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Abstract
Background  Coccidiosis is a parasitic infection in the gut of livestock that poses a significant health challenge in 
poultry farming, underscoring the important role of intervention and prevention strategies in the poultry industry. 
The use of anticoccidial drugs raises concerns about antimicrobial resistance (AMR) due to their antimicrobial 
properties and the ability of bacteria to evolve resistance to these drugs. Whether anticoccidial drug resistance could 
extend beyond coccidiostats, leading to cross-resistance and co-selection against other antimicrobial resistance 
genes (ARGs), is currently under discussion. Also, it is not well understood to what extent coccidiosis reduction 
strategies may enable the emergence of ARGs in farm environments and transmission of ARGs to other environments 
through bacterial clonal transfer or horizontal transmission via mobile genetic elements (MGEs) like plasmids or 
transposons.

Results  In this study, we used metagenomic sequencing of caecal and faecal dropping samples from broiler 
chickens to investigate how two anticoccidial prevention strategies (vaccination and coccidiostat drugs) influence 
bacterial taxonomic composition and ARG profiles. We also explored the mobile resistome, ARGs located on mobile 
genetic elements (MGEs) such as plasmids, which are capable of disseminating, investigating ARGs identifying with 
the potential to disseminate within and beyond farm settings. Our exploratory findings in bacterial composition, as 
well as resistome composition with 21 differentially abundant ARGs, illustrating the potential impact of anticoccidial 
strategies on the chicken gut microbiome and resistome. We also identified 14 plasmid fragments containing ARGs in 
faecal dropping samples, highlighting mobile ARGs potentially able to disseminate to other environments, including 
humans.

Conclusions  Our findings demonstrate the impact of anticoccidial strategies on the chicken gut microbiome and 
resistome with potential consequences for the dissemination of ARGs.
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Background
Among all farmed animals, chickens represent the most 
abundant and most consumed livestock globally. Poultry 
meat production is projected to contribute nearly half of 
the total increase in meat production by 2034 [1]. Coc-
cidiosis, an infection caused by protozoan parasites, most 
commonly from the genus Eimeria (i.e., E. acervulina, E. 
brunetti, E. maxima, E. mitis, E. mivati, E. necatrix, E. 
praecox and E. tenella), is one of the most frequent health 
issues in poultry farming [2]. Depending on the caus-
ative agent, the infection can cause effects from intestinal 
lesions to impaired feed conversion, subsequently leading 
to stunted growth, or, due to wet litter footpad dermati-
tis, severe illness and mortality [2]. The worldwide finan-
cial impact of the disease is estimated at around 2 billion 
euros per year [3]. Coccidiosis prevention strategies are 
therefore of high importance in the poultry industry, 
and the sustainability of the current poultry production 
in Europe depends on the effectiveness of the anticoc-
cidial control program [4]. Coccidiostats, anticoccidial 
medicines, are commonly administered as feed additives 
in broiler chickens [5]. These coccidiostat drugs are com-
posed of ionophores, which possess the ability to create 
pores in the membrane of the unicellular parasite, leading 
to cell inactivation and death, and synthetic molecules, 
like decoquinate, diclazuril, halofuginone, robenidine, 
and nicarbazin, that interfere with the eimerial life cycle 
through other mechanisms [6]. To date, although the 
onset of resistance can be slowed by using rotation pro-
grams [7], anticoccidial resistance has been documented 
for all the commonly employed anticoccidial drugs [2], 
posing a significant challenge to effective disease control 
and highlighting the urgency for alternative or diversified 
prevention strategies.

In addition to anticoccidial activities, ionophores also 
possess antimicrobial activity in vitro, and bacteria are 
able to develop resistance toward these molecules [8]. 
Additionally, resistance to ionophores has been linked to 
increases in resistance to other antimicrobials. Specifi-
cally, cross-resistance has been reported between baci-
tracin and monensin, and an ABC transporter causing 
resistance to narasin, salinomycin, and maduramicin has 
been found encoded on a plasmid that also contained 
the vanA gene cluster, indicating possible co-selection of 
these resistance genes [9–11]. Antimicrobial resistance 
genes that emerge and are selected for in farm environ-
ments can be transmitted to humans via direct animal-
human contact, the food chain, or via animal-human 
shared environments [12]. Dissemination of resistance 
may not only occur as a result of bacterial clonal trans-
mission between animal and human domains but also via 
horizontal transmission of antimicrobial resistance genes 
(ARGs) encoded on mobile genetic elements (MGEs) 
such as plasmids or transposons [13, 14]. This increases 

the scale at which ARGs can be disseminated, asking for 
close monitoring of resistance in bacteria not directly 
related to human health.

Because of their antimicrobial activity, ionophores 
are prohibited under the NAE (No Antibiotics Ever) 
and RWA (Raised Without Antibiotics) programs in the 
United States [15], even though they are not classified 
as antibiotics by the FDA. Outside of these programs, 
however, coccidiostats remain widely used in broiler 
production. In the European Union, ionophores are 
legally classified as coccidiostats rather than antibiot-
ics. This regulatory distinction has historically allowed 
poultry treated with ionophores to be marketed as “anti-
biotic-free,” despite their antimicrobial properties. As an 
alternative, vaccines have been developed that enhance 
immune activation in the host, leading to a completely 
protective immune response, but that can also cause mild 
damage to the intestinal epithelium due to the transient 
parasitic replication in the gut during vaccine-induced 
immunity [16–19] Despite the importance of coccidio-
stats and vaccination against coccidiosis in animal health 
care, not much is known about how these two differ-
ent strategies influence the microbiome and resistome 
composition in broilers. Furthermore, to what extent 
resistance genes selected in the chicken gut microbiome 
can be mobilised and persist outside the gut, posing a 
risk of environmental transmission, is largely unknown. 
This is relevant because substantial efforts to decrease 
antimicrobial usage and enforce regulations to prevent 
antimicrobial resistance (AMR) in poultry farms have 
been made, such as restricting antimicrobial use exclu-
sively to veterinary purposes in Europe and the United 
States. Although these measurements have been shown 
to decrease the abundance of AMR [20], epidemiologi-
cal studies consistently reveal the persistent presence 
of AMR in broiler farms across the world [21, 22], and 
ARGs can persist in the gut environment long after ces-
sation of antimicrobial use [23]. Therefore, it is essential 
to systematically assess the impact of all aspects of poul-
try health management and development in the context 
of AMR surveillance and control.

Our study builds upon existing knowledge by employ-
ing an integrated approach, combining shotgun metage-
nomic sequencing with a novel targeted resistance gene 
capture platform (ResCap). This methodology offers 
unparalleled sensitivity for detecting a wide array of anti-
microbial resistance genes, particularly low-abundance 
mobile ARGs, which significantly enhances our ability 
to characterize the broiler gut resistome and mobilome 
in unprecedented detail. This combined approach repre-
sents a key methodological advantage and a novel contri-
bution to understanding AMR dynamics in poultry.

The aim of this exploratory study was to (i) systemati-
cally characterize the bacterial taxonomic composition, 
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the total resistome, and specifically the plasmid-borne 
mobile antimicrobial resistance genes (mARGs) in broiler 
chickens, investigating their potential for dissemination; 
(ii) compare the gut microbiome and resistome profiles 
between broilers raised under two distinct anticoccidial 
prevention strategies: coccidiostat administration and 
vaccination; (iii) assess the relationship between micro-
bial community composition and resistome profiles; and 
(iv) evaluate the differences in resistome and mARG pro-
files in caecal and faecal dropping samples, examining 
their implications for environmental AMR surveillance 
and transmission.

Methods
Animals and experimental design
160 samples were collected for this study from a Dutch 
poultry farm located at the German border (49824 Ringe, 
Germany). The farm was chosen based on general high 
consistency of animal performance and low mortal-
ity to provide a stable and well-controlled background 
for the experimental interventions. The farm adhered 
to standard commercial broiler management practices, 
including thorough cleaning and disinfection protocols 
between production rounds, aiming to minimize envi-
ronmental carry-over and biosecurity risks. The study 
focused on 21-day-old broiler chickens (Ross 308), all 
floor-raised from the same hatchery and same genetic 
background. This age point was strategically selected as 
a critical early-life intervention phase, allowing sufficient 
time for both coccidiosis prevention strategies (coccidio-
stat administration and vaccination) to exert their effects 
and shape the developing gut microbiome and resistome, 
thereby enabling the assessment of their initial impact 
on the broiler gut ecosystem. Two consecutive flocks 
(production rounds) hosted in the same poultry house 
were analysed. The first flock received a combination of 
50% nicarbazin and 50% narasin (Maxiban, Elanco US), 
while the other flock underwent oral vaccination using 
Paracox-5 (MSD Animal Health). Both groups were pro-
vided with the same wheat-based start feed (MatchFeed 
1, Agrifirm) for the initial 10 days, followed by a soy- and 
wheat-based grower feed (MatchFeed 2, Agrifirm) up to 
the 21st day. No antibiotics were administered through-
out the study. Specific environmental conditions (e.g., 
temperature, humidity) were not continuously moni-
tored for this study, though standard climate control 
practices for broiler houses were maintained. 50 broilers 
were randomly selected for each intervention and cervi-
cal dislocation was performed following EU regulations 
for euthanasia. The caecum was then extracted after 
abdomen incision, and the caecal content was collected 
in sterile 2mL eppendorf tubes. Concurrently, 30 fresh-
looking faecal droppings were gathered from the ground 
for each intervention at various locations within the 

house (carefully avoiding contact with bedding material 
to minimize environmental contamination). After trans-
portation (a two-hour period at room temperature), all 
samples were initially aliquoted and subsequently stored 
at -80 °C.

DNA extraction and sequencing
After thawing of individual aliquots, DNA extraction was 
performed following a modified version of the QIAmp 
Fast DNA stool mini kit (Qiagen, Venlo, The Nether-
lands) protocol [24]. 0.2 g of faecal material, 500 µl of 0.1 
mm zirconium beads (Lab services), and 1 ml of Inhibi-
tEx buffer (Qiagen) were combined in a 2 ml Sarstedt 
tube. Two cycles of bead-beating were performed at 3800 
rpm for two minutes each, with a two-minute pause on 
ice in between, using a Mini-beadbeater-24 (Biospec, 
Rijswijk, the Netherlands). These parameters were opti-
mized to ensure efficient cell lysis and DNA extraction 
from complex faecal samples while minimizing excessive 
DNA shearing. The mixture was incubated at 95 °C for 7 
min and centrifuged at 16,000 x g for 1 min. The result-
ing supernatant was collected (400 µl) and treated with 
proteinase K, followed by incubation at 70 °C for 5 min. 
The mixture was passed through a spin column follow-
ing the DNA stool mini kit protocol (Qiagen). The DNA 
was eluted using EB elution buffer (Qiagen) in DNA 
LoBind microcentrifuge Eppendorf tubes (VWR Inter-
national, Amsterdam, the Netherlands) and quantified 
using the Qubit 2.0 fluorometer (Invitrogen). The KAPA 
Hyperplus Kit (Roche), along with the KAPA Universal 
UMI Adapter (cat number 9329862001) in conjunction 
with KAPA UDI Primer Mixes (cat numbers 9329838001 
and 9329846001), was utilized to prepare DNA libraries 
following the KAPA HyperCap Workflow v 3.2 (Roche) 
instructions. The caeca samples were treated individually. 
For the faecal dropping samples, six libraries, each com-
posed of five equimolar, individually extracted samples, 
were constructed. This pooling strategy was employed 
because the faecal droppings were collected from various 
locations on the floor, representing a community-level 
snapshot of the environmental resistome and mobilome 
present within the poultry house, rather than attempt-
ing to capture individual animal-specific gut profiles. 
All libraries were assessed for DNA concentration and 
fragment size using the Agilent Bioanalyzer DNA High 
Sensitivity kit (2100 Bioanalyzer), and adapter ligation 
efficiency was measured using the KAPA Library Quanti-
fication Kit (Roche). Subsequently, the libraries were mul-
tiplexed and sequenced on the NovaSeq 6000 platform 
(Illumina), employing 2 × 150-bp paired-end sequenc-
ing per flow cell. As an experimental internal control, 
a negative control (no sample) and a positive control 
(mock community standard Zymobiomics D6300) were 
included in the extraction and sequenced. A probe-based 
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resistance gene capture platform, ResCap (Roche), was 
used on 60 caeca and all 12 pooled faecal dropping sam-
ples. ResCap offers enhanced sensitivity for detecting a 
wide array of antimicrobial resistance genes by specifi-
cally enriching target sequences through probe hybrid-
ization, thereby complementing shotgun metagenomics 
by identifying potentially low-abundance but clinically 
relevant ARGs that might otherwise be missed. Briefly, 
as described in the original paper [25], the 72 individ-
ual purified libraries were pooled in six groups of 12 in 
equimolar ratio to obtain 1.2 µg of total library per pool. 
After pooling, each sample was incubated with the KAPA 
HyperCap target enrichment probes (Roche) for 36 h at 
37 °C to perform probe hybridization. Subsequently, the 
enriched DNA samples were precipitated using biotin-
labeled beads (capture beads, Roche). Next, on-beads 
amplification of the enriched DNA was performed on 
captured DNA using PCR. After amplicon DNA puri-
fication, DNA concentration and fragment size of the 
obtained libraries were measured using the Agilent Bio-
analyzer DNA High Sensitivity kit (2100 bioanalyzer).

Bioinformatic analyses
Sequence quality control
To ensure the quality of the sequencing reads, the reads 
were subjected to a quality control step. First, fastp [26] 
was used for UMI (Unique Molecular Identifier) extrac-
tion (--umi/-U --umi_loc = read1 --umi_len = 8) and 
deduplication (--dedup/-D), as well as general quality 
control. Subsequently, the deduplicated reads were used 
as input for the quality control module of Metagenome-
Atlas [27], integrated into the MetaMobilePicker pipeline 
[28]. Briefly, this step performs further adapter removal, 
read quality filtering, and host DNA removal. This last 
step was performed using the GRCg6a Gallus gallus refer-
ence genome (GCA_000002315). The deduplicated reads 
were employed as input for the quality control module of 
MetaMobilePicker. Samples with fewer than 10 million 
reads or more than 200 million reads after quality control 
were excluded. Analysis was also performed on negative 
control (no sample) and a positive control (mock com-
munity standard Zymobiomics D6300).

Taxonomic analyses
R version 4.2.2 was used for all statistical analyses. To 
construct a taxonomic profile for each sample, Metaph-
lan 4.0.3 [29] was employed, using its default parameters. 
These profiles were subsequently combined by using the 
merge_metaphlan_tables script within the metaphlan 
tool.To remove biases caused by differences in sequenc-
ing depth in all downstream analyses, the count table was 
rarefied using the Phyloseq package’s rarefy_even_depth 
function [30], standardised to the depth of the sample 
with the lowest counts (10,629,520 counts). This rarefied 

count table was used for alpha and beta diversity calcu-
lations. Alpha diversity metrics, including Chao1, the 
Shannon index, and the inverse Simpson index, were cal-
culated using the Microbiome package. Significance test-
ing of these metrics was conducted through a two-tailed 
Wilcoxon Rank Sum test, adjusting for multiple compari-
sons using the Bonferroni correction method.

To assess dissimilarities in beta diversity, the Phyloseq 
package’s ordinate function was employed to create Prin-
cipal Coordinates Analysis (PCoA) plots for faecal drop-
pings and caecal samples separately. PCoA plots were 
generated using Bray-Curtis dissimilarity metrics. To 
analyse centroid distances, PERMANOVA test was used 
on the Bray-Curtis distance matrices using the adonis2 
function from the vegan package [31] with 10,000 
permutations.

To detect differences in dispersion between interven-
tion groups within the PCoA space, the betadisper func-
tion as part of the vegan package was employed and the 
significance of these dispersion differences was tested via 
a permutation test, using the default parameter of 10,000 
permutations.For the identification of differentially 
abundant genera per intervention group in the caecal 
samples, the ancombc2 algorithm, integrated within the 
ANCOMBC R package [32], was used. This analysis was 
conducted specifically on the caecal samples. To adjust 
p-values for potential false discoveries, the false discov-
ery rate (FDR) method was applied. Furthermore, the 
neg_lb parameter was used to detect and classify struc-
tural zeroes, while other parameters remained at their 
default settings.

Resistome composition
To explore the reservoir of ARGs within the metage-
nomic samples, quality-controlled reads were aligned to 
the ResFinder database [33] using the kma aligner [34], 
using parameters − 1t1 and -cge to facilitate one-to-one 
mapping and the use of the CGE scoring matrix. In order 
to aggregate the genes featuring numerous alleles in the 
ResFinder database and reduce the number of zero-
counts in ARG clusters, CD-HIT EST [35] was used, 
using all ResFinder sequences and an identity threshold 
of 90% and a length threshold of 90%, and all counts for 
each cluster were summed. These ARG clusters will be 
referred to as resistance genes.

To add metadata on ARGs and ARG classes, the ARG 
metadata file generated in a prior study was utilized and 
genes that were added to the ResFinder database since 
the publication of this study were included [36]. Miss-
ing genes were first matched on gene prefixes in this 
previously published dataset and remaining gaps were 
resolved via manual inspection and information from the 
CARD database [37].
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Two count matrices were constructed by summing 
the count values per gene and AMR class. These will be 
referred to as the gene matrix and class matrix.

For visualisation purposes, Fragments per Kilobase 
Million (FPKM) were computed based on the total num-
ber of bacterial reads in each sample, accounting for vari-
ations in sequencing depth, abundance of non-bacterial 
reads, and gene length among the ResFinder genes.

The inference of differential abundance for ARGs across 
interventions was done using DESeq2 on the unnormal-
ized count matrix [38]. To address zero-count-related 
issues, the poscount method for size factor estimation 
was employed. Furthermore, ARGs in low abundance, 
defined as being present in less than ten samples with a 
cut-off of three fragments, were excluded. The detection 
of differential abundance was done using a two-sided 
Wald test (α < 0.05).

This analysis was performed on the gene and class-
level count matrices. Using the same procedure as for the 
taxonomic counts, rarefying and alpha diversity estima-
tion of the poultry resistome were performed. Using the 
Microbiome package [39], alpha diversity metrics chao1, 
Shannon index, and inverse Simpson index were calcu-
lated using the rarefied count table. Significance testing 
of these metrics was done through a two-tailed Wilcoxon 
Rank Sum test, with adjustment for multiple compari-
sons using the Bonferroni correction method.

To assess dissimilarities in beta diversity, the Phylo-
seq package’s ordinate function was employed to create 
Principal Coordinates Analysis (PCoA) plots for faecal 
droppings and caecal samples separately. The PCoA plots 
were generated using Bray-Curtis dissimilarity metrics. 
To analyse centroid distances, the PERMANOVA test, 
using the Bray-Curtis distance matrices, was employed 
with the adonis2 function from the Vegan package, with 
10,000 permutations.

To detect differences in dispersion between interven-
tions within the PCoA space, the betadisper function as 
part of the vegan package was employed. The significance 
of these dispersion differences was determined via a per-
mutation test, with 10,000 permutations.

Procrustes analysis
To assess potential correlations between the taxonomic 
composition and the resistome, a Procrustes analysis was 
conducted utilising the procrustes function within the 
ade4 package. Prior to analysis, Hellinger transformation 
was performed on the rarefied count matrix representing 
genus-level taxonomic data and the gene-level resistome 
dataset to transform absolute to relative values, using the 
decostand function as part of the vegan package. Sub-
sequently, ordination was performed using Phyloseq’s 
ordinate function, specifically using the Principal Coordi-
nates Analysis (PCoA) method on Bray Curtis distances. 

For permutation testing, the procruste.randtest function 
of the ade4 package was used with 10,000 permutations.

Mobilome composition
To establish associations between ARGs and MGEs, the 
samples were analysed with the MetaMobilePicker pipe-
line [28]. This pipeline specifically assembles metage-
nomic reads into contigs, identifies mobile genetic 
elements (MGEs), and determines if ARGs are co-local-
ized on these elements. Contigs larger than 2 kb, anno-
tated with mobile elements and containing ARGs, were 
selected and combined across all samples. Subsequently, 
clustering was performed using mmseqs2 [40], with cov-
erage mode 0 and an identity and length threshold of 
90%. Metagenomic reads from all samples were uniquely 
mapped to the cluster representatives via Bowtie2 [41], 
using default settings. Additionally, to aid in the down-
stream analyses, Anvi’o [42] was employed to create pro-
file databases for each sample, which were merged using 
Anvi-merge.

To provide a comprehensive overview of the abundance 
of each MGE, fragments per kilobase million (FPKM) 
values were calculated by analysing reads mapped to 
plasmid and phage-related clusters. In the case of inser-
tion sequences (IS), bedtools [43] was used to extract 
reads specifically aligning with IS regions.

To investigate the mobile fraction of resistance 
(mARGs), only the MGE clusters harbouring ARGs 
were included in the post-analysis. Using Anvi’o, detec-
tion values (breadth of coverage) were quantified for 
each mARG. An mARG cluster was deemed present in 
a sample when the detection value exceeded 0.9. Based 
on presence patterns, mARG clusters were separated into 
three categories: faecal droppings-specific, caeca-specific 
and general clusters. Clusters were attributed to a cate-
gory based on their presence in 90% of samples. In case 
the cluster was present in at least 90% of all samples, it 
was attributed to the general category.

mARG clusters were grouped based on shared ARGs 
for visualisation using the ARGs flanking regions. Using 
Pangraph and a modified version of the flanking-region 
pipeline of Shaw et al. (2023) [44], grouped mARG clus-
ters were visualized based on shared ARGs using the 
ARGs flanking regions. The pipeline was modified to 
include contigs with short and imbalanced flanking 
regions and not discard contigs with no additional genes. 
Using the vega editor (​h​t​t​p​​s​:​/​​/​v​e​g​​a​.​​g​i​t​​h​u​b​​.​i​o​/​​e​d​​i​t​o​r​/​#​/​e​d​
i​t​e​d), the resulting image files were edited to centre the 
ARG. Groups of genes present in more than one cluster 
were further investigated using BLAST against the nucle-
otide (nt [45]) and RefSeq [46] databases to further anno-
tate the genomic context of these mARGs, using default 
parameters.

https://vega.github.io/editor/#/edited
https://vega.github.io/editor/#/edited
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ResCap profiling
ResCap reads were submitted to quality control and 
deduplication using fastp. Using the kma aligner, high-
quality reads were aligned to the ResFinder database 
using parameters − 1t1 and -cge to facilitate one-to-one 
mapping and the use of the CGE scoring matrix. Genes 
were considered present with an abundance of more than 
1 fragment per kilobase of gene.

Results
Bioinformatics preprocessing
After sequencing (Fig. 1A), reads of all 112 poultry sam-
ples, consisting of 50 caecal samples per intervention 
(coccidiostat or vaccination) and six pools of five faecal 
dropping samples per intervention, were used for qual-
ity control (QC). Five samples, all originating from caeca 
(four vaccination and one coccidiostat intervention sam-
ple), were excluded from further analysis.

After QC, the 107 samples remaining had an average 
of 34.8 ± 15.6 million reads for the 95 caecal samples and 
33.7 ± 15.6  million reads for the 12 pooled faecal drop-
ping samples. The reads remaining after each QC step are 
shown in Supplementary Table 1. On average, 30.8% ± 
7.1% of reads originated from bacteria as determined by 
taxonomic analysis. To ensure data integrity, a negative 
control yielded negligible reads (< 100) with no detect-
able taxa or ARGs, confirming minimal contamination. 
The Zymobiomics D6300 mock community’s taxonomic 
profile (Figure S1) accurately matched its known compo-
sition, validating our pipeline for unbiased microbial and 
ARG detection.

Distinct diversity and similar richness for intervention 
types
The alpha diversity showed no differences between inter-
ventions (Fig.  1B and Figure S2A). The alpha diversity 
metrics in the faecal droppings were notably lower than 
those in the caeca samples; however, the two different 
sample types cannot be directly compared due to the dif-
ferent nature of the samples. Two-tailed Kruskal-Wallis 
tests showed no significant differences between inter-
vention types after Bonferroni correction at an adjusted 
p-value of 0.05.

To infer beta diversity as a metric for between-sam-
ple diversity, we ordinated the rarefied count data using 
Principal Coordinates Analyses (PCoA, Fig.  1C). These 
PCoA ordinations showed distinct clusters for interven-
tion types in both sample sources. PERMANOVA anal-
ysis comparing intervention types showed significant 
differences in intervention types in bacterial taxonomy 
between intervention types (caeca: R2 = 0.092, F = 9.47, 
p < 0.001; faecal droppings: R2 = 0.30, F = 4.32, p < 0.05). 
The dispersion of the points in the PCoA was not found 
to be significantly different between intervention types 

(p > 0.05), suggesting no significant difference in the vari-
ance of the beta dispersion in each group.

Coccidiostat and vaccination have different effects on the 
taxonomic composition
To investigate differences in taxonomic composition 
between the two anticoccidial intervention types, coc-
cidiostat and vaccination, we first investigated the rela-
tive abundance at the phylum level (Figure S3) and 
calculated the ratio of Bacillota (formerly Firmicutes) to 
Bacteroidota (formerly Bacteroidetes). On average, this 
ratio was higher in the vaccination (mean = 24.5 ± 30.1) 
than in coccidiostat samples (mean = 13.6 ± 27.5) (Figure 
S4), indicating a shift in the relative abundance of these 
phyla. Next, the relative abundance of each of the taxa 
in the rarefied taxonomic counts dataset was calculated 
and the ten most abundant genera per sample type were 
identified (Fig.  1D). This shows a largely similar pattern 
in relative abundance of bacterial genera in the caecal 
samples. The distribution of genera in the faecal drop-
pings differed considerably from that in the caecal sam-
ples. The faecal dropping samples were largely composed 
of the Lactobacillus genus (mean = 52.9% ± 18.0%, range: 
22.4% to 76.6%), with a higher abundance in the vacci-
nated samples (mean = 63.8% ± 18.3%) than in the coccid-
iostat faecal dropping samples (mean = 42.0% ± 16.2%). 
For the genus Escherichia, a higher relative abundance 
was observed in the coccidiostat samples (mean = 28.4% 
± 22.0%) compared to vaccinated samples (mean = 9.6% ± 
14.1%).

To determine taxa in differential abundance between 
intervention types, ANCOM-BC2 on the unrarefied 
caecal dataset at the genus level was used (Fig. 1E). This 
resulted in a total of 21 genera being overabundant in 
the vaccination samples, and 11 genera being overabun-
dant in the coccidiostat samples. Differentially abundant 
genera and their higher taxonomic ranks are shown in 
Supplementary Table 2. For 15 of the 32 differentially 
abundant taxa it was possible to define only a higher 
taxonomic rank, while the other taxa remaining 17 were 
assigned to a known genus name. The genera, Gemmiger, 
Anaerotignum, Butyricimonas, Butyricicoccus, Faecali-
bacterium and Lactobacillus were more highly abundant 
in vaccination samples compared to the coccidiostat sam-
ples while Streptococcus, Bifidobacterium, Candidatus 
Pseudoruminococcus, Candidatus Neoclostridium and 
Alistipes had higher relative abundance in the coccidio-
stat group compared to the vaccination group. Based on 
these analyses, we concluded that coccidiostat interven-
tion and vaccination had a different impact on the taxo-
nomic composition of the broiler microbiome.
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Fig. 1  (A) Experimental setup (B) Within-sample taxonomic diversity per sample type and per treatment. (C) Between-sample taxonomic diversity or-
dination (D) Relative taxonomic composition on genus level (E) Differentially abundant genera in caecal samples. Asterisks indicate that the genus was 
given a name based on a higher taxonomic rank. (F) Relative resistome composition per class of antimicrobial resistance. (G) Differentially abundant 
antimicrobial resistance genes (ARGs) and their log fold-difference
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Similar abundance but varying composition of ARGs 
between interventions
In order to investigate the differences in resistome com-
position between interventions, we compared the abun-
dance of ARGs found in the caecal samples and faecal 
droppings of coccidiostat-treated or vaccinated broilers. 
For this, we determined the number of mapping read 
pairs per sample to each ARG of the clustered ResFinder 
database and calculated bacterial FPKM values for nor-
malisation purposes. The sums of these FPKM values per 
sample are shown in Figure S5. We calculated the number 
of distinct ARGs found per intervention and per sample 
type, resulting in a total of 186 distinct genes, originat-
ing from 15 ARG classes, found with at least one frag-
ment per kilobase of gene. Specifically, 164 ARGs were 
found in the caecal samples, with 141 in the coccidiostat 
and 131 in the vaccinated samples. In the faecal dropping 
samples, 146 genes were found, with 127 distinct genes 
for both coccidiostat and vaccinated samples. Of the 15 
ARG classes, the rifampicin class was only found in the 
dropping samples in both interventions, and the nitro-
imidazole class was only found in the caecal samples. 
Additionally, quinolone resistance genes were only found 
in the coccidiostat samples of both caecal and faecal 
dropping samples.

No difference in total ARG abundance was found 
between different interventions; however, a large differ-
ence was detected between the FPKM values of the caecal 
and faecal dropping samples, as the mean FPKM in the 
faecal dropping samples (mean = 4600 FPKM ± 1112.90 
FPKM) was 58.3% higher than the mean FPKM in the 
caecal samples (mean = 2905 FPKM ± 611.65 FPKM). To 
get an overview of the total amount of ARG mapping 
reads, we summed the mapping read counts of each of 
the 15 resistance classes and calculated the relative pro-
portion of each of these classes (Fig. 1F). This showed a 
highly similar abundance profile for both interventions, 
but a highly varying profile between sample types. Fae-
cal droppings had a higher relative abundance of genes 
encoding for macrolide resistance and a lower rela-
tive abundance of genes encoding resistance to tetracy-
cline, phenicol, and aminoglycoside compared to caecal 
samples.

To determine the within-sample diversity of ARGs, 
we calculated the Chao1, inverse Simpson and Shannon 
indices. This revealed no differences in alpha diversity 
between the interventions in both sample types.

Next, we ordinated the resistome composition to deter-
mine between-sample diversity using PCoA. We found 
a significant difference in the resistome composition of 
the caecal samples between the coccidiostat-treated and 
vaccinated broilers (R² = 0.023, F = 2.23, p = 0.007). The 
resistome composition of the faecal droppings was not 
found to be significantly different between interventions 

(R² = 0.245, F = 3.25, p = 0.044) (Figure S6). Beta dis-
persion tests indicated no significant differences in 
within-group variability for either caecal (p = 0.985) or 
faecal droppings (p = 0.282) samples, supporting the PER-
MANOVA results.

To determine differentially abundant resistance genes, 
we used DESeq2 on the ARG class and ARG count matri-
ces (Figs. 1G and 2A and B). Two ARG classes were found 
to be significantly different between interventions in the 
caecal samples: narasin resistance was significantly more 
abundant in the coccidiostat group, while lincosamide 
resistance was significantly more abundant in the vacci-
nation group (narasin: log fold difference (LFD) = -1.13, 
adjusted p < 0.001; lincosamide: LFD = 1.29, adjusted 
p = 0.004) (Supplementary Table 3). Moreover, fourteen 
ARGs were found to be differentially abundant between 
intervention groups in the caecal samples. Of these, six 
genes were more abundant in the coccidiostat group 
[aph(2”)-Ig, dfrA14, erm(F), narA, narB and tet(X)], and 
eight were found more abundant in the vaccination group 
[cat(pC194), cfr(B), erm(C), erm(T), tet(L), tet(S/M), 
lsa(E) and vanHAX] (Supplementary Table 4).

The vanHAX operon was found to be differentially 
abundant, with lower abundance in the coccidiostat 
group compared to the vaccination group. However, the 
regularised log values (Fig. 2B) of this gene cluster show a 
very low abundance of these genes in general, with regu-
larised log values less than 0. Additionally, five macrolide 
resistance genes were found to be differentially abundant 
between interventions, where erm(F) was more abun-
dant in the coccidiostat group and the other four genes 
[erm(C), erm(T), lsa(E) and cfr(B)] were more abundant 
in the vaccination group. A similar pattern was found for 
three tetracycline genes that were found to be differen-
tially abundant between interventions. Of these genes, 
tet(A) and tet(X) were found more abundantly in the coc-
cidiostat samples, whereas tet(L) and tet(S/M) were more 
abundant in vaccination samples (Fig. 1G).

In the faecal droppings, 10 ARGs were found to be dif-
ferentially abundant, of which three were shared with the 
caecal samples. Of the differentially abundant genes, five 
were found more abundant in the coccidiostat group, 
and seven were more abundant in the vaccination group. 
At the ARG class level, three classes representing resis-
tance to phenicol, quinolone and trimethoprim were 
differentially abundant. The differential abundance of 
these classes were represented by the cfr(C), cfr(E), cat 
and cat(pC194) genes conferring resistance to (chloram)
phenicol, which were more abundant in the vaccination 
samples, while the quinolone resistance gene qnrs7 and 
the dfrA1 gene conferring trimethoprim resistance were 
found more abundant in the coccidiostat samples.
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Fig. 2  Regulaized log values for differentially abundant (DA) (A) ARG classes in caecal samples. (B) DA gene clusters in caecal samples. (C) DA ARG classes 
in faecal droppings. (D) DA ARGs genes in faecal droppings samples. Significant at q < 0.05, Wald test by Deseq2. Colors denotate treatment type
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ResCap confirms differences in resistome composition 
between preventive interventions
To increase the sensitivity to detect ARGs, we applied 
ResCap, a resistance capture platform for 7,963 antibiotic 
resistance genes, on a subset of the caecal samples and 
all pooled faecal dropping samples. Using ResCap, 249 
ARGs were identified with at least one read pair mapped 
per kb of reference gene in at least one sample.

The ARGs with the largest difference in absolute pres-
ence between interventions are shown in Table  1. Most 
notably, in both sample types, the qnrS7 gene was found 
in a majority of coccidiostat samples: 73.9% (17 out of 23) 
caecal and 100% (six out of six) faecal droppings samples, 
whereas this gene was not detected in any of the vac-
cinated samples (0%) (Fisher’s exact test, p < 0.001 for 
caecal; p = 0.002 for faecal droppings). Conversely, the 
vanHAX gene cluster was found in 78.6% (22 of 28) vac-
cination caecal samples and 100% (six out of six) vacci-
nated faecal droppings samples but was not detected in 
any of the coccidiostat samples in both caeca and fae-
cal droppings (Fisher’s exact test, p < 0.001 for caecal; 
p = 0.002 for faecal droppings).

In the caecal samples, the dfrA14 gene was found in 
78.3% (18 out of 23) coccidiostat samples and in none 
of the vaccinated samples (0%) (Fisher’s exact test, 
p < 0.001). In the faecal droppings samples, the mecC2 
gene was found in 83.3% (five out of six) coccidiostat 
samples and in none of the vaccinated samples (0%) 
(Fisher’s exact test, p = 0.02).

Of the genes detected by ResCap, 71 were not identi-
fied in the metagenomics samples, whereas 33 genes 
detected in the metagenomics data were not identified 

in the ResCap data. However, of these 33 genes, only five 
were present in more than two samples in the metage-
nomic data. In contrast, the 71 genes only identified in 
the ResCap data were identified in more than two sam-
ples (up to 13 caecal samples and up to 11 faecal drop-
ping samples), indicating that ResCap was able to identify 
prevalent genes missed by metagenomic sequencing, 
whereas genes missed by ResCap were found very 
rarely by metagenomics. Since the ResCap probes were 
designed with an older version of the Resfinder database 
than we used for identifying ARGs in the metagenom-
ics samples, we verified whether the 33 genes only found 
in the metagenomics samples were ARGs not present in 
the ResCap probes. This analysis showed that 26 genes 
were indeed not represented by ResCap probes, while 
even [aac(3)-VIIIa, aac(6’)-Iae, aph(3’)-Vb, catB, erm(41), 
fosA7 and mph(A)] were present in the ResCap probes, 
despite not being detected in the ResCap experiment. 
This could be attributed to a combination of factors, such 
as potential primer bias or suboptimal hybridization effi-
ciency for these specific probes.

Different mobile genetic elements in caeca and faecal 
dropping samples
To get an overview of the ARGs present on MGEs in the 
metagenomics dataset, we assembled the metagenomic 
reads into contigs and identified assembled plasmids, 
phages and insertion sequences (IS elements) (Fig. S7). 
Figure S7 displays FPKM values of each class of MGE 
compared between interventions. No difference in the 
total abundance of plasmid-originating contigs was 
observed between interventions. Faecal dropping sam-
ples had a notably lower plasmid abundance compared 
to the caecal samples. Phage and IS elements abundance 
showed no differences between sample or intervention 
types; however, we found more phages in dropping sam-
ples (mean = 25.1 ± 14.2 FPKM) than in the caecal sam-
ples (mean = 10.3 ± 10.5 FPKM).

To further assess the abundance of MGEs associ-
ated with ARGs and compare between interventions, 
we investigated the mobile fraction of resistance genes. 
Briefly, we selected assembled contigs annotated as 
MGEs and containing ARGs from each metagenome and 
co-clustered them across all samples. We then scored 
presence-absence patterns, which facilitated assessing 
their persistence in passage from the gastrointestinal 
tract to faecal droppings. This allowed for the identifica-
tion of mARGs that can contribute to the dissemination 
of resistance-carrying MGEs.

Predicted mobile ARGs from all samples, focusing on 
plasmid-predicted ARGs, were clustered together based 
on sequence identity to define the farm-wide mobile 
resistome, hereafter referred to as mARG-clusters. To 
determine the presence of these mARG-clusters in each 

Table 1  Resistance genes detected by ResCap with more than 
50% points difference between interventions
Cluster Sample type Percentage coc-

cidiostat samples
Percent-
age vac-
cination 
samples

blaVIM-45 Droppings 83.33 33.33

blaZ(cluster 2) Droppings 83.33 16.67

blaZ(cluster 3) Droppings 66.67 16.67

dfrA14 Caeca 78.26 0

dfrA5 Droppings 50.00 0

erm(50) Droppings 100.00 50.00

lnu(E) Droppings 66.67 16.67

mecC Droppings 83.33 16.67

mecC2 Droppings 83.33 0

qnrS7 Droppings 100.00 0

qnrS7 Caeca 73.91 0

VanC2XY Droppings 83.33 33.33

VanHAX Droppings 0 100.00

VanHAX Caeca 0 78.57

dfrA17 Droppings 0 66.67

tet(B) Droppings 33.33 83.33
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sample, detection values (the percentage of bases covered 
by at least one metagenomic sequencing read) were cal-
culated. In total, 95 plasmid-borne mARG-clusters could 
be discerned. A heatmap containing the distribution of 
plasmid-borne mARG-clusters and containing the detec-
tion values is displayed in Fig. 3. This heatmap reveals a 
separation between caecal and faecal dropping samples 
in the horizontal cladogram. Twenty mARG-clusters 
could be subdivided into dropping-specific (10 clusters, 4 
different ARGs, present in all dropping samples, absent in 
at least 10% of caecal samples), caeca-specific (6 clusters, 
3 different ARGs, present in all caecal samples and absent 
in at least 10% of faecal dropping samples) and general 
mARG-clusters (4 clusters, 2 different ARGs, present in 
all samples). The ARGs in these mARG-clusters are dis-
played in Table  2, separated by subdivision. All mARG-
clusters detected in at least one sample are displayed in 
Supplementary Table 5.

To further investigate the mobile context of these 
mARGs in the samples in contact with the outside envi-
ronment (dropping-specific and general mARG-clusters), 
we compared the regions flanking each of the ARGs pres-
ent in more than one mARG-cluster (Fig. 4). Three genes 

occurred more than once in an mARG-cluster: tet(W), 
ant(9)-Ia and lnu(A), potentially conferring resistance to 
tetracycline, spectinomycin and lincomycin, respectively.

In total, seven mARG-clusters contained the lnu(A) 
gene (D2, D3, D5-D8 and D10). In five of these, one copy 
of the lnu(A) gene was flanked by an ant(9)-Ia gene. In 
one cluster (D8), two lnu(A) genes were present, sur-
rounding an ant(9)-Ia gene. Inspection of the lnu(A) con-
taining mARG-clusters showed three different contexts 
in which this gene occurred: flanked by ant(9)-Ia (five 
times), without association with ant(9)-Ia (once) and 
with a duplicated lnu(A) gene around ant(9)-Ia (once). 
Comparing the flanking regions outside of the ARGs of 
the six mARG-clusters with one lnu(A) gene showed that 
each cluster sequence was representing a distinct genetic 
context. In mARG-clusters D10 and D7, a region of 
940 bp upstream of the lnu(A) gene was found to be iden-
tical. This area was subdivided into three parts, where all 
six mARG-clusters shared 60 bp directly upstream from 
the lnu(A) gene (light blue block), and cluster D5 shared 
140  bp (pink block) directly upstream from this 60-bp 
block, but not the remaining 740 bp (light green block). 
No genes were identified on these flanking regions. 

Fig. 3  Detection values per mARG cluster (rows) and sample (columns). Row annotations indicate clusters categorized as dropping-specific, caeca-
specific or general when the cluster is present in more than 90% of the samples of a given sample type
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mARG-clusters D7 and D10 differed in the presence of 
the ant(9)-Ia gene, where D7 lacked the ant(9)-Ia entirely. 
mARG-clusters D2 and D3 were highly identical but dif-
fered in a short region (20  bp) directly upstream of the 

ant(9)-Ia gene. This suggests these six mARG-clusters 
represent up to six distinct plasmids. The composition 
of the regions flanking the two lnu(A) genes and the 
ant(9)-Ia gene in cluster D8 was distinctly different from 

Table 2  Antimicrobial resistance genes (ARGs) present on sample-specific plasmid mobile ARG (mARG) clusters, the percentage of 
samples the clusters are detected in, and the sequence length of the clusters
Origin of cluster Cluster ID Detected in % caecal samples Detected in % droppings samples Resistance genes Cluster length (bp)
Caeca C1 100 50 tetW 2020

C2 100 83.33 tet(O) 6447

C3 100 83.33 tet(O) 2726

C4 100 83.33 tet(O) 4053

C5 100 83.33 tet(O) 5159

C6 94.74 33.33 erm(G) 13,667

Faecal dropping D1 42.11 100 lnu(G) - ant(3’’)-Ia 3667

D2 42.11 100 lnu(A) - ant(9)-Ia 2579

D3 63.16 100 lnu(A) - ant(9)-Ia 3421

D4 21.06 100 ant(9)-Ia 2086

D5 10.53 100 lnu(A) - ant(9)-Ia 2019

D6 52.63 100 lnu(A) - ant(9)-Ia 2497

D7 29.47 100 lnu(A) 3929

D8 52.63 100 lnu(A) - ant(9)-Ia - lnu(A) 7893

D9 47.37 100 ant(3’’) 2141

D10 46.32 100 ant(9)-Ia - lnu(A) 2840

General G1 100 100 lnuC 6505

G2 100 100 tetW 2293

G3 100 100 tet(W) 2776

G4 100 100 tet(W) 2687

Fig. 4  Aligned flanking regions of selected mobile ARG (mARG) clusters. Panels A–C show the genomic context of specific ARGs. Homologous regions 
between clusters are indicated by identical colors (nucleotide sequences), while grey blocks represent regions not homologous to any other cluster. 
The central ARG is highlighted (e.g., lnu(A), ant(9)-Ia, tet(W)). (A) Dropping-specific mARG-clusters containing lnu(A) and ant(9)-Ia genes. (B) A dropping-
specific mARG-cluster (D8) containing two lnu(A) genes flanking one ant(9)-Ia gene. (C) tet(W) mARG-clusters; the top bar indicates the approximate 
location of the tet(W) gene. Clusters G2, G3, and G4 are generally present across all samples, while mARG-cluster C1 is specific to caecal samples
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the clusters containing only one lnu(A) gene. This can 
therefore be seen as another distinct plasmid fragment in 
which these genes occur.

To determine the genetic context of the lnu(A)/ant(9)-
Ia mARG-clusters, we used BLASTn against the refseq 
genomes and nt databases. Notably, only cluster D3, 
which only contained the region including the lnu(A) 
and ant(9)-Ia genes, had a match spanning across the 
entire sequence (100% query coverage), as displayed in 
Supplementary Table 6. Of the other mARG-clusters, 
no match was found that covered both the lnu(A) and 
ant(9)-Ia genes, as well as both flanking regions. The 
matched D3-cluster sequence is from plasmids isolated 
from Limosilactobacillus reuteri in a sample of pig faeces, 
and isolates of Enterococcus gallinarium and Enterococ-
cus caselliflavus from surface water samples. The Entero-
coccus plasmids differed from the D3 mARG-cluster as 
these plasmids contained an erm(A) pseudogene and a 
mobM gene between the lnu(A) and ant(9)-Ia genes, that 
were absent in all mARG-clusters. None of the flanking 
regions of the other mARG-clusters matched these plas-
mids, indicating these mARG-clusters originate from 
plasmids currently missing in public databases.

Of the tet(W) mARG-clusters, three were found in the 
general category, and one was found in the caeca-specific 
category. The tet(W) cluster that was associated with cae-
cal samples contained a different region upstream of the 
tet(W) gene compared to those present in all samples, 
noted by a difference in the regions surrounding these 

genes. The other tet(W) mARG-clusters were highly sim-
ilar in terms of sequence similarity, but varied in length 
(between 2,293 and 3,556  bp). It is possible that these 
three clusters belonged to a similar plasmid but were 
assembled into contigs with different lengths, preventing 
their co-clustering in this analysis.

The Microbiome shapes the resistome
To detect correlations between the ordinations of the 
bacterial composition and the resistome compositions, 
we used a procrustes analysis on the taxonomy and the 
resistome PCoA ordinations. This revealed significant 
correlation coefficients of 0.516 (p < 0.001) in the caeca 
and 0.805 (p < 0.001) in the faecal droppings samples, 
between the gene-level resistome composition and 
genus-level taxonomic composition. We also checked 
whether the observed correlations were specific to the 
prevention intervention. We observed for the caeca sam-
ples a correlation coefficient of 0.690 (p < 0.001) in the 
vaccinated and 0.601 (p < 0.001) in the coccidiostat sam-
ples, while for the faecal dropping correlation coefficients 
of 0.927 (p < 0.001) and 0.789 (p < 0.01) were observed in 
the coccidiostat and vaccination samples, respectively.

The rotated ordination of the caecal samples divided 
by intervention is displayed in Fig. 5; the rotated ordina-
tion of the faecal droppings samples is displayed in Figure 
S8. This correlation suggests that the microbiome shapes 
the resistome and that this correlation is present in both 
interventions.
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Fig. 5  Procrustes rotation between ordinations of resistome and microbiome compositions in caecal samples for vaccine (A) and coccidiostat (B) in-
tervention groups. Shapes indicate data type, colors indicate treatment. Connected points are the same sample, their line indicating the error distance. 
Both groups showed significant correlation (Vaccination: correlation coefficient = 0.690, p < 0.001; Coccidiostat: correlation coefficient = 0.601, p < 0.001)
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Discussion
In this exploratory study, we compared the effects of two 
broiler coccidiosis prevention strategies, a coccidiostat 
and an anticoccidial vaccination, on the composition 
and interaction of the gut microbiome and resistome, 
using metagenomics sequencing and targeted resistance 
gene capture. Additionally, we applied a novel method 
to characterise putative mobile ARGs and compared 
their presence in caecal and faecal dropping samples per 
intervention. This method allowed for the identification 
of mARGs with the putative potential of spreading inside 
and outside the farm environment.

We observed no significant difference in within-sample 
taxonomic diversity (alpha diversity) between interven-
tions but found a significant difference in between-sam-
ple taxonomic diversity (beta diversity) in both caecal and 
faecal dropping samples. Similar intervention-specific 
effects were noted in previous studies, where the inclu-
sion of vaccination [47] and narasin [48], also in combi-
nation with nicarbazin [49], led to differences in bacterial 
composition in the caecal gut microbiome of broilers.

Comparing the relative abundance of bacterial phyla 
between interventions in the caecal samples showed a 
reduction of the ratio of Bacillota (formerly Firmicutes) 
to Bacteroidota (formerly Bacteroidetes) in the coccid-
iostat samples. Although not reported directly, this was 
previously observed in other studies on the effect of coc-
cidiostats on the broiler microbiome [47, 48]. This ratio 
plays a role in mediating the transition from the pri-
mary utilisation of Bacillota-specific butyrate-producing 
pathways earlier in life to a balance between Bacillota 
butyrate-producing pathways and Bacteroidota butyr-
ate- and propionate-producing pathways [50]. Butyrate 
is an important product of caecal fermentation associ-
ated with poultry gut health and is associated with anti-
inflammatory functions [50–52], contributing to gut 
barrier integrity and immune modulation [53]. The dif-
ferences in abundance of Bacillota and Bacteroidota play 
a role in the efficiency of energy conversion and vary 
with age and dietary interventions [54, 55]. Furthermore, 
comparing the abundance of bacterial genera between 
interventions, we found 32 genera differentially abundant 
between vaccination and coccidiostat caecal samples. 
Specifically, we observed a significant reduction in the 
relative abundance of important butyrate-producing Bac-
illota like Faecalibacterium, Gemmiger, Intestinimonas 
and Butyrococcus, in broilers that received coccidiostats 
relative to the vaccinated group as well as Lactobacillus. 
Lactobacillus can be beneficial to gut health [54] in cer-
tain stages of development but has a variety of interac-
tions, positive and negative, with other members of the 
caecal microbiome [55–57]. These beneficial effects often 
include competitive exclusion of pathogens and localized 
immune improvement against Eimeria species [58, 59]. 

Similar findings on the relative abundance of these gen-
era have been reported previously both in vitro [60] and 
in vivo [61].

Conversely, members of the bacterial genera Alistipes 
and Bifidobacterium were found in higher relative abun-
dance in the coccidiostat group compared to the vacci-
nated group. Alistipes is a genus of bacteria producing 
acetic acid that has been associated with higher nutrient 
retention variables [62] and is most abundant at a later 
stage of gut microbial development [63]. Furthermore, 
Bifidobacterium, a genus that has been shown to be a sta-
ble part of the core caecal microbiome over time [64, 65], 
is a genus of beneficial lactic acid producers [66].

These changes in relative abundance suggest that pre-
ventive intervention using coccidiostats may lead to a 
shift towards a more mature microbiome through direct 
modification of the bacterial community composition, 
which may impact the metabolic repertoire of the gut 
microbiome in broilers. Although we did not investi-
gate the influences of this shift on general health, a more 
mature-associated microbiome can play a positive role 
in gut health and a stronger immune system [67, 68]. 
Although differential abundance analysis using ANCOM-
BC2 on the faecal dropping samples did not reveal statis-
tical significance due to the low sample number [32], we 
observed a higher relative abundance of members of the 
genera Lactobacillus, Faecalibacterium and Limosilacto-
bacillus in the vaccinated samples and a higher relative 
abundance of Escherichia, Streptococcus and Ligilactoba-
cillus in the coccidiostat-treated samples. This is in line 
with our observations in the caecal samples.

In accordance with previous studies [69–71], we 
observed a notable difference between the taxonomic 
composition of caecal content and faecal droppings. This 
shift in microbiome composition is most likely due to 
fact that faecal droppings are mostly of ileal origin and 
that differences in specific conditions, especially envi-
ronmental oxygen exposition, which may favour the 
overgrowth of strict anaerobic bacteria by aerobic or 
facultatively anaerobic bacteria, were present at sample 
collection. Although faecal droppings are a less represen-
tative source for analyzing the composition of the cae-
cal microbiome of broilers, they are produced in higher 
abundance compared to caecal droppings and thus may 
be more relevant with respect to environmental trans-
mission, including potential animal-to-human transmis-
sion, of bacterial clones and their (mobile) genes. Direct 
statistical comparison between sample types in micro-
biome composition, as well as resistome and mobilome 
abundances, is not possible due to the difference in sam-
pling and sequencing strategies, where the pooling of the 
faecal droppings has an effect on the relative sequence 
composition of the sample.
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In addition to the taxonomic composition, we investi-
gated the resistome composition to evaluate the influence 
anticoccidial intervention had on the broiler resistome. 
Our analysis also revealed distinct patterns in ARG class 
distribution, with rifampicin resistance exclusively in 
faecal droppings, nitroimidazole only in caeca, and qui-
nolone resistance genes uniquely associated with coc-
cidiostat samples. The latter observation is particularly 
notable given that quinolones are critically important 
antimicrobials in both animal and human medicine, 
raising significant public health implications [72]. Some 
ARGs were found to be differentially abundant between 
interventions in both sample types, like vanHAX, tet(L) 
and the cat gene on the pC194 plasmid. In some cases, 
the differential abundance between interventions seemed 
to be compensated by a higher abundance of other 
related genes. For example, tet(M) and tet(L) were more 
abundantly in the vaccinated group compared to the coc-
cidiostat group in the caeca samples, whereas tet(A) was 
more abundant in the coccidiostat caecal samples rela-
tive to the vaccination group. The observation that tet(M) 
and tet(L) were found more abundant in the vaccination 
group than in the coccidiostat group could be attributed 
to the fact that genera like Lactobacillus and Limosilacto-
bacillus, associated with specific resistance genes such as 
cat, cfr, tet(M) and tet(L) [73], were also found to be more 
abundant in the vaccinated group relative to the coccid-
iostat group. This was in line with the procrustes analy-
sis which indicated correlations between the taxonomic 
composition and the resistome.

We found 21 different ARGs to be over- or underrep-
resented in one of the interventions in either the caecal 
or the faecal dropping samples. The vanHAX operon was 
one of the genes more abundant in the vaccination group 
than in the coccidiostat group [74, 75]. This operon con-
sists of three genes (vanH, vanA and vanX) that together 
with the two regulatory genes vanR and vanS encode for 
vancomycin resistance. Although the vanA gene was pre-
viously reported to be associated with the narasin resis-
tance narAB operon [76], we found that the vanHAX 
operon was less abundant in the coccidiostat samples, 
where narA and narB were more abundant, compared 
to the vaccinated samples. Additionally, we were unable 
to detect the presence of the vanHAX operon in the Res-
Cap data of the coccidiostat samples with a threshold of 
one fragment per kilobase of gene. As all samples origi-
nated from the same farm, it is possible that the plasmids 
conferring co-resistance between narasin and vanco-
mycin are not circulating on this farm, but the fact that 
vanHAX operon was found to be more abundant in the 
vaccinated samples requires further investigation. In the 
coccidiostat faecal dropping samples, the gene most dif-
ferentially abundant was the qnrs7 gene, which causes 
resistance to quinolone. Furthermore, DfrA1 was also 

found in higher abundance in coccidiostat-treated faecal 
droppings samples. This trimethoprim resistance gene 
has been previously shown to be co-selected on plas-
mids harboring qnrS genes [77, 78]. However, neither 
qnrS nor dfrA1 were found in our analyses on the mobile 
fraction of ARGs, possibly due to the low abundance of 
these genes, denoted by the low regularised log values in 
Fig. 2, preventing the correct assembly of these plasmids. 
Our ResCap data showed that no qnrS7 genes were found 
present in any of the vaccinated samples, regardless of 
sample type.

In addition to metagenomics sequencing, applying 
ResCap allowed the detection of additional resistance 
genes. However, given the nature of the technique, 
which involves probe hybridization and gene amplifica-
tion via polymerase chain reaction (PCR), differential 
abundance could not be inferred. With ResCap, we were 
able to detect ARGs that were widely distributed, yet not 
detected in the metagenomic data of the tested sample 
population, especially in the faecal droppings, most 
likely due to their low abundance in the gut. This might 
be because the technique, through probe hybridization 
and DNA amplification, overcomes limited detection of 
very low abundance genes. Moreover, in the faecal drop-
pings the better detection could be explained by the fact 
that the droppings samples have been pooled, leading 
to a reduction of variance due to the relative overrepre-
sentation of common sequences compared to the rela-
tive underrepresentation of rare sequences. On the other 
hand, the set of ARGs that was not identified by ResCap 
but was detected in the metagenomics data were only 
present in a few samples. For most of these genes (26/33), 
this is a result of discrepancies in the version of the Res-
Finder database used for the design of the capturing 
probes of the ResCap technique in comparison with the 
version used for the analysis of the metagenomics data.

Similar to our observation for the taxonomic com-
position, ARG composition (beta diversity) was found 
significantly different between the different anticoc-
cidial strategies in the caecal samples. Previous work 
has shown that different bacterial communities harbour 
different resistome profiles [36, 79]. In the same line, 
we observed a significant correlation between taxo-
nomic and resistome compositions that shows that the 
resistome is influenced by the bacterial community in 
both sample types.

Although no clear distinction was found between 
interventions in the overall presence of mARG-clusters, 
we did observe specific mARG-clusters that were more 
prevalent in the coccidiostat group. Specifically, four 
mARG-clusters in the faecal droppings samples, con-
taining a tetracycline resistance gene [tet(A)], were more 
prevalent in the coccidiostat group than the vaccinated 
one, which aligned with the higher abundance of tet(A) 
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in coccidiostat faecal dropping samples. Notably, in one 
mARG-cluster, we found tet(A) in association with the 
ampicillin resistance-encoding gene blaTEM−1B. This spe-
cific co-occurrence, more pronounced in coccidiostat-
treated groups, could suggest a co-selection pressure 
exerted by ionophores that favors the mobile carriage 
of these ARGs. These findings are in line with a previ-
ous study investigating the co-occurrence of ionophore 
resistance in enterococci isolated from poultry with other 
clinically relevant types of antimicrobial resistance, where 
a significant correlation was observed between coccidio-
stat and both tetracycline and ampicillin resistance [10]. 
Overall, this suggests that a tet(A), also in combination 
with blaTEM−1B, may be possibly located on a plasmid and 
thus potentially transferable to the farmhouse environ-
ment, more frequently in the coccidiostat samples than 
in the vaccination samples.

Of the four mARG-clusters found in all samples of 
both sample types, three of them contained a tet(W) 
gene. This gene has been found prevalent in farmhouse 
dust on poultry farms but is also highly abundant in the 
human gut [80]. It is therefore not surprising to find this 
gene present in both sample types. However, this gene 
can be present in multiple different genetic contexts, not 
restricted to associations with plasmids or transposons 
[81, 82]. Depending on the bacterial species, the spread-
ing of these mobile elements can therefore still contrib-
ute to between-environment dissemination, as the genes 
seem to persist in the faecal droppings on the farmhouse 
floor.

Another mARG cluster present in both sample types 
contained an lnu(C) gene. This gene, conferring lincos-
amide resistance, is transferable by a transposon, and 
can be found in both chromosomal and plasmid con-
texts [83]. This gene has been found to be associated with 
chicken farming but is also commonly present in the 
human gut microbiome [84, 85], although high preva-
lence is more commonly reported in studies that include 
humans in close contact with livestock animals [83–86].

In six of the mARG-clusters that were only associ-
ated with the faecal dropping samples, an ant(9)-Ia 
and an lnu(A) gene were found in tandem, in different 
genetic configurations based on their flanking regions. 
This combination of genes is therefore likely to be pres-
ent in multiple plasmid or transposon contexts, and 
since it’s present in the environmental faecal samples, it 
can presumably spread around the farmhouse and other 
environments (e.g., litter is also often used as biomass 
energy). The striking variability in the flanking regions 
of these lnu(A)-containing mARG-clusters, encompass-
ing shared upstream blocks and distinct genetic contexts, 
underscores their significant genetic plasticity and active 
mobilization. This poses a considerable risk by provid-
ing abundant opportunities for recombination, e.g., 

homologous recombination via shared sequences or site-
specific integration, which can rapidly integrate mARGs 
into novel genetic environments, accelerating their dis-
semination and intensifying the spread of antibiotic resis-
tance. Monitoring these mARGs in real-time on farms 
could involve targeted qPCR assays or periodic metage-
nomic surveillance of environmental samples (e.g., litter, 
dust, water) to track their prevalence and mobility.

 lnu(A), conferring lincosamide resistance, is often 
found on plasmids [87, 88] of Staphylococcus species. 
However, in these samples, a conclusive species assign-
ment of these plasmids could not be given. This can be 
explained by the fragmentation of the assembly and con-
sequent short flanking regions, and partially because no 
match could be found with known plasmids that con-
tained these genes in the same genetic configuration. 
The core region containing only the ant(9)-Ia and lnu(A) 
genes did match plasmids sequenced in pig faeces and 
surface water, in multiple genera, further suggesting that 
these are plasmid-borne resistance genes. Whether these 
plasmids have the capacity to spread to the environment 
and to human hosts is currently unknown.

With this exploratory study, we provide valuable 
insights that should be interpreted with caution due to 
several limiting factors. The intrinsic variability between 
consecutive flocks might be responsible for part of the 
observed variation. Crucially, the study design, involv-
ing two consecutive flocks from a single farm, confounds 
the anticoccidial strategy with farm-specific factors, thus 
preventing definitive causal conclusions and limiting the 
generalizability of our findings. Previous research has 
shown that even control groups in separate experiments 
can exhibit distinct microbiome compositions [89]. This 
is because, in the first weeks of life, chicks are highly sen-
sitive to bacterial colonization [90], which can introduce 
variability in microbiome and resistome composition 
across flocks [91]. Throughout the broiler’s life, this early 
colonization may have a lasting impact on the devel-
opment of its microbiome and, possibly, how it reacts 
to interventions. Therefore, to separate intervention-
specific effects from natural variability, future research 
may include repeated sampling across several farms 
and flocks. Furthermore, as our analyses relied on rela-
tive abundance metrics observed shifts may not directly 
reflect changes in absolute quantities of microbial taxa or 
ARGs, potentially obscuring true biological changes and 
impacting community relationship interpretations. To 
address this, future studies could employ statistical meth-
ods specifically designed for compositional data analysis 
to better infer underlying biological shifts [92].



Page 17 of 19Buffoni et al. Animal Microbiome             (2026) 8:3 

Conclusions
Our findings demonstrate the impact of anticoccidial 
strategies on the chicken gut microbiome and resistome 
with potential consequences for the dissemination 
of ARGs. While the microbiome clearly shapes the 
resistome, anticoccidial interventions can selectively 
modify both, indirectly influencing the ARG landscape. 
The identification of mARG-clusters in faecal drop-
pings underscores the potential for ARG dissemination 
into the environment, with some clusters— including 
those harboring tet(A) and blaTEM−1B, more prevalent in 
the coccidiostat group, suggesting possible co-selection 
mechanisms that warrant further investigation. Finally, 
we can conclude that within the scope and limitations of 
this exploratory study, no specific intervention resulted 
in a higher risk of AMR selection. Further investigation, 
ideally on multiple flocks to account for flock-to-flock 
variability, along with functional validation to confirm 
their transferability, would help to better understand the 
impact of coccidiosis prevention on the ARM gene pool.
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