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Abstract 
Context  Understanding the roles of different drivers 
in land use and land cover change (LULCC) is a criti-
cal research challenge. However, as LULCC is the 
result of complex, socio-ecological processes and is 
highly context dependent, achieving such understand-
ing is difficult. This is particularly true for causal 
modelling approaches that are critical for effective 
policy formulation. Causal machine learning (ML) 
methods could help address this challenge, but are 

as yet poorly understood or applied by the LULCC 
community.
Objectives  To provide an accessible introduction to 
the state of the art for causal ML methods, their limi-
tations, and their potential applications understanding 
LULCC.
Methods  We conducted two workshops where 
we identified the most promising ML methods for 
increasing understanding of LULCC dynamics.
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Results  We provide a brief overview of the chal-
lenges to causal modelling of LULCC, including 
a simple example, and the most relevant causal ML 
approaches for addressing these challenges, as well as 
their limitations.
Conclusions  Causal ML methods hold considerable 
promise for improving causal modelling of LULCC. 
However, the complexity of LULCC dynamics mean 
that such methods must be combined with domain 
understanding and qualitative insights for effective 
policy design.

Keywords  Land use change · Deforestation · 
Agricultural expansion · Machine learning · Socio-
ecological systems · Complex systems

Introduction

Human transformation of terrestrial land (land use 
and land cover change; LULCC) has fundamentally 
impacted ecosystems globally (Ellis et  al. 2013). 
Over 75% of the global terrestrial area has been trans-
formed during the last millennium, and up to 33% of 
this change happened in the last 60  years (Winkler 
et al. 2021). Historically, these changes were largely 
driven by conversion of natural land cover to agricul-
ture to provide food for a growing human population 
with changing diets, as well as the conversion of agri-
cultural and natural land to urban areas. Agricultural 
expansion continues today (Potapov et  al. 2021) but 
in many regions, agricultural land abandonment has 
also taken place, leading to major increases in for-
ested lands (Song et  al. 2018). Loss of natural land 
cover has, in general, had major negative implications 
for biodiversity (Maxwell et  al. 2016) and has been 
a considerable source of carbon emissions (Arneth 
et al. 2017). As such, policies that enable and accel-
erate restoration of natural land cover (e.g. reforesta-
tion) are critical in halting and reversing biodiversity 
declines and can also have climate change co-bene-
fits (Mori et  al. 2021; Tölgyesi et  al. 2025). Under-
standing drivers of LULCC is therefore a critical 
research challenge, as such understanding is required 
to develop such policies; it is also critical to develop 
credible projections of future trajectories of LULCC 
under different climatic and socio-economic scenar-
ios (e.g. Brown et al. 2022).

Understanding LULCC and projecting land use 
outcomes of future socio-environmental changes is 
difficult because land use patterns are emergent prop-
erties of complex, socio-ecological systems (Berkes 
et al. 1998). Governance, cultural practices and tech-
nologies all shape land use, and interact with local 
environmental conditions and constraints in complex 
ways across multiple scales (Meyfroidt et  al. 2022). 
This means predictors of LULCC are context-depend-
ent, varying by location and scale. Such complexity is 
common for socio-ecological questions, with similar 
problems making synthesis and generalisations diffi-
cult in ecology (Spake et  al. 2022). The situation is 
further complicated by the changing nature of socio-
ecological interactions – a situation that is likely to 
accelerate as the impacts of climate change and bio-
diversity loss increasingly affect both biophysical 
and socio-economic systems globally (Pedde et  al. 
2021). The relative importance of different predictors 
of LULCC are therefore likely to evolve over time 
(e.g. Eigenbrod et al. 2020), Moreover, historic land 
use changes may have led to irreversible transitions, 
limiting options for future changes (Meyfroidt et  al. 
2022). This complexity matters not only because it 
makes understanding LULCC difficult per se, but also 
as it makes designing policies to achieve socially and 
ecologically beneficial LULCC challenging (Mey-
froidt et al. 2022). By contrast, detecting changes in 
land cover has seen an immense progress in the past 
years driven by progress in remote sensing, computer 
vision and data science, leading to a proliferation of 
global, high resolution, multi-year spatial LULCC 
datasets derived from remote sensing (Bürgi et  al. 
2022; Reynolds et al. 2025).

To date, researchers have addressed the complex-
ity of understanding LULCC with a combination 
of detailed case studies and process-based and sta-
tistical modelling approaches (Verburg et  al. 2019; 
Cabral et al. 2024). This has led to the development 
of general theory (e.g. forest transition theory; Mather 
1992) and numerous newer theories on LULCC 
(reviewed in Meyfroidt et al. 2018, 2024). It has also 
led to list of key variables driving of different types 
of LULCC (see Seymour & Harris (2019)for a review 
on deforestation and Plieninger et  al., (2016) for a 
review of drivers of LULCC in Europe). However, 
specific understanding of which theory, or which sets 
of variables are most important in a particular set-
ting remains lacking in most locations, hampering 
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effective policy design. Data-driven methods like 
machine learning (ML) and deep learning (DL) are 
also increasingly used to create LULCC datasets from 
remote sensing (reviewed in Vali et al. 2020) and to 
predict LULCC at local and regional scales. However, 
ML/DL approaches primarily rely on statistical cor-
relations, and are therefore poorly suited to predicting 
LULCC under changing socio-ecological conditions 
(e.g. under climate change) (reviewed in Wang et al., 
(2022)).

Causal modelling and LULCC

Causal modelling, particularly causal effect estima-
tion is of particular interest for effective policy for-
mulation as it enables an understanding of how key 
variables (e.g. a new policy) is likely to affect future 
LULCC (Meyfroidt 2016; Magliocca et al. 2023). In 
order to understand a causal effect, one must ask a 
counterfactual question: what would have happened 
to a given outcome variable if a certain change had 
not taken place? Hence, a causal effect arises from 
the comparison of two states of the world, one in 
which the treatment has taken place and one in which 
it has not (i.e. the ‘control’).

A key aspect of any causal analysis is defining 
which variables need to be accounted for to achieve 
causal understanding. Estimating causal effects 
relies on making the treatment and control groups 
comparable; typically by adjusting for observable 
confounding variables – factors that affect both the 
outcome and the likelihood of receiving the treat-
ment. Statistical matching approaches are com-
monly used to ensure that control and treatment 
units are similar in every respect except the treat-
ment variable, thereby constructing a meaning-
ful comparison (counterfactual)(Magliocca et  al. 
2023). For example, examination of the effective-
ness of protected areas requires ensuring that con-
trol and treatment sites are similar in terms of key 
confounders such as distance to population centres 
(Schleicher et  al. 2020), as more isolated loca-
tions are usually less likely to undergo LULCC 
(e.g. deforestation). In social sciences (including 
economics), such matching is often done using 
panel data (where multiple datasets are available 
over time), and causal modelling often follows the 
potential outcomes framework (Rubin 2005). 

Applications of this counterfactual approach to 
causal modelling – also called the Rubin Causal 
Model approach – are reviewed by Magliocca et al. 
(2023) in the context of LULCC.

Causal approaches have led to important spe-
cific insights in understanding LULCC (e.g. in the 
effectiveness of protected areas in stopping defor-
estation (Andam et al. 2008) or the role of conflict in 
deforestation  (Christiansen et  al. 2022)), but robust 
implementations remain relatively rare (reviewed by 
(Meyfroidt 2016; Bürgi et al. 2022; Magliocca et al. 
2023). A key reason is likely the lack of high-qual-
ity counterfactual data on policy “experiments”—
for example panel data covering the period before 
and after new legislation on deforestation is put in 
place—and where such data do exist, they tend to be 
highly localized and often lack external validity, lim-
iting their utility in increasing general understanding.

Another, important reason for the relative lack of 
progress in causal modelling for LULCC is likely 
the sheer complexity of the human-natural link-
ages that determine LULCC outlined earlier, which 
make isolating causal factors extremely challeng-
ing (Ferraro et  al. 2019). Indeed, in complex sys-
tems such as those driving LULCC, chains of linked 
causal effects (causal chains) are often necessary to 
meaningfully understand underlying causal mecha-
nisms. Causal diagrams, or directed acyclic graphs 
(DAGs), offer an intuitive approach to organize our 
thinking about these causal structures and how vari-
ables are interconnected (Pearl 2000). DAGs serve 
as helpful visual tools for clarifying assumptions, 
identifying potential sources of bias and guiding ana-
lytical strategies, and often inform  structural causal 
models (SCM). DAGs appear particularly well-suited 
to LULCC research, where complex socio-environ-
mental interactions are at play. Despite overlapping 
goals, the DAG-based causal inference framework 
and the potential outcomes framework have largely 
developed in parallel and remain only partially inte-
grated in practice. We outline a greatly simplified 
example of a DAG to illustrate the approach (Fig. 1). 
Recent work (Van Cleemput et  al. 2025) outlining 
how causal inference methods can be combined with 
‘big’ remote sensed derived data to increase desirable 
ecological outcomes in landscapes is also highly rel-
evant to LULCC as it focuses on complex, multi-scale 
socio-ecological terrestrial systems, and provides an 
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excellent accessible example of a more detailed DAG 
relevant to LULCC (spread of invasive trees).

Despite its potential, using DAGs to move beyond 
correlations and answer counterfactual questions 
is not straightforward, as one must make certain 
assumptions. These include that there are no hidden 
confounders, that there are no feedback cycles, that 
the causal relationships represented in the DAG are 
accurate, and the observed outcomes align with the 
treatment under study (consistency) (Pearl 2000). 
Additionally, we assume exchangeability, meaning 
that units with the same set of covariates are compa-
rable. These assumptions are challenging for complex 
systems such as LULCC. For example, it is straight-
forward to come up with a simplified example of a 
DAG for LULCC that illustrates some of the relation-
ships (e.g. Figure  1); the challenge lies in capturing 
the full complexity of all the relevant socio-ecological 
processes that lead to LULCC (Wang et al., (2022).

Implementation of DAGs for causal analyses 
becomes even more difficult as the amount of spatial 
data relevant to LULCC increases. This is because 
the ways that variables can be combined (the ‘dimen-
sionality’ of the data) increase exponentially as the 
number of potential variables increases. ‘Big data’ 
tends to have ‘high dimensionality’, as it includes a 
large number of variables. This makes finding causal 

variables more challenging and leads to other statisti-
cal issues collectively known as ‘the curse of dimen-
sionality’ (Altman and Krzywinski 2018). The ‘curse’ 
is problematic for complex interdisciplinary problems 
such as LULCC as the different social, economic and 
ecological factors interact with each other in complex 
ways. The best way of addressing these problems  to 
answer causal questions is to use domain understand-
ing to select key variables based on clear, a priori pre-
dictions (Altman and Krzywinski 2018). However, in 
LULCC this is challenging as there are many vari-
ables that could be important. It is also often the case 
that there are multiple, plausible metrics for a given 
variable. We briefly outline this problem by illustrat-
ing a few of the different ways that the variables in 
our simple exemplar DAG (Fig. 1) can be measured 
(Fig.  2). A final issue that has the potential to fur-
ther increase the dimensionality of LULCC causal 
analyses is the measurement error associated with all 
remote sensing based LULCC datasets. These will 
vary between the satellites and sensors used to create 
the images, and – critically – can lead to systematic 
bias in the response variable (LULCC) due, for exam-
ple, to issues such as higher cloud cover in the tropics 
than in temperate systems regions. The implications 
of such errors due to remote sensing products for eco-
logical causal analyses are outlined in Van Cleemput 

Fig. 1   A simplified Directed Acyclic Graph (DAG) for an 
example of a causal model for LULCC (deforestation). Con-
founder: A variable that influences both the cause and outcome 
effect. Mediator: a variable on the causal path affected by the 
cause that affects the effect, when some or all of the causal 

effect is indirect. Moderator: A variable that influences the 
direction and/or strength of the relationship between the treat-
ment (cause) and the outcome (effect) (Van Cleemput et  al. 
2025)
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et  al. (2025). In summary, given the complexity of 
LULCC and the additional challenges caused by the 
high dimensionality of LULCC analyses, it is not sur-
prising that classical causal methods or DAGs have 
had only limited application to date.

Causal machine learning and LULCC

Causal machine learning (causal ML) provides a 
set of ML methods aimed at unravelling cause-and-
effect relationships within complex systems, tran-
scending traditional correlation-based ML analyses. 
Causal ML is a new and rapidly evolving field, with 
inconsistencies in methods and language. At its core, 
causal ML seeks to estimate the causal effect of vari-
ables, interventions, treatments or policies on spe-
cific outcomes, while at the same time accounting 
for problems that arise with big data. As such, it has 
great promise both in enabling better understanding 
of the causes of LULCC dynamics, and also in using 
such understanding to predict how effective different 
policy options will be for enabling sustainable land 
use transitions. However, to our knowledge, causal 
ML methods remain poorly implemented by the 

LULCC modelling community, despite the consider-
able promise they offer.

This Perspective aims to provide an accessi-
ble introduction to the state of the art and make the 
LULCC community aware of causal ML techniques, 
their limitations, and their potential applications. It 
arises from two interdisciplinary three-day workshops 
attended by the authors in 2022 and 2023 where we 
set out to identify the potential of ML methods for 
increasing understanding of LULCC dynamics. The 
authors have expertise in LULCC modelling, causal 
ML and data science, econometrics, and landscape 
ecology. Box 1 provides definitions of key terms; we 
then use examples to describe some particularly use-
ful potential applications of causal ML.

Box 1 – Glossary of key terms.

Complex systems: Systems formed by (typically) 
large numbers of entities that interact dynamically, 
resulting in emergent properties and behaviours.

Causal modelling: Statistical models that enable 
the magnitude of cause-and effect relationships to be 
identified from observed association(s).

Fig. 2   The multiple plausible metrics (dashed boxes) for the variables (solid boxes) in the simple DAG of deforestation outlined in 
Fig. 1
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Causal effect estimation: A specific type of causal 
model that quantifies the effect of changing a particu-
lar variable (cause or treatment) on a target variable 
(outcome). It also allows counterfactual questions to 
be answered: what would have happened to a given 
outcome variable if a certain change (e.g. the imple-
mentation of a new policy) had not been in place?

Potential outcomes framework: Also known as 
the Rubin Causal Model, this causal modelling frame-
work uses the counterfactuals approach to enable 
causal inference and is the basis of much non-exper-
imental causal inference in social sciences. Statistical 
matching approaches, often based on panel data, are 
frequently used to control for confounding variables 
and enable the causal effect of a given intervention on 
a desired outcome variable to be identified.

Directed acyclic graph (DAG): A graphical 
representation of all presumed causal relationships 
between variables. Also known as causal diagrams, 
they serve as helpful visual tools for clarifying 
assumptions, identifying potential sources of bias and 
guiding analytical strategies for more complex sys-
tems that may involve chains of linked causal effects 
(causal chains), rather than causal effects of single 
interventions.

Structural causal models (SCMs): A formal 
framework for representing causal relationships using 
structural equations, often informed by directed acy-
clic graphs (DAGs). SCMs allow the analysis of 
direct and indirect effects, counterfactuals and com-
plex systems of linked causal mechanisms.

Machine learning (ML) methods: A family of 
analytical tools that enables data-driven identification 
of patterns within large datasets and making predic-
tions based on historical data. ML methods excel in 
predicting outcomes, but (traditionally) lack causal 
understanding so perform poorly in novel or changing 
environments.

Causal machine learning (ML): A subset of ML 
methods aimed at unravelling cause-and-effect rela-
tionships in large datasets by combining the rigour 
of causal modelling approaches with the flexibility 
and ‘big data’ handling capabilities of traditional ML 
methods.

Causal discovery: Methods for identifying plau-
sible causal relationships between variables from 
data. We often use them when the structure of the 
causal graph (DAG) is unknown. It can be the first 
step in DAG-based causal inference, by enabling 

the subsequent estimation of causal effects once the 
causal structure is established.

Causal discovery: Learning the structure 
of the DAG from data

Causal discovery refers to a set of methods aimed 
at learning the causal structure (i.e., the relationships 
between variables), directly from data, typically rep-
resented as a DAG. Unlike traditional approaches that 
assume a predefined causal structure (as is often the 
case in panel regressions or DAGs manually speci-
fied  by experts), causal discovery infers the struc-
ture from observational data using algorithms. These 
include the PC algorithm (Spirtes and Glymour 1991) 
and its successors, as well as nonlinear methods like 
convergent cross mapping (CCM) (Runge 2023). For 
example, in a dataset including LULCC we might not 
even know whether LULCC is the origin of a causal 
relationship or the result, or at which scale a given 
variable is causal. At its simplest, causal discovery 
aims to identify sets of causal models that are statis-
tically indistinguishable from each other (formally, 
they have the same Markov equivalence class) as they 
share common patterns of conditional independence 
with other variables (formally the same d-separation 
patterns) (Huber 2024). When observational data is 
insufficient to identify the correct causal model, the 
challenge of model ambiguity may be resolved by 
incorporating external sources of information. This 
can involve domain knowledge, theoretical princi-
ples, previous empirical findings, or knowledge of the 
temporal order of events (Huber 2024). These exter-
nal insights can provide valuable context to constrain 
potential causal models. In practice, fully understand-
ing all potential causal relationships for a complex 
DAG (e.g. for LULCC system) is challenging due to 
the complexities of the dependency structures of the 
variables (Huber 2024). Moreover, the assumptions 
on the functional relationships between variables and 
on the error terms are quite restrictive. This means 
causal discovery is inherently difficult, and if domain 
knowledge can be used to identify potential causal 
pathways in a DAG, this should be used rather than 
causal discovery. However, causal discovery methods 
can still be useful in such cases, as they can be used—
under the appropriate assumptions—to identify all 
observed variables (e.g. regional GPD, topography, 
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access, land ownership) that have an effect on an out-
come variable (e.g. LULCC). This is very useful as 
a first step in using ML for causal effect estimation, 
as it already reduces the complexity and number of 
potential variables within a DAG. This is particularly 
the case in complex and dynamic systems, where the 
structure of the DAG may shift faster than our theo-
retical understanding (e.g., across space or time). 
Here, causal discovery can serve as a useful auxiliary 
tool, not to replace expert knowledge but to guide 
or narrow the space of plausible models. Examples 
(from economics) of causal discovery including R 
code and packages are available in the Huber (2024) 
review.

Causal ML for inference: using double ML 
to reduce the effect of confounders in causal effect 
estimation

Causal effect estimation requires that the direction 
of causation is known – e.g. treatment D (for exam-
ple regional GDP) influences outcome Y (LULCC), 
rather than vice versa. In order to guarantee that the 
analysis resembles an randomized control trial as 
closely as possible, the treatment and control groups 
need to be made comparable and to do so observa-
ble variables need to be accounted for, as discussed 
earlier. The key problem is that it is often unknown 
which variables are confounders and which func-
tion best describes their influence on D and Y; this 
is particularly problematic for complex issues such as 
LULCC. Causal discovery methods can help reduce 
the possible subset of variables, but, as discussed, 
in complex systems such as LULCC the remaining 
plausible subset can still be very large. Empirical 
researchers implicitly make assumptions on how the 
confounders enter the model. It is tempting to directly 
model the effect of a set of observable variables X on 
LULCC using ML methods which allow for model 
selection and flexible combinations of the variables. 
One example would be to use the Least Absolute 
Shrinkage and Selection Operator (LASSO) (Tib-
shirani 1996) to select control variables. In general, 
such a naïve approach will lead to unreliable (biased) 
results due to regularization bias, i.e. the bias aris-
ing from estimation error, and overfitting bias, i.e. 
the bias that arises when using the same dataset for 
model selection and subsequent estimation.

In response to this problem, a seminal paper by 
Chernozhukov et  al. (2018) has proposed the use of 
double ML (DML), where ML estimators for the out-
come and the treatment are combined in a (moment) 
equation that includes the treatment effect of inter-
est and that allows for slight misspecifications of the 
functions that describe the true effect of the confound-
ers on D and Y. Overfitting bias is tackled by using 
cross-fitting, a technique where one split of the data-
set is used in the ML step and the other for estimation 
and the roles of the splits is reversed later on. Under 
assumptions which are met by many of the ML meth-
ods currently in use, such as LASSO, Ridge, Random 
Forest or Boosting, DML provides a decrease in bias 
of the causal effect estimate and therefore more relia-
ble estimates. DML provides a general framework on 
how to implement ML methods when trying to esti-
mate a causal effect and has given rise to an entire lit-
erature; see Ahrens et al. (2025) for a recent review. A 
recent relevant example uses a DML framework using 
economic panel data from 30 provinces in China over 
17 years to understand the causes of urban–rural inte-
gration (Lu et al. 2025).

Causal ML to address context dependency 
in LULCC: Causal forests

One case in which causal ML has particular relevance 
for LULCC is when the effectiveness of policy inter-
ventions varies by context, i.e. it is heterogeneous 
across space, time or other covariates. This is almost 
always the case for LULCC (Spake et al. 2019; Mey-
froidt et  al. 2022). For example, commodity driven 
deforestation is dominant in South America, while 
subsistence driven shifting agriculture is often, but 
not always, the dominant driver of deforestation in 
Africa (Curtis et  al. 2018). In other words, we are 
often interested quantifying conditional treatment 
effects (CATE), rather than the average treatment 
effect (ATE) of a given policy intervention – the latter 
has traditionally been the main focus of causal infer-
ence. Here, causal forests (Wager and Athey 2018)—a 
special case of generalized random forests (Athey 
et al. 2019)—are applicable. These are used to under-
stand heterogeneous treatment with big data. Causal 
forests build on the very widely used random forest 
approach and extend these to enable causal effect esti-
mation and predict differential treatment responses by 
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context (conditional average treatment effects). They 
do so by a form of orthogonalization (as is also the 
case for DML) where ‘baseline’ effects are removed. 
A relatively accessible recent overview (with exam-
ples from psychiatry) is Sverdrup et al. (2025), with 
the ‘grf’ R package (Tibshirani et al. 2024) also pro-
viding a good overview with worked examples. At 
present, most real-world examples of causal forests 
that are relevant to LULCC use a counterfactual, 
rather than a causal discovery approach. For example, 
causal forests were used to understand the spatial het-
erogeneity of crop rotation and landscape crop diver-
sity on yields in Flanders, after accounting for factors 
such as climate (Giannarakis et  al. 2022). A recent 
simulation study has shown that causal forests work 
well with spatial datasets (Credit & Lehnert 2024), 
suggesting they are well suited to LULCC questions.

Combining causal discovery and causal inference 
methods

It is possible to address more complex and poorly 
understand causal relationships by combining causal 
discovery and causal ML methods focused on causal 
inference (DML and causal forests). For example, 
Soleymani et  al. (2022) propose a new method that 
uses DML to sequentially estimate the direct effects 
of different candidate variables in a DAG on an out-
come, controlling for all other potential variables. 
This latter approach is likely to be very useful for 
many LULCC questions, as fully understanding 
the DAG (via causal discovery methods) may often 
be necessary. A technical review of causal methods 
– including a detailed flow chart of the most relevant 
methods for different types of data – exists for time 
series data (Runge et al. 2023) and complements this 
Perspective.

Future directions – knowledge guided machine 
learning

Data driven methods will never enable prediction if 
future LULCC is determined by different variables, 
or combinations of variables. This is because ML 
methods, like all statistical models, cannot accurately 
predict outside of the parameter space of the data on 
which they were built. Such non-analogue LULCC is 

extremely likely as climate change and technological 
changes (e.g. renewable energy) increasingly impact 
land use systems. A potential way of addressing this 
is via hybrid models that link ML techniques with 
process models. Reichstein et  al. (2019) provide a 
framework for using hybrid deep learning approaches 
to improve models of the Earth system by linking 
data-driven, correlation-based models with process-
based models based on causal understanding of bio-
geochemical cycles. This approach is more gener-
ally known as physics-guided (Willard et  al. 2023) 
or knowledge-guided machine learning (Karpatne 
et al. 2017; Liu et al. 2022). Unfortunately, applying 
this approach LULCC is not yet possible, given that 
no good process models of the socio-ecological pro-
cesses that characterize LULCC exist. However, such 
hybrid approaches may become possible in the future 
as our causal understanding of LULCC improves.

Caveats and conclusions

Despite their potential, using causal ML methods 
to understand LULCC comes with several major 
caveats. Causal inference of any type will remain 
challenging for LULCC, due to feedbacks and com-
plex interactions between variables (Ferraro et  al. 
2019).  Such feedbacks mean it is very difficult to 
ensure that the variables affecting the treatment do 
not also affect the outcome (‘excludability’). For 
example, the potential future value of forested land 
for agriculture is likely to affect whether or not it is 
protected under legislation; it is also likely to affect 
whether or not legislation is effective in stopping 
deforestation. Such feedbacks also mean that the 
assumption of ‘No Interference” (e.g. the effect of an 
intervention on loss of forest in one region shouldn’t 
depend on whether the same intervention is carried 
out in another region”) is unlikely to hold; indeed 
such ‘leakage’ is common in LULCC (Meyfroidt 
et  al. 2022). Reverse causality (where the roles of 
cause and effect are switched for two variables) can 
also be an issue for LULCC dynamics – for example 
increases in regional GDP could lead to deforestation, 
but deforestation itself could also drive increases in 
regional GDP. In addition, any observational study 
is likely to be affected by unmeasured confounding 
variables that cannot be controlled for, meaning con-
clusions need to be treated with caution (Giannarakis 
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et al. 2022). A broader overview of key assumptions 
of causal ML for agriculture that will also be relevant 
for most LULCC is provided by Sitokonstantinou 
et  al.  (2024). While causal ML analyses of LULCC 
will never provide complete answers they can pro-
vide important complementary insights to more case-
based site-specific approaches. In other words, causal 
ML is no substitute for understanding and careful 
study design for causal questions. This means that 
deeply understanding LULCC dynamics and effective 
policy interventions to enable sustainable LULCC 
pathways will require novel interdisciplinary collabo-
rations to ensure domain understanding and qualita-
tive insights are combined with the power of causal 
ML methods.
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