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Abstract

Context Understanding the roles of different drivers
in land use and land cover change (LULCC) is a criti-
cal research challenge. However, as LULCC is the
result of complex, socio-ecological processes and is
highly context dependent, achieving such understand-
ing is difficult. This is particularly true for causal
modelling approaches that are critical for effective
policy formulation. Causal machine learning (ML)
methods could help address this challenge, but are
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as yet poorly understood or applied by the LULCC
community.

Objectives To provide an accessible introduction to
the state of the art for causal ML methods, their limi-
tations, and their potential applications understanding
LULCC.

Methods We conducted two workshops where
we identified the most promising ML methods for
increasing understanding of LULCC dynamics.
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Results We provide a brief overview of the chal-
lenges to causal modelling of LULCC, including
a simple example, and the most relevant causal ML
approaches for addressing these challenges, as well as
their limitations.

Conclusions Causal ML methods hold considerable
promise for improving causal modelling of LULCC.
However, the complexity of LULCC dynamics mean
that such methods must be combined with domain
understanding and qualitative insights for effective
policy design.

Keywords Land use change - Deforestation -
Agricultural expansion - Machine learning - Socio-
ecological systems - Complex systems

Introduction

Human transformation of terrestrial land (land use
and land cover change; LULCC) has fundamentally
impacted ecosystems globally (Ellis et al. 2013).
Over 75% of the global terrestrial area has been trans-
formed during the last millennium, and up to 33% of
this change happened in the last 60 years (Winkler
et al. 2021). Historically, these changes were largely
driven by conversion of natural land cover to agricul-
ture to provide food for a growing human population
with changing diets, as well as the conversion of agri-
cultural and natural land to urban areas. Agricultural
expansion continues today (Potapov et al. 2021) but
in many regions, agricultural land abandonment has
also taken place, leading to major increases in for-
ested lands (Song et al. 2018). Loss of natural land
cover has, in general, had major negative implications
for biodiversity (Maxwell et al. 2016) and has been
a considerable source of carbon emissions (Arneth
et al. 2017). As such, policies that enable and accel-
erate restoration of natural land cover (e.g. reforesta-
tion) are critical in halting and reversing biodiversity
declines and can also have climate change co-bene-
fits (Mori et al. 2021; Tolgyesi et al. 2025). Under-
standing drivers of LULCC is therefore a critical
research challenge, as such understanding is required
to develop such policies; it is also critical to develop
credible projections of future trajectories of LULCC
under different climatic and socio-economic scenar-
ios (e.g. Brown et al. 2022).
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Understanding LULCC and projecting land use
outcomes of future socio-environmental changes is
difficult because land use patterns are emergent prop-
erties of complex, socio-ecological systems (Berkes
et al. 1998). Governance, cultural practices and tech-
nologies all shape land use, and interact with local
environmental conditions and constraints in complex
ways across multiple scales (Meyfroidt et al. 2022).
This means predictors of LULCC are context-depend-
ent, varying by location and scale. Such complexity is
common for socio-ecological questions, with similar
problems making synthesis and generalisations diffi-
cult in ecology (Spake et al. 2022). The situation is
further complicated by the changing nature of socio-
ecological interactions — a situation that is likely to
accelerate as the impacts of climate change and bio-
diversity loss increasingly affect both biophysical
and socio-economic systems globally (Pedde et al.
2021). The relative importance of different predictors
of LULCC are therefore likely to evolve over time
(e.g. Eigenbrod et al. 2020), Moreover, historic land
use changes may have led to irreversible transitions,
limiting options for future changes (Meyfroidt et al.
2022). This complexity matters not only because it
makes understanding LULCC difficult per se, but also
as it makes designing policies to achieve socially and
ecologically beneficial LULCC challenging (Mey-
froidt et al. 2022). By contrast, detecting changes in
land cover has seen an immense progress in the past
years driven by progress in remote sensing, computer
vision and data science, leading to a proliferation of
global, high resolution, multi-year spatial LULCC
datasets derived from remote sensing (Biirgi et al.
2022; Reynolds et al. 2025).

To date, researchers have addressed the complex-
ity of understanding LULCC with a combination
of detailed case studies and process-based and sta-
tistical modelling approaches (Verburg et al. 2019;
Cabral et al. 2024). This has led to the development
of general theory (e.g. forest transition theory; Mather
1992) and numerous newer theories on LULCC
(reviewed in Meyfroidt et al. 2018, 2024). It has also
led to list of key variables driving of different types
of LULCC (see Seymour & Harris (2019)for a review
on deforestation and Plieninger et al., (2016) for a
review of drivers of LULCC in Europe). However,
specific understanding of which theory, or which sets
of variables are most important in a particular set-
ting remains lacking in most locations, hampering
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effective policy design. Data-driven methods like
machine learning (ML) and deep learning (DL) are
also increasingly used to create LULCC datasets from
remote sensing (reviewed in Vali et al. 2020) and to
predict LULCC at local and regional scales. However,
ML/DL approaches primarily rely on statistical cor-
relations, and are therefore poorly suited to predicting
LULCC under changing socio-ecological conditions
(e.g. under climate change) (reviewed in Wang et al.,
(2022)).

Causal modelling and LULCC

Causal modelling, particularly causal effect estima-
tion is of particular interest for effective policy for-
mulation as it enables an understanding of how key
variables (e.g. a new policy) is likely to affect future
LULCC (Meyfroidt 2016; Magliocca et al. 2023). In
order to understand a causal effect, one must ask a
counterfactual question: what would have happened
to a given outcome variable if a certain change had
not taken place? Hence, a causal effect arises from
the comparison of two states of the world, one in
which the treatment has taken place and one in which
it has not (i.e. the ‘control’).

A key aspect of any causal analysis is defining
which variables need to be accounted for to achieve
causal understanding. Estimating causal effects
relies on making the treatment and control groups
comparable; typically by adjusting for observable
confounding variables — factors that affect both the
outcome and the likelihood of receiving the treat-
ment. Statistical matching approaches are com-
monly used to ensure that control and treatment
units are similar in every respect except the treat-
ment variable, thereby constructing a meaning-
ful comparison (counterfactual)(Magliocca et al.
2023). For example, examination of the effective-
ness of protected areas requires ensuring that con-
trol and treatment sites are similar in terms of key
confounders such as distance to population centres
(Schleicher et al. 2020), as more isolated loca-
tions are usually less likely to undergo LULCC
(e.g. deforestation). In social sciences (including
economics), such matching is often done using
panel data (where multiple datasets are available
over time), and causal modelling often follows the
potential outcomes framework (Rubin 2005).

Applications of this counterfactual approach to
causal modelling — also called the Rubin Causal
Model approach — are reviewed by Magliocca et al.
(2023) in the context of LULCC.

Causal approaches have led to important spe-
cific insights in understanding LULCC (e.g. in the
effectiveness of protected areas in stopping defor-
estation (Andam et al. 2008) or the role of conflict in
deforestation (Christiansen et al. 2022)), but robust
implementations remain relatively rare (reviewed by
(Meyfroidt 2016; Biirgi et al. 2022; Magliocca et al.
2023). A key reason is likely the lack of high-qual-
ity counterfactual data on policy “experiments”—
for example panel data covering the period before
and after new legislation on deforestation is put in
place—and where such data do exist, they tend to be
highly localized and often lack external validity, lim-
iting their utility in increasing general understanding.

Another, important reason for the relative lack of
progress in causal modelling for LULCC is likely
the sheer complexity of the human-natural link-
ages that determine LULCC outlined earlier, which
make isolating causal factors extremely challeng-
ing (Ferraro et al. 2019). Indeed, in complex sys-
tems such as those driving LULCC, chains of linked
causal effects (causal chains) are often necessary to
meaningfully understand underlying causal mecha-
nisms. Causal diagrams, or directed acyclic graphs
(DAGsS), offer an intuitive approach to organize our
thinking about these causal structures and how vari-
ables are interconnected (Pearl 2000). DAGs serve
as helpful visual tools for clarifying assumptions,
identifying potential sources of bias and guiding ana-
lytical strategies, and often inform structural causal
models (SCM). DAGs appear particularly well-suited
to LULCC research, where complex socio-environ-
mental interactions are at play. Despite overlapping
goals, the DAG-based causal inference framework
and the potential outcomes framework have largely
developed in parallel and remain only partially inte-
grated in practice. We outline a greatly simplified
example of a DAG to illustrate the approach (Fig. 1).
Recent work (Van Cleemput et al. 2025) outlining
how causal inference methods can be combined with
‘big’ remote sensed derived data to increase desirable
ecological outcomes in landscapes is also highly rel-
evant to LULCC as it focuses on complex, multi-scale
socio-ecological terrestrial systems, and provides an
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Fig.1 A simplified Directed Acyclic Graph (DAG) for an
example of a causal model for LULCC (deforestation). Con-
founder: A variable that influences both the cause and outcome
effect. Mediator: a variable on the causal path affected by the
cause that affects the effect, when some or all of the causal

excellent accessible example of a more detailed DAG
relevant to LULCC (spread of invasive trees).

Despite its potential, using DAGs to move beyond
correlations and answer counterfactual questions
is not straightforward, as one must make certain
assumptions. These include that there are no hidden
confounders, that there are no feedback cycles, that
the causal relationships represented in the DAG are
accurate, and the observed outcomes align with the
treatment under study (consistency) (Pearl 2000).
Additionally, we assume exchangeability, meaning
that units with the same set of covariates are compa-
rable. These assumptions are challenging for complex
systems such as LULCC. For example, it is straight-
forward to come up with a simplified example of a
DAG for LULCC that illustrates some of the relation-
ships (e.g. Figure 1); the challenge lies in capturing
the full complexity of all the relevant socio-ecological
processes that lead to LULCC (Wang et al., (2022).

Implementation of DAGs for causal analyses
becomes even more difficult as the amount of spatial
data relevant to LULCC increases. This is because
the ways that variables can be combined (the ‘dimen-
sionality’ of the data) increase exponentially as the
number of potential variables increases. ‘Big data’
tends to have ‘high dimensionality’, as it includes a
large number of variables. This makes finding causal
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effect is indirect. Moderator: A variable that influences the
direction and/or strength of the relationship between the treat-
ment (cause) and the outcome (effect) (Van Cleemput et al.
2025)

variables more challenging and leads to other statisti-
cal issues collectively known as ‘the curse of dimen-
sionality’ (Altman and Krzywinski 2018). The ‘curse’
is problematic for complex interdisciplinary problems
such as LULCC as the different social, economic and
ecological factors interact with each other in complex
ways. The best way of addressing these problems to
answer causal questions is to use domain understand-
ing to select key variables based on clear, a priori pre-
dictions (Altman and Krzywinski 2018). However, in
LULCC this is challenging as there are many vari-
ables that could be important. It is also often the case
that there are multiple, plausible metrics for a given
variable. We briefly outline this problem by illustrat-
ing a few of the different ways that the variables in
our simple exemplar DAG (Fig. 1) can be measured
(Fig. 2). A final issue that has the potential to fur-
ther increase the dimensionality of LULCC causal
analyses is the measurement error associated with all
remote sensing based LULCC datasets. These will
vary between the satellites and sensors used to create
the images, and — critically — can lead to systematic
bias in the response variable (LULCC) due, for exam-
ple, to issues such as higher cloud cover in the tropics
than in temperate systems regions. The implications
of such errors due to remote sensing products for eco-
logical causal analyses are outlined in Van Cleemput
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Fig. 2 The multiple plausible metrics (dashed boxes) for the variables (solid boxes) in the simple DAG of deforestation outlined in

Fig. 1

et al. (2025). In summary, given the complexity of
LULCC and the additional challenges caused by the
high dimensionality of LULCC analyses, it is not sur-
prising that classical causal methods or DAGs have
had only limited application to date.

Causal machine learning and LULCC

Causal machine learning (causal ML) provides a
set of ML methods aimed at unravelling cause-and-
effect relationships within complex systems, tran-
scending traditional correlation-based ML analyses.
Causal ML is a new and rapidly evolving field, with
inconsistencies in methods and language. At its core,
causal ML seeks to estimate the causal effect of vari-
ables, interventions, treatments or policies on spe-
cific outcomes, while at the same time accounting
for problems that arise with big data. As such, it has
great promise both in enabling better understanding
of the causes of LULCC dynamics, and also in using
such understanding to predict how effective different
policy options will be for enabling sustainable land
use transitions. However, to our knowledge, causal
ML methods remain poorly implemented by the

LULCC modelling community, despite the consider-
able promise they offer.

This Perspective aims to provide an accessi-
ble introduction to the state of the art and make the
LULCC community aware of causal ML techniques,
their limitations, and their potential applications. It
arises from two interdisciplinary three-day workshops
attended by the authors in 2022 and 2023 where we
set out to identify the potential of ML methods for
increasing understanding of LULCC dynamics. The
authors have expertise in LULCC modelling, causal
ML and data science, econometrics, and landscape
ecology. Box 1 provides definitions of key terms; we
then use examples to describe some particularly use-
ful potential applications of causal ML.

Box 1 — Glossary of key terms.

Complex systems: Systems formed by (typically)
large numbers of entities that interact dynamically,
resulting in emergent properties and behaviours.

Causal modelling: Statistical models that enable
the magnitude of cause-and effect relationships to be
identified from observed association(s).

@ Springer
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Causal effect estimation: A specific type of causal
model that quantifies the effect of changing a particu-
lar variable (cause or treatment) on a target variable
(outcome). It also allows counterfactual questions to
be answered: what would have happened to a given
outcome variable if a certain change (e.g. the imple-
mentation of a new policy) had not been in place?

Potential outcomes framework: Also known as
the Rubin Causal Model, this causal modelling frame-
work uses the counterfactuals approach to enable
causal inference and is the basis of much non-exper-
imental causal inference in social sciences. Statistical
matching approaches, often based on panel data, are
frequently used to control for confounding variables
and enable the causal effect of a given intervention on
a desired outcome variable to be identified.

Directed acyclic graph (DAG): A graphical
representation of all presumed causal relationships
between variables. Also known as causal diagrams,
they serve as helpful visual tools for clarifying
assumptions, identifying potential sources of bias and
guiding analytical strategies for more complex sys-
tems that may involve chains of linked causal effects
(causal chains), rather than causal effects of single
interventions.

Structural causal models (SCMs): A formal
framework for representing causal relationships using
structural equations, often informed by directed acy-
clic graphs (DAGs). SCMs allow the analysis of
direct and indirect effects, counterfactuals and com-
plex systems of linked causal mechanisms.

Machine learning (ML) methods: A family of
analytical tools that enables data-driven identification
of patterns within large datasets and making predic-
tions based on historical data. ML methods excel in
predicting outcomes, but (traditionally) lack causal
understanding so perform poorly in novel or changing
environments.

Causal machine learning (ML): A subset of ML
methods aimed at unravelling cause-and-effect rela-
tionships in large datasets by combining the rigour
of causal modelling approaches with the flexibility
and ‘big data’ handling capabilities of traditional ML
methods.

Causal discovery: Methods for identifying plau-
sible causal relationships between variables from
data. We often use them when the structure of the
causal graph (DAG) is unknown. It can be the first
step in DAG-based causal inference, by enabling
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the subsequent estimation of causal effects once the
causal structure is established.

Causal discovery: Learning the structure
of the DAG from data

Causal discovery refers to a set of methods aimed
at learning the causal structure (i.e., the relationships
between variables), directly from data, typically rep-
resented as a DAG. Unlike traditional approaches that
assume a predefined causal structure (as is often the
case in panel regressions or DAGs manually speci-
fied by experts), causal discovery infers the struc-
ture from observational data using algorithms. These
include the PC algorithm (Spirtes and Glymour 1991)
and its successors, as well as nonlinear methods like
convergent cross mapping (CCM) (Runge 2023). For
example, in a dataset including LULCC we might not
even know whether LULCC is the origin of a causal
relationship or the result, or at which scale a given
variable is causal. At its simplest, causal discovery
aims to identify sets of causal models that are statis-
tically indistinguishable from each other (formally,
they have the same Markov equivalence class) as they
share common patterns of conditional independence
with other variables (formally the same d-separation
patterns) (Huber 2024). When observational data is
insufficient to identify the correct causal model, the
challenge of model ambiguity may be resolved by
incorporating external sources of information. This
can involve domain knowledge, theoretical princi-
ples, previous empirical findings, or knowledge of the
temporal order of events (Huber 2024). These exter-
nal insights can provide valuable context to constrain
potential causal models. In practice, fully understand-
ing all potential causal relationships for a complex
DAG (e.g. for LULCC system) is challenging due to
the complexities of the dependency structures of the
variables (Huber 2024). Moreover, the assumptions
on the functional relationships between variables and
on the error terms are quite restrictive. This means
causal discovery is inherently difficult, and if domain
knowledge can be used to identify potential causal
pathways in a DAG, this should be used rather than
causal discovery. However, causal discovery methods
can still be useful in such cases, as they can be used—
under the appropriate assumptions—to identify all
observed variables (e.g. regional GPD, topography,
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access, land ownership) that have an effect on an out-
come variable (e.g. LULCC). This is very useful as
a first step in using ML for causal effect estimation,
as it already reduces the complexity and number of
potential variables within a DAG. This is particularly
the case in complex and dynamic systems, where the
structure of the DAG may shift faster than our theo-
retical understanding (e.g., across space or time).
Here, causal discovery can serve as a useful auxiliary
tool, not to replace expert knowledge but to guide
or narrow the space of plausible models. Examples
(from economics) of causal discovery including R
code and packages are available in the Huber (2024)
review.

Causal ML for inference: using double ML
to reduce the effect of confounders in causal effect
estimation

Causal effect estimation requires that the direction
of causation is known — e.g. treatment D (for exam-
ple regional GDP) influences outcome Y (LULCC),
rather than vice versa. In order to guarantee that the
analysis resembles an randomized control trial as
closely as possible, the treatment and control groups
need to be made comparable and to do so observa-
ble variables need to be accounted for, as discussed
earlier. The key problem is that it is often unknown
which variables are confounders and which func-
tion best describes their influence on D and Y; this
is particularly problematic for complex issues such as
LULCC. Causal discovery methods can help reduce
the possible subset of variables, but, as discussed,
in complex systems such as LULCC the remaining
plausible subset can still be very large. Empirical
researchers implicitly make assumptions on how the
confounders enter the model. It is tempting to directly
model the effect of a set of observable variables X on
LULCC using ML methods which allow for model
selection and flexible combinations of the variables.
One example would be to use the Least Absolute
Shrinkage and Selection Operator (LASSO) (Tib-
shirani 1996) to select control variables. In general,
such a naive approach will lead to unreliable (biased)
results due to regularization bias, i.e. the bias aris-
ing from estimation error, and overfitting bias, i.e.
the bias that arises when using the same dataset for
model selection and subsequent estimation.

In response to this problem, a seminal paper by
Chernozhukov et al. (2018) has proposed the use of
double ML (DML), where ML estimators for the out-
come and the treatment are combined in a (moment)
equation that includes the treatment effect of inter-
est and that allows for slight misspecifications of the
functions that describe the true effect of the confound-
ers on D and Y. Overfitting bias is tackled by using
cross-fitting, a technique where one split of the data-
set is used in the ML step and the other for estimation
and the roles of the splits is reversed later on. Under
assumptions which are met by many of the ML meth-
ods currently in use, such as LASSO, Ridge, Random
Forest or Boosting, DML provides a decrease in bias
of the causal effect estimate and therefore more relia-
ble estimates. DML provides a general framework on
how to implement ML methods when trying to esti-
mate a causal effect and has given rise to an entire lit-
erature; see Ahrens et al. (2025) for a recent review. A
recent relevant example uses a DML framework using
economic panel data from 30 provinces in China over
17 years to understand the causes of urban—rural inte-
gration (Lu et al. 2025).

Causal ML to address context dependency
in LULCC: Causal forests

One case in which causal ML has particular relevance
for LULCC is when the effectiveness of policy inter-
ventions varies by context, i.e. it is heterogeneous
across space, time or other covariates. This is almost
always the case for LULCC (Spake et al. 2019; Mey-
froidt et al. 2022). For example, commodity driven
deforestation is dominant in South America, while
subsistence driven shifting agriculture is often, but
not always, the dominant driver of deforestation in
Africa (Curtis et al. 2018). In other words, we are
often interested quantifying conditional treatment
effects (CATE), rather than the average treatment
effect (ATE) of a given policy intervention — the latter
has traditionally been the main focus of causal infer-
ence. Here, causal forests (Wager and Athey 2018)—a
special case of generalized random forests (Athey
et al. 2019)—are applicable. These are used to under-
stand heterogeneous treatment with big data. Causal
forests build on the very widely used random forest
approach and extend these to enable causal effect esti-
mation and predict differential treatment responses by
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context (conditional average treatment effects). They
do so by a form of orthogonalization (as is also the
case for DML) where ‘baseline’ effects are removed.
A relatively accessible recent overview (with exam-
ples from psychiatry) is Sverdrup et al. (2025), with
the ‘grf” R package (Tibshirani et al. 2024) also pro-
viding a good overview with worked examples. At
present, most real-world examples of causal forests
that are relevant to LULCC use a counterfactual,
rather than a causal discovery approach. For example,
causal forests were used to understand the spatial het-
erogeneity of crop rotation and landscape crop diver-
sity on yields in Flanders, after accounting for factors
such as climate (Giannarakis et al. 2022). A recent
simulation study has shown that causal forests work
well with spatial datasets (Credit & Lehnert 2024),
suggesting they are well suited to LULCC questions.

Combining causal discovery and causal inference
methods

It is possible to address more complex and poorly
understand causal relationships by combining causal
discovery and causal ML methods focused on causal
inference (DML and causal forests). For example,
Soleymani et al. (2022) propose a new method that
uses DML to sequentially estimate the direct effects
of different candidate variables in a DAG on an out-
come, controlling for all other potential variables.
This latter approach is likely to be very useful for
many LULCC questions, as fully understanding
the DAG (via causal discovery methods) may often
be necessary. A technical review of causal methods
— including a detailed flow chart of the most relevant
methods for different types of data — exists for time
series data (Runge et al. 2023) and complements this
Perspective.

Future directions — knowledge guided machine
learning

Data driven methods will never enable prediction if
future LULCC is determined by different variables,
or combinations of variables. This is because ML
methods, like all statistical models, cannot accurately
predict outside of the parameter space of the data on
which they were built. Such non-analogue LULCC is
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extremely likely as climate change and technological
changes (e.g. renewable energy) increasingly impact
land use systems. A potential way of addressing this
is via hybrid models that link ML techniques with
process models. Reichstein et al. (2019) provide a
framework for using hybrid deep learning approaches
to improve models of the Earth system by linking
data-driven, correlation-based models with process-
based models based on causal understanding of bio-
geochemical cycles. This approach is more gener-
ally known as physics-guided (Willard et al. 2023)
or knowledge-guided machine learning (Karpatne
et al. 2017; Liu et al. 2022). Unfortunately, applying
this approach LULCC is not yet possible, given that
no good process models of the socio-ecological pro-
cesses that characterize LULCC exist. However, such
hybrid approaches may become possible in the future
as our causal understanding of LULCC improves.

Caveats and conclusions

Despite their potential, using causal ML methods
to understand LULCC comes with several major
caveats. Causal inference of any type will remain
challenging for LULCC, due to feedbacks and com-
plex interactions between variables (Ferraro et al.
2019). Such feedbacks mean it is very difficult to
ensure that the variables affecting the treatment do
not also affect the outcome (‘excludability’). For
example, the potential future value of forested land
for agriculture is likely to affect whether or not it is
protected under legislation; it is also likely to affect
whether or not legislation is effective in stopping
deforestation. Such feedbacks also mean that the
assumption of ‘No Interference” (e.g. the effect of an
intervention on loss of forest in one region shouldn’t
depend on whether the same intervention is carried
out in another region™) is unlikely to hold; indeed
such ‘leakage’ is common in LULCC (Meyfroidt
et al. 2022). Reverse causality (where the roles of
cause and effect are switched for two variables) can
also be an issue for LULCC dynamics — for example
increases in regional GDP could lead to deforestation,
but deforestation itself could also drive increases in
regional GDP. In addition, any observational study
is likely to be affected by unmeasured confounding
variables that cannot be controlled for, meaning con-
clusions need to be treated with caution (Giannarakis
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et al. 2022). A broader overview of key assumptions
of causal ML for agriculture that will also be relevant
for most LULCC is provided by Sitokonstantinou
et al. (2024). While causal ML analyses of LULCC
will never provide complete answers they can pro-
vide important complementary insights to more case-
based site-specific approaches. In other words, causal
ML is no substitute for understanding and careful
study design for causal questions. This means that
deeply understanding LULCC dynamics and effective
policy interventions to enable sustainable LULCC
pathways will require novel interdisciplinary collabo-
rations to ensure domain understanding and qualita-
tive insights are combined with the power of causal
ML methods.
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