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ABSTRACT

Objective: We previously identified distinct muscle and liver insulin resistance (IR) metabotypes in middle-aged and older
adults. The PERSON study showed that a low-fat, high-protein, high-fiber diet benefits the muscle IR group, while a high-
monounsaturated fatty acid diet benefits the liver IR group. We also developed the MetaboHealth score, reflecting risks of
mortality, frailty, and cognitive decline. This study aimed to examine whether MetaboHealth interacts with IR metabotypes to
influence (i) cardiometabolic health and (ii) body composition outcomes in the PERSON study, informing precision nutrition
strategies.

Methods: In total, 242 adults aged 40-75 with IR were randomized to follow an isocaloric low-fat, high-protein, high-fiber or
high-monounsaturated fatty acid diet for 12weeks. Of these, 184 with complete data were grouped into MetaboHealth tertiles
(higher =poorer health). Outcomes included a 7-point oral glucose tolerance test and DXA-based body composition. Linear
mixed models assessed four-way interactions.

Results: No interaction was observed for cardiometabolic outcomes. Significant interactions were found for android, gynoid,
total fat percentage, and fat mass index. In the healthiest tertile, matched diets led to greater fat loss. In the poorest tertile, both
diets were similarly effective. MetaboHealth remained unchanged.

Conclusions: Combining metabotype with MetaboHealth may enhance personalized dietary strategies for fat loss in insulin-
resistant adults.

1 | Introduction worldwide [1, 2]. With aging, excess adipose tissue mass tends
to accumulate viscerally and ectopically, thereby contribut-
The rising prevalence of insulin resistance (IR) in aging pop- ing to an increased risk of developing IR-related diseases—the

ulations poses a tremendous challenge to health care systems leading causes of morbidity and mortality in middle-aged and
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older adults [3, 4]. Weight management interventions have been
demonstrated to be moderately successful in reducing IR [5].
However, there is a large heterogeneity of response to lifestyle
modifications, where not all individuals benefit [6, 7]. For this
reason, the development of more personalized dietary strategies
is essential to improve body composition and mitigate IR-related
risks effectively [8]. The manifestation of IR is not uniform; it
can present as predominant muscle insulin resistance (MIR) or
predominant liver insulin resistance (LIR), underscoring the
need for personalized treatment strategies tailored to individual
metabotypes [9, 10].

The PERSonalized Glucose Optimization Through Nutritional
Intervention (PERSON) study previously investigated health
effects of dietary interventions designed for individuals with
either the MIR or LIR metabotypes [11]. Participants were as-
signed to one of two isocaloric dietary regimens: a low-fat, high-
protein, high-fiber (LFHP) diet or a high-monounsaturated fat
(HMUFA) diet [12-14]. Participants in the MIR group showed
improvements in cardiometabolic outcomes, including pe-
ripheral insulin sensitivity, glucose homeostasis, serum tria-
cylglycerol, and C-reactive protein (CRP), when following the
LFHP diet. Conversely, the LIR group benefited more from the
HMUFA diet for these outcomes [15]. However, both diets had
similar effects on body weight and body composition, irrespec-
tive of IR metabotype. This lack of differential effects suggests
a potential for further refinement of the initial IR metabotype
classifications by introducing additional grouping criteria.

The recently developed blood-based 'H-NMR metabolomics-
based MetaboHealth score (MH) provides a novel biomarker to
assess individual immune-metabolic health comprehensively
[16-18]. The MetaboHealth score is derived from a study to pre-
dict all-cause mortality in 44,168 individuals from 12 cohorts
and is composed of 14 circulating metabolomic measures, in-
cluding lipoprotein particle sizes, polyunsaturated fatty acid
(PUFA) ratio, and concentrations of histidine, leucine, valine, al-
bumin, glucose, lactate, isoleucine, phenylalanine, acetoacetate,
and glycoprotein acetyls (GlycA)—a marker of inflammation
[19]. Higher MetaboHealth scores indicate poorer immune-
metabolic health and an increased risk for mortality, frailty, and
cognitive decline [16, 18, 20].

This study aimed to determine whether the MetaboHealth score,
as a global indicator of immune-metabolic health, can enhance
the analysis of dietary intervention efficacy beyond the grouping
of participants by tissue-specific IR metabotype. Specifically, we
explored how baseline MetaboHealth score tertiles were associ-
ated with dietary intervention-induced changes in (i) cardiomet-
abolic outcomes and (ii) body composition, including metrics of
fat and lean mass [15]. By integrating this additional grouping,
we seek to refine precision nutrition strategies.

2 | Methods
2.1 | Study Design
This study was part of the PERSON study, a two-center, ran-

domized, double-blind, controlled trial designed to assess
the effects of metabotype-specific dietary interventions on

cardiometabolic health in a middle-aged and older population
(Figure 1). A total of 242 men and women with overweight or
obesity aged 40-75years, with BMI of 25-40kg/m?, partici-
pated in this study. Participants were screened using a 7-point
oral glucose tolerance test (OGTT) to determine the hepatic
insulin resistance index (HIRI) and muscle insulin sensitiv-
ity index (MISI). These indices were used to identify partic-
ipants with predominant MIR or LIR. Eligible participants
were then randomly assigned to follow either an HMUFA or
a LFHP diet for 12weeks. Participants underwent extensive
characterization at baseline and the end of the 12-week inter-
vention. The trial took place between May 2018 and November
2021 at Maastricht University Medical Centert (MUMCT)
and Wageningen University and Research (WUR) in the
Netherlands, adhering to the principles of the Declaration
of Helsinki. The study protocol received approval from the
Medical Ethical Committee of MUMC* (NL63768.068.17) and
was registered at ClinicalTrials.gov (NCT03708419). Written
informed consent was obtained from all participants.

2.2 | Assessment of Tissue-Specific Insulin
Resistance (IR)

Tissue-specific IR was assessed using a 7-point OGTT, where
participants consumed 75g of glucose (200mL solution,
Novolab) within 5min. Blood was sampled via an intravenous
cannula at fasting (t=0) and at 15-120min post ingestion to
measure plasma glucose and insulin. HIRI and MISI were
calculated, with MISI optimized using a cubic spline method
[11]. HIRI was derived from the 0-30 min glucose and insulin
AUCs, while MISI was defined as the glucose decay rate (from
peak to nadir) divided by mean insulin during the OGTT.

Glucose curves unsuitable for MISI calculation (e.g., peak at
120min, flat curves, rebound) were visually inspected for classifi-
cation. Both indices were validated against the hyperinsulinemic-
euglycemic clamp [10, 21]. Participants were categorized as “No
MIR/LIR,” “MIR,” “LIR,” or “combined MIR/LIR” using tertile
cutoffs from The Maastricht Study (DMS). The lowest MISI ter-
tile defined MIR and the highest HIRI tertile defined LIR. Since
LIR prevalence was lower in the PERSON study compared to
DMS, the PERSON study median HIRI was used for subsequent
classifications [11].

2.3 | Dietary Intervention

The HMUFA diet provided 38% of energy from fat (20%
MUPFA, 8% PUFA, and 8% SFA), 42% from carbohydrates
(30% polysaccharides; 3g/MJ fiber), and 14% from protein.
The LFHP diet consisted of 28% fat (10% MUFA, 8% PUFA,
and 8% SFA), 42% carbohydrates (30% polysaccharides; >4g/
MJ fiber), and 24% protein. Key products that participants
were provided with for the HMUFA diet included olive oil,
olives, and low-fat margarine, while for the LFHP diet, these
included low-fat yogurt, reduced-fat cheese, and a fiber sup-
plement (2g -glucan per 6g). Participants were instructed to
consume prescribed portions daily, with alcohol limited to one
glass per day. Both diets were in line with the Dutch dietary
guidelines [22].
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FIGURE 1 | PERSON study design. (A) Participants were initially classified into two groups based on the predominant type of insulin resis-
tance—muscle insulin resistance (MIR) or liver insulin resistance (LIR)—using a 7-point oral glucose tolerance test (OGTT) at screening. After
classification participants were further categorized into MetaboHealth tertiles—Low, Medium, or High—based on baseline 'H-NMR metabolomics
measurements. All participants shown in the subgroups represent the final analytical sample included in the study. Participants in all groups fol-
lowed one of two dietary interventions during the study period: a high-monounsaturated fatty acid (HMUFA) diet and a low-fat, high-protein, high-
fiber (LFHP) diet. The order in which participants followed each diet was randomized. allowing each phenotype to experience both diets during the
intervention. (B) Clinical assessments and at-home measurements were conducted at two time points: Week 0 (the start of the study) and Week 12
(the end of the intervention). These assessments included comprehensive evaluations of metabolic health, physical activity, and dietary adherence.
Adapted from Trouwborst et al. [15].
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Energy intake was personalized, ranging from 6 to 13MJ/
day, based on each participant's estimated needs, calcu-
lated from self-reported dietary intake and physical activity.
Weekly counseling sessions were provided to ensure diet ad-
herence, monitor weight stability, and address any concerns.
Participants received specific food products tailored to their
assigned diet (HMUFA or LFHP), and adherence was moni-
tored through detailed food logs, regular counseling sessions,
and compliance checks throughout the 12-week intervention.
Dietary compliance was further assessed using three unan-
nounced 24-h recalls on two nonconsecutive weekdays and
one weekend day via the mobile app Traqq [23]. In addition,
plasma fatty acid profiles were analyzed by nuclear magnetic
resonance metabolomics as objective biomarkers of SFA,
MUPFA, and PUFA consumption [24].

2.4 | Measurements

Participants were extensively phenotyped at baseline and Week
12, during a characterization week that included clinical test
days and at-home data collection. Participants were instructed
to refrain from alcohol and vigorous physical activity the day
before and during the characterization weeks.

2.5 | 7-Point Oral Glucose Tolerance Test (OGTT)

The 7-point OGTT was conducted following the same pro-
cedures as the screening visit. Participants consumed a
standardized low-fat meal the evening before the test and
remained fasted until the OGTT. The outcome, the disposi-
tion index, was calculated as: [Matsuda index * (AUC30min
insulin/AUC30 min glucose)], where AUC30min is the area
under the curve for insulin and glucose from baseline to
30min. The Matsuda index was calculated with the following
formula: [10,000 + square root of [fasting plasma glucose (mg/
dL) x fasting insulin (mU/L)] X [mean glucose (mg/dL) X mean
insulin (mU/L)]], using glucose and insulin values of time
points 0, 30, 60, 90, and 120 min. Additional indices including
HOMA-IR and HOMA-{ were calculated. WHO criteria were
used to define glucose status, including normal glucose toler-
ance (NGT), impaired fasting glucose (IFG), impaired glucose
tolerance (IGT), and type 2 diabetes (T2DM).

2.6 | High-Fat Mixed-Meal Challenge Test
and Biochemical Analysis

At least 4days after the OGTT, participants underwent a high-fat
mixed-meal challenge (HFMM) to assess postprandial glucose
and lipid metabolism. Participants consumed the same low-fat
macaroni meal as the OGTT on the night before the visit. After
an overnight fast, participants consumed a liquid HFMM (350 g,
2.8MJ, and 64% fat), and blood samples were collected at fasting
(t=0) and at 30, 60, 90, 120, 180, and 240 min post consumption
to measure triacylglycerol. CRP was measured in fasting plasma
using a Luminex immunoassay performed by DSM Nutritional
Products (Kaiseraugst, Switzerland). In addition, metabolo-
mics profiles of fasted plasma samples were determined using

the 'H-NMR metabolomics-based Nightingale Health platform
[25-27].

2.7 | Body Composition Analysis

Body composition was assessed by dual-energy X-ray absorpti-
ometry (DXA) (MUMCH+, Discovery A, Hologic; WUR, Lunar
Prodigy, GE Healthcare). This included measures such as an-
droid fat percentage of total android mass, gynoid fat percentage
of total gynoid mass, total fat percentage, total lean mass per-
centage, fat mass index (kg/m?), lean mass index (kg/m?), and
appendicular lean mass index (kg/m?) [25-27]. More details on
the study variables are available elsewhere [11].

2.8 | MetaboHealth Score

The MetaboHealth score is a normalized composite of 14 bio-
markers—total lipids in chylomicrons and extremely large
VLDL (XXL-VLDL-L), total lipids in small HDL (S-HDL-L),
mean diameter for VLDL particles (VLDL-D), ratio of PUFA
to total fatty acids (PUFA %), glucose, lactate, histidine,
isoleucine, leucine, valine, phenylalanine, acetoacetate, al-
bumin, and GlycA—derived from its association with all-
cause mortality in 44,168 individuals across 12 European
cohorts [16]. It assesses cardiovascular, metabolic, and mus-
cle health, with higher scores indicating a higher mortality
risk. The MetaboHealth score was calculated as a weighted
sum of 14 biomarker values [16], which were first natural log-
transformed and z-standardized to reduce skewness using
standard base function in R (version 4.2.3).

Primary analyses focused on participants in the lowest and
highest baseline MetaboHealth tertiles, as these groups ex-
hibit the most pronounced differences in cardiometabolic
and body composition outcomes. The middle tertile was ex-
cluded to maximize contrast and improve interpretability of
the results.

2.9 | Statistical Analysis

We analyzed the outcomes of the intervention by contrast-
ing the highest and lowest baseline MetaboHealth tertiles.
Before analysis, participants with incomplete outcome data
were excluded. The aim of our current post hoc analysis
was to see whether further refinement of MIR and LIR with
MetaboHealth would add to the additional health benefit.
Analyses were therefore conducted using a complete-case ap-
proach, thus including a sample size of 117 participants (ex-
cluding the medium tertiles from both metabotypes) with a
complete dataset (Figure 2) [20]. The primary outcomes ana-
lyzed included the MetaboHealth score, MISI, and HIRI. The
secondary outcomes included the cardiometabolic health out-
comes HOMA-IR, HOMA-B, Matsuda index, disposition index,
CRP, and triacylglycerides and DXA-derived body composition
metrics, such as android fat percentage, gynoid fat percentage,
total fat percentage, fat mass index, lean mass index, and ap-
pendicular lean mass index.
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FIGURE2 | Flowdiagram of the final included participants from the
original PERSON study cohort.

For the mixed-effects model analysis, traditional covariates in-
cluded age, sex, and BMI. Explanatory variables of interest in-
cluded metabotype (MIR or LIR), diet (HMUFA or LFHP), and
the MetaboHealth score tertiles defined at baseline (low versus
high). The coding is detailed in Table S1. The model included
main effects for age, sex, BMI (only for models predicting the
MetaboHealth score), time, diet, metabotype, and baseline
MetaboHealth tertile. Interactions included combinations of
time, diet, metabotype, and MetaboHealth tertile, with a ran-
dom intercept for participant ID to account for repeated mea-
sures. The model is as follows:

Outcome =%+ - Age+ f*- Sex+ > - BMI
+p*-Time + ° - Diet+ §° - Metabotype
+ 47 -MetaboHealth Tertile + % - (Time - Diet)
+ /° - (Time - Metabotype) + #° - (Time - MetaboHealth Tertile)
+ g . (Diet- Metabotype) + #, , - (Diet - MetaboHealth Tertile)
+ f,5 - (Metabotype - MetaboHealth Tertile)
+f,14 - (Time - Diet - Metabotype)
+ f15- (Time - Diet- MetaboHealth Tertile)
+f,¢ - (Time - Metabotype - MetaboHealth Tertile)
+ f,, - (Diet- Metabotype - MetaboHealth Tertile)
+ p,5-(Time-Diet-Metabotype - MetaboHealth Tertile)
+@1| ID).

The inclusion of BMI as a covariate was restricted to models
where the MetaboHealth score was the outcome, as the DXA-
derived body composition measures inherently adjusted for
variations in body composition. The mixed-effects models were
built using the Ime4 package followed by the estimation of mar-
ginal means with the emmeans package [28, 29]. EMMs were
derived from the fitted models to help interpretation and visu-
alization of significant higher-order interactions, particularly
the four-way interaction between baseline Metabotype, baseline
MetaboHealth tertile (low vs high), Diet, and Time. Additional
packages included lme4, ImerTest, ggplot2, dyplr, and tidyr in R
version 4.2.3 to visualize predictive models for the four-way in-
teractions [30-33]. To account for multiple comparisons, p values
were adjusted using the false discovery rate (FDR) Benjamini-
Hochberg method, and results with an adjusted p<0.05 were
considered statistically significant.

3 | Results

3.1 | Stratifying Baseline Metabotypes by
MetaboHealth Tertiles Refines Differences in
Health Parameters Between the Groups

We investigated the baseline characteristics of the groups com-
bining metabotype and MetaboHealth tertiles. This resulted in
six groups—LIR.LowMetaboHealth (n=28), MIR.LowMetab
oHealth(n =34),LIR.MediumMetaboHealth(n =28),MIR.Medium
MetaboHealth (n=39), LIR.HighMetaboHealth (n=19), and
MIR.HighMetaboHealth (n=236). We investigated the differences
between these groups with cardiometabolic health and body com-
position outcomes. We observed differences in 13 out of 15 base-
line characteristics between the groups indicating that adding
the MetaboHealth to metabotype stratification further refines the
group differences in key characteristics (Table 1).

Despite similar ages and BMI levels across groups (p=0.774
and p=0.132, respectively), sex distribution varied, with the
highest percentage of males in LIR.LowMetaboHealth (60.7%)
and the lowest in MIR.MediumMetaboHealth (35.9%) groups.
Concerning body composition measures, individuals with pre-
dominant MIR consistently had higher android, gynoid, and
total fat percentages compared to those with predominant LIR
(p<0.001 for all). The fat mass index was significantly higher
in both MIR.HighMetaboHealth and LIR.HighMetaboHealth
groups compared to the other groups (p=3.34x1079), while
lean mass indices were lower in the MIR.HighMetaboHealth
tertiles (p=9.09x107'"). Moreover, individuals in the
LIR.HighMetaboHealth and MIR.HighMetaboHealth tertiles
had higher CRP levels compared to those in the lower tertiles
(p=16.79x107), demonstrating that the MetaboHealth score
reflects overall immune-metabolic health.

3.2 | In Response to the Intervention, the Refined
IR Metabotype-MetaboHealth Combined
Phenotypes Reveal Differences in Fat Loss,

but Not Cardiometabolic Health Outcomes

For the outcomes, we did not find any significant four-way inter-
actions for MetaboHealth score, disposition index, MISI, HIRI,
HOMA-IR, HOMA-§, Matsuda index, and CRP, which were not
significant (Table S3).

Next, we analyzed whether grouping MetaboHealth tertiles re-
fined response differences between the two diets for MIR and LIR
metabotypes concerning body composition changes as outcomes.
A four-way interaction model was used to investigate differences
in response based on the six groups. Significant four-way inter-
actions between baseline metabotype and MetaboHealth tertile,
diet, and time emerged, particularly in fat percentage outcomes.
Table 2 presents regression coefficients for all terms, with partic-
ular focus on the three- and four-way interaction of MIR and LIR
metabotypes with the highest and lowest MetaboHealth tertiles
across both HMUFA and LFHP diets. Individuals with the MIR
metabotype following the LFHP diet had significant reductions
in android fat (8=-0.71, 95% CI [-1.33, —0.38], g=4.66 X 10714),
gynoid fat (8=-0.68, 95% CI [-0.98, —0.25], ¢=0.002), and total
fat percentages (8=-0.46, 95% CI [-0.80, —0.12], g=0.001) and
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TABLE 2 | Effect sizes showing the association between the baseline combined metabotype-MetaboHealth tertile groups and body composition

changes in response to the intervention.

Fat mass index

Android fat % Gynoid fat % Total fat % (kg/m?)
Model variable Estimate Adjusted p Estimate Adjusted p Estimate Adjustedp Estimate Adjusted p
(Intercept) 47.05 4.66x10714 43.89 9.11x10715 40.27 5.09x10°16 13.48 1.24%x107%7
Age -0.09 0.518 -0.07 0.580 —0.06 0.580 -0.05 0.271
Sex (male) —4.21 0.006 -13.78 1.33x1072® 1078 3.28x10718 335  6.49x107%8
Time -0.27 0.021 -0.22 0.098 -0.21 0.008 -0.09 0.013
Diet (LFHP) 2.45 0.731 0.87 0.885 2.50 0.612 1.07 0.722
Metabotype (MIR) 0.85 0.885 1.19 0.841 2.46 0.610 1.67 0.530
MetaboHealthTertile. 1.88 0.314 1.58 0.371 2.62 0.035 1.57 0.019
High
Time:dietLFHP 0.19 0.287 0.38 0.023 0.26 0.019 0.10 0.037
Time:MetabotypeMIR 0.43 0.003 0.37 0.021 0.25 0.018 0.09 0.040
dietLFHP:MetabotypeMIR 1.38 0.884 0.31 0.971 -3.99 0.549 -2.30 0.535
Time:MHTertileHigh 0.05 0.510 0.03 0.669 0.03 0.518 0.01 0.702
dietLFHP:MHTertileHigh —-0.99 0.758 0.62 0.840 -1.26 0.610 —0.80 0.549
MetabotypeMIR: 0.39 0.885 —0.06 0.976 -1.19 0.580 -1.22 0.204
MHTertileHigh
Time:dietLFHP: -0.71 3.41x107% —0.68 0.002 —0.46 0.001 -0.19 0.002
MetabotypeMIR
Time:dietLFHP: -0.12 0.170 —0.16 0.058 -0.11 0.048 -0.04 0.098
MHTertileHigh
Time: -0.16 0.019 -0.12 0.106 —0.08 0.098 -0.03 0.204
MetabotypeMIR:
MHTertileHigh
dietLFHP: —0.69 0.879 -1.18 0.750 1.81 0.564 1.31 0.400
MetabotypeMIR:
MHTertileHigh
Time:dietLFHP: 0.28 0.003 0.28 0.008 0.17 0.013 0.07 0.018
MetabotypeMIR:
MHTertileHigh

Note: Regression coefficients of mixed linear models exploring the four-way interaction of MIR and LIR metabotypes with highest and lowest MetaboHealth (MH)
tertiles and two diets across the intervention. FDR-adjusted p-values are presented. Adjusted p <0.05 were considered statistically significant (in bold).

fat mass index (8=-0.19, 95% CI [-0.29, —0.09], ¢=0.002), with
narrow CIs confirming the robustness of these effects. Similarly,
MIR individuals in the high MetaboHealth tertile at baseline
following the LFHP diet experienced a slight but significant re-
duction in total fat percentage (§=-0.11, 95% CI [-0.27, —0.05],
q=0.048). These MIR high MetaboHealth participants showed a
similar significant decrease in android fat percentage across the
intervention regardless of diet (8=-0.16, 95% CI [-0.34, —0.06],
q=0.019). The significant four-way interaction between time, diet,
metabotype, and MetaboHealth tertile revealed differential inter-
vention effects on android, gynoid, and total fat percentages and
fat mass index (§=0.28,95% C1[0.13, 0.54], g=0.003; 3=0.28, 95%
C1[0.07,0.39], g=0.008; =0.17, 95% CI [0.02, 0.31], =0.013; and
£=0.07,95% CI [0.02, 0.11], g =0.008, respectively), with CIs con-
sistently excluding zero, supporting significant effects. Changes in

lean mass index, appendicular lean mass index, and VAT area fol-
lowing the intervention were not significantly different between
groups (Table S2).

3.3 | Visualization of the Four-Way Interaction
Effects on Metabotypes and Diet Reveals Further
Differences in Android and Gynoid Fat Percentage
Outcomes Across Low and High MetaboHealth
Tertiles

The estimated marginal means were used to visualize the
significant four-way interaction between baseline metabo-
type and MetaboHealth tertile (contrasting low versus high),
applied at baseline, diet, and time concerning decreases in
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FIGURE3 | Estimated marginal means for android fat percentage by IR metabotype and MH tertiles across diets. A 2 X2 matrix shows estimated
total fat percentage grouped by IR metabotype (MIR vs. LIR) and MH tertiles (high vs. low). The low-fat, high-protein, high-fiber (LFHP) diet is in
yellow and the high-monounsaturated fat (HMUFA) diet in blue. The range at each point represents the upper and lower CIs. LIR.Low (n=28). LIR.
High (n=19). MIR.Low (n =34). MIR.High (n =36).
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FIGURE4 | Estimated marginal means for gynoid fat percentage by IR metabotype and MH tertiles across diets. A 2x 2 matrix shows estimated
total fat percentage grouped by IR metabotype (MIR vs. LIR) and MH tertiles (high vs. low). The low-fat, high-protein, high-fiber (LFHP) diet is in
yellow and the high-monounsaturated fat (HMUFA) diet in blue. The range at each point represents the upper and lower CIs. LIR.Low (n=28). LIR.
High (n=19). MIR.Low (1= 34). MIR.High (1= 36).

android, gynoid, and total fat percentages and fat mass index demonstrate significant four-way interactions are presented
across the intervention (Figures 3-6). Additional graphs for  in Figures S1-S12, with all EMM values detailed in Tables S4
other body composition and metabolic outcomes that did not and S5.
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FIGURE 5 | Estimated marginal means for total fat percentage by IR metabotype and MH tertiles across diets. A 2X2 matrix shows estimated
total fat percentage grouped by IR metabotype (MIR vs. LIR) and MH tertiles (high vs. low). The low-fat, high-protein, high-fiber (LFHP) diet is in
yellow and the high-monounsaturated fat (HMUFA) diet in blue. LIR.Low (n =28). LIR.High (n=19). MIR.Low (n =34). MIR.High (n=36).
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FIGURE 6 | Estimated marginal means for fat mass index by IR metabotype and MH tertiles across diets. A 2 2 matrix shows estimated total fat
percentage grouped by IR metabotype (MIR vs. LIR) and MH tertiles (high vs. low). The low-fat, high-protein, high-fiber (LFHP) diet is in yellow and
the high-monounsaturated fat (HMUFA) diet in blue. LIR.Low (n =28). LIR.High (n=19). MIR.Low (n=34). MIR.High (n =36).

The LIR.LowMetaboHealth group experienced significant re-
ductions in android fat on the HMUFA diet, while the LFHP diet
showed no change. The LIR.HighMetaboHealth group showed re-
ductions with both diets. In contrast, MIR.LowMetaboHealth par-
ticipantshad an increase in android fat on HMUFA but a moderate
fat loss on LFHP, while participants in MIR.HighMetaboHealth
benefited from reductions across both diets. For gynoid fat,
LIR.LowMetaboHealth participants decreased on HMUFA but
increased on LFHP, whereas the LIR.HighMetaboHealth group
lost gynoid fat modestly with both diets. MIR.LowMetaboHealth
participants maintained stable levels on LFHP but experienced

an increase in HMUFA, and MIR.HighMetaboHealth par-
ticipants saw slight losses regardless of diet. In terms of total
fat percentage, LIR.LowMetaboHealth participants showed
decreases on HMUFA and a slight reduction on LFHP, with
the LIR.HighMetaboHealth group also decreasing on LFHP.
MIR.LowMetaboHealth participants had minor changes on both
diets, while MIR.HighMetaboHealth participants demonstrated
reductions from both dietary approaches. Finally, regarding fat
mass index, LIR.LowMetaboHealth participants benefited from
HMUPFA and the LIR.HighMetaboHealth group showed improve-
ments from both diets. The MIR.LowMetaboHealth group found
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LFHP slightly more effective, while MIR.HighMetaboHealth
participants experienced similar enhancements from both di-
etary interventions.

In summary, the results show that individuals in high
MetaboHealth tertiles (those with poorer immune-metabolic
health status) experienced reductions in android, gynoid, and
total fat percentage and fat mass index regardless of metabotype
and diet. At low MetaboHealth tertiles (those with relatively bet-
ter immune-metabolic health status), the HMUFA diet largely
benefitted individuals with the LIR metabotype, while the
LFHP diet reduced android and gynoid fat in the MIR group.

4 | Discussion

This study aimed to understand how personalized dietary
interventions grouped by metabotype, specifically MIR and
LIR, and MetaboHealth tertiles affect cardiometabolic health
outcomes and body composition in a subset of 184 middle-
aged and older adults with complete data who participated
in the PERSON study [15]. Stratifying for MetaboHealth did
not refine the cardiometabolic outcomes of the study. Our
findings did show, however, that individuals classified in the
higher MetaboHealth score tertile (reflecting poorer immune-
metabolic health) demonstrate fat loss across both dietary
regimens, while individuals in the lower MetaboHealth ter-
tiles (reflecting better immune-metabolic health) exhibit im-
provement in android-upper-body and abdominal fat—and
gynoid-lower-body fat—percentages when on the LFHP diet
and expressing the MIR phenotype or when on the HMUFA
diet and expressing the LIR phenotype. This study emphasizes
that precision nutrition strategies can be refined by synergistic
indicators of metabolic health status in managing body weight
control effectively.

To the best of our knowledge, this is the first study to explore the
interaction between IR metabotypes and MetaboHealth tertiles
to understand how middle-aged and older adults with tissue-
specific IR respond to a personalized dietary intervention. Our
findings indicate that the MetaboHealth score is an indicator of
metabolic health synergistic to IR metabotypes [26, 34]. While
the classification of tissue-specific IR currently requires a 7-
point OGTT and is therefore mainly applied in research settings,
it provides physiologically meaningful and validated indices of
tissue-specific IR and may form the basis for simplified diag-
nostic tools in broader clinical applications in the future. The
phenotypes of MIR and LIR, defined by a single OGTT, are
characterized by a robust and reproducible metabolome, lipi-
dome, abdominal adipose tissue transcriptome, and systemic
inflammatory profiles, representing distinct etiologies toward
cardiometabolic disease. Dietary macronutrient modulation
tailored to these phenotypes has been shown to considerably
enhance cardiometabolic health [11]. Importantly, these phe-
notypes are already present in the overweight, normal glucose
tolerant state—where 76% of individuals remain normoglycemic
yet display early metabolic perturbations such as elevated waist
circumference, cholesterol, and body fat percentage, even before
the onset of impaired fasting glucose or impaired glucose toler-
ance [15]. Thus, this classification provides clinically meaning-
ful phenotypes that may form the basis for precision nutrition

strategies and simplified diagnostic tools in broader clinical
application, showing that refining this classification with the
MetaboHealth score may additionally favorably contribute to
body composition profiles.

The PERSON study was initially set to improve cardiometa-
bolic health parameters with insulin sensitivity as a primary
outcome. The previous report as the current one showed that
metabotypes indicated specific cardiometabolic benefits of the
LFHP diet for the MIR group and the HMUFA diet for the LIR
group, including measures of insulin sensitivity, triglycerides,
and CRP [15], but no differential changes were observed in
body composition. Apparently the additional baseline grouping
by MetaboHealth score tertiles indicates changes in aspects of
metabolic health other than cardiometabolic outcomes, such as
body composition. Individuals in the highest MetaboHealth ter-
tile experienced modest fat loss, irrespective of metabotype or
diet intervention. This observation highlights how middle-aged
and older adults with IR, unhealthier cardiometabolic health
profiles, and similar higher fat mass percentages at baseline,
compared to those with healthier cardiometabolic health pro-
files, benefit from either of the two HMUFA or LFHP diets used
in the PERSON study. In contrast, individuals with MIR in the
lower MetaboHealth tertiles benefited significantly more from
the LFHP diet, emphasizing the importance of global and tissue-
specific IR-related metabolic health status of individuals at base-
line [35, 36]. This refined, synergistic approach enhances our
ability to predict which dietary approach—LFHP or HMUFA—
will be more beneficial for middle-aged and older adults to elicit
modest fat mass loss over 3 months, rather than changing IR in
this time frame. This also demonstrates that dietary interven-
tions are not merely one-size-fits-all but should be informed by
a comprehensive understanding of an individual's cardiometa-
bolic health profile [37].

The mechanisms underlying the observed responses to dietary
interventions likely involve key interactions between dietary
composition, insulin signaling pathways, and changes in body
composition [35-37]. In individuals with LIR, the HMUFA
diet, rich in monounsaturated fatty acids (MUFA), may provide
specific benefits by improving hepatic lipid metabolism and re-
ducing inflammation [38, 39]. Previous research suggests that
MUFA may usher body fat loss specifically via the activation
of AMP-activated protein kinase signaling [40, 41]. Overall,
MUPFA enhance insulin sensitivity, optimize lipid profiles, and
decrease the accumulation of harmful lipotoxic intermediates
that can disrupt metabolic function [42-44]. Additionally, indi-
viduals with MIR following the LFHP diet may ensure higher
protein intake, positively influencing insulin signaling and
likely promoting the activation of pathways involved in glucose
metabolism and muscle maintenance [45, 46]. This interplay
may ensure effective nutrient utilization, facilitate energy bal-
ance, and promote fat oxidation while preventing excessive fat
storage [47, 48]. By incorporating tailored dietary strategies, it
may be possible to optimize health outcomes, possibly through
these complex mechanistic pathways. To predict the response of
individuals to dietary interventions requires more knowledge of
metabolic status, overall health, age, sex, and related factors and
includes complete analyses of body composition to understand
the distribution of fat loss, and whether lean mass is preserved,
across dietary interventions.
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While our study demonstrated minor android, gynoid, total fat
percentage, and fat mass indices loss with both dietary interven-
tions, we did not observe improvements in the MetaboHealth
score upon the intervention. It is important to note that the score
was initially created as a risk indicator to predict long-term
(5-10years) mortality and was found to indicate older individuals'
global health status predicting decline of muscle, cognitive health,
and frailty [18, 20]. This study shows that the MetaboHealth score
as an outcome may not be particularly sensitive to short-term di-
etary changes and accompanying metabolic health improvements
in individuals with IR in this cohort. We, therefore, conclude that,
although MetaboHealth effectively groups participants in tertiles
at baseline, it may not adequately capture the nuances of car-
diometabolic health changes in IR by short-term dietary interven-
tions. For the MetaboHealth score to change, major changes in its
immune-metabolic components would have to occur, which were
not observed following the HMUFA or LFHP diets. Other short-
term interventions for individuals above 60years of age, includ-
ing ones in which diet and physical exercise are combined, are
being explored in parallel, showing that especially interventions
that change low-grade inflammation appear to be recorded by the
MetaboHealth score. Although it is not necessarily the most sen-
sitive monitor for such effects, MetaboHealth does show improve-
ment in global health [49, 50].

The strengths of this study include its robust design as part of a
randomized controlled trial, the grouping of participants based
on detailed metabolic profiles, and the use of well-validated
methods, such as DXA for body composition assessment and
high-throughput targeted metabolomic analysis. The grouping
into MetaboHealth score tertiles allows for a more nuanced un-
derstanding of the impact of body composition on cardiometa-
bolic health and its influence on dietary responses. However,
there are limitations to consider. Firstly, subgroup sample sizes
were imbalanced. The analyzed subgroups represent participants
in the lowest and highest MetaboHealth tertiles combined with
their respective metabotype (MIR or LIR). Consequently, some
subgroups were relatively small (e.g., LIR.High n=19 versus
MIR. High n=36), which reduces statistical power, particularly
for detecting higher-order interactions. Although the total sam-
ple size was 117 participants after excluding the medium tertiles,
stratification limited the ability to draw definitive conclusions
from three- or four-way mixed model interactions. Replication
in larger and more diverse cohorts will be necessary to confirm
and extend these findings. Secondly, we used a complete-case
approach, as missing data precluded an intention-to-treat analy-
sis, which may limit generalizability and introduce bias. Thirdly,
the relatively short duration of the dietary interventions may not
capture long-term metabolic adaptations. Future studies should
investigate the sustainability of these dietary approaches over
extended periods. Additionally, the reliance on specific dietary
regimens may not encompass the broader spectrum of dietary
patterns beneficial for diverse populations, limiting the gener-
alizability of our findings to other dietary patterns. Future re-
search should explore the MetaboHealth score and other novel
metabolomics or proteomics biomarkers or composite scores to
monitor the response to lifestyle interventions.

In conclusion, our findings suggest that personalized dietary
strategies for middle-aged and older adults with IR can be more
effective when considering both the specific metabolic phenotype

and the broader MetaboHealth score defined in tertiles at base-
line. This may indicate that adding global markers of immune-
metabolic health to disease-specific ones when investigating
responses of adults to interventions may provide outcome bene-
fits. By integrating MetaboHealth score grouping into personal-
ized dietary approaches, we offer valuable insights into optimizing
body compositional health outcomes in insulin-resistant individ-
uals. Future interventions using a combination of personalized
dietary regimens offer a comprehensive approach to managing IR
and improving overall physical and metabolic health.
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Supporting Information

Additional supporting information can be found online in the
Supporting Information section. Figure S1: Estimated marginal
means for lean mass index by IR metabotype and MH tertiles across
diets. A 2x2 matrix shows estimated total fat percentage grouped
by IR metabotype (MIR vs. LIR) and MH tertiles (high vs. low). The
low-fat. high-protein. high-fiber (LFHP) diet is in yellow and the
high-monounsaturated fat (HMUFA) diet in blue. LIR.Low (n=28).
LIR.High (n=19). MIR.Low (n=34). MIR.High (n=36). FIgure S2:
Estimated marginal means for appendicular lean mass index by IR me-
tabotype and MH tertiles across diets. A 2X2 matrix shows estimated
total fat percentage grouped by IR metabotype (MIR vs. LIR) and MH
tertiles (high vs. low). The low-fat. high-protein. high-fiber (LFHP)
diet is in yellow and the high-monounsaturated fat (HMUFA) diet in
blue. LIR.Low (n=28). LIR.High (n=19). MIR.Low (n=34). MIR.High

(n=36). FIgure S3: Estimated marginal means for VAT by IR metabo-
type and MH tertiles across diets. A 2x2 matrix shows estimated total
fat percentage grouped by IR metabotype (MIR vs. LIR) and MH tertiles
(high vs. low). The low-fat. high-protein. high-fiber (LFHP) diet is in
yellow and the high-monounsaturated fat (HMUFA) diet in blue. LIR.
Low (n=28). LIR.High (n=19). MIR.Low (n=34). MIR.High (n=36).
FIgure S4: Estimated marginal means for MetaboHealth score by IR
metabotype and MH tertiles across diets. A 2X2 matrix shows esti-
mated total fat percentage grouped by IR metabotype (MIR vs. LIR) and
MH tertiles (high vs. low). The low-fat. high-protein high-fiber (LFHP)
diet is in yellow and the high-monounsaturated fat (HMUFA) diet in
blue. LIR.Low (n=28). LIR.High (n=19). MIR.Low (n=34). MIR.High
(n=36). FIgure S5: Estimated marginal means for MISI by IR metabo-
type and MH tertiles across diets. A 2x2 matrix shows estimated total
fat percentage grouped by IR metabotype (MIR vs. LIR) and MH tertiles
(high vs. low). The low-fat. high-protein high-fiber (LFHP) diet is in
yellow and the high-monounsaturated fat (HMUFA) diet in blue. LIR.
Low (n=28). LIR.High (n=19). MIR.Low (n=34). MIR.High (n=36).
FIgure S6: Estimated marginal means for HIRI by IR metabotype
and MH tertiles across diets. A 2x2 matrix shows estimated total fat
percentage grouped by IR metabotype (MIR vs. LIR) and MH tertiles
(high vs. low). The low-fat. high-protein high-fiber (LFHP) diet is in
yellow and the high-monounsaturated fat (HMUFA) diet in blue. LIR.
Low (n=28). LIR.High (n=19). MIR. Low (n=34). MIR. High (n=36).
FIgure S7: Estimated marginal means for HOMA-IR by IR metabotype
and MH tertiles across diets. A 2x2 matrix shows estimated total fat
percentage grouped by IR metabotype (MIR vs. LIR) and MH tertiles
(high vs. low). The low-fat. high-protein high-fiber (LFHP) diet is in
yellow and the high-monounsaturated fat (HMUFA) diet in blue. LIR.
Low (n=28). LIR.High (n=19). MIR. Low (n=34). MIR. High (n=36).
FIgure S8: Estimated marginal means for HOMA-B by IR metabotype
and MH tertiles across diets. A 2x2 matrix shows estimated total fat
percentage grouped by IR metabotype (MIR vs. LIR) and MH tertiles
(high vs. low). The low-fat. high-protein high-fiber (LFHP) diet is in
yellow and the high-monounsaturated fat (HMUFA) diet in blue. LIR.
Low (n=28). LIR.High (n=19). MIR. Low (n=34). MIR.High (n=36).
FIgure S9: Estimated marginal means for Matsuda index by IR me-
tabotype and MH tertiles across diets. A 2X2 matrix shows estimated
total fat percentage grouped by IR metabotype (MIR vs. LIR) and MH
tertiles (high vs. low). The low-fat. high-protein high-fiber (LFHP)
diet is in yellow and the high-monounsaturated fat (HMUFA) diet in
blue. LIR.Low (n=28). LIR.High (n=19). MIR.Low (n=34). MIR.High
(n=36). FIgure S10: Estimated marginal means for disposition index
by IR metabotype and MH tertiles across diets. A 22 matrix shows
estimated total fat percentage grouped by IR metabotype (MIR vs. LIR)
and MH tertiles (high vs. low). The low-fat. high-protein high-fiber
(LFHP) diet is in yellow and the high-monounsaturated fat (HMUFA)
diet in blue. LIR.Low (n=28). LIR.High (n=19). MIR.Low (n=234).
MIR.High (n=36). FIgure S11: Estimated marginal means for CRP by
IR metabotype and MH tertiles across diets. A 2X2 matrix shows esti-
mated total fat percentage grouped by IR metabotype (MIR vs. LIR) and
MH tertiles (high vs. low). The low-fat. high-protein high-fiber (LFHP)
diet is in yellow and the high-monounsaturated fat (HMUFA) diet in
blue. LIR.Low (n=28). LIR.High (n=19). MIR.Low (n=34). MIR.High
(n=36). FIgure S12: Estimated marginal means for triacylglycerides by
IR metabotype and MH tertiles across diets. A 2X2 matrix shows esti-
mated total fat percentage grouped by IR metabotype (MIR vs. LIR) and
MH tertiles (high vs. low). The low-fat. high-protein high-fiber (LFHP)
diet is in yellow and the high-monounsaturated fat (HMUFA) diet in
blue. LIR.Low (n=28). LIR.High (n=19). MIR.Low (n=34). MIR.High
(n=36). Table S1: Tested covariates and determinants of DXA-derived
body composition and metabolic outcomes. Table S2: Mixed linear
regression model associating DXA body composition with the interac-
tion effect of metabotypes and high versus low MetaboHealth tertile
across the interaction (diet and time) adjusted for covariates age and
sex. Nominally significant values (p <0.05) are highlighted in yellow.
Table S3: Mixed linear regression model associating metabolic health
outcomes with the interaction effect of metabotypes and high versus
low MetaboHealth tertile across the interaction (diet and time) adjusted
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for covariates age, sex, and BMI. Nominally significant values (p <0.05)
are highlighted in yellow. Table S4: Estimated marginal means associ-
ating DXA body composition with the interaction effect of metabotypes
and high versus low MetaboHealth tertile across the interaction (diet
and time point) adjusted for covariates. Table S5: Estimated marginal
means associating cardiometabolic health outcomes with the interac-
tion effect of metabotypes and high versus low MetaboHealth tertile
across the interaction (diet and time point) adjusted for covariates.
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