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Global subsidence of river deltas
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River deltas sustain dense human populations, major economic centres and

vital ecosystems worldwide'?. Rising sea levels and subsiding land threaten the
sustainability of these valuable landscapes with relative sea-level rise and associated
flood, land loss and salinization hazards'>. Despite these risks, vulnerability
assessments are impeded by the lack of contemporary, high-resolution, delta-wide
subsidence observations®*. Here we present spatially variable surface-elevation
changes across 40 global deltas using interferometric synthetic aperture radar.
Using this dataset, we quantify delta surface-elevation loss and show the prevalence
and severity of subsidence in river deltas worldwide. Our analysis of three key
anthropogenic drivers of delta elevation changes shows that groundwater storage
has the strongest relative influence on vertical land motionin 10 of the 40 deltas. The
other deltas are either influenced by multiple drivers or dominated by sediment flux
or urban expansion. Furthermore, we find that contemporary subsidence surpasses
absolute (geocentric) sea-level rise as the dominant driver of relative sea-level rise for
most deltas over the twenty-first century. These findings suggest the need for targeted

interventions addressing subsidence as animmediate and localized challenge, in
parallel with broader efforts to mitigate and adapt to climate change-driven global

sea-levelrise.

River deltas, which occupy only 1% of land area, are among the most
vital landforms on Earth'. Globally, deltas host an estimated 350-500
million people (representing 4-6% of the global population), including
10 of the 34 megacities of the world' 2. These dynamic landforms serve
important socioeconomic, ecological and energy-related functions®®.
They sustain agricultural productivity and fisheries, their ecosystems
sustainimportant biodiversity and their infrastructure, such as ports
and transportation networks, anchors maritime trade vital to national,
regional and global economies®”.

Thisrecognizedimportance, which makes deltasindispensable, also
increases their exposure to compounding climatic, environmental and
anthropogenic threats>®*°. Aslow-lying landforms, with extensive areas
lessthan2 mabove sealevel", deltas are acutely susceptible to rising sea
level, storm surge, land subsidence, shifting temperature and rainfall
patterns, and other environmental pressures, which are amplified by
climate change**”1°1213 These pressures degrade agricultural land;
disrupt freshwater availability; exacerbate coastal and fluvial flood-
ing; promote wetland loss, saltwater intrusion and shoreline retreat;
and threaten infrastructure in deltas*>***%, Beyond direct physical
impacts, theinterplay of these hazards also creates potential cascading
socioeconomic consequences. Forexample, land loss and freshwater
scarcity may drive displacement and migration, heightening competi-
tion for dwindling resources and fuelling social tensions'®". Together,
these intersecting climatic, environmental, human-driven pressures

and multi-hazards render deltas the most fragile landscapes on Earth,
with their low elevation and high urban exposure placing them at the
forefront of climate and environmental risks**° (Extended DataFig. 1).

Among these threats, land subsidence often emerges as an impor-
tant contributor to risks in global river deltas'>2'8*, This predomi-
nantly human-driven process is just as, or more, influential than
climate-induced sea-level rise (SLR) in the twenty-first century>?°%,
with subsidence control now providing an important component of
future coastal adaptation strategies?>?*. Despite its perceived impor-
tance, land subsidence remains underrepresented in global assess-
ments of delta vulnerability®?* largely because of the lack of modern,
high-resolution subsidence observations**, Even with recent advances
inspace-based geodetic monitoring, high-resolution synoptic measure-
ments of subsidence rates remain scarce, as most observations remain
restricted to main urban centres within deltas, neglecting rural and
ecologically critical zones*. Understanding delta-wide spatial char-
acteristics of contemporary land elevation changes is important for
informing their sustainable management.

Here, we present high-spatial-resolution datasets of surface-elevation
change derived from Sentinel-1synthetic aperture radar (SAR) inter-
ferometry across 40 deltas globally (Fig. 1). These datasets capture
delta-wide temporal trends, subsidence rates and horizontal motion
at 75 mresolution, spanning five continents and 29 countries. Our
analysis encompasses all major river deltas with a population exceeding
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Fig.1|Land subsidencein global deltas. Each circlerepresentsthe location
ofthe 40 deltas evaluated in this study, colour-coded by the average land
subsidencerate. Thesize of the circle represents the percentage of the delta
areasubsiding faster than geocentric SLR. For visualization purposes, the
geocentric SLRrateis shownasacolour gradient over entire watersheds or

3 million people*, historically recognized sinking deltas? and repre-
sentatives of less-populated, understudied deltas of regional ecological
and economic importance (Methods).

Global analysis of deltasubsidence

We measured the spatial patterns and rates of subsidence in 40 del-
tas by analysing the complete archive of the Sentinel-1 SAR dataset
between 2014 and 2023 using advanced multitemporalinterferometric
SAR (InSAR) analysis (Methods). INSAR measures surface-elevation
changes, capturing vertical land motion (VLM), sediment deposition
and erosional processes'®>?. For consistency, to reflect both VLM and
surface-elevation change in the deltas, we use the terms VLM or eleva-
tion gain or loss to describe net surface-elevation change across all
deltaenvironments, with positive valuesindicating uplift or elevation
gain and negative values indicating subsidence or net elevation loss.
Throughout this study, negative VLM is quoted with negative signs and
references land subsidence rates, whereas only the absolute values are
reported when presenting subsidence rates.

Our analysis shows that subsidence threatens deltas globally, with
the delta-scale averagerate of VLM onall deltasindicating subsidence
(Fig.1). In12 out of 40 deltas, the average sinking rate is moderate, at
less than 2 mm yr™.. By contrast, more than half of the deltas exhibit
subsidence rates exceeding 3 mm yr~, and in13 of these deltas (Nile, Po,
Vistula, Ceyhan, Brahmani, Mahanadi, Chao Phraya, Mekong, Red, Cili-
wung, Brantas, Godavariand Yellow River), the average subsidence rates
exceed the current estimates of global SLR (that is, about 4 mm yr™).
Among these, the Chao Phraya (Thailand), Brantas (Indonesia) and
Yellow River (China) deltas show an average sinking rate of more than
twice the current global SLR rate. To further highlight the severity of
subsidence in deltas, we compared the subsidence with the regional
geocentric SLR rates for the twenty-first century (2001-present).

basins, although this does not represent the actual extent of exposure. Global
coastlines are based on public-domain data from the CIA World DataBank I
(using GSHHG (Global Self-consistent, Hierarchical, High-resolution Geography
Database)), distributed with MATLAB. The delta basin polygons were obtained
along with the sediment flux dataset from ref. 29.

In 18 of the 40 deltas (the Nile, Po, Vistula, Ceyhan, Rioni, Brahmani,
Mahanadi, Ganges-Brahmaputra, Godavari, Chao Phraya, Mekong,
RedRiver, Ciliwung, Brantas, Amazon, Parana, Pearl and Yellow River),
the average rate of local land subsidence is greater than the rate of
regional geocentric SLR (Fig.1and Supplementary Table 1). However,
inalmostevery delta (except Rio Grande) atleast1% of the delta areais
subsiding faster than both global and geocentric sealevels (Fig.1and
Supplementary Table1).

Amongall deltas, we find that at least 35% of the areais sinking, and in
38deltas (excluding Nevaand Fraser), more than 50% of the deltaarea
is sinking (Fig. 2a). Of the 40 deltas, 19 show widespread subsidence
patterns, with greater than 90% of the delta area affected by subsid-
ence (for example, Mississippi, Niger, Nile, Rhine-Meuse, Po, Vistula,
Brahmani, Mahanadi, Ganges-Brahmaputra, Chao Phraya, Mekong
and Brantas deltas). Deltas with notable subsiding areas with greater
than 50% of the delta area sinking faster than 5 mm yr™include the
Chao Phraya (94% of deltaarea), Nile (80%), Brahmani (77%), Po (74%),
Mahanadi (69%), Brantas (66%), Vistula (57%), Yellow River (53%) and
Mekong (51%) deltas (Fig. 2a and Supplementary Table 1). In sum, we
estimate that a total delta area of 460,370 km? is exposed to subsid-
ence. If we consider a global habitable geomorphic area of 710,000~
855,000 km?for deltas®?, approximately 54-65% of global delta areas
are sinking just from the analysis of the 40 deltas. By region, South
Asia, East Asia and Southeast Asia, with 17 representative deltas, have
the greatest exposure to subsidence, with 274,000 km? of delta area
subsiding. Africa, South America, North America and Europe have
total subsiding deltaareas of 78,800 km?, 39,800 km?,37,800 km?, and
30,000 km?, respectively. Seven large deltas—Ganges-Brahmaputra,
Nile, Mekong, Yangtze, Amazon, Irrawaddy and Mississippi deltas—
contribute about57% of the total subsiding deltaarea, with acombined
areaof 265,000 km?. Coastal cities such as Alexandria (Nile), Bangkok
(Chao Phraya), Dhaka and Kolkata (Ganges-Brahmaputra), Shanghai
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Fig.2|Spatial patternof VLM across global deltas. a, Proportion ofeach
deltaexposed to differentrates of subsidence. Note that only subsiding areas
arerepresented in each bar, and areas of uplift within each deltaare omitted
to emphasize the extent of elevation loss. b-m, Spatial maps of VLM rates

for the Fraser (Canada) (b), Mississippi (the USA) (c), Parana (Argentina) (d),
Niger (Nigeria) (e), Nile (Egypt) (f), Po (Italy) (g), Ganges-Brahmaputra
(India-Bangladesh) (h), Chao Phraya (Thailand) (i), Mekong (Vietnam) (j),

(Yangtze), Yangon (Irrawaddy), Can Tha (Mekong), Thai Binh (Red
River), Niigata (Chikuma-gawa), Jakarta (Ciliwung), Surabaya (Brantas)
and Dongying (Yellow River) are experiencing subsidence at rates equal
to or exceeding the delta-wide averages, indicative of the intensity of
subsidence and elevation loss processes in cities on deltas.
Furthermore, we observe non-uniform spatially variable VLM within
individual deltas, reflecting the complexinterplay of natural and anthro-
pogenic processes>*>¥ (Fig.2 and Extended Data Figs. 2-4). Although
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NA, North America
SA, South America

Yellow, China

Red River (Vietnam) (k), Pearl (China) (I), Yellow River (China) (m) deltas.
Positive VLM (green-purple hues) suggests uplift or elevation gain, whereas
negative VLM (yellow-orange-red hues) indicates land subsidence. The

spatial VLM maps for the other 28 deltas are shown in Extended Data Figs. 2-4.
Backgroundimageinb-misEsri, streets-dark.Scalebars, 5 km (b); 50 km (c,f h,j);
20km(d,e,i,k,1,m); 10 km (g).

all deltas exhibit an overall trend of subsidence, localized and broad
zones of uplift, which vary from O mm yrtogreater than 5 mm yr™are
observedinsomeareas (Fig.2b,d, k,m, and Extended Data Figs. 2e,f,i,j,|
and3c,f).Insome deltas (for example, Wouri, Zambezi, Indus, Ciliwung
and Yellow River), the observed uplift or elevation-gaining parts corre-
late with patterns of horizontal land motion (Extended Data Figs. 5-7).
Possible mechanisms may include sediment redistribution processes
potentially driven by river dynamics or growth faulting, either of which
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Fig.3|Anthropogenicdriversofland subsidence and elevationlossin
global deltas. a, Bubble plot showing the relationship between VLM rates and
anthropogenicdrivers across deltas. Plot shows VLM rate (mm yr™) against
GWSrate (mmyr™). Bubble colours represent sediment flux change (%), in
which positive values (blue colours) indicate increased sediment supply

due tohumanactivities (and thereby increased potential to gain elevation
and compensate subsidence-induced elevation loss), whereas negative values

can cause localized zones of elevation gain even within a predominantly
subsiding deltaic system?>?, This highlights the necessity of compre-
hensive assessments and models of delta vulnerability to consider not
only overall absolute subsidence ratesbut also the spatial heterogeneity
of elevation change dynamics.

Anthropogenicdrivers of delta subsidence

All deltas, by their inherent nature, subside over time as recently
deposited sediments or in situ organic material compact under their
weight®*~32, a process further influenced by isostatic adjustments and
tectonic activity'®”. However, human interventions have accelerated
subsidence rates in many of the major deltas of the world, transforming
agradual geological process into an urgent environmental crisis*?**,
The primary anthropogenic drivers that dominate delta subsidence
include excessive groundwater extraction, oil and gas exploitation, and
land-use changes associated with urbanizationand agriculture*®1320333,

To quantify the relative contributions of anthropogenic factors
to delta subsidence and elevation loss, we analysed the relationship
between three main anthropogenic drivers—groundwater storage
change, sediment flux alteration and urban expansion—and non-glacial
isostatic adjustment VLM/subsidence rates across the 40 deltas (Meth-
ods and Supplementary Table 2).

Figure 3a and Extended Data Fig. 8 show the interplay of anthropo-
genic factors and their correlation with subsidence rates across the 40
deltas. Deltas experiencing groundwater storage (GWS) loss (indicative
of groundwater extraction), negative sediment flux change (red and
yellow hues; reflecting sediment reduction due to upstream human
activities) and higher urban population growth tend to have higher
rates of subsidence (for example, the Yellow River, Po, Nile, Chao Phraya
and Mekong deltas). Conversely, deltas with GWS stability or gain (net
increasein groundwater storage), positive sediment flux change (blue
colours; sediment surplus) and limited urban expansion show lower
subsidence rates (for example, Saloum, Amazon and Ogooué deltas).

The initial multilinear regression (MLR) model, which included
interaction terms between the different anthropogenic factors,

‘Urban fraction

(yellow-orange-red colours) indicate adecline in sediment availability.
Bubblesizeindicates urban fraction change (%), with larger circles representing
agreater urban expansion over the twenty-first century. The dashed line
represents the MLRfit. See Extended Data Fig. 8 for individual pairwise
relationships between each anthropogenicdriver and VLM. b, Ternary plot of
subsidencerates with nLIME scores.

poorly captured subsidence dynamics on the deltas (R?= 0.2 + 0.1),
as it failed to account for nonlinear interactions between the dif-
ferent processes (Fig. 3a). For instance, urban expansion not only
directly increases infrastructure loading but also indirectly elevates
groundwater demand, thereby compounding aquifer depletion and
extraction-induced subsidence, which are synergistic effects that
linear models cannot resolve.

Toaddress these limitations, we used arandom forest (RF) machine
learning approach designed to capture nonlinear relationships and
variable interactions. The RF model shows a moderate to strong rela-
tionship between the predictors (GWS, sediment flux and urban expan-
sion) and VLM, achievingimproved performance over the MLR model
(R?>=0.6 + 0.1, RMSE (root meansquare error) =1.9 + 0.1 mm yr'; MAE
(mean absolute error) =1.4 + 0.2 mm yr™), and capturing complex,
non-additive relationships between anthropogenic stressors and sub-
sidencerates (Fig.3aand Supplementary Fig.1). However, we observe
some underestimation at high subsidence rates (>8.0 mm yr™) (Sup-
plementary Fig.1), which probably suggests that natural processes or
other anthropogenic predictors (not considered in our analysis) may
contribute to subsidencein these highly dynamic deltaic environments.

Note that the primary objective in our analysis is not to predict
subsidence rates across deltas, but rather to identify and extract key
features that explain the dynamic relationships between the three
anthropogenic drivers and subsidence across these deltas. Feature
importance analysis from the RF model identifies GWS as the domi-
nant anthropogenic predictor of delta subsidence (0.5 + 0.2), whereas
sediment flux change (0.3 + 0.2) and urbanization (0.3 + 0.1) have sec-
ondaryroles as subsidence rate predictors across these deltas (Fig.3a
and Supplementary Fig. 1b). However, the large standard deviations
in feature importance values reflect substantial variability in predic-
tor dominance across subsampled delta subsets, suggesting that the
primary contributors to subsidence differ locally depending on the
anthropogenic or geomorphic context. To resolve delta-specific mecha-
nisms, we applied local interpretable model-agnostic explanations
(LIME), whichinterprets individual predictions by approximating the
RF model locally with simpler, interpretable functions. Deltas with
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low LIME model fidelity (R? < 0.5) were excluded from this interpre-
tative analysis, refining the dataset from 40 to 28 deltas (Methods).
The low fidelity scores for some deltas could be due to unaccounted
processes (natural and/or other anthropogenic) in our RF model.
The retained 28 deltas show improved overall model performance
(R*=0.7+0.1;RMSE=0.4 + 0.1mm yr; MAE = 0.3 mm yr™), ensuring
reliable interpretation of local feature importance. Normalized LIME
feature importance scores (nLIME) showed substantial heterogene-
ity in predictor dominance (Supplementary Table 2). GWS emerged
as the most significant factor across the different deltas (0.6 + 0.3),
whereas sediment flux change (0.3 + 0.1) and urbanization (0.1+ 0.1)
exhibited lower but context-dependent impacts (Supplementary
Fig.1b).

To assess the dominant influence on land motion across individual
deltas, the nLIME for each delta was mapped onto a ternary diagram
(Fig.3b). Of the 28 deltas, 35%, including the Mekong, Ganges-Brahma-
putra, Rhine-Meuse, Fraser, Cauvery, Irrawaddy and Red River systems,
cluster withinthe GWS portion of the diagram (nLIME,s > 0.7), suggest-
ing that observed GWS changesinthese deltasare the primary driver of
subsidence amongthe three anthropogenic variables examined (Fig.3b
and Supplementary Table 2). The Chao Phraya and Yellow River deltas,
with the highest average subsidence rates, plot near the centre of the
ternary diagram, reflecting relatively balanced contributions from
GWS, sediment flux and urban expansion. Sediment flux correlates
most closely with elevation changes in deltaic systems, such as the
Saloum, Mississippi, Amazon and Rio Grande deltas, suggesting that
reduced sediment delivery may exacerbate land elevationloss inthese
deltas. The Nile, Po, Chikuma-gawa, Mahanadi, Kabani, Niger and Volta
deltas exhibit mixed contributions from GWS, sediment flux changes
and population change, with GWS slightly outweighing sediment defi-
citsaspredictorsinthe Nile and Po deltas, possibly reflecting reliance
onaquifer-dependent irrigation®. These findings are consistent with
delta-specific studies that attribute accelerated subsidence indensely
populated Asian deltas—Mekong, Ganges-Brahmaputra and Chao
Phraya—to urbanization and unsustainable groundwater extraction for
agriculture, industry and domestic use®°*'323¢_ Moreover, the Nile, Po
and Mississippi deltas, which were historically sustained by seasonal
floods that deposited sediments, are now documented to experience
severe sediment deficits due to dams and levees, accelerating eleva-
tion loss>?°%,

We acknowledge several limitations. First, GRACE-derived GWS
trends (spatial resolution of about 300-400 km) may introduce signal
leakage fromadjacentbasins, particularly affecting smaller deltas. Sec-
ond, the sediment flux dataset represents percentage changes between
pristine and disturbed conditions rather than contemporary absolute
rates, potentially masking recent trends. Third, other natural VLM
processes (sediment compaction and tectonics) and anthropogenic
drivers (hydrocarbon extraction and peat drainage) are not explicitly
separated. Fourth, RF model results areinherently dependentoninput
variable distributions and should be interpreted within the context
of these datasets. Last, although the 40 deltas represent a substantial
portion of global deltaarea and population, they are not globally rep-
resentative. Nevertheless, our analysis focuses on understanding the
relative influence of three key anthropogenic variables across these
diverse systems rather than providing delta-specific VLM budgets.
Future studies incorporating spatially dense, delta-specific datasets
will better resolve local-scale processes within individual deltas and
enablerigorous partitioning of anthropogenic compared with natural
contributions to land motion and elevation change.

Relativeimpacts of SLR and subsidence

Globally, deltas face a ‘double burden’ of climate-induced SLR and
sinking land, which together drive relative sea-level rise (RSLR) at
rates exceeding global averages**”#'8, Unlike SLR, which reflects
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global-scale processes and progresses at a relatively uniform rate
globally”?, subsidence operates at local to regional scales, is highly
variable and reflects localized natural and human processes'>?”*°, In
many deltas, contemporary rates of subsidence may surpass the cur-
rent SLR rates*" (see previous section), creating acompound hazard
in which RSLR is dominated not by climate-induced changes in sea
surface height but by VLM.

To quantify the contributions of SLR and land subsidence in deltas,
we evaluated their relative impact on the exposed delta populations.
Our analysis shows that current average subsidence rates exceed geo-
centric SLRin18 of the 40 deltas, including the Nile, Mekong, Red River,
Ganges-Brahmaputra, Brahmani, Mahanadi, Chao Phraya, Ciliwung,
Brantas and Yellow River deltas, affecting approximately 236 million
people—a population about 50% larger than those residing in deltas
inwhich the current rates of geocentric SLR outpace the subsidence
rates (156.9 million) (Fig. 4a). This disparity is particularly pronounced
for vulnerable populations occupying land below 1 m elevation™. In
these lowest elevation areas, subsidence dominates the contribution
to RSLR in about two-thirds of the deltas, including Amazon, Fraser,
Niger, Rhone, Vistula, Ganges-Brahmaputra, Mekong, Red River, Pearl,
Yangtze and Godavari deltas (Fig. 4b). Of the 76 million people living
in delta areas with an elevation below 1 m, 84% (63.7 million people)
reside in rapidly sinking areas of the deltas (Fig. 4b). These observa-
tions are striking, revealing the current dominance of subsidence over
geocentric SLR in global deltas. Moreover, the spatial heterogeneity
of VLM creates localized extreme rates of subsidence within deltas,
further exacerbatingtheir vulnerability. Under the current trajectory,
moderate emission scenarios (shared socioeconomic pathway 2-4.5
(SSP2-4.5)), current maximum subsidence rates in the deltas already
surpass projected twenty-first-century SLR rates (no VLM)*, Through
the end of the twenty-first century, current maximum subsidence
ratesin all 40 deltas exceed projected SLR rates (Fig. 4c). This dis-
parity extends to the 95th percentile subsidence rates, representing
widespread, high-magnitude sinking across the deltas. In 29 deltas,
95th percentile subsidence rates exceed the projected SLR rates by
2050, outpacing SLR by 1.1 (Niger delta) to 10.3 (Yellow River delta)
times. By 2100, as the current maximum rate of SLR (SSP2-4.5) accel-
erates to 0.9 cm yr™, current 95th percentile subsidence rates still
dominatein 22 deltas, surpassing geocentric SLR by up to seven times.
Even accounting for worst-case, high-emission scenarios (SSP5-8.5),
subsidence will exceed projected SLR rates in all deltas (considering
maximum subsidence) and in 23 deltas (considering 95th percentile
subsidence) through 2050. By 2100, current maximum subsidence
rates exceed projected SLRin 38 of 40 deltas, whereas 95th percentile
subsidence rates remain dominant in seven deltas (Godavari, Chao
Phraya, Mekong, Ciliwung, Brantas, Red River and Yellow River) (Sup-
plementary Table1).

These findingsidentify VLM as the principal hazard in deltaic systems
and other subsidence-prone low-elevation coastal zones. Although
global coastal zones face baseline threats from SLR*, subsidence in
many deltas often dominates RSLR, creating a distinctand more acute
risk profile, which is amplified by the high populations inmany of these
deltas*®. Yet, subsidence remains underprioritized in global coastal
risk discourse, a tendency that stems from its perceived tractability.
Unlike climate-induced SLR, which can be slowed but not stopped on
humanpolicy time scales, human-induced subsidence can theoretically
beslowed or halted through targeted interventions®>***2 Its respon-
siveness to human action, however, has paradoxically relegated it to
the periphery of international policy>*"*. This disconnect reflects a
broader misalignment between the spatial scales of climate impacts
and adaptation priorities. Thus, subsidence does not merely compound
SLR;itundermines the foundational logic of incremental, SLR-centric
adaptation®. Addressing this requires shifting adaptation from just
aglobal climate challenge to a regional socio-technical imperative
and an integrated approach that prioritizes subsidence mitigation
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Fig.4|Relative contributions ofland subsidence and SLRin global deltas.
a, Bubble plot comparing geocentric (absolute) SLR (mm yr™) and land
subsidence (mmyr™)across 40 deltas. Deltas in which subsidence rates exceed
geocentric SLRfall totheright of thel:1line, whereas those in which geocentric
SLR exceeds subsidence fall to the left. Bubble coloursindicate the total delta
population, ranging from fewer than100,000 (lighter colours) to more than
100 million (darker colours). Bubble size represents the percentage population
livingin deltaland areas subsiding faster thangeocentricSLR.b,Same as a,

(forexample, groundwater regulation, managed aquifer recharge and
sediment management) alongside RSLR adaptation.

Adaptive capacity in vulnerable deltas

Fromthe Fraser deltain Canadato the Yellow River delta in China, global
deltas are sinking, as climate change accelerates SLR, compounding
the vulnerabilities of low-lying regions. These combined effects create
amultifaceted threat, forcing deltacommunities to contend with land
loss, more frequent flooding and saltwater intrusion® *?°. Whereas the
urgency of adaptationisimmediate and worldwide, the capacity toact
is not. For many deltas, especially those in low- and middle-income
countries, adaptive capacity is limited by institutional, social and finan-
cial constraints’. These systemic barriers are quantified by the Notre
Dame Global Adaptation Index (ND-GAIN), aframework that evaluates
the vulnerability of countries to climate change and their readiness to

but consideringonly the populationliving at elevations below 1 m. Note that
theBrantas and Yellow River deltas have values greater than15 mm yr”and are
notrepresented on the plot for visual clarity. ¢, Bar plots comparing the range of
land subsidencerates, contemporary and projected SLR for 30 representative
deltas. Themaximum subsidencerateis calculated as the median of the 50
highest rates to avoid biases from single extreme values. The dashed vertical
line shows the maximum 2100 projected SLRrate across all deltas.

deploy adaptation resources across economic, social and governance
dimensions*®*, Ahigher ND-GAIN adaptation readiness score (>0.52) is
anindication of the capacity of acountry toabsorb funds and translate
these into actionable strategies*..

To visualize disparities in adaptive capacity and risk, we mapped
global deltas into a two-dimensional (2D) impact matrix defined by
RSLR and ND-GAIN adaptation readiness scores (Fig. 5). This frame-
work allows for a comparative assessment of deltas assuming that
the adaptation readiness of the delta is reflected by the adaptation
readiness of its country, categorizing them into four quadrants:
(1) Unprepared Divers (high RSLR (>4 mm yr™), low readiness (<0.52));
(2) Rising Ready (high RSLR, high readiness (>0.52)); (3) Latent Threats
(low RSLR, low readiness); and (4) Safe Havens (low RSLR, high readi-
ness). 65% of the deltas (26 out of 40 deltas), predominantly in low-and
middle-income nations, fallinto the Unprepared Divers group, in which
nations have adiminished adaptive capacity and RSLR rates exceeding
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the currentglobal SLR (about4 mmyr™), whereas the vertical dashed line
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(0.52), asdefined inref. 41.b, Same asabutincluding both twentieth- and

current global SLR (Fig. 5a). These challenges are compounded for
indigenous communities, who primarily live in the lowest-lying delta
areas; lack the resources needed toimplement large-scale adaptation;
andfacerelocationbarriers dueto cultural and subsistence ties despite
escalating risks***.

Most deltas in high-income countries, including the Yellow River
(China), Vistula (Poland), Po (Italy), Rhine-Meuse (the Netherlands) and
Mississippi (the USA) deltas, cluster in the Rising Ready group, demon-
strating robust governance (Fig. 5a). For example, theintegrated flood
management approach of the Dutch delta, which combines ecological
restoration with infrastructural fortifications, has become amodel for
coastal hazard resilience*. However, some deltas even within this group
face substantial gaps. For instance, the Mississippi delta has lost more
than 5,000 km?of land (mainly wetlands) since 1932 because of alack of
adaptation (for example, sediment diversion projects)**¢, whereas the
Po deltastruggles with salinization driven by agricultural groundwater
extraction, highlightinghow economic priorities can undermine adap-
tation even in high-income regions*. Although RSLR exceeds global
rates of SLRin most deltas, exceptions exist. The Latent Threats group
includes the Saloum and Neva deltas, which exhibit relatively low RSLR
and low adaptive capacity (Fig. 5a), indicating their unpreparedness and
potential vulnerability to a future rise in sea level (Fig. 4c). The Rioni
and the Fraser deltafallinto the Safe Havens group, inwhich lower RSLR
is coupled with higher adaptive capacity, indicative of low risk and
preparedness for current and future sea-level changes. The Rioni Delta
isthe only deltain our sample exhibiting negative sea-level trends for
the twenty-first century, inwhich long-termregional sea-level decline
masks short-term fluctuations (Methods).

To examine the evolving risk landscape, we compared
twentieth-century and present-day impact matrices (Fig. 5b). For our
analysis, we used tide gauge datato estimate twentieth-century RSLR
rates, which were available for only 15 of the 40 deltas. Our estimates
show that 10 deltas previously classified as Latent Threats (low RSLR,
low readiness) and Safe Havens (low RSLR, high readiness) groups
during the twentieth century have transitioned to Unprepared Divers
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twenty-first-century datafor 15 deltas. Arrowsillustrate the trajectory of the
readiness score of each deltafrom the twentieth century to the twenty-first
century. The four quadrants represent Unprepared Divers (deltas with high
RSLR, low adaptation readiness), Rising Ready (deltas with high RSLR, high
adaptationreadiness), Latent Threats (deltas with low RSLR, low adaptation
readiness) and Safe Havens (deltas with low RSLR, high adaptation readiness).

(high RSLR, low readiness) and Rising Ready (high RSLR, high readi-
ness) groups in the twenty-first century (Fig. 5b). This shift highlights
the accelerating contemporary RSLR trends, driven by land subsid-
ence and SLR***°, Deltas such as the Mississippi, Ganges-Brahmaputra
and Mekong show sustained increases in long-term RSLR rates above
4.0 mmyr'since the twentieth century, exacerbating vulnerabilitiesin
these densely populated regions. Conversely, the Chao Phrayaandthe
Rioni deltas showed adecline in RSLR and improved adaptive capacity
inthe twentieth century. However, although the Rioni Delta exhibited a
more than200% declinein RSLR, the Chao Phraya Delta still experiences
high RSLR rates (12.3 mm yr™). The pronounced decrease in RSLR for
the twentieth centuryinthe RioniDelta probably reflects localized sub-
sidence at the tide gauge station rather than a delta-wide RSLR trend*®
(Methods). The greatest change in RSLRwas observedin the Nile Delta,
surging from1 mm yrinthe twentieth century tomorethan10 mmyr™
in the twenty-first century (Fig. 5b). Moreover, we find that all deltas
inlow- and middle-income countries in the present-day Unprepared
Divers groups, transitioned from the Latent Threats group, suggest-
ing stagnant adaptive capacity despite worsening RSLR. By contrast,
deltas such as the Yangtze (China), Pearl (China) and Vistula (Poland)
shifted from Latent Threats to Rising Ready, demonstrating increased
adaptationreadiness due to economic growth, raising governance and
institutional capacity to adapt, although RSLR has surged (Fig. 5b).
Although deltas in the Rising Ready quadrant showed potential for
robust adaptation policies, deltas in the Unprepared Divers remain
trapped in cycles of reactive, underfunded responses.

These long-term trajectories reveal a challenging reality in which
deltas with strong adaptive capacity still struggle to manage persistent
subsidence and climate-driven SLR, whereas those with limited capac-
ity face severe and escalating risks on both fronts. Ideally, the goal for
sustained coastal resilience is a transition to Safe Havens, character-
ized by both low RSLR and high adaptation readiness. However, only
two deltas (the Fraser and Rioni) currently occupy this quadrant. As
the climate crisis and related threats intensify, the challenge for the
up to 500 million people in deltas demands more than incremental



adaptation; it requires global attention to subsidence and other key
vulnerability drivers while advancing governance approaches that
preserve land elevation and long-term habitability over short-term
adaptation.

Online content

Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-025-09928-6.

1. Ericson, J. P., Vorosmarty, C. J., Dingman, S. L., Ward, L. G. & Meybeck, M. Effective
sea-level rise and deltas: causes of change and human dimension implications. Glob.
Planet. Chang. 50, 63-82 (2006).

Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681-686 (2009).

3. Nicholls, R. J. et al. A global analysis of subsidence, relative sea-level change and coastal
flood exposure. Nat. Clim. Change 11, 338-342 (2021).

4. Higgins, S. A. Advances in delta-subsidence research using satellite methods. Hydrogeol.
J.24,587-600 (2016).

5. Becker, M. et al. Coastal flooding in Asian megadeltas: recent advances, persistent
challenges, and call for actions amidst local and global changes. Rev. Geophys. 62,
€2024RG000846 (2024).

6. Edmonds, D. A., Caldwell, R. L., Brondizio, E. S. & Siani, S. M. O. Coastal flooding will
disproportionately impact people on river deltas. Nat. Commun. 11, 4741 (2020).

7. Nienhuis, J. H. et al. River deltas and sea-level rise. Annu. Rev. Earth Planet. Sci. 51, 79-104
(2023).

8.  Syvitski, J. P. M. Deltas at risk. Sustain. Sci. 3, 23-32 (2008).

9. Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science
349, 638-643 (2015).

10. Eslami, S. et al. A systems perspective for climate adaptation in deltas. Nat. Clim. Change
15, 687-691(2025).

1. Pronk, M. et al. DeltaDTM: a global coastal digital terrain model. Sci. Data 11, 273 (2024).

12. Nicholls, R. J. et al. Ranking Port Cities with High Exposure and Vulnerability to Climate
Extremes: Exposure Estimates. OECD Environment Working Papers, ENV/WKP(2007)1,
1-62 (OECD, 2008).

13.  Shirzaei, M. et al. Measuring, modelling and projecting coastal land subsidence. Nat. Rev.
Earth Environ. 2, 40-58 (2021).

14. Minderhoud, P. S. J., Hlavacova, I., Kolomaznik, J. & Neussner, O. Towards unraveling total
subsidence of a mega-delta—The potential of new PS InSAR data for the Mekong Delta.
Proc. IAHS 382, 327-332 (2020).

15.  Nienhuis, J. H. & van de Wal, R. S. W. Projections of global delta land loss from sea-level
rise in the 21st century. Geophys. Res. Lett. 48, €2021GL093368 (2021).

16. Laczko, F. & Aghazarm, C. Migration, Environment and Climate Change: Assessing the
Evidence (International Organization of Migration, 2009).

17.  Vordésmarty, C. et al. Global threats to human water security and river biodiversity. Nature
467, 555-561(2010).

18. Ingebritsen, S. E. & Galloway, D. L. Coastal subsidence and relative sea-level rise. Environ.
Res. Lett. 9,091002 (2014).

19. Ohenhen, L. O. et al. Hidden vulnerability of US Atlantic coast to sea-level rise due to
vertical land motion. Nat. Commun. 14, 2038 (2023).

20. Chan, F.K.S. et al. Building resilience in Asian mega-deltas. Nat. Rev. Earth Environ. 5,
522-537(2024).

21.  World Bank. Climate Risks and Adaptation in Asian Coastal Megacities: A Synthesis Report
(World Bank, 2010).

22. Fang, J. et al. Benefits of subsidence control for coastal flooding in China. Nat. Commun.
13, 6946 (2022).

23. Ohenhen, L. O. et al. Disappearing cities on US coasts. Nature 627, 108-115 (2024).

24. Scown, M. W. et al. Global change scenarios in coastal river deltas and their sustainable
development implications. Glob. Environ. Chang. 82,102736 (2023).

25. Toérnquist, T. E. & Blum, M. D. What is coastal subsidence? Camb. Prism. Coast. Futur. 2,
e2(2024).

N

26. Syvitski, J. et al. Large deltas, small deltas: towards a more rigorous understanding of
marine deltas. Glob. Planet. Chang. 218, 103958 (2022).

27. Minderhoud, P. S. J., Shirzaei, M. & Teatini, P. From InSAR-derived subsidence to relative
sea-level rise—a call for rigor. Earth’s Future 13, €2024EF005539 (2025).

28. Anthony, E. et al. Delta sustainability from the Holocene to the Anthropocene and
envisioning the future. Nat. Sustain. 7,1235-1246 (2024).

29. Nienhuis, J. H. et al. Global-scale human impact on delta morphology has led to net land
area gain. Nature 577, 514-518 (2020).

30. Syvitski, J. P. M. & Saito, Y. Morphodynamics of deltas under the influence of humans.
Glob. Planet. Chang. 57, 261-282 (2007).

31.  Erkens, G., Bucx, T., Dam, R., de Lange, G. & Lambert, J. Sinking coastal cities. Proc. IAHS
372,189-198 (2015).

32. Kondolf, G. M. et al. Save the Mekong Delta from drowning. Science 376, 583-585 (2022).

33. Anthony, E. et al. Linking rapid erosion of the Mekong River delta to human activities.
Sci. Rep. 5, 14745 (2015).

34. Minderhoud, P. S. J. et al. The relation between land use and subsidence in the
Vietnamese Mekong Delta. Sci. Total Environ. 634, 715-726 (2018).

35. Negm, A. M., Sakr, S., Abd-Elaty, I. & Abd-Elhamid, H. F. in Groundwater in the Nile Delta
(ed. Negm, A.) Vol. 73, 3-44 (Springer, 2018).

36. Minderhoud, P. S. J. et al. Impacts of 25 years of groundwater extraction on subsidence in
the Mekong Delta, Vietnam. Environ. Res. Lett. 12, 064006 (2017).

37. Nerem, R.S. etal. Climate-change-driven accelerated sea-level rise detected in the
altimeter era. Proc. Natl Acad. Sci. USA 115, 2022-2025 (2018).

38. Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis. Contribution of
Working Group | to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change (Cambridge Univ. Press, 2021).

39. Nicholls, R. J. & Shirzaei, M. Earth’s sinking surface. Science 384, 268-269 (2024).

40. Chen, C. et al. University of Notre Dame Global Adaptation Initiative. Country Index
Technical Report (Univ. Notre Dame, 2024).

41.  Andrijevic, M., Cuaresma, J. C., Muttarak, R. & Schleussner, C.-F. Governance in
socioeconomic pathways and its role for future adaptive capacity. Nat. Sustain. 3, 35-41
(2020).

42. Dronkers, J. etal. in Climate Change: The IPCC Impacts Assessment (eds Tegart, W. J. M.
et al.) 179-220 (Australian Government Publishing Service, 1990).

43. Hauer, M. E. et al. Sea-level rise and human migration. Nat. Rev. Earth Environ. 1, 28-39
(2020).

44. Kabat, P, van Vierssen, W., Veraart, J., Vellinga, P. & Aerts, J. Climate proofing the
Netherlands. Nature 438, 283-284 (2005).

45. Couvillion, B. R., Beck, H., Schoolmaster, D. & Fischer, M. Land area change in coastal
Louisiana 1932 to 2016. U.S. Geol. Surv. Sci. Investig. Map 3381 https://pubs.usgs.gov/
publication/sim3381(2017).

46. Jankowski, K. L., Tornqvist, T. E. & Fernandes, A. M. Vulnerability of Louisiana’s coastal
wetlands to present-day rates of relative sea-level rise. Nat. Commun. 8, 14792 (2017).

47. Bellafiore, D. et al. Saltwater intrusion in a Mediterranean delta under a changing climate.
J. Geophys. Res. Oceans 126, €2020JC016437 (2021).

48. Church, J. A. & White, N. J. Sea-level rise from the late 19th to the early 21st century.
Surv. Geophys. 32, 585-602 (2011).

49. IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of
Working Group Il to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change (Cambridge Univ. Press, 2022).

50. Avsar, N. B. & Kutoglu, $H. Recent sea level change in the Black Sea from satellite
altimetry and tide gauge observations. ISPRS Int. J. Geo-Inf. 9,185 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution

By 4.0 International License, which permits use, sharing, adaptation, distribution

and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2026

Nature | Vol 649 | 22 January 2026 | 901


https://doi.org/10.1038/s41586-025-09928-6
http://pubs.usgs.gov/publication/sim3381
http://pubs.usgs.gov/publication/sim3381
http://creativecommons.org/licenses/by/4.0/

Article

Methods

Selection of global river deltas

Weselected 40 deltas globally, prioritizing 35 deltaic systems with the
greatest exposed area and population currently below sea level, sup-
plemented by five less-exposed deltas of local and regional significance
and previously identified risks’. To assess the 35 deltas with the great-
est exposure among global river deltas, we used 955 delineated delta
boundariesinref. 6 and identified coastal delta elevation below sealevel
using the DeltaDTM dataset v.1.1 (ref. 11) resampled to 3 arcseconds
(100 m) and referenced to mean sea level®. Global delta population
was estimated by aggregating 100 m resolution WorldPop population
count foreachdelta, whichis calibrated to the 2020 national population
estimates from the United Nations population data®.

Our estimates show that globally, 42,000 km? of the delta area at
present lies below sea level, containing a population of 10.2 million
people (Extended DataFig.1). The 35 deltas with the greatest exposure
included in this analysis are Nile, Mississippi, Rhine-Meuse, Mekong,
Niger, Cauvery, Po, Red River, Vistula, Rhone, Amazon, Ganges-Brah-
maputra, Chao Phraya, Kabani, Pearl, Rio Grande, Yangtze, Yellow
River, Senegal, Indus, Saloum, Grijalva, Ceyhan/Seyhan, Rioni, Cross,
Chikuma-gawa, Volta, Brantas, Neva, Wouri, Irrawaddy, Ogooué, Zam-
bezi, Magdalena and Ciliwung (Extended Data Fig.1). The cumulative
deltaareaand population below sealevel are 38,000 km? and 10.1 mil-
lionpeople, respectively, reaching within rounding errors of the global
total exposure. Deltas such as the Danube, Orinoco and Shatt-el-Arab
met the selection criteriabut were excluded due to challenges associ-
ated withthe SARimaging and interferometric analysis (including spa-
tial coverage gaps, excessive temporal baselines, poor coherence and
limited dataavailability). The five supplementary deltas are Brahmani,
Mahanadi, Godavari, Parana and Fraser deltas.

The final selection of 40 deltas spans five continents (Asia, Africa,
Europe, North America and South America) and 29 countries, encom-
passing deltas with noted and emerging environmental, geophysi-
cal and social vulnerabilities®*, historically sinking river deltas? and
densely populated coastal megacities®*%,

SAR dataset

We analysed 132 SAR frames from the Sentinel-1A/B C-band satellite,
spanning September 2016 to May 2023. The SAR datasetsinclude 3,300
images obtainedinsingle-orbit geometry (ascending or descending) for
13 deltasand 10,700 images obtained in both ascending and descend-
ing orbits for 27 deltas. See Supplementary Table 3 for the complete
inventory of SAR images used in each delta. For each SAR dataset, we
applied amulti-looking factor of 32:6 (range:azimuth) toimprove the
signal-to-noise ratio, obtaining an average pixel resolution of about
75 m. To minimize decorrelation errors, we also constrained the inter-
ferometric pairs toamaximum temporal and perpendicular baselines
of 300 days and 80 m, respectively. For deltas requiring multi-frame
coverage (for example, Amazon, Mississippi, Mekong, Ganges-Brah-
maputra, Nile, Red River and Niger), we arranged in amosaic form the
overlapping adjacent frames along a single path before processing or
post-processed deltas with coverage spanning multiple paths to ensure
full spatial continuity across expansive deltas.

SARinterferometric analysis

We processed each SAR frame or single-path multiple-frame coverage
to generate high-spatial resolution maps of surface deformation for
the 40 deltas using amultitemporal wavelet-based InSAR (WabInSAR)
algorithm®% First, we generated 59,000 high-quality interferograms
from the coregistered SAR images using GAMMA software®®*°, withan
interferogram pair selection algorithm® optimized through dyadic
downsampling and Delaunay triangulation. To minimize phase errors
and to maximize the pixel density associated with dynamic surface
changes over deltas (for example, flooding, vegetation growth or soil

saturation), we screened the initial set of interferograms based on
their coherence stability to exclude interferograms with high coher-
ence variability, while maintaining a 50% temporal baseline coverage.
Thefinal selection retained about 55,000 interferometric pairs (93%)
for further analysis. Moreover, we implemented a statistical frame-
work to discard noisy pixels with average coherence less than 0.7 for
distributed scatterers and amplitude dispersion of greater than 0.35
for permanent scatterers®. Next, we used aminimum cost flow phase
unwrapping algorithm optimized for sparse coherent pixels®®® to
estimate the absolute phase changes of the elite (Iess noisy) pixels
in each interferogram. We corrected all unwrapped interferograms
for the effects of residual orbital error® and minimized the effects of
topography-correlated components of atmospheric phase delay and
spatially uncorrelated DEM error by applying a suite of wavelet-based
filters®. Last, we estimated the time series, velocities and standard
deviation for each geocoded elite pixel along the line of sight (LOS)
of the satellite using a reweighted least-squares optimization®. The
standard deviation of the LOS velocity corresponds to the uncertainty
of the regression slope derived from the least-squares fit. For each
delta, the reference point was selected as the pixel corresponding toa
global navigation satellite systems (GNSS) station within the processed
SAR frame when available. In areas without GNSS stations, a prelimi-
nary reference point was randomly selected from pixels with average
temporal coherence >0.85. Following initial processing, the reference
point was refined by visually identifying stable ground features (for
example, bedrock outcrops and deep-foundation structures) and
low displacement variability (standard deviation <1 mmyr™), then
reprocessing with this final reference point. For large deltas requiring
overlapping SAR frame coverage, the LOS velocities were arranged
in a mosaic form to ensure seamless spatial representation across
the entire delta.

Inthe 27 deltas with overlapping spatiotemporal SAR satellite cover-
age and different orbit geometries (ascending and descending), we
estimate the horizontal (east-west) and VLM components of deforma-
tion by jointly inverting the LOS time series of the ascending and
descending tracks®* ®. To this end, we identified the co-located pixels
of the LOS time series by resampling the pixels from the descending
track onto the ascending track to obtain two co-located LOS displace-
ment velocities {LOS,gc, LOSpgs}. Given {LOS,sc, LOSpes} and their
associated variances {0, 025} are the LOS displacement and variances
for agiven pixel, the model to combine the LOS velocities to generate
ahigh-resolution map of the east-west (£) and VLM (U) displacements
are given by

{LOSAsc:| _ Cisc Cisc {E } @
LOSps CDEES Cé’zs u

where, Crepresents the unit vectors for projecting (£) and (U) displace-
ments onto the LOS, which is a function of the heading angle of the

satellite and incidence angles of each pixel®. The solution to the model
inequation (1) is given by

X=[G"PG]I"'G"PL )

where X represents the unknowns (E) and (U), G is the design matrix
comprising the unit vectors for projecting the horizontal and vertical
displacements onto the line of sight, L are the observations
{LOS,sc, LOSpes), and Pis the weight matrix, whichisinversely propor-
tional to the observant variances {0, 0} To obtain the parameter
variance-covariance matrix (Qyy), we use the concept of error propa-
gation® to calculate the associated parameter uncertainties given the
observation errors as follows:

Qy =[G"PG]! 3)



For the 13 deltas imaged in single-orbit geometry (ascending or
descending), we projected the LOS velocities to the vertical direction,
assuming the principal deformation is vertical:

VLM, = (4)

where, cos6;is thelocal incidence angle for each pixel. This assumption
ofzerogradientsin the horizontal components of deformationis tenu-
ous for most coastal areas, given the significant localized horizontal
motionnoted (up to 10 mm yr™') across the 27 deltas with multiple orbit
geometries. Nevertheless, the assumptionis necessary given that over-
lapping ascending and descending orbit geometries are available for
less than 50% of global land areas (for European Space Agency Sentinel-1
satellite), limiting the ability to resolve 2D deformation trends. How-
ever, under this assumption, it is necessary for the locally referenced
VLM estimates to be transformed into a globally consistent reference
frame, particularly for comparative studies across multiple regions™.
Totransformthe VLM rates fromalocal to aglobal reference frame,
we used the available GNSS datasets for 17 deltas (the Fraser, Missis-
sippi, Rio Grande, Rhine-Meuse, Rhone, Po, Vistula, Red River, Ama-
zon, Parana, Ciliwung, Brantas, Ganges-Brahmaputra, Chao Phraya,
Mekong, Pearl and Chikuma-gawa). The GNSS datasets across the 17
deltas were obtained from the Nevada Geodetic Laboratory®® and
previous regional studies®. For each delta with GNSS coverage, we
calculated the offset between the InSAR-derived vertical velocity at
the reference point and the corresponding GNSS vertical velocity,
then applied this offset to transform all INSAR velocities in that delta
totheIGS14 reference frame. The uncertainty in the final velocity was
estimated by propagating both the InSAR velocity uncertainty (fromthe
reweighted least-squares inversion) and the GNSS velocity uncertainty
(reported by data sources) through standard error propagation. In
deltas without GNSS stations, we used the global VLM model’, which
mainly includes long-wavelength deformation signals due to TWS
changes, tectonics and glacial isostatic adjustment (GIA) referenced
totheIGS14 global frame. We then applied an affine transformation to
align the VLM rates fromlocal to 1GS14 global reference frame®”.. This
approachensures consistencyin VLM rates across global deltas by cor-
recting for local reference biases and should be the standard practicein
coastal research using INSAR”. When comparing these measurements
to other subsidence rate estimationtechniquesindeltas, such as RSET,
marker horizons, sediment cores, repeat lidar or other INSAR meas-
urements, careful consideration must be given to differences in both
reference frames and temporal ranges. Reference frame incompatibility
may require adjustments to align local or relative measurements with
other datasets, whereas mismatches in monitoring periodsintroduce
temporal biases that complicate direct quantitative comparisons.
Thedistribution of the standard deviations (precision of the results)
for all pixels (20.5 million) across the 40 deltas is shown in Supple-
mentary Fig. 2. The standard deviation distribution shows that 99%
of the pixels have a value <0.5 mm yr™. We evaluated the accuracy of
the results by comparing the averaged VLM rates of pixels within a
radius of 100 m with more than 100 independent GNSS data (that is,
stations that were not used inthe reference frame transformation). The
validationincluded 122 GNSS stations across 23 deltas with historical
long-term records (spanning various periods before and/or includ-
ing the InSAR observation window) and 81 GNSS stations across 15
deltas with time series covering at least 70% of the InSAR observation
period (2014-2023) (Supplementary Fig. 3). We found a strong corre-
lation (0.7-0.8), between GNSS and InSAR velocities, with an RMSE of
1.4 mmyr'forlong-term rates (Supplementary Fig.3a) and 1.2 mm yr™!
for rates within the InSAR observation period (Supplementary Fig. 3b).
The improved agreement for temporally coincident measurements
suggests that nonlinear subsidence behaviour contributes to some
scatter when comparing historical GNSS rates to contemporary InSAR

measurements, although the overall correlation remains strong in
both cases. Note that some GNSS stations used for validation, while
withinthebroader processed SAR frame, are outside the clipped delta
boundaries. Note that the final delta extents were delineated using a
tiered approach. Primary boundaries were derived from ref. 9, sup-
plemented by ref. 6 for deltas not covered in the former. For extensive
deltas in which the entire delta surface is not analysed (for example,
the Ganges-Brahmaputra), boundaries were defined using the SAR
spatial extent.

GIAinfluence on VLM
We estimated VLM trends and the associated uncertainty due to GIA
using the model in ref. 72, which was derived from a probabilistic
ensemble 0f 128,000 GIA forward simulations. Each model solves the
sea-level equation for acompressible, viscoelastic Maxwell Earth under
late-Pleistoceneice-sheet loading, incorporating solid-Earth deforma-
tion, geoid change and rotational feedback. The ensemble samples
awide range of Earth rheological structures, including lithospheric
thickness, upper and lower mantle viscosities, and scaling factors
applied toregional deglaciation histories over the past122,000 years.
Likelihoods were assigned to each simulation based on fit to a global
dataset of 11,451 relative sea-level records and 459 GNSS-derived uplift
rates using a Bayesian framework that accounts for data uncertainties
and spatial correlations. The resulting posterior distributions enable
spatially resolved estimates of GIA-driven VLM with formal uncertainty.
For each delta, we extracted the ensemble mean and standard devia-
tionin GlIA vertical velocity to correct observed deformationrates and
isolate contemporary, non-GIA contributions to VLM. Supplementary
Table 1shows the mean GIA-induced VLM, the associated standard
deviation and the per cent contribution of GIA to the total observed
VLM magnitude for each delta. GIA accounts for the largest propor-
tion and exceeds (>100%) the total VLM in the Neva (540%) and Fraser
(455%) deltas, inwhich low observed VLM rates are substantially influ-
enced by strong GIA uplift. Moderate GIA contributions (25-55%) are
observed in five deltas, including the Rio Grande, Mississippi, Volta,
Rhine and Ogooué deltas. Most of the deltas (55%) exhibit minimal GIA
influence, with contributions under 10%, indicating that observed VLM
is primarily governed by contemporary anthropogenic and natural
processes such as groundwater withdrawal, sediment compaction,
ortectonics. In28-67% (accounting for uncertainty) of the deltas, the
sign and approximate magnitude of observed and GIA-corrected VLM
are consistent, implying limited distortion from GIA and the sustained
expression of contemporary processes on the average local subsid-
ence. By contrast, the Fraser and Neva deltas illustrate how substantial
GlA-induced uplift in high-latitude, post-glacial regions can obscure
contemporary subsidence processes through opposing vertical trends.
Inboth cases, modest observed subsidence rates (Fraser —0.4 mm yr™
and Neva —0.2 mm yr™) are counteracted by substantial GIA uplift of
1.8+2.3mmyr'and 1.0 £ 0.3 mmyr™, respectively.

Anthropogenicdrivers datasets

We analysed the relationship between major anthropogenic pressures
on global deltas to subsidence and elevation loss by quantifying the
contributions of groundwater storage change, sediment flux alteration
and urban expansion to theresidual rates of sinking (after GIA correc-
tion) across the 40 deltas. These globally consistent datasets provide
insights into human-induced impacts onland subsidence and elevation
changeinriver deltas (Supplementary Table 2).

Groundwater storage change. We derived twenty-first-century
groundwater storage trends for all deltas by leveraging Gravity
Recovery and Climate Experiment (GRACE) and GRACE Follow-On
(GRACE-FO) satellite observations’". We used the JPL GRACE/
GRACE-FO level 3 mascon solutions (RL06.3) (refs. 75,76), which pro-
vide monthly global estimates of total water storage (TWS) change
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relative toa2004.9-2009.999 mean baseline. The final solutions span
2002-present and are derived from solving for monthly gravity field
variations in terms of 4,551 equal-area 3° spherical cap mass concen-
tration functions rather than global spherical harmonic coefficients.
The masconapproachimplements geophysical constraints during the
level-2 processing step tofilter out noise, appliesimproved accelerom-
eter data and standard corrections, including several geophysical ad-
justments, such as gravity anomaly due to ocean (GAD), GIA, degree-1,
C20and C30replacement and representation on ellipsoidal earth™ 7.
We extracted TWS values at 3° mascon resolution (about 300-400 km
spatial resolution) covering each delta areato compute representative
regional water storage estimates. TWS change from GRACE contains
contributions from GWS, soil moisture storage (SMS), snow water
equivalent (SWE) and surface water storage (SWS) represented by

ATWS =AGWS + ASWS + ASMS + ASWE &)

Toisolate GWS change from TWS, we used the 1/4° global land data
assimilation system Noah model” to remove changes in SMS and SWE
contributions and used the WaterGAP Global Hydrology Model (WGHM
v.2.2d) (refs. 79,80) to remove SWS contributions. The contribution
from SWE was negligible in most deltas, given their prevailing arid
and semi-arid climate (Fig. 1), although it was included to maintain
consistency across all deltas. SWS components include contributions
from rivers, lakes, wetlands and reservoir storage within the GRACE
footprint for each delta. The residual signal following removal of SWS,
SMS and SWE was interpreted as the GWS anomaly.

To estimate the temporal trend of groundwater storage changes,
we applied harmonic analysis to account for annual and semiannual
variationsinthe time series of the GWS anomalies. In standard practice,
environmental variables (for example, GRACE data, GNSS data and
sea-level anomalies) are modelled as time-invariant seasonal signals.
However, the response of Earth to environmental changes represented
as seasonal signals is not time-invariant®®. To account for this vari-
ability, we adopted the stochastic-seasonal model in the following
equation, in which the harmonic amplitudes evolve as random walks,
allowing for time-dependent seasonal variations and the seasonal
trends are modelled using a Kalman filter®?:

x(£) =y + v(t)(t—ty)

2
+ ) [a (6)cos(RTkf (¢ - to)) + bi(£)sin(2Tkf (£ - t,))] ©
k=1

where ¢, is the reference epoch, x, is the reference intercept at ¢,, v(t)
is the time-varying rates, k indexes the annual (k=1) and semiannual
(k=2) components, a,and b, are the harmonic amplitudes. v(t), a,, and
b,aremodelled asrandom walk parameters. To estimate the long-term
multi-year trend (vp) of GWS from the time-varying rates, we computed
the weighted average of the time-varying rates v(¢;) using

boe 25 v(6)/ 05, )
- 2
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where mis the total number of epochsin the time series and g5, is the

variance of the rate at epoch ¢, derived from the posterior covariance

matrix of the Kalman filter. The uncertainty g2in the rate is given by

1
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Supplementary Figs. 4 and 5 compare the time-invariant model
(black curves) with the stochastic-seasonal model (red curves) for
GRACE-derived GWS and RSLR from tide gauges in the Mississippi
and Chao Phraya deltas. These plots show that a stochastic-seasonal
process better represents the observed variability in the time series.

The post-fit residuals of the time-invariant model show some system-
atic seasonal patterns, particularly during periods when seasonal
amplitudes deviate from the assumed constant values (Supplemen-
tary Figs. 4b,d and 5b,d). By contrast, the stochastic model accom-
modates time-dependent variations in seasonal amplitudes, resulting
inreduced (often near-zero) residuals (Supplementary Figs. 4b,d and
5b,d), demonstrating the advantage of the stochastic-seasonal model
in capturing transient seasonal variations rather than fixed annual
and semiannual cycles®.

The GWS rates for each delta are summarized in Supplementary
Table 2, and Fig. 3a and Extended Data Fig. 8a show the relationship
with the subsidence rates. Negative GWS trends indicate mass deple-
tion, primarily driven by groundwater extraction, whereas positive
trends represent net groundwater accumulation due to recharge pro-
cesses, reduced extraction or hydrological interventions. To evaluate
thereliability of GRACE-derived GWS trends, we compared them with
insitu groundwater level trends for 18 deltas (Supplementary Fig. 6).
Groundwater levels were compiled from two publicly available sources:
13 deltas fromref. 84 and 5 deltas from the Global Groundwater Moni-
toring Network®. Given the spatial scale discrepancy between GRACE
(basin-wide) and well observations (point-scale), we emphasized agree-
mentintrenddirection rather than absolute magnitudes. Each site was
categorized based onthe sign of the GRACE and well trends, and aconfu-
sion matrix was constructed to assess consistency. The analysis yielded
anoverall classification accuracy of 88.9%, with six sites exhibiting posi-
tive-positive trends (PPT) and 10 showing negative-negative trends
(NNT). Only two sites showed mixed behaviour (NPT or PNT), and no site
exhibited fully opposing trends. Moreover, a high correlation (R = 0.7)
was observed between the GRACE-based GWS and well-derived trends,
further supporting the consistency of GRACE estimates at the basin
scale despite localized variability in in situ measurements. Although
the coarse spatial resolution of GRACE/GRACE-FO may not capture
localized variations®, its basin-scale sensitivity is well-suited to char-
acterizing basin-wide groundwater trends. Moreover, the dominance
of groundwater extraction in many deltas>*** probably ensures that
GWS trends are the primary signal captured.

We find amodest linear correlation (R = 0.5) between GWS and sub-
sidence rate; however, a cubic regression model (R = 0.6) provides a
better fit (Extended Data Fig. 8a).

Sediment flux alteration. We obtained values for the sediment flux
alteration forthe 40 deltas fromref. 29. This dataset provides aglobal
assessment of fluvial sediment supply, distinguishing between pris-
tine sediment fluxes (before substantial anthropogenic influences)
and disturbed or contemporary sediment fluxes (reflecting human
influences such as dam construction and land-use changes) within the
contributing delta basins. We quantified the per cent change in sedi-
ment flux for each delta using the following equation, which expresses
therelative alteration (increase or decrease) insediment delivery due
to human activities:

Disturbed sediment flux
Pristine sediment flux

ASediment flux = [ - 1] x100% 9)

The pristine and disturbed sediment flux, along with computed sedi-
ment flux changes for each delta, are summarized in Supplementary
Table 2. A negative sediment flux change indicates a decline or loss in
fluvial sediment supply (disturbed < pristine) due to human activities,
whereas a positive sediment flux change reflects an increase or gain
(disturbed > pristine). We acknowledge that this framework represents
asimplified characterization of complex sediment delivery processes
and may not capture all temporal variations in sediment supply. Fur-
thermore, some concerns have been raised about potential errors in
global sediment flux datasets®®, which we consider as a limitation in
our analysis.



Figure 3a and Extended Data Fig. 8b show the relationship between
sediment flux change and subsidencerates. Although a poor correlation
(R<0.4)isobserved, we find that 62% of the deltas (25 out of 40) exhibit
negative sediment flux change, indicating widespread human-induced
reductionsin sediment supply.

Urban expansion. Urban expansionis one of the most visible and rapid
types of ongoing anthropogenic changes in river deltas®. To assess
how population-driven land-use changes may affect subsidence rates
across deltas, we used aglobal 1/8° (about 12.5 km) urban land fraction
dataset, derived from high-spatial-resolution remote sensing observa-
tions¥. This dataset tracks the conversion of natural landscapes (that s,
wetlands and forests) into built environments and serves as a proxy for
land-use changes that may exacerbate subsidence through increased
infrastructureloading and increased groundwater demand. We quanti-
fied the urban fraction change in deltas in the twenty-first century by
calculating the percentage change in the proportion of urban areas
relative to total delta areabetween 2000 and 2020.

Supplementary Table 2 summarizes the urban fraction dataset (2000
and 2020) and the urban fraction change for each delta. Figure 3aand
Extended DataFig. 8c show the subsidence-urban expansion relation-
ship acrossthe 40 deltas. All deltas showed consistent urban expansion
inthe twenty-first century, ranging fromrelatively low increases (<1%)
inthe Ogoouériver deltato significantincreases (>400%) in the Indus
delta. However, despite this rapid expansion, the Indus delta remains
one of the least urbanized, with only 0.4% of its total area classified
as urbanin 2020. By contrast, the Ciliwung (Jakarta) and Neva (Saint
Petersburg) deltas exhibit the highest urban fractions, exceeding 50%. A
logarithmic fit best describes the full dataset and reveals amoderate but
significant nonlinear inverse correlation (correlation, R = 0.38-0.51),
indicating that deltas with significant urban land conversion tend to
experience more pronounced land sinking (Extended Data Fig. 8c).
Steadily urbanizing deltas, such as the Rio Grande and Rhine-Meuse,
exhibit slower subsidence rates, whereas rapidly urbanizing deltas,
such asthe Brahmani and Yellow River deltas, show faster rates of land
sinking. However, regional variability is evident, as some deltas devi-
ate from the overall trend (for example, Indus and Cauvery deltas).
When excluding outliers (the Indus and Cauvery deltas), subsidence
and urban expansion exhibit a strong linear correlation across deltas
(Extended Data Fig. 8c).

We also explored the relationship among the anthropogenic driv-
ers (Extended Data Fig. 8d-f), finding a low (R = 0.1-0.3) correlation
depending on the specific driver.

RF analysis for identifying anthropogenic drivers of subsidence
and elevation loss

Given the nonlinear and interacting relationships among GWS, sedi-
ment flux alteration, urban expansion and residual land subsidence
(after GIA correction) discussed above, a machine learning framework
was implemented to model these complexities. First, we attempted a
multilinear regression model, incorporatinginteraction terms between
variables, formulated as

n m m
VLM=xo+ Y XX+ 3 D XXX +e (10)
i=1 Jj=1 k=j+1

where VLMis the predicted VLM, x, is the intercept, X;; are the predic-
torvariables (GWS, sediment flux alteration and urban expansion), x; ;
are the regression coefficients for each predictor variable, x; repre-
sents the interaction effects between predictor variables and € is the
residual error term. However, this multilinear regression model yielded
poor performance (correlation R=0.38; R = 0.15; RMSE = 4.7 mm yr")
(Fig. 3a), demonstrating the inefficiency of linear models to capture
these complex dependencies and the need for a machine learning
model.

Next, we used an RF machine learning model to better account for
these complex nonlinear interactions between variables. RF hasbeen
widely applied in environmental and hydrological studies to model
complex systems with nonlinear dependencies, outperforming tradi-
tional regression techniques in similar contexts®® 2, The RF model is
well-suited for this analysis due toits ability to handle small datasets (40
deltas), its simpler hyperparameter tuning, and its ability to compute
featureimportance. In this study, the primary objective for applying RF
isnotto predict the subsidencerates, but rather to extract key features
that explain the dynamicrelationships between anthropogenic drivers
and subsidence across global deltas.

The RF algorithm is an ensemble learning method that uses the
strength of multipleindependent regressor decisiontrees {7}, inwhich
each tree {T,} is trained on arandomly sampled subset of the input
features ({X=X,, X,, X3}, representing GWS, sediment flux and urban
expansion) through bootstrap aggregation (bagging). Key hyperparam-
eters, including the number of trees, maximum tree depth, minimum
samples per splitand minimum samples per leaf, were optimized using
grid search with five-fold cross-validation to minimize overfitting and
maximize predictive accuracy®. This ensemble approach enhances
predictive performance by creating a learning environment in which
alarge number of predictors work on various characteristics of the
input features and learn to combat overfitting and generate predic-
tions (VLM) by computing the average of all decision tree predictions:

T

2 TX)

t=1

1
VLM = 7 (11)

TheRF regressor optimizes each decision tree using the meansquare
error (MSE) defined as a cost function to identify node splitsand model
performance during model training and testing:

N
MSE = % Y (VLM; - VLM,)?

i=1

12)

where VLM;is the observed VLM rate for individual delta i, VLM; is the
predicted VLMrate and Nis the total number of observations. To assess
uncertainty, we used Monte Carlo simulations to create multiple hold-
out fractions (0.1-0.5) across 100 iterations, randomly subsampling
the 40 deltas for training and validationin eachiteration. Thisrandom
partitioning ensures thateach deltais used in both training and valida-
tion phases across iterations, enhancing the robustness against over-
fitting and sampling bias. The final RF model predictions were obtained
by averaging prediction estimates across all iterations. The final model
performance was evaluated using the coefficient of determination
(R?), RMSE and mean absolute error (MAE):

zll'il (VLMi - m)z

R*=1- (13)
Y, (VLM, - VLM;,)?
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RMSE= | Y (VLM; - VLM,)? (14)
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MAE= Y | VLM, - VLM, | (15)
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where VLM;is the mean observed VLMrate, and the other variables are
defined in equation (12). The feature importance /; for input feature
X=X, X, X;} was computed using the following equation, based on
the cumulative reduction in node,jimpurity among all the trees:
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where Ndenotes the total number of trees and A/;denotes the change
inimpurity.

Although RF effectively captures nonlinear relationships, its
ensemble structure limits delta-specific interpretability. To resolve
localinsightsinto delta-specific subsidence drivers, we applied LIME,
atechnique within the field of explainable artificial intelligence (XAI)**.
LIME approximates black-box models such as RF by fitting interpret-
ablemodelsto perturbed samples of the input data, allowing for local
feature importance estimation. For each delta X;, LIME approximates
the RF prediction locally by using alinear surrogate model trained on
perturbed instances around X,. The explanation function is obtained
by solving the following minimization problem:

§(X)=arg r;Eig[L(ﬁg, Ty) +0Q(g)] 17)

where (X)) is the local interpretable model for each delta X;, gis the
interpretable model, fis the RF model, Ty, is @ proximity kernel,
L(f, g, my)istheloss function measuring the differences between fand
g, and Q(g) penalizes complexity. This process was repeated for each
delta, and deltas with low LIME model fidelity (R* < 0.5) were excluded
to ensure reliable interpretation (Supplementary Table 2). The final
dataset for interpretation consisted of 30 deltas, in which LIME pro-
duced more consistent feature importance estimates. The feature
importance scores from LIME are normalized to obtain normalized
LIME (nLIME) scores:

R T |w1| @18)
frer | @
where w;is the LIME-derived coefficient for feature fand Fis set for all
features. The nLIME scores provide aninstance-specific (local) explana-
tion rather than a global one to evaluate the relative contributions of
GWS, sediment flux alteration and urban expansionin each delta. The
nLIME values for each delta are summarized in Supplementary Table 2
and were analysedin aternary diagramto visualize the heterogeneity
in delta-specific subsidence and elevation-loss drivers (Fig. 3b).
Itisimportantto emphasize that machine learning model predictions
are inherently dependent on the input variables and their distribu-
tions. In this study, the predictor-response relationship implies that
variations in predictor magnitudes (for example, subsidence rates and
GWS rates), dataset composition (for example, inclusion or exclusion
of specific deltas), and the selection of input features could influence
the weighted feature importance across deltas. Moreover, localized
policy interventions, such as groundwater extraction regulations or
sediment management initiatives, may alter subsidence and eleva-
tion change trends over time, potentially affecting future predictions.
Therefore, although our RF-based analysis provides valuable insights
intothe anthropogenic drivers of subsidence and elevation loss, these
results should beinterpreted with an awareness of dataset limitations
and the potential for evolving land-use and hydrological management
practices. Furthermore, theinclusion of additional deltas, particularly
thoserepresenting undersampled geographic regions or differing geo-
morphic, socioeconomic or governance conditions, may shift model
behaviour and feature rankings, as is typical in data-driven learning
frameworks. Nonetheless, within the context of the current global
deltasample and observed subsidence patterns, the RF-derived feature
importance values provide aconsistent and interpretable estimate of
the relative influence of anthropogenic drivers under present condi-
tions for these deltas.

Historical, current and projected SLRrates

We analysed historical (twentieth century), present-day (early
twenty-first century) and projected (2050 and 2100) SLRrates to assess
the relative and combined impacts of rising seas and sinking lands on
globalriver deltas.

Historical relative sea-level changes were obtained from the Revised
Local Reference database of the Permanent Service for Mean Sea Level”
(https://psmsl.org), which provides monthly relative sea-level records
fromglobally distributed tide gauge stations. These tide gauge records
have undergone quality control procedures, including corrections for
datuminconsistencies,jumps and spurious data points, and validation
through comparisons with neighbouring tide gauge stations*®. For
thisstudy, we selected 20 tide gauge stations across 15 deltas (the Mis-
sissippi, Rio Grande, Fraser, Amazon, Chao Phraya, Mekong, Red River,
Nile, Ganges-Brahmaputra, Vistula, Rhine-Meuse, Chikuma-gawa,
Yangtze, Pearland Rioni deltas), considering only stations within100 m
of the deltaboundary and at least 5 years (twentieth century) of valid
record. The RSLR rates for each delta were estimated by applying the
stochastic-seasonal model (equations (6-8)) over the full observational
record foreachtide gauge. For deltas withmultiple stations (for exam-
ple, the Mississippi, Ganges-Brahmaputra and Rhine-Meuse deltas),
individual station rates were averaged to provide adelta-wide estimate
of twentieth-century RSLR. Note that the representativeness of the
derived RSLR may vary for each delta following individual tide gauge
characteristics (for example, is the station founded on bedrock or
‘floating’in unconsolidated sediments, is the station GNSS corrected).
Supplementary Fig. 7 shows the time series of relative sealevel over the
twentieth century for six representative deltas. Supplementary Table1
provides acomplete summary of the RSLR rates for the 15 deltas. The
median twentieth-century RSLR trend across all deltas is 2.9 mm yr™,
with measured rates ranging from -0.5 mm yr " in the Amazon delta
(indicating declining twentieth-century sea level) to a maximum rate
of 1.5 cm yr'in the Chao Phraya Delta (Fig. 5b).

To estimate present-day (early twenty-first century) absolute (geo-
centric) SLR rates, we used the multi-mission satellite altimetry data
from2001to present, obtained from Copernicus Marine Environment
Monitoring Service (CMEMS). This dataset provides1/8° (about12.5 km)
gridded monthly sealevelanomalies (SLA) referenced toa20-year mean
baseline (1993-2012). SLA estimates are derived from optimal inter-
polation, merging the level 3 along-track measurement from multiple
contemporaneous altimeter missions (Jason-3, Sentinel-3A, HY-2A,
Saral/AltiKa, Cryosat-2, Jason-2, Jason-1, TOPEX/Poseidon, ENVISAT,
GFO and ERS1/2)” (https://marine.copernicus.eu/). Several necessary
corrections have been applied to the raw altimetry data, including
instrumental biases and drifts, geophysical, tidal and atmospheric
corrections, to ensure accurate SLA estimates. Monthly mean sea-level
anomalies were obtained for each delta by spatially averaging the altim-
etry grid points within a 100-m radius, culling outliers beyond the
95th percentile. Supplementary Fig. 8 shows the monthly SLA time
series in six deltas. We estimated the twenty-first-century trends in
sea-level anomalies, using equations (6-8). The altimetry-derived
geocentric SLR rates for the twenty-first century show exacerbating
regional SLR rates over global sea-level estimates (about 4 mm yr™)
for 45% of the deltas (18 out of 40) (Supplementary Table 1). Regional
sea-level rates vary from 0.2 mm yrin the Paranadeltato 7.3 mm yr™
over the Mississippi delta (Fig.1and Supplementary Table1). However,
anegative geocentric sea-level rate of -1.9 mm yr ' was observed in
the Rioni Delta (Black Sea) (Supplementary Table 1). This long-term
sea-level declinein the twenty-first century persists in the background
of short-term fluctuations (Supplementary Fig. 8d); a characteristic
feature of Black Sea sea-level dynamics®. This twenty-first-century
decline in geocentric sea level for the Rioni Delta represents more
than a100% reduction compared with historical (twentieth-century)
rates, even whenaccounting for average VLM across the delta. To inves-
tigate this anomaly, we estimated VLM at the Poti tide gauge (Rioni
Delta) by differencing twenty-first-century RSLR rates obtained from
the Poti tide gauge station from geocentric SLR. The resulting VLM
rate of —6.7 mm yr ' matches the average InSAR-derived VLM rate
(-5.9 + 0.7 mm yr™) within 100 m of the tide gauge. This rapid sub-
sidence rate at the coast of Poti represents localized conditions and
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highlights the need for caution when extrapolating point-based tide
gauge measurements to infer delta-wide or city-wide subsidence and
exposure. Note that satellite altimetry data, although highly valuable
for global sea-level monitoring, were primarily optimized for open
ocean conditions. Coastal environments naturally exhibit additional
complexity due to processes such as shelf circulation, freshwater dis-
charge and tidal amplification, which contribute to the inherent vari-
ability in nearshore sea-level measurements compared with offshore
altimetric observations.

We use projected sea-level rates from the Intergovernmental Panel
on Climate Change Sixth Assessment Report (AR6)**? to assess
future SLR rates across all deltas. The sea-level rate projections inte-
grate process-based models that account for the key contributors to
climate-induced sea-level change, such as thermal expansion, ocean
dynamics, and glacier and ice sheet mass loss, and consider uncertain-
tiesinglobal temperature change and their influence on sea-level driv-
ers®, Wefocus on the no-VLM 50th percentile (median) projected rates
for 2050 (mid-twenty-first century) and 2100 (end of the twenty-first
century) under shared socioeconomic pathway 2-4.5 (SSP2-4.5) and
SSP5-8.5scenario. SSP5-8.5represents a high reference scenario associ-
ated with the highest emission levels (global atmospheric CO, concen-
trations exceeding 800-1,100 ppm by 2100) and associated warming
0f3.3-5.7 °C (refs. 38,99). These projections provide an upper-bound
reference scenario, capturing the potential worst-case outcome for
future SLR. Figure 4c shows the comparison of projected SLR rates
with observed land subsidence rates.

Data availability

The vertical land motion data for all deltas are available at Zenodo
(https://doi.org/10.5281/zenod0.15015923). GRACE data are available
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CON_GRID_RL06.3_V4.The Sentinel-1data used in this study are pub-
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change are available from Copernicus Marine Environment Monitoring
Service (CMEMS) and are available through http://marine.coperni-
cus.eu/. The population for deltas was estimated using the WorldPop
dataset available through https://www.worldpop.org/. Source data
are provided with this paper.
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Extended DataFig.1| Global Distribution of Delta Areaand Population
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Extended DataFig.2|Spatial Pattern of Vertical Land Motion (VLM) in Deltas.
Spatial maps of VLM rates for the (a) Rio Grande (USA-Mexico), (b) Grijalva

(Mexico), (c) Magdalena (Colombia), (d) Amazon (Brazil), (e) Senegal (Senegal),
(f) Saloum (Senegal), (g) Volta (Ghana), (h) Cross (Nigeria), (i) Wouri (Cameroon),

(j) Ogooué (Gabon), (k) Zambezi (Mozambique), and (I) Rhine-Meuse

(the Netherlands) deltas. Positive VLM (green-purple hues) indicates elevation
gain (uplift), while negative VLM (yellow-orange-red hues) indicates elevation
loss (land subsidence). Background image is ESRI, streets-dark.
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Deltas. Spatial maps of VLM rates for the (a) Rhone (France), (b) Vistula Positive VLM (green-purple hues) indicates elevation gain (uplift), while negative
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(Pakistan), (g) Kabani (India), (h) Cauvery (India), (i) Godavari (Cameroon), Backgroundimageis ESRI, streets-dark.
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(i) Chikuma-gawa (Japan) deltas. Positive HLM (green-purple hues) indicates
eastward motion, while negative HLM (yellow-orange-red hues) indicates
westward motion. Near-zero HLM (yellow hues) represents areas with minimal
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Extended DataFig. 8| Relationship between Vertical Land Motion (VLM)
Rates and AnthropogenicDrivers. Scatter plots of VLM (mm per year) versus
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and (c) urban fraction (UF) change (%) for the 40 deltas. Scatter plot of GWS
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(f) Scatter plot of sediment flux change (%) versus UF change (%). Eachrelationship

isanalyzed usinglinear regression as well as polynomial and logarithmic
regression models to assess the best-fit representation. Multiple regression
fits (linear, quadratic, logarithmic) are shown toillustrate the varied nature of
relationships betweenindividual predictors and VLM, demonstrating the need
foranonlinear modeling approach.
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