag, verdamping, 

seizoensinvloeden en lokale bodemopbouw [2]. Hierdoor reageert elke dijk anders en zijn 

modellen vaak beperkt overdraagbaar tussen locaties. 

 

 
Afbeelding 1. Dwarsprofiel van een dijklichaam. P1, . . . , P5: peilbuizen 
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De metingen van iedere peilbuis resulteren in een tijdreeks, waarbij ieder punt de freatische 

grondwaterstand op een specifiek moment aangeeft, bijvoorbeeld per dag. Om de waarden 

van deze meetpunten in de toekomst te voorspellen, gegeven de belastingsparameters 

(neerslag, verdamping etc.), kan een voorspellend model worden gebruikt. Moderne 

voorspellende modellen zijn gebaseerd op machine learning; deze modellen leren op een 

slimme manier het gedrag van een of meerdere tijdreeksen te benaderen, waardoor ze zeer 

effectief voorspellingen kunnen doen. Machine learning-modellen kunnen zeer accuraat 

voorspellen, maar voor het afstemmen van het model is veel expertise nodig (zie ook [3], [4]). 

In deze studie is onderzocht hoe Automated Machine Learning (AutoML) [5] kan helpen bij het 

voorspellen van stijghoogten in dijken. AutoML-systemen automatiseren de keuze van 

algoritmen en het afstemmen van de modellen, zodat nauwkeurige modellen kunnen worden 

ontwikkeld zonder handmatige afstemming per locatie. Dit is interessant voor het dijkbeheer, 

aangezien er veel lokale verschillen bestaan tussen dijken in Nederland en het aantal 

meetpunten in de toekomst verder zal toenemen. 

Er is al veel onderzoek gedaan naar het voorspellen van het grondwaterpeil op verschillende 

plekken in de wereld, maar al het eerdere onderzoek richtte zich op het afstellen van losse 

modellen voor één specifieke locatie [6], [7]. Deze aanpak heeft geleid tot een groot aantal 

specifieke modellen waarvan de resultaten niet overdraagbaar zijn naar andere locaties. 

Daarnaast zijn er meerdere modelleringsscenario’s voor voorspellende modellen, die nog 

onvoldoende zijn onderzocht in de literatuur. Om deze tekortkomingen aan te pakken testen 

we in dit onderzoek of de AutoML-methodiek van Universiteit Leiden en Hoogheemraadschap 

Hollands Noorderkwartier (HHNK) een betere, schaalbare aanpak is voor het voorspellen van 

het freatisch vlak in dijken. We vergelijken AutoML-modellen met klassieke machine learning-

modellen, testen verschillende scenario’s en stellen een nieuwe methode voor die de 

prestaties van het best gevonden model tijdens (extreme) piekmomenten verbetert. Het doel 

is te onderzoeken in hoeverre AutoML, met deze uitbreidingen, nauwkeurige en operationeel 

bruikbare voorspellingen kan leveren voor het Nederlandse dijkbeheer. 

 

Tijdreeksen modelleren 

We bespreken drie manieren om de tijdreeksen van pijlbuizen te modelleren: lokaal eenvoudig, 

globaal eenvoudig en globaal meervoudig. 

‘Lokaal enkelvoudig’ gebruikt een specifiek model voor iedere pijlbuis apart. ‘Globaal 

enkelvoudig’ gebruikt meerdere pijlbuizen, maar voorspelt alleen de tijdreeks van een 

zogeheten doelpijlbuis.  

Het globale meervoudige model gebruikt alle tijdreeksen van een dwarsprofiel en voorspelt 

deze gelijktijdig. 
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Afbeelding 2. De drie modelleringsscenario’s voor tijdreeksen  

 

Lokaal enkelvoudig 

De traditionele benadering in tijdreeksvoorspelling is lokaal: voor iedere tijdreeks wordt een 

afzonderlijk model getraind met historische meetgegevens. Deze aanpak sluit goed aan bij 

het idee dat het gedrag van de grondwaterstand binnen elke peilbuis uniek is. Methoden als 

ARIMA [8] of ‘Exponential Smoothing’ [9] gebruiken alleen de eigen waarden van de tijdreeks 

om toekomstige waarden te schatten. 

Het voordeel van lokale modellen is dat zij specifieke patronen zoals seizoensinvloeden goed 

vastleggen. Een belangrijk nadeel is dat informatie uit andere peilbuizen onbenut blijft. Bij 

meerdere peilbuizen in één dwarsprofiel leidt dit tot versnippering van data, waardoor het 

model zeldzame gebeurtenissen als extreme pieken minder goed leert. 

 

Globaal enkelvoudig 

Een globaal model wordt getraind met de gegevens van meerdere tijdreeksen om gedeelde 

patronen te leren. In dit geval blijft het globale model enkelvoudig: elke peilbuis-tijdreeks wordt 

nog steeds afzonderlijk voorspeld, maar het model leert ook van andere tijdreeksen, zoals de 

invloed van neerslag of verdamping. Wanneer we meerdere tijdreeksen gebruiken om één 

enkele tijdreeks te voorspellen, spreken we van een doeltijdreeks. 

Het voordeel van deze aanpak is dat schaarse data beter kunnen worden benut. Uit tijdreeksen 

die vergelijkbaar reageren op regenval kan het model patronen leren die het wellicht had 

gemist door naar een enkele tijdreeks te kijken. Het maakt met deze methode dan ook niet uit 

of een tijdreeks uit hetzelfde dwarsprofiel of van een compleet andere locatie komt; zolang de 

tijdreeks maar relevant is voor de doeltijdreeks. Het risico is echter dat niet alle reeksen 

relevant gedrag vertonen; sommige dijken reageren trager of juist gevoeliger. Als het model 

wordt blootgesteld aan niet-relevante tijdreeksen kan de prestatie juist slechter worden. 

 

Globaal meervoudig 

Bij meervoudige modellen worden meerdere peilbuizen van één dwarsprofiel gelijktijdig 

voorspeld. Deze benadering maakt gebruik van de samenhangende processen binnen het 

dijkprofiel: veranderingen in de grondwaterstand bij een van de peilbuizen kunnen ook invloed 

hebben op de waterstand in de andere peilbuizen. Door de reeksen samen te modelleren kan 

het model de samenhang tussen de peilbuizen leren. Dit kan leiden tot verbeterde prestaties. 

Meervoudige modellen zijn conceptueel aantrekkelijk, maar hebben alleen toegevoegde 

waarde als er daadwerkelijk een relatie is tussen het gedrag van meerdere peilbuizen. Omdat 

de meervoudige modellen in dit onderzoek zijn getraind op alle peilbuizen binnen één 

dwarsprofiel zonder verdere selectie, werkt afwijkend gedrag van een enkele peilbuis direct 
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door in het model. Dit kan ruis en prestatieverlies veroorzaken en maakt meervoudige 

modellen in deze opzet kwetsbaarder. 

 

Methoden 

De drie modelleringsscenario’s — lokaal enkelvoudig, globaal enkelvoudig en globaal 

meervoudig — kunnen worden uitgevoerd door een breed scala aan algoritmes. De keuze van 

een passend algoritme vraagt tijd en expertise. Daarnaast moet elk gekozen algoritme 

zorgvuldig worden afgestemd op basis van de beschikbare gegevens om goede 

voorspellingen te kunnen doen. AutoML-systemen als AutoGluon-Timeseries [10] 

automatiseren dit proces. In plaats van één model te optimaliseren, traint AutoGluon-

Timeseries automatisch meerdere modellen van verschillende modeltypen, waaronder 

klassieke tijdreeksmodellen, complexe beslisbomen en neurale netwerken. 

AutoGluon-Timeseries is ontworpen om efficiënt tot goed presterende voorspelmodellen te 

komen, zonder dat per tijdreeks model- en parameterselectie nodig is. De aanpak gebruikt 

bewezen standaardinstellingen die in uiteenlopende toepassingen goede prestaties laten 

zien. Een uitgebreide technische onderbouwing van de keuzes waarop AutoGluon-Timeseries 

is gebaseerd, evenals de bijbehorende code, is te vinden in het masterthesis-onderzoek 

waarop dit artikel is gebaseerd [11]. 

Een nadeel van automatische modelkeuze is dat de transparantie voor niet-experts kan 

afnemen. Daartegenover staat dat het systeem direct toepasbaar is op tijdreeksen van 

verschillende locaties en consistente, nauwkeurige voorspellingen kan leveren zonder 

specialistische modelkennis. In dit onderzoek vergelijken we de drie modelleringsscenario’s, 

met lokaal enkelvoudige modellen als referentie. Vervolgens analyseren we globaal 

enkelvoudige modellen met selectie van informatieve tijdreeksen en evalueren we globaal 

meervoudige modellen binnen één dwarsprofiel. Tot slot onderzoeken we hoe de prestaties 

van het best presterende model kunnen worden verbeterd tijdens piekmomenten, waarbij de 

grondwaterstand plotseling sterk stijgt, wat waarschijnlijk een belangrijke bijdrage levert aan 

de faalkans van de dijk. 

 

Relevante tijdreeksen voor globale modellen 

Uit eerder onderzoek blijkt dat globale modellen alleen goed werken wanneer ze worden 

getraind op een passende selectie van tijdreeksen. Tijdreeksen die sterk afwijken in hun 

gedrag, bijvoorbeeld in hoe zij reageren op neerslag, kunnen de prestaties van het model 

negatief beïnvloeden. De kern van het probleem is daarom het bepalen welke tijdreeksen 

gebruikt moeten worden bij het trainen van een globaal model. 

Om deze selectie te automatiseren hebben we ‘Bayesian Optimization for Selective Pooling’ 

(BOSP) ontwikkeld. Deze aanpak bepaalt per meetpunt welke andere tijdreeksen het meest 

informatief zijn. Hiervoor berekenen we eerst kenmerken van elke tijdreeks, zoals variatie in 

de waterstand en de gemiddelde stijghoogte over de tijd, en vatten deze samen tot een 

compacte representatie. Vervolgens schatten we met een probabilistisch model in welke 

combinaties van tijdreeksen naar verwachting de beste voorspellingen opleveren. In een 

iteratief proces evalueren we steeds nieuwe combinaties, waarbij de methode gericht zoekt 

naar verbeteringen ten opzichte van eerder geteste selecties. Een uitgebreide beschrijving van 

de methode en de technische uitwerking is te vinden in eerdergenoemde thesis. 
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Piekmomenten voorspellen 

Een tweede ontwikkeling richt zich op een praktisch probleem: plotselinge pieken in de 

stijghoogte. Zo’n piek kan optreden wanneer de ondergrond van de dijk vrijwel volledig 

verzadigd is, waarbij bijna alle poriën met water zijn gevuld. Een hevige periode van regenval 

kan het grondwaterpeil dan zeer snel doen stijgen, wat problematisch is voor de dijkveiligheid. 

Er bestaan echter veel verschillende oorzaken voor deze pieken, wat voorspellen lastig maakt 

[12]. Bovendien zijn pieken zeldzaam in de trainingsdata, waardoor standaardmodellen ze 

vaak onderschatten. 

Onze Piekbewuste aanpak bestaat uit twee stappen. Eerst wordt een apart model (een 

XGBoost-classifier [13]) getraind met de specifieke taak om per dag te voorspellen of er een 

piek zal optreden. Dit gebeurt op basis van historische trends, neerslag- en 

verdampingsgegevens. Eerder onderzoek laat zien dat dit de dominante factoren zijn voor de 

stijghoogte [12]. Andere mogelijke verklarende variabelen, zoals de buitenwaterstand, zijn 

daarom in dit onderzoek buiten beschouwing gelaten. We gebruiken dit model vervolgens om 

voor iedere toekomstige dag de kans op een piek te voorspellen. Deze voorspelde piekkans 

wordt toegevoegd als extra invoervariabele aan het AutoML-systeem. Op deze manier krijgt 

het voorspelmodel ook een expliciete indicatie dat een piek waarschijnlijk is. Dit helpt het 

model om beter rekening te houden met plotselinge stijgingen in de stijghoogte. 

 

Een belangrijk aandachtspunt bij deze aanpak is dat ook het piekmodel fouten kan maken. 

Onjuiste piekvoorspellingen zouden in theorie de kwaliteit van de uiteindelijke voorspelling 

juist kunnen verslechteren. Dit is getest. De resultaten worden hier beschreven. 

 

Resultaten 

Om de prestaties van de gebruikte tijdreeksmodellen te beoordelen, passen we een vaste 

evaluatieprocedure toe. Afbeelding 3 illustreert deze werkwijze aan de hand van één 

voorbeeldtijdreeks. 

 

 
Afbeelding 3. Het evaluatieproces van tijdreeksmodellen 

 

We beginnen met een complete tijdreeks. Van deze tijdreeks houden we het laatste deel apart 

als testperiode, zodat het model hier geen kennis van heeft. Het eerdere deel vormt de 

trainingsset en wordt aangeboden aan het voorspelmodel. Op basis van deze trainingsdata 

genereert het model voorspellingen voor de periode die bewust is achtergehouden. Deze 
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voorspellingen vergelijken we daarna met de daadwerkelijk gemeten waarden in de 

testperiode. 

Het verschil tussen de gemeten en voorspelde waarden wordt de fout of foutmarge genoemd. 

Hoe kleiner deze fout, hoe beter het model de tijdreeks heeft weten te voorspellen. In dit 

onderzoek gebruiken we twee veel toegepaste foutmaten. De Mean Absolute Error (MAE) 

geeft het gemiddelde absolute verschil tussen gemeten en voorspelde waarden en drukt dit 

uit in centimeters. De Mean Absolute Percentage Error (MAPE) relateert de fout aan de grootte 

van de gemeten waarden. Wanneer de variatie in het waterpeil klein is, is het bijvoorbeeld 

interessant om naar de relatieve fout te kijken, aangezien de absolute fout altijd kleiner is dan 

bij een peilbuis waar het waterpeil zeer sterk fluctueert. 

Deze evaluatie herhalen we systematisch voor alle tijdreeksen, waarna we de resultaten 

samenvatten en vergelijken tussen de verschillende modelvarianten. 

 

Vergelijking van modelleringsstrategieën 

In afbeelding 4 is te zien hoe de drie verschillende manieren van modelleren zich tot elkaar 

verhouden. De experimenten zijn gestart met lokale modellen, die per peilbuis apart worden 

getraind. Deze aanpak levert stabiele resultaten, maar benut geen informatie van andere 

meetpunten langs de dijk. 

 

 
Afbeelding 4. Overzicht van de verschillende modelleringsscenario’s. Waarden tonen de resultaten van 
de modelleringsscenarios in twee foutmaten (MAE en MAPE), berekend over een driedaagse 
voorspelhorizon 

 

Door meerdere tijdreeksen gezamenlijk te gebruiken in één model kunnen gedeelde patronen 

worden herkend, bijvoorbeeld in de reactie op neerslag of seizoensinvloeden. Dit werkt echter 

alleen goed wanneer de juiste tijdreeksen worden gecombineerd. De hier voorgestelde BOSP-

aanpak selecteert automatisch welke meetreeksen informatief zijn voor elkaar. Deze globale 

enkelvoudige aanpak resulteert in de kleinste gemiddelde fout en presteert duidelijk beter dan 

zowel de lokale enkelvoudige als de meervoudige modellen. 

Bij meervoudige modellering worden meerdere peilbuizen binnen één dwarsprofiel gelijktijdig 

voorspeld. Hoewel dit intuïtief aantrekkelijk klinkt, blijkt het in de praktijk geen structurele 

verbetering op te leveren. De onderlinge samenhang tussen de peilbuizen is vaak te beperkt, 

waardoor de extra complexiteit niet wordt terugverdiend in betere voorspellingen. Wel laten 



 

7 
H2O-Online / 26 januari 2026 

 

de MAPE-resultaten zien dat meervoudige modellen relatief goed presteren op dijken met 

kleine waterstandsfluctuaties. Dit suggereert dat deze aanpak potentie heeft in specifieke 

situaties, maar niet als algemene oplossing. 

 

Voorspellen van piekmomenten 

Afbeelding 5 toont het effect van het toevoegen van piekinformatie aan het voorspelsysteem. 

In de linkerkolom is te zien dat de foutmarge over de complete testset vrijwel gelijk blijft. Dit 

laat zien dat het extra piekmodel de algemene prestaties niet verslechtert, ondanks het feit 

dat het ook onzekerheden introduceert. 

 

 
Afbeelding 5. Overzicht van de resultaten van het model, gericht op piekmomenten. Waardes tonen de 
gemiddelde MAE in centimeters (cm), berekend over een diedaagse voorspelhorizon 

 

Tijdens piekmomenten is echter wel een duidelijke verbetering zichtbaar: in de rechterkolom 

zien we dat de foutmarge tijdens de specifieke piekmomenten significant lager is. De fout 

neemt daar met ongeveer 18 procent af. In driekwart van alle tijdreeksen worden pieken beter 

benaderd wanneer deze extra informatie wordt gebruikt. 

Dit betekent dat de uitbreiding met piekinformatie een gerichte verbetering oplevert voor de 

meest kritieke situaties in termen van dijkstabiliteit, zonder dat dit ten koste gaat van de 

algemene voorspelkwaliteit. Daarmee vormt deze aanpak een veelbelovende stap richting 

praktisch inzetbare voorspelmodellen voor dijkmonitoring en risicogestuurde inspecties en 

beoordelingen. 

 

Discussie en betekenis voor het dijkbeheer 

De resultaten laten zien dat AutoML zeer waardevol kan zijn om stijghoogten in dijken te 

voorspellen. In tegenstelling tot methoden waar een enkel model moet worden 

geoptimaliseerd per locatie, biedt AutoML de mogelijkheid om één systeem te gebruiken dat 

automatisch de beste combinatie van modellen kiest per tijdreeks. 

 

Het onderzoek toont drie belangrijke inzichten voor de praktijk: 

• Efficiëntie en overdraagbaarheid: AutoGluon-Timeseries kan zonder handmatige 

afstemming direct op verschillende dijklocaties worden toegepast. Dit maakt de 

techniek interessant voor operationele monitoring. 

• Selective pooling belangrijk voor prestaties: de resultaten laten zien dat slimme 
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selectie van vergelijkbare tijdreeksen de prestaties van het model verbetert. Met BOSP 

kan een systeem automatisch bepalen welke tijdreeksen informatief zijn, zodat de 

doeltijdreeks beter kan worden voorspeld. 

• Betere prestaties bij pieken: door de voorspelde kans op een piek te integreren als 

aanvullende informatie, presteert het model beter tijdens piekmomenten. De 

piekbewuste uitbreiding is eenvoudig te implementeren en kan direct worden 

gekoppeld aan bestaande AutoML-modellen, zonder dat de algemene prestaties 

eronder lijden. 

 

Praktisch gezien betekent dit dat waterschappen in de toekomst kunnen beschikken over 

automatische voorspelsystemen die niet alleen trends volgen, maar ook waarschuwen voor 

plotselinge stijgingen in de stijghoogte. Zo kan de informatie uit peilbuizen sneller worden 

omgezet in beslissingen, bijvoorbeeld over extra dijkinspecties of als invoer voor toetsingen. 

Voor toepassing in de dagelijkse praktijk van het dijkbeheer is aanvullend onderzoek nodig, 

onder andere naar robuustheid bij verschillende meetfrequenties, omgang met ontbrekende 

metingen en aansluiting bij bestaande beoordelingsprocessen. Dit werk laat zien dat op 

AutoML gebaseerde tijdreeksmodellen hiervoor een geschikt uitgangspunt vormen, maar het 

is geen afgerond operationeel systeem. De resultaten bieden daarmee een onderbouwde basis 

voor vervolgonderzoek en pilotstudies in het dijkbeheer. 

 

Dit artikel is gebaseerd op de masterscriptie van Bram van Eerden in computer science: data 

science aan de Universiteit Leiden. 
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