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Global subsidence of river deltas

L. O. Ohenhen1 ✉, M. Shirzaei2,3, J. L. Davis4, A. Tiwari5, R. Nicholls6,7, O. Dasho2,3, 
N. Sadhasivam2,3, K. Seeger8,9, S. Werth2,3, A. J. Chadwick4, F. Onyike2,3, J. Lucy2,3, C. Atkins2,3, 
S. Daramola10, A. Ankamah2, P. S. J. Minderhoud9,11,12, J. Olsemann13 & G. C. Yemele11

River deltas sustain dense human populations, major economic centres and  
vital ecosystems worldwide1,2. Rising sea levels and subsiding land threaten the 
sustainability of these valuable landscapes with relative sea-level rise and associated 
flood, land loss and salinization hazards1–3. Despite these risks, vulnerability 
assessments are impeded by the lack of contemporary, high-resolution, delta-wide 
subsidence observations4. Here we present spatially variable surface-elevation 
changes across 40 global deltas using interferometric synthetic aperture radar.  
Using this dataset, we quantify delta surface-elevation loss and show the prevalence 
and severity of subsidence in river deltas worldwide. Our analysis of three key 
anthropogenic drivers of delta elevation changes shows that groundwater storage  
has the strongest relative influence on vertical land motion in 10 of the 40 deltas. The 
other deltas are either influenced by multiple drivers or dominated by sediment flux 
or urban expansion. Furthermore, we find that contemporary subsidence surpasses 
absolute (geocentric) sea-level rise as the dominant driver of relative sea-level rise for 
most deltas over the twenty-first century. These findings suggest the need for targeted 
interventions addressing subsidence as an immediate and localized challenge, in 
parallel with broader efforts to mitigate and adapt to climate change-driven global 
sea-level rise.

River deltas, which occupy only 1% of land area, are among the most 
vital landforms on Earth1. Globally, deltas host an estimated 350–500 
million people (representing 4–6% of the global population), including 
10 of the 34 megacities of the world1–3. These dynamic landforms serve 
important socioeconomic, ecological and energy-related functions5,6. 
They sustain agricultural productivity and fisheries, their ecosystems 
sustain important biodiversity and their infrastructure, such as ports 
and transportation networks, anchors maritime trade vital to national, 
regional and global economies5–7.

This recognized importance, which makes deltas indispensable, also 
increases their exposure to compounding climatic, environmental and 
anthropogenic threats2,8–10. As low-lying landforms, with extensive areas 
less than 2 m above sea level11, deltas are acutely susceptible to rising sea 
level, storm surge, land subsidence, shifting temperature and rainfall 
patterns, and other environmental pressures, which are amplified by 
climate change2,3,7–10,12,13. These pressures degrade agricultural land; 
disrupt freshwater availability; exacerbate coastal and fluvial flood-
ing; promote wetland loss, saltwater intrusion and shoreline retreat; 
and threaten infrastructure in deltas2,5,6,14,15. Beyond direct physical 
impacts, the interplay of these hazards also creates potential cascading 
socioeconomic consequences. For example, land loss and freshwater 
scarcity may drive displacement and migration, heightening competi-
tion for dwindling resources and fuelling social tensions16,17. Together, 
these intersecting climatic, environmental, human-driven pressures 

and multi-hazards render deltas the most fragile landscapes on Earth, 
with their low elevation and high urban exposure placing them at the 
forefront of climate and environmental risks3,5,9 (Extended Data Fig. 1).

Among these threats, land subsidence often emerges as an impor-
tant contributor to risks in global river deltas1–3,12,18,19. This predomi-
nantly human-driven process is just as, or more, influential than 
climate-induced sea-level rise (SLR) in the twenty-first century3,20,21, 
with subsidence control now providing an important component of 
future coastal adaptation strategies22,23. Despite its perceived impor-
tance, land subsidence remains underrepresented in global assess-
ments of delta vulnerability9,24 largely because of the lack of modern, 
high-resolution subsidence observations4,13. Even with recent advances 
in space-based geodetic monitoring, high-resolution synoptic measure-
ments of subsidence rates remain scarce, as most observations remain 
restricted to main urban centres within deltas, neglecting rural and 
ecologically critical zones4. Understanding delta-wide spatial char-
acteristics of contemporary land elevation changes is important for 
informing their sustainable management.

Here, we present high-spatial-resolution datasets of surface-elevation 
change derived from Sentinel-1 synthetic aperture radar (SAR) inter-
ferometry across 40 deltas globally (Fig. 1). These datasets capture 
delta-wide temporal trends, subsidence rates and horizontal motion 
at 75 m resolution, spanning five continents and 29 countries. Our 
analysis encompasses all major river deltas with a population exceeding  
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3 million people4, historically recognized sinking deltas2 and repre-
sentatives of less-populated, understudied deltas of regional ecological 
and economic importance (Methods).

Global analysis of delta subsidence
We measured the spatial patterns and rates of subsidence in 40 del-
tas by analysing the complete archive of the Sentinel-1 SAR dataset 
between 2014 and 2023 using advanced multitemporal interferometric 
SAR (InSAR) analysis (Methods). InSAR measures surface-elevation 
changes, capturing vertical land motion (VLM), sediment deposition 
and erosional processes13,25. For consistency, to reflect both VLM and 
surface-elevation change in the deltas, we use the terms VLM or eleva-
tion gain or loss to describe net surface-elevation change across all 
delta environments, with positive values indicating uplift or elevation 
gain and negative values indicating subsidence or net elevation loss. 
Throughout this study, negative VLM is quoted with negative signs and 
references land subsidence rates, whereas only the absolute values are 
reported when presenting subsidence rates.

Our analysis shows that subsidence threatens deltas globally, with 
the delta-scale average rate of VLM on all deltas indicating subsidence 
(Fig. 1). In 12 out of 40 deltas, the average sinking rate is moderate, at 
less than 2 mm yr−1. By contrast, more than half of the deltas exhibit 
subsidence rates exceeding 3 mm yr−1, and in 13 of these deltas (Nile, Po, 
Vistula, Ceyhan, Brahmani, Mahanadi, Chao Phraya, Mekong, Red, Cili-
wung, Brantas, Godavari and Yellow River), the average subsidence rates 
exceed the current estimates of global SLR (that is, about 4 mm yr−1). 
Among these, the Chao Phraya (Thailand), Brantas (Indonesia) and 
Yellow River (China) deltas show an average sinking rate of more than 
twice the current global SLR rate. To further highlight the severity of 
subsidence in deltas, we compared the subsidence with the regional 
geocentric SLR rates for the twenty-first century (2001–present).  

In 18 of the 40 deltas (the Nile, Po, Vistula, Ceyhan, Rioni, Brahmani, 
Mahanadi, Ganges–Brahmaputra, Godavari, Chao Phraya, Mekong, 
Red River, Ciliwung, Brantas, Amazon, Parana, Pearl and Yellow River), 
the average rate of local land subsidence is greater than the rate of 
regional geocentric SLR (Fig. 1 and Supplementary Table 1). However, 
in almost every delta (except Rio Grande) at least 1% of the delta area is 
subsiding faster than both global and geocentric sea levels (Fig. 1 and 
Supplementary Table 1).

Among all deltas, we find that at least 35% of the area is sinking, and in 
38 deltas (excluding Neva and Fraser), more than 50% of the delta area 
is sinking (Fig. 2a). Of the 40 deltas, 19 show widespread subsidence 
patterns, with greater than 90% of the delta area affected by subsid-
ence (for example, Mississippi, Niger, Nile, Rhine–Meuse, Po, Vistula, 
Brahmani, Mahanadi, Ganges–Brahmaputra, Chao Phraya, Mekong 
and Brantas deltas). Deltas with notable subsiding areas with greater 
than 50% of the delta area sinking faster than 5 mm yr−1 include the 
Chao Phraya (94% of delta area), Nile (80%), Brahmani (77%), Po (74%), 
Mahanadi (69%), Brantas (66%), Vistula (57%), Yellow River (53%) and 
Mekong (51%) deltas (Fig. 2a and Supplementary Table 1). In sum, we 
estimate that a total delta area of 460,370 km2 is exposed to subsid-
ence. If we consider a global habitable geomorphic area of 710,000–
855,000 km2 for deltas6,26, approximately 54–65% of global delta areas 
are sinking just from the analysis of the 40 deltas. By region, South 
Asia, East Asia and Southeast Asia, with 17 representative deltas, have 
the greatest exposure to subsidence, with 274,000 km2 of delta area 
subsiding. Africa, South America, North America and Europe have 
total subsiding delta areas of 78,800 km2, 39,800 km2, 37,800 km2, and 
30,000 km2, respectively. Seven large deltas—Ganges–Brahmaputra, 
Nile, Mekong, Yangtze, Amazon, Irrawaddy and Mississippi deltas—
contribute about 57% of the total subsiding delta area, with a combined 
area of 265,000 km2. Coastal cities such as Alexandria (Nile), Bangkok 
(Chao Phraya), Dhaka and Kolkata (Ganges–Brahmaputra), Shanghai 
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Fig. 1 | Land subsidence in global deltas. Each circle represents the location  
of the 40 deltas evaluated in this study, colour-coded by the average land 
subsidence rate. The size of the circle represents the percentage of the delta 
area subsiding faster than geocentric SLR. For visualization purposes, the 
geocentric SLR rate is shown as a colour gradient over entire watersheds or 

basins, although this does not represent the actual extent of exposure. Global 
coastlines are based on public-domain data from the CIA World DataBank II 
(using GSHHG (Global Self-consistent, Hierarchical, High-resolution Geography 
Database)), distributed with MATLAB. The delta basin polygons were obtained 
along with the sediment flux dataset from ref. 29.
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(Yangtze), Yangon (Irrawaddy), Cần Thá (Mekong), Thái Bình (Red 
River), Niigata (Chikuma-gawa), Jakarta (Ciliwung), Surabaya (Brantas) 
and Dongying (Yellow River) are experiencing subsidence at rates equal 
to or exceeding the delta-wide averages, indicative of the intensity of 
subsidence and elevation loss processes in cities on deltas.

Furthermore, we observe non-uniform spatially variable VLM within 
individual deltas, reflecting the complex interplay of natural and anthro-
pogenic processes2,5,13,27 (Fig. 2 and Extended Data Figs. 2–4). Although 

all deltas exhibit an overall trend of subsidence, localized and broad 
zones of uplift, which vary from 0 mm yr−1 to greater than 5 mm yr−1 are 
observed in some areas (Fig. 2b,d,k,m, and Extended Data Figs. 2e,f,i,j,l 
and 3c,f). In some deltas (for example, Wouri, Zambezi, Indus, Ciliwung 
and Yellow River), the observed uplift or elevation-gaining parts corre-
late with patterns of horizontal land motion (Extended Data Figs. 5–7). 
Possible mechanisms may include sediment redistribution processes 
potentially driven by river dynamics or growth faulting, either of which 
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can cause localized zones of elevation gain even within a predominantly 
subsiding deltaic system28,29. This highlights the necessity of compre-
hensive assessments and models of delta vulnerability to consider not 
only overall absolute subsidence rates but also the spatial heterogeneity 
of elevation change dynamics.

Anthropogenic drivers of delta subsidence
All deltas, by their inherent nature, subside over time as recently 
deposited sediments or in situ organic material compact under their 
weight30–32, a process further influenced by isostatic adjustments and 
tectonic activity13,27. However, human interventions have accelerated 
subsidence rates in many of the major deltas of the world, transforming 
a gradual geological process into an urgent environmental crisis4,20,32. 
The primary anthropogenic drivers that dominate delta subsidence 
include excessive groundwater extraction, oil and gas exploitation, and 
land-use changes associated with urbanization and agriculture4,6,13,20,33,34.

To quantify the relative contributions of anthropogenic factors 
to delta subsidence and elevation loss, we analysed the relationship 
between three main anthropogenic drivers—groundwater storage 
change, sediment flux alteration and urban expansion—and non-glacial 
isostatic adjustment VLM/subsidence rates across the 40 deltas (Meth-
ods and Supplementary Table 2).

Figure 3a and Extended Data Fig. 8 show the interplay of anthropo-
genic factors and their correlation with subsidence rates across the 40 
deltas. Deltas experiencing groundwater storage (GWS) loss (indicative 
of groundwater extraction), negative sediment flux change (red and 
yellow hues; reflecting sediment reduction due to upstream human 
activities) and higher urban population growth tend to have higher 
rates of subsidence (for example, the Yellow River, Po, Nile, Chao Phraya 
and Mekong deltas). Conversely, deltas with GWS stability or gain (net 
increase in groundwater storage), positive sediment flux change (blue 
colours; sediment surplus) and limited urban expansion show lower 
subsidence rates (for example, Saloum, Amazon and Ogooué deltas).

The initial multilinear regression (MLR) model, which included 
interaction terms between the different anthropogenic factors, 

poorly captured subsidence dynamics on the deltas (R2 = 0.2 ± 0.1), 
as it failed to account for nonlinear interactions between the dif-
ferent processes (Fig. 3a). For instance, urban expansion not only 
directly increases infrastructure loading but also indirectly elevates 
groundwater demand, thereby compounding aquifer depletion and 
extraction-induced subsidence, which are synergistic effects that 
linear models cannot resolve.

To address these limitations, we used a random forest (RF) machine 
learning approach designed to capture nonlinear relationships and 
variable interactions. The RF model shows a moderate to strong rela-
tionship between the predictors (GWS, sediment flux and urban expan-
sion) and VLM, achieving improved performance over the MLR model 
(R2 = 0.6 ± 0.1; RMSE (root mean square error) = 1.9 ± 0.1 mm yr−1; MAE 
(mean absolute error) = 1.4 ± 0.2 mm yr−1), and capturing complex, 
non-additive relationships between anthropogenic stressors and sub-
sidence rates (Fig. 3a and Supplementary Fig. 1). However, we observe 
some underestimation at high subsidence rates (>8.0 mm yr−1) (Sup-
plementary Fig. 1), which probably suggests that natural processes or 
other anthropogenic predictors (not considered in our analysis) may 
contribute to subsidence in these highly dynamic deltaic environments.

Note that the primary objective in our analysis is not to predict 
subsidence rates across deltas, but rather to identify and extract key 
features that explain the dynamic relationships between the three 
anthropogenic drivers and subsidence across these deltas. Feature 
importance analysis from the RF model identifies GWS as the domi-
nant anthropogenic predictor of delta subsidence (0.5 ± 0.2), whereas 
sediment flux change (0.3 ± 0.2) and urbanization (0.3 ± 0.1) have sec-
ondary roles as subsidence rate predictors across these deltas (Fig. 3a 
and Supplementary Fig. 1b). However, the large standard deviations 
in feature importance values reflect substantial variability in predic-
tor dominance across subsampled delta subsets, suggesting that the 
primary contributors to subsidence differ locally depending on the 
anthropogenic or geomorphic context. To resolve delta-specific mecha-
nisms, we applied local interpretable model-agnostic explanations 
(LIME), which interprets individual predictions by approximating the 
RF model locally with simpler, interpretable functions. Deltas with 
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low LIME model fidelity (R2 < 0.5) were excluded from this interpre-
tative analysis, refining the dataset from 40 to 28 deltas (Methods). 
The low fidelity scores for some deltas could be due to unaccounted 
processes (natural and/or other anthropogenic) in our RF model. 
The retained 28 deltas show improved overall model performance 
(R2 = 0.7 ± 0.1; RMSE = 0.4 ± 0.1 mm yr−1; MAE = 0.3 mm yr−1), ensuring 
reliable interpretation of local feature importance. Normalized LIME 
feature importance scores (nLIME) showed substantial heterogene-
ity in predictor dominance (Supplementary Table 2). GWS emerged 
as the most significant factor across the different deltas (0.6 ± 0.3), 
whereas sediment flux change (0.3 ± 0.1) and urbanization (0.1 ± 0.1) 
exhibited lower but context-dependent impacts (Supplementary  
Fig. 1b).

To assess the dominant influence on land motion across individual 
deltas, the nLIME for each delta was mapped onto a ternary diagram 
(Fig. 3b). Of the 28 deltas, 35%, including the Mekong, Ganges–Brahma-
putra, Rhine–Meuse, Fraser, Cauvery, Irrawaddy and Red River systems, 
cluster within the GWS portion of the diagram (nLIMEGWS > 0.7), suggest-
ing that observed GWS changes in these deltas are the primary driver of 
subsidence among the three anthropogenic variables examined (Fig. 3b 
and Supplementary Table 2). The Chao Phraya and Yellow River deltas, 
with the highest average subsidence rates, plot near the centre of the 
ternary diagram, reflecting relatively balanced contributions from 
GWS, sediment flux and urban expansion. Sediment flux correlates 
most closely with elevation changes in deltaic systems, such as the 
Saloum, Mississippi, Amazon and Rio Grande deltas, suggesting that 
reduced sediment delivery may exacerbate land elevation loss in these 
deltas. The Nile, Po, Chikuma-gawa, Mahanadi, Kabani, Niger and Volta 
deltas exhibit mixed contributions from GWS, sediment flux changes 
and population change, with GWS slightly outweighing sediment defi-
cits as predictors in the Nile and Po deltas, possibly reflecting reliance 
on aquifer-dependent irrigation35. These findings are consistent with 
delta-specific studies that attribute accelerated subsidence in densely 
populated Asian deltas—Mekong, Ganges–Brahmaputra and Chao 
Phraya—to urbanization and unsustainable groundwater extraction for 
agriculture, industry and domestic use6,20,31,32,36. Moreover, the Nile, Po 
and Mississippi deltas, which were historically sustained by seasonal 
floods that deposited sediments, are now documented to experience 
severe sediment deficits due to dams and levees, accelerating eleva-
tion loss2,20,29.

We acknowledge several limitations. First, GRACE-derived GWS 
trends (spatial resolution of about 300–400 km) may introduce signal 
leakage from adjacent basins, particularly affecting smaller deltas. Sec-
ond, the sediment flux dataset represents percentage changes between 
pristine and disturbed conditions rather than contemporary absolute 
rates, potentially masking recent trends. Third, other natural VLM 
processes (sediment compaction and tectonics) and anthropogenic 
drivers (hydrocarbon extraction and peat drainage) are not explicitly 
separated. Fourth, RF model results are inherently dependent on input 
variable distributions and should be interpreted within the context 
of these datasets. Last, although the 40 deltas represent a substantial 
portion of global delta area and population, they are not globally rep-
resentative. Nevertheless, our analysis focuses on understanding the 
relative influence of three key anthropogenic variables across these 
diverse systems rather than providing delta-specific VLM budgets. 
Future studies incorporating spatially dense, delta-specific datasets 
will better resolve local-scale processes within individual deltas and 
enable rigorous partitioning of anthropogenic compared with natural 
contributions to land motion and elevation change.

Relative impacts of SLR and subsidence
Globally, deltas face a ‘double burden’ of climate-induced SLR and 
sinking land, which together drive relative sea-level rise (RSLR) at 
rates exceeding global averages2,3,7,8,18. Unlike SLR, which reflects 

global-scale processes and progresses at a relatively uniform rate 
globally7,37, subsidence operates at local to regional scales, is highly 
variable and reflects localized natural and human processes13,27,30. In 
many deltas, contemporary rates of subsidence may surpass the cur-
rent SLR rates2,14 (see previous section), creating a compound hazard 
in which RSLR is dominated not by climate-induced changes in sea 
surface height but by VLM.

To quantify the contributions of SLR and land subsidence in deltas, 
we evaluated their relative impact on the exposed delta populations. 
Our analysis shows that current average subsidence rates exceed geo-
centric SLR in 18 of the 40 deltas, including the Nile, Mekong, Red River, 
Ganges–Brahmaputra, Brahmani, Mahanadi, Chao Phraya, Ciliwung, 
Brantas and Yellow River deltas, affecting approximately 236 million 
people—a population about 50% larger than those residing in deltas 
in which the current rates of geocentric SLR outpace the subsidence 
rates (156.9 million) (Fig. 4a). This disparity is particularly pronounced 
for vulnerable populations occupying land below 1 m elevation11. In 
these lowest elevation areas, subsidence dominates the contribution 
to RSLR in about two-thirds of the deltas, including Amazon, Fraser, 
Niger, Rhone, Vistula, Ganges–Brahmaputra, Mekong, Red River, Pearl, 
Yangtze and Godavari deltas (Fig. 4b). Of the 76 million people living 
in delta areas with an elevation below 1 m, 84% (63.7 million people) 
reside in rapidly sinking areas of the deltas (Fig. 4b). These observa-
tions are striking, revealing the current dominance of subsidence over 
geocentric SLR in global deltas. Moreover, the spatial heterogeneity 
of VLM creates localized extreme rates of subsidence within deltas, 
further exacerbating their vulnerability. Under the current trajectory, 
moderate emission scenarios (shared socioeconomic pathway 2-4.5 
(SSP2-4.5)), current maximum subsidence rates in the deltas already 
surpass projected twenty-first-century SLR rates (no VLM)38. Through 
the end of the twenty-first century, current maximum subsidence 
rates in all 40 deltas exceed projected SLR rates (Fig. 4c). This dis-
parity extends to the 95th percentile subsidence rates, representing 
widespread, high-magnitude sinking across the deltas. In 29 deltas, 
95th percentile subsidence rates exceed the projected SLR rates by 
2050, outpacing SLR by 1.1 (Niger delta) to 10.3 (Yellow River delta) 
times. By 2100, as the current maximum rate of SLR (SSP2-4.5) accel-
erates to 0.9 cm yr−1, current 95th percentile subsidence rates still 
dominate in 22 deltas, surpassing geocentric SLR by up to seven times. 
Even accounting for worst-case, high-emission scenarios (SSP5-8.5), 
subsidence will exceed projected SLR rates in all deltas (considering 
maximum subsidence) and in 23 deltas (considering 95th percentile 
subsidence) through 2050. By 2100, current maximum subsidence 
rates exceed projected SLR in 38 of 40 deltas, whereas 95th percentile 
subsidence rates remain dominant in seven deltas (Godavari, Chao 
Phraya, Mekong, Ciliwung, Brantas, Red River and Yellow River) (Sup-
plementary Table 1).

These findings identify VLM as the principal hazard in deltaic systems 
and other subsidence-prone low-elevation coastal zones. Although 
global coastal zones face baseline threats from SLR38, subsidence in 
many deltas often dominates RSLR, creating a distinct and more acute 
risk profile, which is amplified by the high populations in many of these 
deltas4,12. Yet, subsidence remains underprioritized in global coastal 
risk discourse, a tendency that stems from its perceived tractability. 
Unlike climate-induced SLR, which can be slowed but not stopped on 
human policy time scales, human-induced subsidence can theoretically 
be slowed or halted through targeted interventions22,23,31,32. Its respon-
siveness to human action, however, has paradoxically relegated it to 
the periphery of international policy3,31,39. This disconnect reflects a 
broader misalignment between the spatial scales of climate impacts 
and adaptation priorities. Thus, subsidence does not merely compound 
SLR; it undermines the foundational logic of incremental, SLR-centric 
adaptation39. Addressing this requires shifting adaptation from just 
a global climate challenge to a regional socio-technical imperative 
and an integrated approach that prioritizes subsidence mitigation 
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(for example, groundwater regulation, managed aquifer recharge and 
sediment management) alongside RSLR adaptation.

Adaptive capacity in vulnerable deltas
From the Fraser delta in Canada to the Yellow River delta in China, global 
deltas are sinking, as climate change accelerates SLR, compounding 
the vulnerabilities of low-lying regions. These combined effects create 
a multifaceted threat, forcing delta communities to contend with land 
loss, more frequent flooding and saltwater intrusion6–9,20. Whereas the 
urgency of adaptation is immediate and worldwide, the capacity to act 
is not. For many deltas, especially those in low- and middle-income 
countries, adaptive capacity is limited by institutional, social and finan-
cial constraints9. These systemic barriers are quantified by the Notre 
Dame Global Adaptation Index (ND-GAIN), a framework that evaluates 
the vulnerability of countries to climate change and their readiness to 

deploy adaptation resources across economic, social and governance 
dimensions40,41. A higher ND-GAIN adaptation readiness score (>0.52) is 
an indication of the capacity of a country to absorb funds and translate 
these into actionable strategies41.

To visualize disparities in adaptive capacity and risk, we mapped 
global deltas into a two-dimensional (2D) impact matrix defined by 
RSLR and ND-GAIN adaptation readiness scores (Fig. 5). This frame-
work allows for a comparative assessment of deltas assuming that 
the adaptation readiness of the delta is reflected by the adaptation 
readiness of its country, categorizing them into four quadrants:  
(1) Unprepared Divers (high RSLR (>4 mm yr−1), low readiness (<0.52)); 
(2) Rising Ready (high RSLR, high readiness (>0.52)); (3) Latent Threats 
(low RSLR, low readiness); and (4) Safe Havens (low RSLR, high readi-
ness). 65% of the deltas (26 out of 40 deltas), predominantly in low- and 
middle-income nations, fall into the Unprepared Divers group, in which 
nations have a diminished adaptive capacity and RSLR rates exceeding 
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Fig. 4 | Relative contributions of land subsidence and SLR in global deltas. 
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but considering only the population living at elevations below 1 m. Note that 
the Brantas and Yellow River deltas have values greater than 15 mm yr−1 and are 
not represented on the plot for visual clarity. c, Bar plots comparing the range of 
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line shows the maximum 2100 projected SLR rate across all deltas.
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current global SLR (Fig. 5a). These challenges are compounded for 
indigenous communities, who primarily live in the lowest-lying delta 
areas; lack the resources needed to implement large-scale adaptation; 
and face relocation barriers due to cultural and subsistence ties despite 
escalating risks42,43.

Most deltas in high-income countries, including the Yellow River 
(China), Vistula (Poland), Po (Italy), Rhine–Meuse (the Netherlands) and 
Mississippi (the USA) deltas, cluster in the Rising Ready group, demon-
strating robust governance (Fig. 5a). For example, the integrated flood 
management approach of the Dutch delta, which combines ecological 
restoration with infrastructural fortifications, has become a model for 
coastal hazard resilience44. However, some deltas even within this group 
face substantial gaps. For instance, the Mississippi delta has lost more 
than 5,000 km2 of land (mainly wetlands) since 1932 because of a lack of 
adaptation (for example, sediment diversion projects)45,46, whereas the 
Po delta struggles with salinization driven by agricultural groundwater 
extraction, highlighting how economic priorities can undermine adap-
tation even in high-income regions47. Although RSLR exceeds global 
rates of SLR in most deltas, exceptions exist. The Latent Threats group 
includes the Saloum and Neva deltas, which exhibit relatively low RSLR 
and low adaptive capacity (Fig. 5a), indicating their unpreparedness and 
potential vulnerability to a future rise in sea level (Fig. 4c). The Rioni 
and the Fraser delta fall into the Safe Havens group, in which lower RSLR 
is coupled with higher adaptive capacity, indicative of low risk and 
preparedness for current and future sea-level changes. The Rioni Delta 
is the only delta in our sample exhibiting negative sea-level trends for 
the twenty-first century, in which long-term regional sea-level decline 
masks short-term fluctuations (Methods).

To examine the evolving risk landscape, we compared 
twentieth-century and present-day impact matrices (Fig. 5b). For our 
analysis, we used tide gauge data to estimate twentieth-century RSLR 
rates, which were available for only 15 of the 40 deltas. Our estimates 
show that 10 deltas previously classified as Latent Threats (low RSLR, 
low readiness) and Safe Havens (low RSLR, high readiness) groups 
during the twentieth century have transitioned to Unprepared Divers 

(high RSLR, low readiness) and Rising Ready (high RSLR, high readi-
ness) groups in the twenty-first century (Fig. 5b). This shift highlights 
the accelerating contemporary RSLR trends, driven by land subsid-
ence and SLR48,49. Deltas such as the Mississippi, Ganges–Brahmaputra 
and Mekong show sustained increases in long-term RSLR rates above 
4.0 mm yr−1 since the twentieth century, exacerbating vulnerabilities in 
these densely populated regions. Conversely, the Chao Phraya and the 
Rioni deltas showed a decline in RSLR and improved adaptive capacity 
in the twentieth century. However, although the Rioni Delta exhibited a 
more than 200% decline in RSLR, the Chao Phraya Delta still experiences 
high RSLR rates (12.3 mm yr–1). The pronounced decrease in RSLR for 
the twentieth century in the Rioni Delta probably reflects localized sub-
sidence at the tide gauge station rather than a delta-wide RSLR trend50 
(Methods). The greatest change in RSLR was observed in the Nile Delta, 
surging from 1 mm yr–1 in the twentieth century to more than 10 mm yr–1 
in the twenty-first century (Fig. 5b). Moreover, we find that all deltas 
in low- and middle-income countries in the present-day Unprepared 
Divers groups, transitioned from the Latent Threats group, suggest-
ing stagnant adaptive capacity despite worsening RSLR. By contrast, 
deltas such as the Yangtze (China), Pearl (China) and Vistula (Poland) 
shifted from Latent Threats to Rising Ready, demonstrating increased 
adaptation readiness due to economic growth, raising governance and 
institutional capacity to adapt, although RSLR has surged (Fig. 5b). 
Although deltas in the Rising Ready quadrant showed potential for 
robust adaptation policies, deltas in the Unprepared Divers remain 
trapped in cycles of reactive, underfunded responses.

These long-term trajectories reveal a challenging reality in which 
deltas with strong adaptive capacity still struggle to manage persistent 
subsidence and climate-driven SLR, whereas those with limited capac-
ity face severe and escalating risks on both fronts. Ideally, the goal for 
sustained coastal resilience is a transition to Safe Havens, character-
ized by both low RSLR and high adaptation readiness. However, only 
two deltas (the Fraser and Rioni) currently occupy this quadrant. As 
the climate crisis and related threats intensify, the challenge for the 
up to 500 million people in deltas demands more than incremental 
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Fig. 5 | RSLR and adaptive capacity in global deltas. a, Scatter plot showing 
the relationship between RSLR and ND-GAIN adaptation readiness score for  
40 deltas in the twenty-first century. The horizontal dashed line represents  
the current global SLR (about 4 mm yr−1), whereas the vertical dashed line 
indicates the threshold between ‘good’ and ‘very good’ readiness categories 
(0.52), as defined in ref. 41. b, Same as a but including both twentieth- and 

twenty-first-century data for 15 deltas. Arrows illustrate the trajectory of the 
readiness score of each delta from the twentieth century to the twenty-first 
century. The four quadrants represent Unprepared Divers (deltas with high 
RSLR, low adaptation readiness), Rising Ready (deltas with high RSLR, high 
adaptation readiness), Latent Threats (deltas with low RSLR, low adaptation 
readiness) and Safe Havens (deltas with low RSLR, high adaptation readiness).
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adaptation; it requires global attention to subsidence and other key 
vulnerability drivers while advancing governance approaches that 
preserve land elevation and long-term habitability over short-term 
adaptation.
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Methods

Selection of global river deltas
We selected 40 deltas globally, prioritizing 35 deltaic systems with the 
greatest exposed area and population currently below sea level, sup-
plemented by five less-exposed deltas of local and regional significance 
and previously identified risks9. To assess the 35 deltas with the great-
est exposure among global river deltas, we used 955 delineated delta 
boundaries in ref. 6 and identified coastal delta elevation below sea level 
using the DeltaDTM dataset v.1.1 (ref. 11) resampled to 3 arcseconds 
(100 m) and referenced to mean sea level51. Global delta population 
was estimated by aggregating 100 m resolution WorldPop population 
count for each delta, which is calibrated to the 2020 national population 
estimates from the United Nations population data52.

Our estimates show that globally, 42,000 km2 of the delta area at 
present lies below sea level, containing a population of 10.2 million 
people (Extended Data Fig. 1). The 35 deltas with the greatest exposure 
included in this analysis are Nile, Mississippi, Rhine–Meuse, Mekong, 
Niger, Cauvery, Po, Red River, Vistula, Rhone, Amazon, Ganges–Brah-
maputra, Chao Phraya, Kabani, Pearl, Rio Grande, Yangtze, Yellow 
River, Senegal, Indus, Saloum, Grijalva, Ceyhan/Seyhan, Rioni, Cross, 
Chikuma-gawa, Volta, Brantas, Neva, Wouri, Irrawaddy, Ogooué, Zam-
bezi, Magdalena and Ciliwung (Extended Data Fig. 1). The cumulative 
delta area and population below sea level are 38,000 km2 and 10.1 mil-
lion people, respectively, reaching within rounding errors of the global 
total exposure. Deltas such as the Danube, Orinoco and Shatt-el-Arab 
met the selection criteria but were excluded due to challenges associ-
ated with the SAR imaging and interferometric analysis (including spa-
tial coverage gaps, excessive temporal baselines, poor coherence and 
limited data availability). The five supplementary deltas are Brahmani, 
Mahanadi, Godavari, Parana and Fraser deltas.

The final selection of 40 deltas spans five continents (Asia, Africa, 
Europe, North America and South America) and 29 countries, encom-
passing deltas with noted and emerging environmental, geophysi-
cal and social vulnerabilities9,24, historically sinking river deltas2 and 
densely populated coastal megacities3,4,53.

SAR dataset
We analysed 132 SAR frames from the Sentinel-1A/B C-band satellite, 
spanning September 2016 to May 2023. The SAR datasets include 3,300 
images obtained in single-orbit geometry (ascending or descending) for 
13 deltas and 10,700 images obtained in both ascending and descend-
ing orbits for 27 deltas. See Supplementary Table 3 for the complete 
inventory of SAR images used in each delta. For each SAR dataset, we 
applied a multi-looking factor of 32:6 (range:azimuth) to improve the 
signal-to-noise ratio, obtaining an average pixel resolution of about 
75 m. To minimize decorrelation errors, we also constrained the inter-
ferometric pairs to a maximum temporal and perpendicular baselines 
of 300 days and 80 m, respectively. For deltas requiring multi-frame 
coverage (for example, Amazon, Mississippi, Mekong, Ganges–Brah-
maputra, Nile, Red River and Niger), we arranged in a mosaic form the 
overlapping adjacent frames along a single path before processing or 
post-processed deltas with coverage spanning multiple paths to ensure 
full spatial continuity across expansive deltas.

SAR interferometric analysis
We processed each SAR frame or single-path multiple-frame coverage 
to generate high-spatial resolution maps of surface deformation for 
the 40 deltas using a multitemporal wavelet-based InSAR (WabInSAR) 
algorithm54–57. First, we generated 59,000 high-quality interferograms 
from the coregistered SAR images using GAMMA software58,59, with an 
interferogram pair selection algorithm57 optimized through dyadic 
downsampling and Delaunay triangulation. To minimize phase errors 
and to maximize the pixel density associated with dynamic surface 
changes over deltas (for example, flooding, vegetation growth or soil 

saturation), we screened the initial set of interferograms based on 
their coherence stability to exclude interferograms with high coher-
ence variability, while maintaining a 50% temporal baseline coverage. 
The final selection retained about 55,000 interferometric pairs (93%) 
for further analysis. Moreover, we implemented a statistical frame-
work to discard noisy pixels with average coherence less than 0.7 for 
distributed scatterers and amplitude dispersion of greater than 0.35 
for permanent scatterers57. Next, we used a minimum cost flow phase 
unwrapping algorithm optimized for sparse coherent pixels60,61 to 
estimate the absolute phase changes of the elite (less noisy) pixels 
in each interferogram. We corrected all unwrapped interferograms 
for the effects of residual orbital error62 and minimized the effects of 
topography-correlated components of atmospheric phase delay and 
spatially uncorrelated DEM error by applying a suite of wavelet-based 
filters54. Last, we estimated the time series, velocities and standard 
deviation for each geocoded elite pixel along the line of sight (LOS) 
of the satellite using a reweighted least-squares optimization55. The 
standard deviation of the LOS velocity corresponds to the uncertainty 
of the regression slope derived from the least-squares fit. For each 
delta, the reference point was selected as the pixel corresponding to a 
global navigation satellite systems (GNSS) station within the processed 
SAR frame when available. In areas without GNSS stations, a prelimi-
nary reference point was randomly selected from pixels with average 
temporal coherence >0.85. Following initial processing, the reference 
point was refined by visually identifying stable ground features (for 
example, bedrock outcrops and deep-foundation structures) and 
low displacement variability (standard deviation <1 mm yr–1), then 
reprocessing with this final reference point. For large deltas requiring 
overlapping SAR frame coverage, the LOS velocities were arranged 
in a mosaic form to ensure seamless spatial representation across 
the entire delta.

In the 27 deltas with overlapping spatiotemporal SAR satellite cover-
age and different orbit geometries (ascending and descending), we 
estimate the horizontal (east–west) and VLM components of deforma-
tion by jointly inverting the LOS time series of the ascending and 
descending tracks63–65. To this end, we identified the co-located pixels 
of the LOS time series by resampling the pixels from the descending 
track onto the ascending track to obtain two co-located LOS displace-
ment velocities {LOS , LOS }ASC DES . Given {LOS , LOS }ASC DES  and their  
associated variances σ σ{ , }ASC

2
DES
2  are the LOS displacement and variances 

for a given pixel, the model to combine the LOS velocities to generate 
a high-resolution map of the east–west (E) and VLM (U) displacements 
are given by
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where, C represents the unit vectors for projecting (E) and (U) displace-
ments onto the LOS, which is a function of the heading angle of the 
satellite and incidence angles of each pixel66. The solution to the model 
in equation (1) is given by

X G G= [ PG] PL (2)T −1 T

where X represents the unknowns (E) and (U), G is the design matrix 
comprising the unit vectors for projecting the horizontal and vertical 
displacements onto the line of sight, L are the observations 
{LOS , LOS }ASC DES , and P is the weight matrix, which is inversely propor-
tional to the observant variances σ σ{ , }ASC

2
DES
2 . To obtain the parameter 

variance–covariance matrix (QXX), we use the concept of error propa-
gation67 to calculate the associated parameter uncertainties given the 
observation errors as follows:

Q G= [ PG] (3)XX
T −1



For the 13 deltas imaged in single-orbit geometry (ascending or 
descending), we projected the LOS velocities to the vertical direction, 
assuming the principal deformation is vertical:

θ
VLM =

LOS
cos

(4)i
i

i

where, cosθi is the local incidence angle for each pixel. This assumption 
of zero gradients in the horizontal components of deformation is tenu-
ous for most coastal areas, given the significant localized horizontal 
motion noted (up to 10 mm yr–1) across the 27 deltas with multiple orbit 
geometries. Nevertheless, the assumption is necessary given that over-
lapping ascending and descending orbit geometries are available for 
less than 50% of global land areas (for European Space Agency Sentinel-1 
satellite), limiting the ability to resolve 2D deformation trends. How-
ever, under this assumption, it is necessary for the locally referenced 
VLM estimates to be transformed into a globally consistent reference 
frame, particularly for comparative studies across multiple regions13,27.

To transform the VLM rates from a local to a global reference frame, 
we used the available GNSS datasets for 17 deltas (the Fraser, Missis-
sippi, Rio Grande, Rhine–Meuse, Rhone, Po, Vistula, Red River, Ama-
zon, Parana, Ciliwung, Brantas, Ganges–Brahmaputra, Chao Phraya, 
Mekong, Pearl and Chikuma-gawa). The GNSS datasets across the 17 
deltas were obtained from the Nevada Geodetic Laboratory68 and 
previous regional studies69. For each delta with GNSS coverage, we 
calculated the offset between the InSAR-derived vertical velocity at 
the reference point and the corresponding GNSS vertical velocity, 
then applied this offset to transform all InSAR velocities in that delta 
to the IGS14 reference frame. The uncertainty in the final velocity was 
estimated by propagating both the InSAR velocity uncertainty (from the 
reweighted least-squares inversion) and the GNSS velocity uncertainty 
(reported by data sources) through standard error propagation. In 
deltas without GNSS stations, we used the global VLM model70, which 
mainly includes long-wavelength deformation signals due to TWS 
changes, tectonics and glacial isostatic adjustment (GIA) referenced 
to the IGS14 global frame. We then applied an affine transformation to 
align the VLM rates from local to IGS14 global reference frame23,71. This 
approach ensures consistency in VLM rates across global deltas by cor-
recting for local reference biases and should be the standard practice in 
coastal research using InSAR27. When comparing these measurements 
to other subsidence rate estimation techniques in deltas, such as RSET, 
marker horizons, sediment cores, repeat lidar or other InSAR meas-
urements, careful consideration must be given to differences in both 
reference frames and temporal ranges. Reference frame incompatibility 
may require adjustments to align local or relative measurements with 
other datasets, whereas mismatches in monitoring periods introduce 
temporal biases that complicate direct quantitative comparisons.

The distribution of the standard deviations (precision of the results) 
for all pixels (20.5 million) across the 40 deltas is shown in Supple-
mentary Fig. 2. The standard deviation distribution shows that 99% 
of the pixels have a value <0.5 mm yr–1. We evaluated the accuracy of 
the results by comparing the averaged VLM rates of pixels within a 
radius of 100 m with more than 100 independent GNSS data (that is, 
stations that were not used in the reference frame transformation). The 
validation included 122 GNSS stations across 23 deltas with historical 
long-term records (spanning various periods before and/or includ-
ing the InSAR observation window) and 81 GNSS stations across 15 
deltas with time series covering at least 70% of the InSAR observation 
period (2014–2023) (Supplementary Fig. 3). We found a strong corre-
lation (0.7–0.8), between GNSS and InSAR velocities, with an RMSE of 
1.4 mm yr–1 for long-term rates (Supplementary Fig. 3a) and 1.2 mm yr–1 
for rates within the InSAR observation period (Supplementary Fig. 3b). 
The improved agreement for temporally coincident measurements 
suggests that nonlinear subsidence behaviour contributes to some 
scatter when comparing historical GNSS rates to contemporary InSAR 

measurements, although the overall correlation remains strong in 
both cases. Note that some GNSS stations used for validation, while 
within the broader processed SAR frame, are outside the clipped delta 
boundaries. Note that the final delta extents were delineated using a 
tiered approach. Primary boundaries were derived from ref. 9, sup-
plemented by ref. 6 for deltas not covered in the former. For extensive 
deltas in which the entire delta surface is not analysed (for example, 
the Ganges–Brahmaputra), boundaries were defined using the SAR 
spatial extent.

GIA influence on VLM
We estimated VLM trends and the associated uncertainty due to GIA 
using the model in ref. 72, which was derived from a probabilistic 
ensemble of 128,000 GIA forward simulations. Each model solves the 
sea-level equation for a compressible, viscoelastic Maxwell Earth under 
late-Pleistocene ice-sheet loading, incorporating solid-Earth deforma-
tion, geoid change and rotational feedback. The ensemble samples 
a wide range of Earth rheological structures, including lithospheric 
thickness, upper and lower mantle viscosities, and scaling factors 
applied to regional deglaciation histories over the past 122,000 years. 
Likelihoods were assigned to each simulation based on fit to a global 
dataset of 11,451 relative sea-level records and 459 GNSS-derived uplift 
rates using a Bayesian framework that accounts for data uncertainties 
and spatial correlations. The resulting posterior distributions enable 
spatially resolved estimates of GIA-driven VLM with formal uncertainty.

For each delta, we extracted the ensemble mean and standard devia-
tion in GIA vertical velocity to correct observed deformation rates and 
isolate contemporary, non-GIA contributions to VLM. Supplementary 
Table 1 shows the mean GIA-induced VLM, the associated standard 
deviation and the per cent contribution of GIA to the total observed 
VLM magnitude for each delta. GIA accounts for the largest propor-
tion and exceeds (>100%) the total VLM in the Neva (540%) and Fraser 
(455%) deltas, in which low observed VLM rates are substantially influ-
enced by strong GIA uplift. Moderate GIA contributions (25–55%) are 
observed in five deltas, including the Rio Grande, Mississippi, Volta, 
Rhine and Ogooué deltas. Most of the deltas (55%) exhibit minimal GIA 
influence, with contributions under 10%, indicating that observed VLM 
is primarily governed by contemporary anthropogenic and natural 
processes such as groundwater withdrawal, sediment compaction, 
or tectonics. In 28–67% (accounting for uncertainty) of the deltas, the 
sign and approximate magnitude of observed and GIA-corrected VLM 
are consistent, implying limited distortion from GIA and the sustained 
expression of contemporary processes on the average local subsid-
ence. By contrast, the Fraser and Neva deltas illustrate how substantial 
GIA-induced uplift in high-latitude, post-glacial regions can obscure 
contemporary subsidence processes through opposing vertical trends. 
In both cases, modest observed subsidence rates (Fraser −0.4 mm yr−1 
and Neva −0.2 mm yr–1) are counteracted by substantial GIA uplift of 
1.8 ± 2.3 mm yr−1 and 1.0 ± 0.3 mm yr−1, respectively.

Anthropogenic drivers datasets
We analysed the relationship between major anthropogenic pressures 
on global deltas to subsidence and elevation loss by quantifying the 
contributions of groundwater storage change, sediment flux alteration 
and urban expansion to the residual rates of sinking (after GIA correc-
tion) across the 40 deltas. These globally consistent datasets provide 
insights into human-induced impacts on land subsidence and elevation 
change in river deltas (Supplementary Table 2).

Groundwater storage change. We derived twenty-first-century 
groundwater storage trends for all deltas by leveraging Gravity 
Recovery and Climate Experiment (GRACE) and GRACE Follow-On 
(GRACE-FO) satellite observations73,74. We used the JPL GRACE/
GRACE-FO level 3 mascon solutions (RL06.3) (refs. 75,76), which pro-
vide monthly global estimates of total water storage (TWS) change 
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relative to a 2004.9–2009.999 mean baseline. The final solutions span 
2002–present and are derived from solving for monthly gravity field 
variations in terms of 4,551 equal-area 3° spherical cap mass concen-
tration functions rather than global spherical harmonic coefficients. 
The mascon approach implements geophysical constraints during the 
level-2 processing step to filter out noise, applies improved accelerom-
eter data and standard corrections, including several geophysical ad-
justments, such as gravity anomaly due to ocean (GAD), GIA, degree-1, 
C20 and C30 replacement and representation on ellipsoidal earth75–77. 
We extracted TWS values at 3° mascon resolution (about 300–400 km 
spatial resolution) covering each delta area to compute representative 
regional water storage estimates. TWS change from GRACE contains 
contributions from GWS, soil moisture storage (SMS), snow water 
equivalent (SWE) and surface water storage (SWS) represented by

ΔTWS = ΔGWS + ΔSWS + ΔSMS + ΔSWE (5)

To isolate GWS change from TWS, we used the 1/4° global land data 
assimilation system Noah model78 to remove changes in SMS and SWE 
contributions and used the WaterGAP Global Hydrology Model (WGHM 
v.2.2d) (refs. 79,80) to remove SWS contributions. The contribution 
from SWE was negligible in most deltas, given their prevailing arid 
and semi-arid climate (Fig. 1), although it was included to maintain 
consistency across all deltas. SWS components include contributions 
from rivers, lakes, wetlands and reservoir storage within the GRACE 
footprint for each delta. The residual signal following removal of SWS, 
SMS and SWE was interpreted as the GWS anomaly.

To estimate the temporal trend of groundwater storage changes, 
we applied harmonic analysis to account for annual and semiannual 
variations in the time series of the GWS anomalies. In standard practice, 
environmental variables (for example, GRACE data, GNSS data and 
sea-level anomalies) are modelled as time-invariant seasonal signals. 
However, the response of Earth to environmental changes represented 
as seasonal signals is not time-invariant81–83. To account for this vari-
ability, we adopted the stochastic-seasonal model in the following 
equation, in which the harmonic amplitudes evolve as random walks, 
allowing for time-dependent seasonal variations and the seasonal 
trends are modelled using a Kalman filter83:

∑

x t x v t t t

a t kf t t b t kf t t
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where t0 is the reference epoch, x0 is the reference intercept at t0, v(t) 
is the time-varying rates, k indexes the annual (k = 1) and semiannual 
(k = 2) components, ak and bk are the harmonic amplitudes. v(t), ak, and 
bk are modelled as random walk parameters. To estimate the long-term 
multi-year trend (vf) of GWS from the time-varying rates, we computed 
the weighted average of the time-varying rates v(ti) using
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Supplementary Figs. 4 and 5 compare the time-invariant model 
(black curves) with the stochastic-seasonal model (red curves) for 
GRACE-derived GWS and RSLR from tide gauges in the Mississippi 
and Chao Phraya deltas. These plots show that a stochastic-seasonal 
process better represents the observed variability in the time series. 

The post-fit residuals of the time-invariant model show some system-
atic seasonal patterns, particularly during periods when seasonal 
amplitudes deviate from the assumed constant values (Supplemen-
tary Figs. 4b,d and 5b,d). By contrast, the stochastic model accom-
modates time-dependent variations in seasonal amplitudes, resulting 
in reduced (often near-zero) residuals (Supplementary Figs. 4b,d and 
5b,d), demonstrating the advantage of the stochastic-seasonal model 
in capturing transient seasonal variations rather than fixed annual 
and semiannual cycles83.

The GWS rates for each delta are summarized in Supplementary 
Table 2, and Fig. 3a and Extended Data Fig. 8a show the relationship 
with the subsidence rates. Negative GWS trends indicate mass deple-
tion, primarily driven by groundwater extraction, whereas positive 
trends represent net groundwater accumulation due to recharge pro-
cesses, reduced extraction or hydrological interventions. To evaluate 
the reliability of GRACE-derived GWS trends, we compared them with 
in situ groundwater level trends for 18 deltas (Supplementary Fig. 6). 
Groundwater levels were compiled from two publicly available sources: 
13 deltas from ref. 84 and 5 deltas from the Global Groundwater Moni-
toring Network85. Given the spatial scale discrepancy between GRACE 
(basin-wide) and well observations (point-scale), we emphasized agree-
ment in trend direction rather than absolute magnitudes. Each site was 
categorized based on the sign of the GRACE and well trends, and a confu-
sion matrix was constructed to assess consistency. The analysis yielded 
an overall classification accuracy of 88.9%, with six sites exhibiting posi-
tive–positive trends (PPT) and 10 showing negative–negative trends 
(NNT). Only two sites showed mixed behaviour (NPT or PNT), and no site 
exhibited fully opposing trends. Moreover, a high correlation (R = 0.7) 
was observed between the GRACE-based GWS and well-derived trends, 
further supporting the consistency of GRACE estimates at the basin 
scale despite localized variability in in situ measurements. Although 
the coarse spatial resolution of GRACE/GRACE-FO may not capture 
localized variations84, its basin-scale sensitivity is well-suited to char-
acterizing basin-wide groundwater trends. Moreover, the dominance 
of groundwater extraction in many deltas2,20,31 probably ensures that 
GWS trends are the primary signal captured.

We find a modest linear correlation (R = 0.5) between GWS and sub-
sidence rate; however, a cubic regression model (R = 0.6) provides a 
better fit (Extended Data Fig. 8a).

Sediment flux alteration. We obtained values for the sediment flux 
alteration for the 40 deltas from ref. 29. This dataset provides a global 
assessment of fluvial sediment supply, distinguishing between pris-
tine sediment fluxes (before substantial anthropogenic influences) 
and disturbed or contemporary sediment fluxes (reflecting human 
influences such as dam construction and land-use changes) within the 
contributing delta basins. We quantified the per cent change in sedi-
ment flux for each delta using the following equation, which expresses 
the relative alteration (increase or decrease) in sediment delivery due 
to human activities:









ΔSediment flux =

Disturbed sediment flux
Pristine sediment flux

− 1 × 100% (9)

The pristine and disturbed sediment flux, along with computed sedi-
ment flux changes for each delta, are summarized in Supplementary 
Table 2. A negative sediment flux change indicates a decline or loss in 
fluvial sediment supply (disturbed < pristine) due to human activities, 
whereas a positive sediment flux change reflects an increase or gain 
(disturbed > pristine). We acknowledge that this framework represents 
a simplified characterization of complex sediment delivery processes 
and may not capture all temporal variations in sediment supply. Fur-
thermore, some concerns have been raised about potential errors in 
global sediment flux datasets86, which we consider as a limitation in 
our analysis.



Figure 3a and Extended Data Fig. 8b show the relationship between 
sediment flux change and subsidence rates. Although a poor correlation 
(R < 0.4) is observed, we find that 62% of the deltas (25 out of 40) exhibit 
negative sediment flux change, indicating widespread human-induced 
reductions in sediment supply.

Urban expansion. Urban expansion is one of the most visible and rapid 
types of ongoing anthropogenic changes in river deltas6. To assess 
how population-driven land-use changes may affect subsidence rates 
across deltas, we used a global 1/8° (about 12.5 km) urban land fraction 
dataset, derived from high-spatial-resolution remote sensing observa-
tions87. This dataset tracks the conversion of natural landscapes (that is, 
wetlands and forests) into built environments and serves as a proxy for 
land-use changes that may exacerbate subsidence through increased 
infrastructure loading and increased groundwater demand. We quanti-
fied the urban fraction change in deltas in the twenty-first century by 
calculating the percentage change in the proportion of urban areas 
relative to total delta area between 2000 and 2020.

Supplementary Table 2 summarizes the urban fraction dataset (2000 
and 2020) and the urban fraction change for each delta. Figure 3a and 
Extended Data Fig. 8c show the subsidence–urban expansion relation-
ship across the 40 deltas. All deltas showed consistent urban expansion 
in the twenty-first century, ranging from relatively low increases (<1%) 
in the Ogooué river delta to significant increases (>400%) in the Indus 
delta. However, despite this rapid expansion, the Indus delta remains 
one of the least urbanized, with only 0.4% of its total area classified 
as urban in 2020. By contrast, the Ciliwung ( Jakarta) and Neva (Saint 
Petersburg) deltas exhibit the highest urban fractions, exceeding 50%. A 
logarithmic fit best describes the full dataset and reveals a moderate but 
significant nonlinear inverse correlation (correlation, R = 0.38–0.51), 
indicating that deltas with significant urban land conversion tend to 
experience more pronounced land sinking (Extended Data Fig. 8c). 
Steadily urbanizing deltas, such as the Rio Grande and Rhine–Meuse, 
exhibit slower subsidence rates, whereas rapidly urbanizing deltas, 
such as the Brahmani and Yellow River deltas, show faster rates of land 
sinking. However, regional variability is evident, as some deltas devi-
ate from the overall trend (for example, Indus and Cauvery deltas). 
When excluding outliers (the Indus and Cauvery deltas), subsidence 
and urban expansion exhibit a strong linear correlation across deltas 
(Extended Data Fig. 8c).

We also explored the relationship among the anthropogenic driv-
ers (Extended Data Fig. 8d–f), finding a low (R = 0.1–0.3) correlation 
depending on the specific driver.

RF analysis for identifying anthropogenic drivers of subsidence 
and elevation loss
Given the nonlinear and interacting relationships among GWS, sedi-
ment flux alteration, urban expansion and residual land subsidence 
(after GIA correction) discussed above, a machine learning framework 
was implemented to model these complexities. First, we attempted a 
multilinear regression model, incorporating interaction terms between 
variables, formulated as

∑ ∑ ∑x x X x X X ϵVLM = + + ( ) + (10)
i

n

i i
j

m

k j

m

jk j k0
=1 =1 = +1

where VLM is the predicted VLM, x0 is the intercept, Xi,j,k are the predic-
tor variables (GWS, sediment flux alteration and urban expansion), xi,j,k 
are the regression coefficients for each predictor variable, xjk repre-
sents the interaction effects between predictor variables and ϵ is the 
residual error term. However, this multilinear regression model yielded 
poor performance (correlation R = 0.38; R2 = 0.15; RMSE = 4.7 mm yr1) 
(Fig. 3a), demonstrating the inefficiency of linear models to capture 
these complex dependencies and the need for a machine learning 
model.

Next, we used an RF machine learning model to better account for 
these complex nonlinear interactions between variables. RF has been 
widely applied in environmental and hydrological studies to model 
complex systems with nonlinear dependencies, outperforming tradi-
tional regression techniques in similar contexts88–92. The RF model is 
well-suited for this analysis due to its ability to handle small datasets (40 
deltas), its simpler hyperparameter tuning, and its ability to compute 
feature importance. In this study, the primary objective for applying RF 
is not to predict the subsidence rates, but rather to extract key features 
that explain the dynamic relationships between anthropogenic drivers 
and subsidence across global deltas.

The RF algorithm is an ensemble learning method that uses the 
strength of multiple independent regressor decision trees {T}, in which 
each tree {Tt} is trained on a randomly sampled subset of the input 
features ({X = X1, X2, X3}, representing GWS, sediment flux and urban 
expansion) through bootstrap aggregation (bagging). Key hyperparam-
eters, including the number of trees, maximum tree depth, minimum 
samples per split and minimum samples per leaf, were optimized using 
grid search with five-fold cross-validation to minimize overfitting and 
maximize predictive accuracy93. This ensemble approach enhances 
predictive performance by creating a learning environment in which 
a large number of predictors work on various characteristics of the 
input features and learn to combat overfitting and generate predic-
tions (VLM) by computing the average of all decision tree predictions:

∑T
T XVLM =

1
( ) (11)

t

T

t
=1

The RF regressor optimizes each decision tree using the mean square 
error (MSE) defined as a cost function to identify node splits and model 
performance during model training and testing:

∑N
MSE =

1
(VLM − VLM ) (12)

i

N

i i
=1

2


where VLMi is the observed VLM rate for individual delta i, VLMi
  is the 

predicted VLM rate and N is the total number of observations. To assess 
uncertainty, we used Monte Carlo simulations to create multiple hold-
out fractions (0.1–0.5) across 100 iterations, randomly subsampling 
the 40 deltas for training and validation in each iteration. This random 
partitioning ensures that each delta is used in both training and valida-
tion phases across iterations, enhancing the robustness against over-
fitting and sampling bias. The final RF model predictions were obtained 
by averaging prediction estimates across all iterations. The final model 
performance was evaluated using the coefficient of determination 
(R2), RMSE and mean absolute error (MAE):

R = 1 −
∑ (VLM − VLM )

∑ (VLM − VLM )
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where VLMi is the mean observed VLM rate, and the other variables are 
defined in equation (12). The feature importance If for input feature 
{X = X1, X2, X3} was computed using the following equation, based on 
the cumulative reduction in node, j impurity among all the trees:

∑I
I

N
=

Δ
(16)

j N

j
f

∈



Article
where N denotes the total number of trees and ΔIj denotes the change 
in impurity.

Although RF effectively captures nonlinear relationships, its 
ensemble structure limits delta-specific interpretability. To resolve 
local insights into delta-specific subsidence drivers, we applied LIME, 
a technique within the field of explainable artificial intelligence (XAI)94. 
LIME approximates black-box models such as RF by fitting interpret-
able models to perturbed samples of the input data, allowing for local 
feature importance estimation. For each delta Xi, LIME approximates 
the RF prediction locally by using a linear surrogate model trained on 
perturbed instances around Xi. The explanation function is obtained 
by solving the following minimization problem:

ξ X L f g Ω g( ) = arg min[ ( , , π ) + ( )] (17)i
g G

X
∈ i

where ξ(Xi) is the local interpretable model for each delta Xi, g is the 
interpretable model, f is the RF model, π Xi

 is a proximity kernel, 
L f g( , , π )Xi

 is the loss function measuring the differences between f and 
g, and Ω(g) penalizes complexity. This process was repeated for each 
delta, and deltas with low LIME model fidelity (R2 < 0.5) were excluded 
to ensure reliable interpretation (Supplementary Table 2). The final 
dataset for interpretation consisted of 30 deltas, in which LIME pro-
duced more consistent feature importance estimates. The feature 
importance scores from LIME are normalized to obtain normalized 
LIME (nLIME) scores:

I
ω

ω
=

| |
∑ | |

(18)
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f
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f ′∈ f ′

where ωf is the LIME-derived coefficient for feature f and F is set for all 
features. The nLIME scores provide an instance-specific (local) explana-
tion rather than a global one to evaluate the relative contributions of 
GWS, sediment flux alteration and urban expansion in each delta. The 
nLIME values for each delta are summarized in Supplementary Table 2 
and were analysed in a ternary diagram to visualize the heterogeneity 
in delta-specific subsidence and elevation-loss drivers (Fig. 3b).

It is important to emphasize that machine learning model predictions 
are inherently dependent on the input variables and their distribu-
tions. In this study, the predictor–response relationship implies that 
variations in predictor magnitudes (for example, subsidence rates and 
GWS rates), dataset composition (for example, inclusion or exclusion 
of specific deltas), and the selection of input features could influence 
the weighted feature importance across deltas. Moreover, localized 
policy interventions, such as groundwater extraction regulations or 
sediment management initiatives, may alter subsidence and eleva-
tion change trends over time, potentially affecting future predictions. 
Therefore, although our RF-based analysis provides valuable insights 
into the anthropogenic drivers of subsidence and elevation loss, these 
results should be interpreted with an awareness of dataset limitations 
and the potential for evolving land-use and hydrological management 
practices. Furthermore, the inclusion of additional deltas, particularly 
those representing undersampled geographic regions or differing geo-
morphic, socioeconomic or governance conditions, may shift model 
behaviour and feature rankings, as is typical in data-driven learning 
frameworks. Nonetheless, within the context of the current global 
delta sample and observed subsidence patterns, the RF-derived feature 
importance values provide a consistent and interpretable estimate of 
the relative influence of anthropogenic drivers under present condi-
tions for these deltas.

Historical, current and projected SLR rates
We analysed historical (twentieth century), present-day (early 
twenty-first century) and projected (2050 and 2100) SLR rates to assess 
the relative and combined impacts of rising seas and sinking lands on 
global river deltas.

Historical relative sea-level changes were obtained from the Revised 
Local Reference database of the Permanent Service for Mean Sea Level95 
(https://psmsl.org), which provides monthly relative sea-level records 
from globally distributed tide gauge stations. These tide gauge records 
have undergone quality control procedures, including corrections for 
datum inconsistencies, jumps and spurious data points, and validation 
through comparisons with neighbouring tide gauge stations95,96. For 
this study, we selected 20 tide gauge stations across 15 deltas (the Mis-
sissippi, Rio Grande, Fraser, Amazon, Chao Phraya, Mekong, Red River, 
Nile, Ganges–Brahmaputra, Vistula, Rhine–Meuse, Chikuma-gawa, 
Yangtze, Pearl and Rioni deltas), considering only stations within 100 m 
of the delta boundary and at least 5 years (twentieth century) of valid 
record. The RSLR rates for each delta were estimated by applying the 
stochastic-seasonal model (equations (6–8)) over the full observational 
record for each tide gauge. For deltas with multiple stations (for exam-
ple, the Mississippi, Ganges–Brahmaputra and Rhine–Meuse deltas), 
individual station rates were averaged to provide a delta-wide estimate 
of twentieth-century RSLR. Note that the representativeness of the 
derived RSLR may vary for each delta following individual tide gauge 
characteristics (for example, is the station founded on bedrock or 
‘floating’ in unconsolidated sediments, is the station GNSS corrected). 
Supplementary Fig. 7 shows the time series of relative sea level over the 
twentieth century for six representative deltas. Supplementary Table 1 
provides a complete summary of the RSLR rates for the 15 deltas. The 
median twentieth-century RSLR trend across all deltas is 2.9 mm yr–1, 
with measured rates ranging from –0.5 mm yr–1 in the Amazon delta 
(indicating declining twentieth-century sea level) to a maximum rate 
of 1.5 cm yr–1 in the Chao Phraya Delta (Fig. 5b).

To estimate present-day (early twenty-first century) absolute (geo-
centric) SLR rates, we used the multi-mission satellite altimetry data 
from 2001 to present, obtained from Copernicus Marine Environment 
Monitoring Service (CMEMS). This dataset provides 1/8° (about 12.5 km) 
gridded monthly sea level anomalies (SLA) referenced to a 20-year mean 
baseline (1993–2012). SLA estimates are derived from optimal inter-
polation, merging the level 3 along-track measurement from multiple 
contemporaneous altimeter missions ( Jason-3, Sentinel-3A, HY-2A, 
Saral/AltiKa, Cryosat-2, Jason-2, Jason-1, TOPEX/Poseidon, ENVISAT, 
GFO and ERS1/2)97 (https://marine.copernicus.eu/). Several necessary 
corrections have been applied to the raw altimetry data, including 
instrumental biases and drifts, geophysical, tidal and atmospheric 
corrections, to ensure accurate SLA estimates. Monthly mean sea-level 
anomalies were obtained for each delta by spatially averaging the altim-
etry grid points within a 100-m radius, culling outliers beyond the 
95th percentile. Supplementary Fig. 8 shows the monthly SLA time 
series in six deltas. We estimated the twenty-first-century trends in 
sea-level anomalies, using equations (6–8). The altimetry-derived 
geocentric SLR rates for the twenty-first century show exacerbating 
regional SLR rates over global sea-level estimates (about 4 mm yr–1) 
for 45% of the deltas (18 out of 40) (Supplementary Table 1). Regional 
sea-level rates vary from 0.2 mm yr–1 in the Parana delta to 7.3 mm yr–1 
over the Mississippi delta (Fig. 1 and Supplementary Table 1). However, 
a negative geocentric sea-level rate of −1.9 mm yr–1 was observed in 
the Rioni Delta (Black Sea) (Supplementary Table 1). This long-term 
sea-level decline in the twenty-first century persists in the background 
of short-term fluctuations (Supplementary Fig. 8d); a characteristic 
feature of Black Sea sea-level dynamics50. This twenty-first-century 
decline in geocentric sea level for the Rioni Delta represents more 
than a 100% reduction compared with historical (twentieth-century) 
rates, even when accounting for average VLM across the delta. To inves-
tigate this anomaly, we estimated VLM at the Poti tide gauge (Rioni 
Delta) by differencing twenty-first-century RSLR rates obtained from 
the Poti tide gauge station from geocentric SLR. The resulting VLM 
rate of −6.7 mm yr–1 matches the average InSAR-derived VLM rate 
(−5.9 ± 0.7 mm yr–1) within 100 m of the tide gauge. This rapid sub-
sidence rate at the coast of Poti represents localized conditions and 

http://psmsl.org
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highlights the need for caution when extrapolating point-based tide 
gauge measurements to infer delta-wide or city-wide subsidence and 
exposure. Note that satellite altimetry data, although highly valuable 
for global sea-level monitoring, were primarily optimized for open 
ocean conditions. Coastal environments naturally exhibit additional 
complexity due to processes such as shelf circulation, freshwater dis-
charge and tidal amplification, which contribute to the inherent vari-
ability in nearshore sea-level measurements compared with offshore  
altimetric observations.

We use projected sea-level rates from the Intergovernmental Panel 
on Climate Change Sixth Assessment Report (AR6)38,98 to assess 
future SLR rates across all deltas. The sea-level rate projections inte-
grate process-based models that account for the key contributors to 
climate-induced sea-level change, such as thermal expansion, ocean 
dynamics, and glacier and ice sheet mass loss, and consider uncertain-
ties in global temperature change and their influence on sea-level driv-
ers38. We focus on the no-VLM 50th percentile (median) projected rates 
for 2050 (mid-twenty-first century) and 2100 (end of the twenty-first 
century) under shared socioeconomic pathway 2-4.5 (SSP2-4.5) and 
SSP5-8.5 scenario. SSP5-8.5 represents a high reference scenario associ-
ated with the highest emission levels (global atmospheric CO2 concen-
trations exceeding 800–1,100 ppm by 2100) and associated warming 
of 3.3–5.7 °C (refs. 38,99). These projections provide an upper-bound 
reference scenario, capturing the potential worst-case outcome for 
future SLR. Figure 4c shows the comparison of projected SLR rates 
with observed land subsidence rates.

Data availability
The vertical land motion data for all deltas are available at Zenodo100 
(https://doi.org/10.5281/zenodo.15015923). GRACE data are available 
from https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC-GRFO_MAS-
CON_GRID_RL06.3_V4. The Sentinel-1 data used in this study are pub-
licly available through the Alaska Satellite Facility and can be accessed 
at https://search.asf.alaska.edu. The satellite altimetry data for sea-level 
change are available from Copernicus Marine Environment Monitoring 
Service (CMEMS) and are available through http://marine.coperni-
cus.eu/. The population for deltas was estimated using the WorldPop 
dataset available through https://www.worldpop.org/. Source data 
are provided with this paper.

Code availability
The WabInSAR algorithm v.5.6 used to perform the SAR analysis is avail-
able at https://www.eoivt.com/software. The code for the RF analysis 
using MATLAB 2024b is available at Zenodo100 (https://doi.org/10.5281/
zenodo.15015923).
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Extended Data Fig. 1 | Global Distribution of Delta Area and Population 
Below Mean Sea Level. Each circle represents one of the 955 global deltas from 
Edmonds et al.6, with latitude constrained to below 60°N due to limitations in 
the digital elevation model dataset. The circle color indicates the land area 

below mean sea level (exposed area), while the circle sizes represent the 
population living in those areas (exposed population). The 40 deltas selected 
for this study are labelled. Global coastlines are based on public-domain data 
from the World Data Bank II (via GSHHG), distributed with MATLAB.
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Extended Data Fig. 2 | Spatial Pattern of Vertical Land Motion (VLM) in Deltas. 
Spatial maps of VLM rates for the (a) Rio Grande (USA-Mexico), (b) Grijalva 
(Mexico), (c) Magdalena (Colombia), (d) Amazon (Brazil), (e) Senegal (Senegal), 
(f) Saloum (Senegal), (g) Volta (Ghana), (h) Cross (Nigeria), (i) Wouri (Cameroon), 

( j) Ogooué (Gabon), (k) Zambezi (Mozambique), and (l) Rhine-Meuse  
(the Netherlands) deltas. Positive VLM (green-purple hues) indicates elevation 
gain (uplift), while negative VLM (yellow-orange-red hues) indicates elevation 
loss (land subsidence). Background image is ESRI, streets-dark.



Extended Data Fig. 3 | Spatial Pattern of Vertical Land Motion (VLM) in 
Deltas. Spatial maps of VLM rates for the (a) Rhone (France), (b) Vistula 
(Poland), (c) Neva (Russia), (d) Ceyhan (Türkiye), (e) Rioni (Georgia), (f) Indus 
(Pakistan), (g) Kabani (India), (h) Cauvery (India), (i) Godavari (Cameroon),  

( j) Mahanadi (India), (k) Brahmani (India), and (l) Irrawaddy (Myanmar) deltas. 
Positive VLM (green-purple hues) indicates elevation gain (uplift), while negative 
VLM (yellow-orange-red hues) indicates elevation loss (land subsidence). 
Background image is ESRI, streets-dark.
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Extended Data Fig. 4 | Spatial Pattern of Vertical Land Motion (VLM) in 
Deltas. Spatial maps of VLM rates for the (a) Ciliwung (Indonesia), (b) Brantas 
(Indonesia), (c) Yangtze (China), and (d) Chikuma-gawa (Japan) deltas.  

Positive VLM (green-purple hues) indicates elevation gain (uplift), while negative 
VLM (yellow-orange-red hues) indicates elevation loss (land subsidence). 
Background image is ESRI, streets-dark.



Extended Data Fig. 5 | Spatial Pattern of Horizontal Land Motion (HLM)  
in Deltas. Spatial map of HLM for the (a) Fraser (Canada), (b) Rio Grande 
(USA-Mexico), (c) Grijalva (Mexico), (d) Magdalena (Colombia), (e) Rhine  
(the Netherlands), (f) Rhone (France), (g) Po (Italy), (h) Vistula (Poland), and  

(i) Neva (Russia) deltas. Positive HLM (green-purple hues) indicates eastward 
motion, while negative HLM (yellow-orange-red hues) indicates westward 
motion. Near-zero HLM (yellow hues) represents areas with minimal horizontal 
displacement. Background image is ESRI, streets-dark.
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Extended Data Fig. 6 | Spatial Pattern of Horizontal Land Motion (HLM) in 
Deltas. Spatial map of HLM for the (a) Rioni (Georgia), (b) Ceyhan (Türkiye),  
(c) Niger (Nigeria), (d) Cross (Nigeria), (e) Wouri (Cameroon), (f) Nile (Egypt), 
(g) Zambezi (Mozambique), (h) Indus (Pakistan), and (i) Mahanadi (India) deltas. 

Positive HLM (green-purple hues) indicates eastward motion, while negative 
HLM (yellow-orange-red hues) indicates westward motion. Near-zero HLM 
(yellow hues) represents areas with minimal horizontal displacement. 
Background image is ESRI, streets-dark.



Extended Data Fig. 7 | Spatial Pattern of Horizontal Land Motion (HLM) in 
Deltas. Spatial map of HLM for the (a) Brahmani (India), (b) Irrawaddy (Myanmar), 
(c) Chao Phraya (Thailand), (d) Mekong (Vietnam), (e) Red (Vietnam),  
(f) Ciliwung (Indonesia), (g) Brantas (Indonesia), (h) Yellow (China), and  

(i) Chikuma-gawa (Japan) deltas. Positive HLM (green-purple hues) indicates 
eastward motion, while negative HLM (yellow-orange-red hues) indicates 
westward motion. Near-zero HLM (yellow hues) represents areas with minimal 
horizontal displacement. Background image is ESRI, streets-dark.
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Extended Data Fig. 8 | Relationship between Vertical Land Motion (VLM) 
Rates and Anthropogenic Drivers. Scatter plots of VLM (mm per year) versus 
(a) groundwater storage (GWS) rate (mm per year), (b) sediment flux change (%), 
and (c) urban fraction (UF) change (%) for the 40 deltas. Scatter plot of GWS  
rate (mm per year) versus (d) sediment flux change (%) and (e) UF change (%).  
(f) Scatter plot of sediment flux change (%) versus UF change (%). Each relationship 

is analyzed using linear regression as well as polynomial and logarithmic 
regression models to assess the best-fit representation. Multiple regression 
fits (linear, quadratic, logarithmic) are shown to illustrate the varied nature of 
relationships between individual predictors and VLM, demonstrating the need 
for a nonlinear modeling approach.
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