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Abstract

Intensive land use leads to the degradation of agroecosystems, resulting in long-term losses in agricultural productivity.
In contrast, sustainable management is known to improve soil fertility directly and indirectly through changes in the soil
microbiota, which plays a fundamental role in agroecosystems by influencing nutrient biogeochemical processes and
through symbiotic relationships with crops. In this study, we used amplicon sequencing to investigate changes occurring
in dominant and rare sub-communities of bacteria and fungi in agricultural soils from seven European countries under
different number of agroecological cropping systems: one and two sustainability-promoting practices or none. Both sub-
communities were structured along a latitude gradient, reflecting bioclimatic differences across Europe, especially the
fungal communities. Differences in the bacterial and fungal sub-communities’ structure were greater under the 2SP treat-
ment than under 1SP, particularly within the fungal dominant sub-community, which changed by sustainability-promoting
practices across more sites. In both fungal and bacterial communities, we identified specific taxa associated with carbon
and nutrient cycling, pathogen suppression, or plant growth promotion.
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Introduction

Soil biota is essential in providing ecosystem services [1]
thanks to the key role of soil microorganisms in diverse
soil processes such as soil nutrient cycling, organic matter
decomposition, C stock regulation, plant productivity, and
pest control [2]. Land-use perturbation has been identi-
fied as one of the main anthropic pressures affecting soil
microbial diversity and resulting in community composi-
tion shifts. This should be considered when planning soil
management [3, 4]. Conventional management, focused on
agricultural productivity, leads to large-scale soil degrada-
tion, reducing soil health and fertility among other nega-
tive environmental impacts [5—7]. The greatest challenge in
agriculture is to increase crop production, while reducing
negative environmental impacts by implementing sustain-
able solutions in agriculture. Agricultural practices that
are permanent and compatible with the environment are of
great importance to soil and natural resource sustainability
in the long term. Therefore, determining the most economi-
cal and fastest way to implement these practices in agricul-
ture should be a priority for farmers [8, 9]. According to
Mehmet Tugrul [5] sustainability-promoting agricultural
practices are mainly focus on increasing soil productivity
and reducing the harmful effects of agricultural practices on
the climate, soil, water, the environment, and human health.
This type of agriculture reduces the use of non-renewable
sources and employs renewable resources to improve agri-
cultural production [5, 10, 11].

Sustainable agriculture comprises the implementation
of alternative agricultural practices designed to promote
sustainability, enhance soil health, preserve biodiversity,
and maintain productivity while minimising environmen-
tal impacts [12]. These sustainability-promoting practices
include agroforestry, intercropping, crop rotation, green
manuring, conservation tillage, cover crops, and adopting
biofertilisers [13]. Crop rotation can help conserve, main-
tain, and replenish soil resources, including organic matter,
nutrient inputs, and physical and chemical properties and it
has an important influence on the soil’s microbial proper-
ties [14]. The appropriate choice and sequence of crops in
rotation are crucial to optimize nutrient cycling within the
field system and minimize losses over the short and long
term [15, 16]. No-tillage practices lead to higher C and
N concentrations and water content in the soil. Microbial
population size and diversity in agricultural soils can be
affected not only by individual practices such as tillage [17,
18] and crop residue retention [19], but also, by their com-
bined effects [20]. Green manuring is the practice of incor-
porating undecomposed green plants from the same field
or another into the soil to maintain the nutrient supply for
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the next crop [21]. Green-manured crops promote micro-
bial growth and their activity in the soil by releasing nutri-
ents and energy-supplying materials, such as root exudates,
eventually enhancing soil fertility and health [22]. However,
other studies have reported that the effects of diversification
or intensification of sustainability-promoting practices may
vary between dominant and rare sub-communities, or may
even be less pronounced than those driven by other factors
such as climate conditions or intrinsic soil properties [23,
24]. Furthermore, promoting truly sustainable agricultural
systems relies on the simultaneous application and study of
multiple sustainability-promoting practices, as individual
practices alone are often insufficient to achieve long-term
sustainability goals [25]. This highlights the need to dis-
entangle how sustainability-promoting practices, and their
number, interact with environmental and edaphic drivers to
shape microbial community composition [23, 26, 27].
Understanding the potential of the microbiome in agricul-
ture leads us to use it as an inoculant or to select more effi-
cient microbial groups for plant development [28]. This could
reduce the incidence of plant disease [9], increase agricul-
tural production, and decrease chemical inputs [29], thereby
contributing to more sustainable agriculture. Soil microbial
communities are highly diverse and contain dominant and
rare taxa that play complementary roles in regulating multi-
ple soil processes and maintaining ecosystem functions [30]:
dominant taxa channel the most of the energy and biomass
through ecosystems, ensuring its stability and maintenance
of soil agroecosystems [31, 32]; whereas rare taxa maintain
ecosystem function under environmental conditions changes
[33, 34], exhibiting greater sensitivity to environmental fac-
tors than common species [8, 35] and acting as reservoirs of
genetic diversity and supporting specific ecosystem functional
traits [36, 37]. Taking together, these complementary roles
highlight the ecological significance of the soil microbial
community’s distribution, and, studying those sub-commu-
nities under different levels of agricultural intensification is
therefore of particular interest, as management practices may
differentially shape these groups and therefore, influence the
capacity of soils to sustain fertility, productivity, and resilience
[27, 38]. However, the processes shaping rare bacterial species
remain largely unknown or have been frequently overlooked
[39-41], therefore, a deeper understanding of the ecological
attributes of common versus rare soil microbial communi-
ties could enhance our ability to predict how soils ecosystems
responds to environmental change and to identify which taxa
should be protected. Although taxonomic approaches do not
directly measure microbial functions, they provide valuable
information of soil functionality, as shifts in the abundance of
particular microbial groups are often associated with changes
in key ecological processes [42, 43]. Consequently, we can
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evaluate whether protecting only common taxa would be
enough to safeguard soil ecosystem services [44].

In this work, we aimed to analyse the soil bacterial
and fungal communities through the amplicon sequencing
analysis of soil DNA from long term experiments under a
different number of sustainability-promoting agronomical
practices across 7 European countries, in order to (i) assess
the European-scale effects of the number of sustainability-
promoting practices on dominant and rare microbial sub-
communities; (ii) explore taxonomic changes of microbial
sub-communities at the phylum and genus levels; and (iii)
evaluate the influence of edaphoclimatic conditions on the
microbial sub-community structure. Our hypothesis is that
increasing the number of sustainability-promoting agricul-
tural practices influences dominant communities and rare
microbial sub-communities differently, due changes in soil
properties, such as organic matter and soil nutrients content.
By simultaneously considering dominant and rare micro-
bial taxa across multiple long-term field experiments and
diverse European environments, this study addresses a cur-
rent knowledge gap on how the intensity of sustainability-
promoting practices shapes soil microbial communities at a
continental scale, thereby providing novel insights into the
microbial shifts underpinning sustainable agriculture.

Materials and Methods
Experiment Design and Sampling

This study is part of the EJP Soil Project (AGROECOSeqC).
It was conducted across various European countries: Spain
(SPA), Lithuania (LIT), the Netherlands (NET), Belgium
(BEL), Denmark (DEN), France (FRA), and Italy (ITA),
representing a range of edaphoclimatic conditions (Fig. S1).
In each country hereafter referred to as core sites (CSs), we
selected long-term experiments with different agricultural
practices: increasing crop diversity (cover crops, intercrop-
ping, and rotation), reducing soil disturbance (tillage reduc-
tion) and the use of organic inputs (plant residue, manure
and compost). These treatments were designed as a gra-
dient of number of sustainability-promoting agricultural
practices: (i) absence of sustainability-promoting practices
(OSP); (ii) implementation of one sustainability-promoting
practice (1SP) and (iii) implementation of two sustainabil-
ity-promoting practices (2SP), according to previous studies
[26, 45]. The specific practices within each site across dif-
ferent core sites are in Table 1, more information concerning
the experimental design of each core site can be found in
Doyeni et al. [46].

Table 1 Location and description of the diversification strategies in the experiments

Location Site Estab- Sampling Plot Size Main Crop Sustainability- Practices
lishment Date Promoting
Date Practices
Spain, Alcala de SPA 1994 Wheat 0SP Monocrop, tillage
Henares May 2023 250 m? 1SP Rotation, tillage
2SP Rotation, no tillage
France, FRA 2016 Wheat 0SP Monocrop, tillage
Clermont May 2023 490.9 cm? 1SP Wheat and legumes
2SP Wheat, legumes and cover crops
Italy, Rome ITA 2017 Organic 0SP Organic fertilizer (compost) monocrop,
Apricot tillage
April 2023 132 m? 1SP Compost, mixed cover crops and tillage
2SPp Compost, spontaneous cover and no
tillage
Belgium, BEL 1959 Sugar beet, 0SP Residue’s export, no cattle manure
Gembloux April 2023 48 m? winter wheat,  |Sp Residue’s export, cattle manure
winter barley  rgp Residues applied as green manure, no
cattle manure, cover crops
Netherlands, NET 2016 Cereals 0OSP Fallow
Wageningen April 2023 50 m? 1SP Vetch and oats cover
2SP Vetch, oat and radish cover
Lithuania, LIT 2013 Cereals 0SP Tillage, no cover crop
Akademija October 2022 45 m? 1SP No tillage, no cover crop
2SP No tillage, cover crop
Denmark, DEN 2021 Ryegrass 0SP Monocrop
Foulum July 2022 18 m? 1SP Six species mixtures of rygrass
2SP Ryegrass and white clover
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Samples were collected at peak of green biomass corre-
sponding to the period of maximum nutrient uptake for each
core site. The experiments followed a completely random-
ized block design. Four blocks with 3 treatments (plots), a
total of 12 plots per CS. From each plot, four sub-samples
were collected from the soil surface layer (0-20 cm depth
range), covering approximately a 5 cm thick by 15 cm wide
and then pooled together to form one composite sample.
Soil samples were sieved using a 2 mm mesh. For physico-
chemical analyses, the samples were air dried and stored at
4 °C; for molecular analyses, fresh samples were stored at
—20 °C according to [14, 47].

Soil Physical, Physicochemical, and Chemical
Properties

The total nitrogen (TN), total carbon (TC) and total organic
carbon (TOC) were determined using an elemental CHNS-
O analyser (Truspec CN, Leco, St. Joseph, Mich., USA).
The nutrients were measured using ICP-MS (7500CE, Agi-
lent, Santa Clara, CA, USA). The available P was measured
following Korndorfer et al. [48]. The nitrates and ammo-
nium were measured following the Italian Gazette no. 248
of 21/10/1999 “Official Methods for Soil Chemical Analy-
sis” Method 19, 1999.

Soil DNA Extraction and Sequencing

The DNA was extracted with the DNeasy PowerSoil Pro
kit (Quiagen, Germany) from 0.5 g of soil. The DNA was
purified with the QIAquick Gel kit (Qiagen). To measure
the quality of the DNA, electrophoresis was performed on
a 1.5% agarose gel. In addition, a NanoDrop 2000 fluo-
rospectrometer (Thermo Fisher Scientific, Waltham, MA,
USA) was used to quantify the DNA extraction yield. To
avoid the excessive co-amplification of plasmids, chloro-
plast and mitochondrial rRNA gene sequences, the resulting
16S and ITS amplicons were tagged to Peptide Nucleic Acid
(PNA) clamps in the PCR, avoiding the amplification of this
non-targeted DNA [49, 50]. The V3-V4 region of bacte-
rial 16S rRNA was amplified using the primer pair 341 F
(5'-CCTACGGGNBGCASCAG-3) and 806R (5'-GAC-
TACNVGGGTATCTAATCC-3") [51]. The ITS2 region
of fungi was amplified using the primer pair ITS2 — fiTS7
(5’-GTGARTCATCGAATCTTTG-3") and ITS4 (5’-TCC
TCCGCTTATTGATATGC-3’) [52]. DNA sequencing was
performed at the Instituto de Parasitologia y Biomedicina
“Lopez-Neyra” (CSIC, Spain) with Illumina MiSeq tech-
nology (Illumina Inc., CA, USA) using a paired 2 x 300 bp
(PE 300) strategy. The libraries were constructed with the
Nextera XT v2 DNA Library Preparation kit (Illumina Inc).
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Sequencing Data Processing

The demultiplexed sequence quality was tested using the
FASTQC program v 0.12.1 [53]. The raw sequences were
trimmed, denoised, merged, and checked for chimeras, and
the singletons were removed using the DADA2 v 1.22 pipe-
line [54] on R v 4.1.2 [55] for Rocky Linux. For bacterial
sequences, we trimmed the first 19 and 21 nucleotides of
the sequences, while for fungal sequences, primers were
removed using Cutadapt v 4.9 as the internal transcribed
spacer (ITS) region exhibits high length variability across
taxa, making fixed-length trimming unsuitable [56]. The
bacterial and fungal sequences were trimmed using a qual-
ity score threshold of five and two, respectively. No further
trimming was carried out. The amplicon sequence vari-
ant (ASV) taxonomy assignment was performed using the
SILVA v 138.1 [57] database for bacteria and the UNITE v
9.0 database for fungi [58]. ASVs that were not assigned to
a known phylum, as well as singletons, were removed from
the dataset. To facilitate the comparison among samples, the
ASV tables were rarefied to the lowest sequencing depth
observed across all samples. After processing, the bacte-
rial and fungal datasets yielded 21,704 and 9,071 reads,
respectively.

Climate Data Collection

The climatic data was obtained from the WorldClim data-
base [59], using the data from 1970 to 2000 at a resolution
of 30 s (~ 1 km?). We extracted the following data: precipi-
tation, annual minimum temperature, and annual maximum
temperature using the function rast from the “Terra” pack-
age [60]. The bioclimatic variables were obtained using the
biovars function from the “Dismo” package [61].

Statistical Analysis

All statistical analyses were conducted using R v 4.1.2 [55].
The sample data, ASV reads, and taxonomic assignation
were handled using microeco objects from the “microeco”
package [62]. Distinguishing between dominant and rare
sub-communities is of great relevance, as microbial taxa
typically follow a power-law distribution, where a few taxa
are dominant and comprise the majority of individuals in
the community, whereas the majority of taxa are consid-
ered rare. However, determining the boundary is not obvi-
ous. Therefore, different thresholds have been proposed in
the literature, such as 0.1% or 0.01% or even including an
intermediate group to distinguish dominant, intermediate,
and rare taxa [63]. In our study, ASVs with a relative abun-
dance greater than 0.1% in each sample were classified as
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dominant, whereas those below 0.1% were considered rare,
according to previous studies [8, 32]. The analyses were
performed separately for the dominant and rare subsets of
both bacterial and fungal communities.

The alpha diversity indices, Shannon and Richness, were
calculated using the function cal_alphadiv from the “micro-
eco” package. The community’s structure was visualized in
the “microeco” package using Principal Coordinate Analy-
sis (PCoA) based on the Bray-Curtis dissimilarity matrix,
and quantified with a permutational multivariate analysis
of variance (PERMANOVA) using the adonis? function
from the “vegan” package [64]. To study the effects of the
geographic position and agricultural systems, we first per-
formed a two-way PERMANOVA with 999 permutations
for each community. Since the interaction (site x treatment)
was significant, we conducted a one-way PERMANOVA
with 999 permutations to evaluate the effects of the treat-
ments within each core site. Differences across treatments
were calculated according to a Duncan’s Multiple Range
post hoc test for PCoA components 1 and 2.

To study the effect size of the number of sustainability-
promoting agricultural practices on the alpha diversity indi-
ces and the abundances of microbial phyla and genera, we
calculated the natural log of response ratios and their confi-
dence intervals at a 95% confidence level using a modified
version of the function logRespRatio from the “ARPobserva-
tion” package [65]. To avoid zero values in the databases, we
added 10™* to all the values, and to test whether the effect size
changes were significant, a lineal mixed model (LMM) were
fitted, using the Imer function from the “lme4” package [66]
using the site as random factor, avoiding the inherent differ-
ences to each core site, due to the different practices applied
or edaphoclimatic conditions. The effect size of phylum taxa
was plotted using a forest plot, whereas the genus taxa were
plotted using a volcano plot. A principal component analysis
(PCA) was performed for the bioclimatic variables obtained
from the WorldClim data, and the soil properties (total car-
bon, organic carbon, total nitrogen, NH,", NO,, and avail-
able phosphorous) using the “Factoextra” and “FactoMineR”
packages [67, 68]. To summarize the main patterns in the
microbial composition and facilitate the interpretation of their
relationships with environmental variables, we conducted a
Spearman’s correlation test using the cortest function from
the “stats” R package [55] followed by a linear regression
analysis using the Imperm function from the “Permuco” pack-
age [69] between the geographic coordinates (latitude and
longitude) and the first components (PCA1) from the climatic
data and soil properties PCA analysis with the dominant/rare
bacterial and fungal communities’ composition using the
first component of the PCoA analysis (PCoAl) based on the
Bray-Curtis dissimilarity matrix. Partial Mantel tests were
used to determine Pearson’s correlations between individual

environmental variables and their Euclidean distance matrix
with the sub-communities Bray — Curtis dissimilarity, con-
trolling for the effect of geographical distance as cofounding
variable and 999 permutations using the mantel.test function
from the “vegan” package.

Results

Relative Abundance and Percentage of Soil Bacteria
and Fungi Sub-Communities

The number of ASVs classified as dominant or rare in the
bacterial and fungal sub-communities along with their rela-
tive abundance in the community varied slightly among the
core sites (Fig. 1). In most of the core sites, approximately
75% of the bacterial ASVs were classified as rare, contrib-
uting to 45% of the total relative abundance (Fig. 1A - B),
whereas the dominant bacteria showed approximately 25%
of the ASVs, with a relative abundance of 55%. However,
for the core sites in BEL and NET, the dominant bacteria
comprised around 60% of ASVs, accounting for 20% of the
total relative abundance (Fig. 1A-B).

The classification of the dominant and rare fungi was
more consistent across the core sites (Fig. 1C-D). On aver-
age, 41% of the ASVs corresponded to rare fungal com-
munities, and they contributed, on an average, 4% of the
relative abundance of the fungal community, while domi-
nant fungi showed 59% of the ASVs and 96% of abundance
(Fig. 1C-D).

Effect of Sustainability-Promoting Practices on the
Diversity Indices of Soil Bacteria and Fungi Sub-
Communities

The compositions of the soil microbial communities (bacte-
rial and fungal sub-communities) in the different core sites
were clustered along the PCA1 (24.1%, 10.2%, 22.8%, and
4.5% of explained variance, respectively) following a geo-
graphic gradient from northern sites such as DEN/NET to
southern sites such as SPA/ITA (Fig. 2). Although the pro-
portion of variance explained by the first axis was relatively
low for each sub-community, the two-way PERMANOVA
tests revealed that core sites, treatments, and their interac-
tions had significant effects on most bacterial and fungal
sub-community compositions (Table S1).

The number of sustainability-promoting practices
applied showed significant shifts in the beta diversity of the
microbial sub-communities across the majority of core sites,
according to one-way PERMANOVA analysis (Table S2)
except for the DEN core site, where the treatments did not
affect microbial structure in any sub-community.
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Fig. 1 Number of total ASVs corresponding to the bacterial (A) and fungal (C) sub-communities in each core site and the relative abundance of

those ASVs in the whole bacterial (B) and fungal (D) community

In the dominant bacterial sub-community, the bacterial
composition shifted by the number of sustainability-pro-
moting practices applied in four core sites. In FRA and LIT,
both 1SP and 2SP showed a similar shift compared to the
OSP, whereas in BEL and ITA, only the 1SP, but not the 2SP
treatment shifted the community composition (Fig. S2 A).
A similar trend was detected in the rare bacterial sub-com-
munity those core sites, but additionally, the NET core site
also seemed to show a shift in the community composition,
caused by the 1SP (Fig. S2B).

For the dominant fungal sub-community, significant
compositional shifts were detected under the 1SP or 2SP
treatments in all core sites except DEN. In FRA and LIT
core sites, both 1SP and 2SP treatments shifted the com-
position similarly compared to the OSP, without differences
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among them. In SPA and NET, only the higher intensifica-
tion (2SP) shifted the dominant fungal composition com-
pared to the 1SP, whereas in the ITA core site, only the 1SP
caused changes in the dominant fungal structure (Fig. S2C).
For the rare fungal sub-community, only SPA, BEL, and
LIT showed statistical differences in the community struc-
ture, where both 1SP and 2SP shifted the composition simi-
larly, compared to OSP (Fig. S2 D).

The size effect (LRR) of the alpha bacterial diversity
indexes increased significantly in the dominant bacteria
sub-community with 1SP and 2SP, whereas for rare bac-
terial taxa, the diversity indexes decreased significantly in
both cases, specially, with ISP (Fig. 3A - B). For dominant
and rare fungi, the diversity indexes decreased in both treat-
ments (1SP and 2SP) (Fig. 3C-D).
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fungi (C — D) across sites. Different shapes represent seven European countries. Colours represents the three sustainability-promoting practices

Effect of Sustainability-Promoting Practices
and Bioclimatic and Soil Properties on the
Sub-Communities of Soil Bacterial and Fungal
Communities

To link individual soil properties and sub-communities’
dissimilarity, we performed partial Mantel tests control-
ling for geographical distance (Table 2). Total and organic
carbon, total nitrogen, ammonium, and available phospho-
rus showed consistently significant relationships (p<0.01)
with all subcommunities, whereas nitrate exhibited weaker
and less consistent correlations. When considering the com-
bined matrix of soil variables, the correlations remained sig-
nificant, particularly for fungal sub-communities.

Principal coordinate analysis 1 (PCoAl) of beta diver-
sity and microbial sub-communities showed a significant
correlation with latitude and bioclimatic conditions (Table
S3, Fig. S4 A-C). The relationship between the microbial

sub-communities and latitude showed a stronger response
in the fungal sub-communities than in the bacterial sub-
communities (Table S3, Fig. S4 C). However, only the rare
fungal community was significantly influenced by longitude
(Table S3, Fig. S4 B).

The bioclimatic conditions were different across the core
sites. Core sites NET, BEL, and DEN were grouped accord-
ing to high precipitations, whereas ITA, FRA, and SPA
correlated with high temperatures (Fig. S3 A). The first com-
ponent of the principal component analysis (PCA1) strongly
correlated with the geographical coordinates, especially with
latitude (Fig. S5). The soil properties were grouped accord-
ing to core site. Three groups were observed: ITA correlated
with the highest content of NO;” and NH,"; FRA highly cor-
related with the highest values of total organic carbon; and
a third group (SPA, BEL, LIT, NET, and DEN) correlated
negatively with total organic carbon, total carbon, and total
nitrogen (Fig. S3 B).
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a significant effect (* p<0.05, ** p<0.01, *** p<0.001) according to
a linear mixed models using the site as random factor

Table 2 Partial mantel tests of microbial sub-communities Bray — Curtis dissimilarities and environmental variables controlling for geographical

distance
Variables Dominant bacteria Rare bacteria Dominant fungi Rare fungi
r )4 I P r )4 r )4

Total C 0.28 0.001 0.26 0.001 0.37 0.001 0.36 0.001
Organic C 0.30 0.001 0.26 0.001 0.37 0.001 0.38 0.001
Total N 0.31 0.001 0.24 0.001 0.41 0.001 0.37 0.001
NO; 0.07 0.016 0.04 0.081 0.15 0.007 0.13 0.001
NH* 0.14 0.002 0.11 0.001 0.24 0.001 0.24 0.001
P available 0.15 0.001 0.09 0.002 0.22 0.001 0.24 0.001
Variables distance matrix 0.31 0.001 0.24 0.001 0.44 0.001 0.42 0.001

Effect of Sustainability-Promoting Practices on
the Sub-Communities of Soil Bacteria and Fungi
Communities

The forest plot (Fig. 4) showed the log response ratio (LRR)
of microbial sub-communities with 1SP and 2SP compared
to OSP. The number of phyla that decreases or increases in
each subcommunity is summarized in the table S5. The LRR
of dominant bacterial phyla (24 taxa) across all the core
sites showed that two phyla increased significantly with 2SP
(Acidobacteriota and Myxococcota) whereas Halanaerobi-
aeota increased only with 1SP. Additionally, the filum Bacil-
lota decreased significantly in both treatments, especially in
the 2SP (Fig. 4A). For rare bacteria, we found more phyla (39

@ Springer

taxa) but only Acidobacteriota increased significantly across
core sites with 2SP, whereas the phyla Bacillota, Cyanobacte-
ria and Nitrospirota decreased. Similarly, with 1SP, only the
phylum Planctomycetota increased significantly, whereas the
Actinomycetota and Chloroflexota phyla decreased (Fig. 4B).

For the dominant fungi (14 taxa), Ascomycota increased
significantly with 1SP and 2SP. We observed a significant
increase of Rozellomycota and a decrease of Mortierellomy-
cota with 2SP, whereas under 1SP, we observed an increase
of Monoblepharomycota and a decrease of Basidiomycota
(Fig. 4C). Interestingly, in the rare fungal sub-community,
only Rozellomycota showed a significant increase with 1SP.

The volcano plot shows the LRR of the genera that
significantly increased or decreased in the different
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sub-communities of bacteria and fungi with 1SP and 2SP
compared to OSP (Fig. 5). In Table S5 are summarized the
number of taxa which decreases or increases in each sub-
community. Core sites with 2SP, showed that nine of the
dominant bacterial genera increased over the 0.1% thresh-
old compared to the OSP including Gaiella, Geobacter and
Gemmata, whereas with the 1SP, 17 genera increased sig-
nificantly over the threshold, including Lysobacter, Variov-
orax, Rhizocola or Gaiella. Contrary, 12 genera decreased
significantly (Fig. 5A). In the rare bacterial sub-community,
13 genera increased significantly over the threshold (0.1%)
under 2SP compared to OSP, including Bosea, Acidibacter,
Coxiella or Nitrospira, whereas with 1SP, 9 genera increased
significantly like Dongia, Alkalibacter or Caldicoprobacter
(Fig. 5B).

In the dominant fungi sub-community, 12 genera
increased over the threshold (0.1%) with 2SP like Fusar-
ium, Tausonia, Gibellulopsis, Paraphoma, Neosetophoma
or Lipomyces. Similarly, with 1SP, also 12 fungal genera
increased in the dominant fungi sub-community, includ-
ing Neosetophoma, Gibellulopsis or Laburnicola (Fig. 5C).
In the rare fungi sub-community 3 taxa increased over the
threshold (0.1%) significantly with 2SP (Stropharia, Seren-
dipita and Dioszegia), and with 1SP, only 2 taxa increased,
and two genera increased significantly (Fimicolochytrium
and Neodendryphiella) (Fig. 5D).

Discussion

The study of soil microbial sub-communities is essential for
soil quality preservation and the optimization of soil man-
agement, since soil microbes are sensitive to environmen-
tal impact and are one of the best predictors of soil quality
[70]. Despite that in our study we did not directly measure
microbial functions, and focused on a taxonomic approach,
this can provide valuable insights into soil functionality, as
shifts in the abundance of particular microbial groups are
often linked to changes in key ecological processes [42, 43].
However, it is important to note that taxonomic data alone
cannot be used to infer microbial functions unequivocally,
as the same taxa may play different roles depending on envi-
ronmental context, management conditions or geographical
distribution [71]. Additionally, analyzing dominant and rare
taxa sub-communities separately is essential for understand-
ing the process of soil ecosystems in different study sites or
agriculture practices, allowing to capture the full diversity
of the soil microbiome, as rare taxa are often overlocked
or masked by dominant taxa in standard analyses [30, 31,
72]. Whereas dominant microorganisms might be the major
contributors to ecosystem functioning and maintaining the
microbial communities structure [32], several studies have

also highlighted that the rare microbial sub-community is
key for regulating ecosystem functions, displaying a dispro-
portional role in biochemical cycles compared to dominant
species, providing complementary functions to support eco-
systems stability, and are more easily affected by environ-
mental disturbances [39, 44, 72].

Our results indicate that both dominant and rare micro-
bial sub-communities respond to sustainability-promot-
ing agricultural practices differently, with dominant taxa
generally showing stronger shifts in accordance to other
researchers [31, 33], while site-specific environmental driv-
ers played a differential role across sub-communities, with
latitude and climate affecting all sub-communities similarly,
longitude affecting only the rare fungal fraction, and soil
properties showing a significant relationship with all the
sub-communities, particularly with the fungal communities.

Dominant and Rare Microbial Communities in
Different European Core Sites

Although rare microbial taxa have been often overlooked
in analyses [73], they are known as a source of genetic
resources and to become particularly relevant under envi-
ronmental shifts, such as soil degradation, by adapting to
new conditions and potentially replacing previously domi-
nant taxa, contributing to ecosystem stability [30, 74, 75].
In our study, the rare bacterial sub-community consistently
showed higher richness than that of the dominant sub-com-
munities across European core sites as expected, which is in
accordance to previous studies [72], supporting the idea that
the rare sub-community is the main component of microbial
diversity and could indicate higher resilience [76]. By con-
trast, in the fungal community, the dominant taxa exhibited
slightly higher richness than the rare ones, suggesting that
fungal assemblages may follow different diversity—stability
dynamics than bacterial communities [77-79].

Diversity Indexes Related to the Number of
Sustainability-Promoting Practices

The bacterial and fungal sub-communities differed accord-
ing to the latitude and bioclimatic conditions of the core
sites, indicating a gradient from the core sites in the north
of Europe to the south. This is in line with Banerjee et al.
[77], who demonstrated that the relationships of the micro-
bial communities could be explained by geographic proxim-
ity, considering climatic conditions and edaphic properties
[74, 80].

The alpha-diversity indexes only increased signifi-
cantly in the dominant bacteria sub-community under both
1SP and 2SP, that could indicate that the dominant bacte-
rial sub-community is sensitive to changes induced by

@ Springer
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{ Fig. 4 Forest plot showing the Mean Log Ratio Response (LRR) val-
ues of bacterial and fungal phyla and their 95% confidence intervals in
the dominant bacterial community (A), rare bacterial sub-community
(B), dominant fungal sub-community (C) and rare fungal sub-commu-
nity (D) under different sustainability-promoting practices. Asterisks
(*) indicates a significant effect (* p<0.05, ** p<0.01, *** p<0.001)
according to a linear mixed models using the site as random factor

sustainability-promoting agriculture practices. Neverthe-
less, previous studies have pointed out that alpha-diversity
indices are generally less sensitive for differentiating micro-
bial communities compared to other indexes [28, 47, 81].
In contrast, in both fungal sub-communities, alpha-diversity
decreased, highlighting the fungal different response pat-
terns to the implementation of sustainability-promoting
practices [82].

The beta diversity showed that, across the different core
sites, dominant fungi were more sensitive to agricultural
practices than the rare fungal sub-community and both bac-
terial sub-communities. Significant shifts under 1SP or 2SP
compared with OSP were detected in six core sites for domi-
nant fungi, whereas only four core sites showed changes
in dominant bacteria, five in rare bacteria, and three in rare
fungi. This indicates that dominant fungi exhibited the
highest number of significant responses to sustainability-
promoting practices across sites. However, this is contrary
to Banerjee et al. [77], who showed rare fungi to be more
sensitive to disturbances. The principal differences among
the sub-communities of bacteria and fungi were observed
with 2SP, with the exception of the BEL core site, where
ISP, involving the addition of cattle manure, shifted the
microbial communities greatly which agrees with Semenov
et al. [83]. Our results indicated that, in general, increas-
ing the number of sustainability-promoting practices tended
to strengthen the effects on the microbial community, most
notably in the dominant fungal community, followed by the
bacterial rare, and to a lesser extent the bacterial dominant
sub-communities respectively. However, the effects varied
across core sites, reflecting differences in applied treatments
and site-specific edaphic and climatic conditions.

Shift of Bacterial and Fungal Sub-Communities with
the Number of Sustainability-Promoting Practices

Identifying the microbial taxa responsible for shifts in the
communities with different agronomical practices is one
of the most important factors in the study of the microbi-
ome, as these taxa participate in nearly all soil biological
processes, however, the use of amplicon sequencing only
shows potential functionality. In the dominant bacterial sub-
communities, phyla such as Acidobacteriota and Myxococ-
cota have increased under the 2SP where compost addition,
residue retention and no-till farming practices were applied

[14, 84, 85]. Notably, Acidobacteriota community contrib-
ute to essential soil processes, including various roles in
the nitrogen, phosphorous, sulphur and carbon cycles [85]
whereas Myxococcota members are important micropreda-
tors, that can play an essential role shaping microbial com-
munities in agricultural soils [14, 86]. Unexpectedly, phyla
like Bacillota, previously known as Firmicutes, which
members are related to important roles in agroecology [87]
decreased with both 1SP and 2SP across core sites, contrary
to other studies results [88, 89].

Some dominant bacterial taxa were identified as increas-
ing with both treatments across the core sites including spe-
cies of Variovorax (Pseudomonadota), known as endophytes
that can promote plant growth in poor soils [90]. Microor-
ganisms of the genus Geobacter participates in carbon and
nitrogen cycling in soils, contributing to CO, fixation in soils
[91] increased significantly with 2SP. Whereas microorgan-
isms of the genus Lysobacter (Pseudomonadota), known for
its capacity to suppress pathogens, mineralize nutrients in
the soil, and promote plant growth and yield [92] increased
significantly only with 1SP.

Among the rare bacterial taxa, Acidobacteriota and Planc-
tomycetota related to plant cover [93] increased greatly
under 2SP and ISP treatments respectively. According to
the number of practices, different genera such as Edapho-
baculum (Bacteroidota), associated to soil fertility [94] and
Caldicoprobacter (Bacillota), associated to biodegradation
of hemicelluloses in soils [95] increased significantly under
the 1SP. While under 2SP, genera such as Bosea, considered
a disease-suppressing bacteria [96], and Paracoccus, related
to synthetic biodegradation of materials such as pesticides
or plastics, along with organic compounds [74] increased
in the fungal sub-communities. Interestingly, the phylum
Glomeromycota (Arbuscular mycorrhizal fungi (AMF))
which is known as a root colonizer for most terrestrial
plants since it facilitates mineral nutrient uptake from the
soil in exchange for plant-assimilated carbon [97] increased
greatly with 1SP. However, the AMF sequences might
be underrepresented in this study since we used the ITS2
region instead of fungal-specific primers. This could lead to
an underestimation of the diversity and abundance of these
fungi [98, 99]. In contrast, with 2SP Rozellomycota (also
known as Cryptomycota) increased, according to Olayemi
et al. [100] and Muturi et al. [101] that reported the increase
of Rozellomycota under different sustainability-promoting
practices like cover crops, no-till farming, residue retention,
and organic fertilizers. Whereas, Mortierellomycota which
promotes plant growth through phytohormone production
and phosphorous solubilization [102] decreased in both
treatments (1SP and 2SP).

In the dominant fungi sub-community, genera such as
Neosetophoma (Ascomycota), a litter saprotroph [103] and

@ Springer
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Fig. 5 Volcano plot showing the mean Log Ratio Response (LRR)
values of bacterial and fungal genus that were significantly enriched
or reduced in the dominant bacterial sub-community (A), rare bacte-
rial sub-community (B), dominant fungal sub-community (C) and rare

Gibellulopsis (Ascomycota) a biocontrol agent that can act
as a plant endophyte protecting crops against Verticillum
[75, 104] increased significantly under both sustainability-
promoting practices (1SP and 2SP), whereas Pyrenochae-
topsis (Ascomycota), identified as an important indicator
of plant agronomical traits ([105] only increased under
1SP practices. Under the 2SP practices, the Neosetophoma
genus (Ascomycota), related to litter decomposition and
no-till farming [103, 106] increased significantly across
the core sites. Interestingly, we also observed an increase
of Fusarium under 2SP practices. Although some manage-
ment strategies, such as reduced tillage or the application
of green manure, can create conditions (e.g., higher organic
matter and moisture) that favor Fusarium proliferation,
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considering the existence of pathogenic and non-pathogenic
[107—-109]. Further analysis will be necessary to address it.
Among rare fungi few taxa increased significantly across
the core sites, interestingly in the 2SP practices, Stropharia
(Basidiomycota) and Serendipita (Basidiomycota), an endo-
phytic fungus with several applications in agriculture [110]
increased significantly.

Drivers of Microbial Communities

We also investigated the drivers of microbial community
composition and structure across European agricultural
soils. Large-scale surveys of microbial fungi typically focus
on natural communities rather than agricultural systems
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[111, 112]. Thus, in this study, we assessed how the micro-
bial communities were distributed across different European
core sites. We observed that the structure of microbial sub-
communities was primarily determined by the distance to
the equator, with core sites clustering along a north-south
axis, while little relationship was observed along the east-
west axis. This pattern reflects the strong influence of lati-
tude on bioclimatic conditions, as northern and southern
Europe differ greatly on climatic conditions, mainly influ-
enced by proximity to the Mediterranean Sea (south), which
is characterized by higher temperatures, lower precipitation,
and a summer drought period, in difference to the northern
latitudes [113]. This relationship was more pronounced in
the fungal communities than in the bacterial ones, consistent
with previous studies observing that bacterial communities
separated geographically tend to cluster better according to
soil properties than geographical proximity [114, 115].

Our results revealed significant relationships between
microbial communities and soil properties, with stronger
association observed for the fungal communities. Moreover,
fungal communities were also more sensitive to bioclimatic
gradients, particularly the rare fungal sub-community. These
findings indicate that fungal communities exhibit more pro-
nounced changes than bacterial communities across the core
sites studied. These results are in accordance with previous
studies where fungal communities, particularly the rare ones
were found to be more sensitive to bioclimatic conditions
such as precipitation [78, 116, 117]. Bacterial communities,
despite significant, show weaker responses to both climatic
and edaphic gradients [23, 112, 118]. Altogether, these results
reinforce the idea that fungal assemblages are more environ-
mentally responsive than bacterial ones at large spatial scales.

Conclusion

Our findings demonstrates that the response of soil micro-
bial sub-communities to sustainability-promoting agricul-
tural practices is highly variable across different European
core sites, strongly driven by bioclimatic conditions and
agricultural practices. Overall, bacterial richness was higher
in the rare sub-community, but unexpectedly fungal rich-
ness was slightly greater in the dominant sub-community.
Beta diversity analyses revealed that dominant fungi as the
most responsive group to sustainability-promoting prac-
tices, exhibiting significant shifts across a larger number of
core sites compared to other microbial sub-communities.
Moreover, sustainability-promoting practices promoted
microbial groups involved in carbon and nutrient cycling,
plant growth promotion, and pathogen suppression, particu-
larly within members of Acidobacteriota, Bacillota, Myxo-
coccota, Glomeromycota, and Rozellomycota.
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