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 A B S T R A C T

Water distribution networks comprise interconnected components such as pipes, tanks, and pumps, whose 
hydraulic behavior is inherently nonlinear and nonconvex. Modeling head loss in pipes and pump performance 
curves is a major challenge for optimization-based planning and operations. These challenges arise, for 
instance, when solving the Optimal Water Flow (OWF) problem, which aims to determine pump schedules that 
minimize energy costs while satisfying hydraulic and operational constraints. While various approximation 
techniques exist, they often lack sufficient accuracy, raising concerns about their reliability in practice. To 
address this, we propose a hybrid approach that integrates deep learning with mathematical optimization to 
solve the OWF problem. We design a modified Input Convex Neural Network (ICNN) capable of capturing 
complex nonlinear relationships, focusing on pipe friction losses and pump hydraulics. To ensure tractable 
optimization, we introduce a novel regularization that enforces input convexity, enabling neural network 
inference to be reformulated as a linear program. This convex approximation is embedded into the OWF 
formulation, enabling end-to-end optimization with standard solvers. Empirical results demonstrate significant 
improvements in accuracy and scalability over existing OWF approximations, offering a practical tool for 
cost-effective, energy-efficient water distribution management.

. Introduction

.1. Background and motivation

Access to clean drinking water is essential for public health, economic growth, and societal well-being. Global water consumption has increased 
ver fivefold in the past century and is projected to continue rising across multiple sectors (Boretti and Rosa, 2019). Stressors like population growth, 
rbanization, and climate change-induced droughts intensify competition for water resources, leading to significant economic, environmental, 
nd social impacts (Wada et al., 2016; Kavya et al., 2023). Water utilities face increasing challenges and uncertainties, even in water-rich 
egions, in ensuring a reliable and safe supply for agriculture, industry, and human consumption due to technological, regulatory, and financial 
onstraints (Karimidastenaei et al., 2022). A key emerging challenge is the rising energy cost of drinking water treatment and distribution, with 
umps being a major operational expense (Stuhlmacher and Mathieu, 2020). Furthermore, the growing penetration of renewable energy sources 
RES) has increased electricity price volatility. Consequently, there is a growing need to coordinate water utility operations with dynamic electricity 
ricing. Advanced optimization strategies, such as electricity price-driven scheduling of water network operations, offer significant potential for 
mproving energy efficiency and reducing costs (Singh and Kekatos, 2019). This mathematical optimization problem is known as Optimal Water 
low (OWF) (Zamzam et al., 2018; Guo and Summers, 2020; Ayyagari et al., 2021).
In the OWF problem, the objective is to minimize pumping energy costs by routing water from sources to demands under dynamic electricity 

rices. Pump hydraulic constraints are crucial as pumps provide pressure to overcome elevation differences and friction losses, thus dictating energy 
onsumption. The OWF problem is critical for cost reduction and efficiency in real-world applications (Vieira et al., 2020). However, solving OWF is 
omputationally challenging due to the nonlinear and nonconvex relationship between flow and pressure. This complexity intensifies with variable 
peed pumps (VSPs), where the relationship among flow, head, motor speed, and power consumption is also nonlinear and nonconvex (Candelieri 
t al., 2018). While VSPs offer greater operational flexibility and energy efficiency than fixed-speed pumps (FSPs), they introduce additional 
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computational challenges due to their complex, nonconvex hydraulic characteristics. Different approximation methods have been developed to 
address various forms of nonconvexities in solving OWF, balancing accuracy and computational efficiency. Nevertheless, further advancements are 
needed to improve generalization, accuracy, and scalability.

1.2. Research gaps

The optimization of Water Distribution Networks (WDNs) has been a longstanding focus in mathematical programming and operations research, 
drawing significant attention from researchers and practitioners (D’Ambrosio et al., 2015). One of the key challenges in WDN optimization problems, 
such as the OWF problem, is the high state-space dimensionality, resulting from the spatial and temporal interdependencies of components like 
pipes, pumps, and tanks. Moreover, these problems involve nonlinear constraints related to pump hydraulics and friction losses, as well as discrete 
design and operational variables, including pump on–off statuses and optimal pipeline sizing and placement (Marchi et al., 2014). Consequently, 
these problems fall into the category of Nonlinear Programming (NLP) or Mixed-Integer Nonlinear Programming (MINLP) and are classified as 
NP-hard, making it challenging to obtain reliable solutions within practical time frames for real-world applications (Singh and Kekatos, 2020). 
Solving such problems to global or even local optimality is computationally demanding and can easily become intractable (Nerantzis et al., 2020; 
Martínez-Bahena et al., 2018).

To mitigate the computational challenges of WDN optimization, various approximation techniques have been developed, including convex 
relaxation and piecewise linear approximation (PLA) (Bonvin et al., 2017; Menke et al., 2016). Convex relaxation methods, such as those developed 
in Li et al. (2018) and Fooladivanda et al. (2018) reformulate nonconvex water network optimization problems as convex programs to improve 
tractability. In particular, the convex hull-based relaxation proposed by Li et al. (2018) addresses the joint scheduling of water pumps and electricity 
use in a micro water–energy nexus, enabling demand-side management while satisfying basic hydraulic requirements. The second-order cone 
(SOC) relaxation proposed in Fooladivanda et al. (2018) targets dynamic pump and storage operation in water distribution systems, reducing 
energy costs under time-varying tariffs while enforcing pressure and flow limits for practical operation. While these methods reduce computational 
complexity, they often introduce inaccuracies compared to solving the full nonconvex problem (Bianchi et al., 2023). Another alternative is PLA, 
which approximates nonlinear constraints by discretizing them into linear segments, maintaining higher solution accuracy. However, this approach 
introduces binary variables, leading to a Mixed-Integer Linear Programming (MILP) formulation, which remains computationally challenging when 
applied to large-scale problems (Gu and Sioshansi, 2025).

Applications of OWF in short-term scheduling, real-time (RT) control, and uncertainty modeling require accurate and computationally efficient 
models that can optimize system performance multiple times within constrained time frames (Garzón et al., 2022; Reis et al., 2023). To address 
these needs, recent research has increasingly focused on Machine Learning (ML) techniques for WDN optimization (Gambella et al., 2021; Bagloee 
et al., 2018). ML-based models serve as surrogate approximations of computationally challenging hydraulic models, enabling rapid yet accurate 
evaluations. Unlike traditional mathematical optimization models, ML models leverage large datasets to learn complex relationships between 
network input parameters, state variables, and outputs using methods like supervised, unsupervised, and reinforcement learning. These approaches 
have demonstrated significant improvements in computational efficiency (Ahmed et al., 2024).

Deep Learning (DL), a class of Artificial Neural Networks (ANNs) including Feedforward Neural Networks (FNNs), Convolutional Neural 
Networks (CNNs), Recurrent Neural Networks (RNNs), Autoencoders, and Graph Neural Networks (GNNs) (Sit et al., 2020), has been applied 
to various WDN modeling and optimization tasks. These applications include short-term water demand forecasting (Nasser et al., 2020), nodal 
pressure estimation (Hajgató et al., 2021; Truong et al., 2024), leak detection (Javadiha et al., 2019), network renovation (Dini and Tabesh, 
2019), network design (Sayers et al., 2019), and water quality monitoring (Li et al., 2019). While these methods excel at prediction and extracting 
complex patterns from large datasets, ANNs alone often fall short in solving complex mathematical optimization problems, especially in spatially 
and temporally coupled networked systems.

Alongside DL, Deep Reinforcement Learning (DRL) has emerged as a promising technology for optimization, with applications in water network 
management (Fu et al., 2022). For instance, Hajgató et al. (2020) developed a DRL model for pump control, where pump speed was determined 
based on system states, nodal pressures, and pump speed ratios. Similarly, Ma et al. (2024) employed a multi-agent DRL system for pump 
management in water networks, effectively maintaining nodal pressure constraints, highlighting DRL’s potential in pump scheduling. Their results 
demonstrated that DRL could achieve performance comparable to traditional optimization algorithms. While valuable, these approaches fail to 
generalize across different network topologies and struggle to incorporate the hard physical constraints of water networks, such as flow and pressure 
limits, which are critical for accurate optimization of water distribution systems (Fu et al., 2022). Additionally, they do not provide any optimality 
guarantees for the underlying decision problem, and their performance is sensitive to the exploration-exploitation process during training, which 
can result in unstable or suboptimal decision policies in practice. As a result, relying solely on machine learning models to solve water network 
optimization problems remains challenging.

In recent years, a hybrid approach combining ANNs with traditional mathematical optimization is emerging (Wu and Wang, 2023). Here, 
mathematical optimization remains central, while ANNs learn nonlinear relationships between control and system state variables, effectively 
approximating nonconvex constraints. ANNs can be designed and trained to be convex, allowing their integration into convex optimization 
problems (Van Hentenryck, 2021). A notable example is the Input Convex Neural Network (ICNN), introduced by Amos et al. (2017). ICNNs 
are specialized ANN architectures that ensure convexity with respect to their input variables, making them ideal for integration with mathematical 
optimization frameworks in a process often called optimization-based inference. The advantage of this approach is that it preserves a physics-based 
optimization structure, in which most hydraulic and operational constraints are modeled explicitly and only selected nonlinear relationships are 
approximated by neural networks, enabling seamless integration into a convex optimization problem. This presents a research opportunity to 
develop a hybrid modeling framework that leverages ICNNs’ expressive capabilities while maintaining accuracy, computational tractability, and 
solution robustness. Such a neural network-informed optimization framework could significantly enhance water network optimization efficiency, 
providing reliable solutions to end-users.
2 
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1.3. Scope and contributions

This work introduces a scalable and computationally efficient approach to solving the OWF problem in water distribution networks. We 
address the inherent nonlinearity and nonconvexity of constraints, particularly those related to friction losses and VSP hydraulics, by proposing 
a hybrid optimization framework. This framework leverages a novel variant of ICNNs, termed the Input Convex Concave neural Network (IC2N), 
to approximate these complex constraints. By training these networks to learn the relationship between control and system state variables and 
enforcing input–output convexity via structured weight constraints and loss regularization, we reformulate the inference problem as a linear 
program. Incorporating this linear program into the OWF problem yields a computationally efficient formulation that maintains solution accuracy. 
To the authors’ knowledge, this is the first application of a neural network-informed reformulation to the OWF problem. Beyond the algorithmic 
aspects, these developments are tightly coupled to the hydraulics and operation of water distribution networks. The neural surrogates are trained on 
hydraulic data and embedded in the OWF formulation to preserve physically meaningful relationships between flow, head, and energy consumption, 
thereby advancing both optimization methodology and domain-specific modeling. This data-driven technique provides water utilities with a 
powerful tool for reducing energy costs and ensuring system reliability. The key contributions of this work are:

1. Introduces a hybrid approach that integrates ANNs with mathematical optimization to efficiently solve the OWF problem.
2. Proposes a novel deep learning architecture, termed IC2N, which accurately models nonlinear relationships between control and state vari-
ables related to nonconvex functions, using a combination of structured parameter constraints and a monotonicity-enforcing regularization 
scheme.

3. Ensures input–output convexity of the trained neural network, enabling its inference to be reformulated as a linear program and seamlessly 
embedded into the OWF problem.

4. Demonstrates significant improvements in both computational scalability and solution accuracy compared to state-of-the-art OWF approxi-
mation methods.

1.4. Organization

Section 2 introduces the nonlinear OWF formulation. Section 3 reviews neural network-informed approximations and the proposed IC2N 
framework. Section 4 presents numerical results, and Section 5 concludes with future research directions.

2. Methodology

2.1. Modeling assumptions

We consider a pressurized WDN represented as a directed graph with nodes N and arcs A. Nodes include junctions 𝑗 ∈ J, reservoirs 𝑟 ∈ R, 
and tanks 𝑠 ∈ S, with N = J ∪ R ∪ S. Junctions connect pipes, pumps, or valves, enabling inflow/outflow to meet demand. Reservoirs are water 
sources without incoming pipes, thus serving as network starting points. Tanks provide storage with finite capacity, allowing water to be pumped 
in and later discharged using gravitational energy. Arcs (𝑖, 𝑗) denote water transfer and are classified as pipes (𝑖, 𝑗) ∈ E, pumps (𝑖, 𝑗) ∈ P, and valves 
(𝑖, 𝑗) ∈ V, such that A = E ∪ P ∪ V. Pipes convey flow subject to frictional head loss. Pumps increase pressure head, and we focus on VSPs for their 
flexibility compared to FSPs. Pump status (on/off) is assumed predetermined, eliminating binary variables and enabling an NLP instead of a MINLP, 
which simplifies computation and benchmarking; this assumption can be relaxed without loss of generality. Valves reduce pressure in uncontrolled 
situations, e.g., steep elevation changes. The optimization horizon is discretized as 𝑡 ∈ T with a one-hour time step, assuming steady-state hydraulic 
conditions at each interval. This temporal resolution is consistent with day-ahead pump scheduling, where decisions are typically driven by hourly 
day-ahead electricity price signals. Finer temporal resolutions can also be incorporated if required, without loss of generality.

2.2. Optimal water flow problem

The OWF problem is a mathematical optimization problem that plays an important role in WDN scheduling and control tasks. We first present 
its complete nonconvex formulation, followed by a description of the different decision variables, parameters and constraints involved. The full 
NLP formulation of the OWF problem is given as follows: 
𝑀𝑖𝑛
𝛱

∑

𝑡∈T

∑

(𝑖,𝑗)∈P
𝑃 𝑒𝑙
𝑡 𝑝𝑖,𝑗,𝑡 (1a)

𝑠.𝑡.
∑

𝑖∈𝑁𝑇 𝑜
𝐽

𝑞𝑖,𝑗,𝑡 −
∑

𝑘∈𝑁𝐹𝑟
𝐽

𝑞𝑗,𝑘,𝑡 = 𝑑𝑗,𝑡 𝑗 ∈ J, 𝑡 ∈ T (1b)

ℎ𝑠,𝑡 − ℎ𝑠,𝑡−1 =
𝜏
𝐴𝑠

⎛

⎜

⎜

⎝

∑

𝑖∈N𝑇 𝑜
𝑠

𝑞𝑖,𝑠,𝑡 −
∑

𝑗∈N𝐹𝑟
𝑠

𝑞𝑠,𝑗,𝑡
⎞

⎟

⎟

⎠

𝑠 ∈ S, 𝑡 ∈ T (1c)

ℎ𝑖,𝑡 − ℎ𝑗,𝑡 = 𝑓𝑖,𝑗,𝑡
8𝐿𝐸

𝑖,𝑗𝑞
2
𝑖,𝑗,𝑡

𝜋2 𝑔𝐷5
𝑖,𝑗

(𝑖, 𝑗) ∈ E, 𝑡 ∈ T (1d)

𝑓𝑖,𝑗,𝑡 = −1.8 log10

(

( 𝜀𝑖,𝑗
3.7𝐷𝑖,𝑗

)1.11
+ 6.9

𝑟𝑖,𝑗,𝑡

)−2

(𝑖, 𝑗) ∈ E, 𝑡 ∈ T (1e)

𝑟𝑖,𝑗,𝑡 =
4𝜌𝑞𝑖,𝑗,𝑡

2
(𝑖, 𝑗) ∈ E, 𝑡 ∈ T (1f)
𝜋𝜇𝐷𝑖,𝑗
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Fig. 1. Structure of an Input Convex Neural Network (ICNN).

𝛺𝑖,𝑗 ≤ 𝜔𝑖,𝑗,𝑡 ≤ 𝛺𝑖,𝑗 (𝑖, 𝑗) ∈ P, 𝑡 ∈ T (1g)

ℎ𝑗,𝑡 − ℎ𝑖,𝑡 = 𝐵(1)
𝑖,𝑗 𝑞

2
𝑖,𝑗,𝑡 + 𝐵(2)

𝑖,𝑗 𝑞𝑖,𝑗,𝑡𝜔𝑖,𝑗,𝑡 + 𝐵(3)
𝑖,𝑗 𝜔

2
𝑖,𝑗,𝑡 (𝑖, 𝑗) ∈ P, 𝑡 ∈ T (1h)

𝑝𝑖,𝑗,𝑡 = 𝐶 (1)
𝑖,𝑗 𝑞

3
𝑖,𝑗,𝑡 + 𝐶 (2)

𝑖,𝑗 𝑞
2
𝑖,𝑗,𝑡𝜔𝑖,𝑗,𝑡 + 𝐶 (3)

𝑖,𝑗 𝑞𝑖,𝑗,𝑡𝜔
2
𝑖,𝑗,𝑡 + 𝐶 (4)

𝑖,𝑗 𝜔
3
𝑖,𝑗,𝑡 (𝑖, 𝑗) ∈ P, 𝑡 ∈ T (1i)

ℎ𝑖,𝑡 − ℎ𝑗,𝑡 = 𝑘𝑖,𝑗,𝑡 (𝑖, 𝑗) ∈ V, 𝑡 ∈ T (1j)

𝐻𝑛 +𝐻0
𝑛 ≤ ℎ𝑛,𝑡 ≤ 𝐻𝑛 +𝐻0

𝑛 𝑛 ∈ N, 𝑡 ∈ T (1k)

𝑄
𝑖,𝑗

≤ 𝑞𝑖,𝑗,𝑡 ≤ 𝑄𝑖,𝑗 (𝑖, 𝑗) ∈ A, 𝑡 ∈ T (1l)

The set of decision variables for the optimization problem is defined as follows: 𝛱 ∶= {𝑞𝑖,𝑗,𝑡, ℎ𝑛,𝑡, 𝑓𝑖,𝑗,𝑡, 𝑟𝑖,𝑗,𝑡, 𝜔𝑖,𝑗,𝑡, 𝑝𝑖,𝑗,𝑡, 𝑘𝑖,𝑗,𝑡 ∣ (𝑖, 𝑗) ∈ E∪P∪V ⊆ A,
𝑛 ∈ J ∪R ∪ S ⊆ N, 𝑡 ∈ T}. The objective function (1a) minimizes the total energy-related operational cost of the WDN, considering electricity price 
𝑃 𝑒𝑙
𝑡  and pump power consumption 𝑝𝑖,𝑗,𝑡. Constraint (1b) enforces nodal flow balance at junction 𝑗, where incoming and outgoing flows (𝑞𝑖,𝑗,𝑡, 𝑞𝑗,𝑘,𝑡) 
must equal demand 𝑑𝑗,𝑡. Constraint (1c) governs storage tank dynamics, relating water level ℎ𝑠,𝑡 to inflow 𝑞𝑖,𝑠,𝑡, outflow 𝑞𝑠,𝑗,𝑡, time constant 𝜏, and 
tank cross-sectional area 𝐴𝑠.

Constraint (1d) represents the Darcy–Weisbach equation, modeling head loss in pipeline segments based on pressure heads (ℎ𝑖,𝑡, ℎ𝑗,𝑡), flow 
rate 𝑞𝑖,𝑗,𝑡, pipe friction factor 𝑓𝑖,𝑗,𝑡, pipe length 𝐿𝐸

𝑖,𝑗 , pipe diameter 𝐷𝑖,𝑗 , and gravitational acceleration 𝑔. Constraint (1e) uses the Haaland 
equation (Haaland, 1983) to determine 𝑓𝑖,𝑗,𝑡 as an explicit function of Reynolds number 𝑟𝑖,𝑗,𝑡, pipe diameter 𝐷𝑖,𝑗 , and absolute roughness 𝜀𝑖,𝑗 . 
Constraint (1f) defines 𝑟𝑖,𝑗,𝑡 based on fluid density 𝜌, dynamic viscosity 𝜇, pipe diameter 𝐷𝑖,𝑗 , and flow rate 𝑞𝑖,𝑗,𝑡.

Constraints (1g)–(1i) describe pump hydraulic performance and energy consumption empirically. Constraint (1g) enforces operational feasibility 
for pumps, ensuring their relative speeds 𝜔𝑖,𝑗,𝑡 are within specified minimum (𝛺𝑖,𝑗) and maximum (𝛺𝑖,𝑗) limits. Eq. (1h) relates head gain (ℎ𝑗,𝑡−ℎ𝑖,𝑡) 
to flow rate 𝑞𝑖,𝑗,𝑡 and pump rotational speed 𝜔𝑖,𝑗,𝑡 using quadratic coefficients 𝐵(1)

𝑖,𝑗 , 𝐵
(2)
𝑖,𝑗 , 𝐵

(3)
𝑖,𝑗 . Eq. (1i) defines pump power consumption 𝑝𝑖,𝑗,𝑡 with a 

cubic relationship using pump-specific parameters 𝐶 (1)
𝑖,𝑗 , 𝐶

(2)
𝑖,𝑗 , 𝐶

(3)
𝑖,𝑗 , 𝐶

(4)
𝑖,𝑗 .

Constraint (1j) models PRV operation using a nonnegative pressure reduction variable 𝑘𝑖,𝑗,𝑡. Constraint (1k) imposes lower and upper bounds 
on nodal heads ℎ𝑛,𝑡, relative to elevation 𝐻0

𝑛 . Finally, constraint (1l) ensures flow rates 𝑞𝑖,𝑗,𝑡 remain within predefined limits. Model (1a)–(1g) is 
computationally intractable due to the nonlinearity and nonconvexity of constraints (1d), (1e), (1h), and (1i). While nonlinear optimization solvers 
like IPOPT (Lougee-Heimer, 2003) can address this, they do not guarantee global optimality, and finding even local optima becomes challenging 
with increasing state-space dimensionality. To overcome these difficulties, we introduce a novel approach to approximate nonconvex constraints 
using ANNs. The ANNs are designed to encode key hydraulic constraints (i.e., pipe friction losses and pump performance curves) in a way that is 
consistent with established water distribution practice, while remaining tractable for large-scale optimization.

3. Neural network-based approximation

Traditional approximation methods, such as convex relaxations (Fooladivanda and Taylor, 2017; Li et al., 2018; Bianchi et al., 2024) and PLA
(D’Ambrosio et al., 2010; Geißler et al., 2011), can lead to suboptimal solutions or higher computational costs. To address this, we propose an 
innovative approach leveraging ANNs. Specifically, we explore two ANN architectures: ICNN and a novel variant we term IC2N. ICNNs, introduced 
by Amos et al. (2017), are well-suited for approximating convex or quasi-convex constraints like Eqs. (1d)–(1e). IC2N extends this concept to handle 
a broader class of nonlinear functions by incorporating nonconvex components, such as those found in the pump hydraulic model (1h)–(1i).

3.1. Input Convex Neural Network

ICNNs (Fig.  1) are specialized ANN architectures designed to ensure convexity in the mapping from input to output. One can see that ICNNs 
consist of an input layer, denoted by 𝑦, several hidden layers 𝑧𝑙 for 𝑙 ∈ [1, 𝐿 − 1], and an output layer 𝑧𝐿. A defining characteristic of ICNNs is the 
presence of two types of weight matrices: 𝑊𝑙 for inter-layer connections and 𝑉𝑙 for residual connections from the input layer 𝑦 to each hidden layer 
and the final output layer. To guarantee that the output 𝑧𝐿 remains a convex function of the input 𝑦, ICNNs must satisfy two key conditions. First, 
the weight matrices 𝑊𝑙 for 𝑙 ∈ [1, 𝐿−1] must be non-negative, a constraint typically enforced through techniques such as weight clipping (Gulrajani 
et al., 2017) or projected gradient methods (Calamai and Moré, 1987). Second, all activation functions 𝜎 used in the network must be convex and 
non-decreasing. Common choices for activation functions include ReLU and Softplus (Bishop and Bishop, 2023).

The architecture of a fully connected ICNN with layers 𝑙 ∈ [0, 𝐿], where each hidden layer 𝑧𝑙 (𝑙 ∈ [1, 𝐿 − 1]) receives input from the previous 
layer 𝑧𝑙−1 and directly from the input via residual connections 𝑉𝑙, is given by (2a)–(2c). Note that 𝑊𝑙 ≥ 0 for 𝑙 ∈ [1, 𝐿 − 1], while 𝑉𝑙 and 𝑏𝑙
are unconstrained. Eq. (2a) maps the input 𝑦 to the first hidden layer using a convex activation 𝜎. Eq. (2b) preserves convexity by combining 
non-negative weighted activations from the previous layer and direct input contributions through 𝑉𝑙. Lastly, Eq. (2c) produces the output as a 
linear function of the last hidden layer and input, ensuring the overall function remains convex. 
𝑧 = 𝜎(𝑦𝑊 + 𝑏 ) (2a)
1 0 0

4 



A. Belmondo Bianchi et al. Water Research X 30 (2026) 100479 
𝑧𝑙+1 = 𝜎(𝑧𝑙𝑊𝑙 + 𝑦𝑉𝑙 + 𝑏𝑙) 𝑙 ∈ [1, 𝐿 − 2] (2b)

𝑧𝐿 = 𝑧𝐿−1𝑊𝐿−1 + 𝑦𝑉𝐿−1 + 𝑏𝐿−1. (2c)

ICNNs were first introduced to accelerate inference tasks, aiming to find the input (e.g., 𝑦) that minimizes the network’s scalar output, with 
applications in prediction, natural language processing, image recognition, and classification (Amos et al., 2017). However, their convex structure 
also enables embedding into larger optimization models to approximate nonlinear constraints. Note that here, inference refers to reproducing the 
forward propagation of a trained network: given fixed weights and biases, the network computes the output 𝑧𝐿 for a given input 𝑦. Two optimization-
based inference approaches exist: (1) MILP, modeling activations with binaries (Zhang et al., 2020), and (2) LP, approximating activations without 
binaries (Wu and Wang, 2023). While MILP is exact, it scales poorly with binary growth. To improve speed, we avoid MILP and use ReLU activations, 
𝜎(𝑧𝑙𝑊𝑙 + 𝑦𝑉𝑙 + 𝑏𝑙) = max(𝑧𝑙𝑊𝑙 + 𝑦𝑉𝑙 + 𝑏𝑙 , 0). Since affine transformations and ReLU are convex, their composition is convex (Amos et al., 2017), 
allowing ICNN inference to be reformulated as an LP minimizing the output 𝑧𝐿, as shown in  (3a)–(3d). 
Min
𝑧𝑙

𝑧𝐿 (3a)

𝑠.𝑡.

𝑧1 ≥ 𝑦𝑊0 + 𝑏0 (3b)

𝑧𝑙+1 ≥ 𝑧𝑙𝑊𝑙 + 𝑦𝑉𝑙 + 𝑏𝑙 𝑙 ∈ [1, 𝐿 − 1] (3c)

𝑧𝑙 ≥ 0 𝑙 ∈ [1, 𝐿 − 1] (3d)

The objective function (3a) minimizes the output of the ICNN, denoted by 𝑧𝐿. Constraint (3b) represents the first-layer activation, ensuring that 
the first hidden layer 𝑧1 is larger or equal the linear transformation of the input (𝑦𝑊0) plus the bias term 𝑏0. Constraints (3c) define activations for 
subsequent layers, requiring each 𝑧𝑙+1 to be greater than or equal to the sum of the previous layer’s output 𝑧𝑙𝑊𝑙, the direct input connection 𝑦𝑉𝑙, 
and the bias 𝑏𝑙. Here, 𝑧 is the decision variable, while 𝑊 , 𝑉 , and 𝑏 are fixed, trained parameters. The non-negativity constraint (3d) ensures all 
hidden activations remain non-negative, preserving the ICNN’s convexity. These constraints together reformulate the trained ICNN inference as a 
linear program.

Note that the LP formulation is exact only when representing an ICNN trained for a single unit (e.g., a VSP). When the LP-based inference is 
embedded into a larger WDN optimization, this exactness is not guaranteed because the LP captures only the network propagation, while shared 
variables with the rest of the model can introduce discrepancies if the surrounding constraints or objective are not aligned with the ICNN’s convex 
propagation rules. In particular, if external constraints on the ICNN output (𝑧𝐿) become binding, the optimizer may adjust intermediate activations 
(𝑧𝑙, 𝑙 ∈ [1, 𝐿 − 1]) instead of the input 𝑦, so that the LP no longer reproduces the original nonlinear input–output mapping. We refer to the 
shared variables as the complicating variables and the external constraints on the ICNN output as the complicating constraint, following standard 
decomposition terminology (Conejo et al., 2006).

A complicating constraint is any constraint that links otherwise separable subproblems and, by doing so, can prevent a decomposition or 
relaxation from remaining tight. In the present context, complicating constraints are those that couple the ICNN output with other parts of the 
optimization in a way that can prevent the LP relaxation of the network inference from becoming tight. Here, LP-based inference represents the 
forward propagation of the trained network through inequality constraints on the hidden-layer activations; when the OWF objective and feasibility 
region do not impose additional complicating constraints on the ICNN output, these inequalities become binding at optimality and the LP reproduces 
the same mapping as a standard forward pass. If complicating constraints are added, the problem remains feasible, but there is no guarantee that 
the LP relaxation will stay tight, and an additional approximation error may arise beyond the intrinsic training error of the surrogate model. In 
our case, we later show that the operating domain of the OWF problem remains within the region where the ICNN approximation is exact, but this 
interaction should be examined carefully in other applications.

3.2. Input convex concave neural network

As noted, ICNNs are well-suited for learning convex or quasi-convex functions, such as the friction head loss model in (1d)–(1f). Here, an 
ICNN takes flow rate and pipe diameter as inputs (𝑦) to predict friction head loss (𝑧𝐿), serving as a surrogate for the Darcy–Weisbach equation 
and implicitly capturing friction factor variations via the Haaland equation. Note that, although we use the Haaland equation for training, the 
Colebrook–White equation could be used without loss of generality. Beyond pipelines, the hydraulic and energy equations of VSPs (1h) and (1i) 
are inherently nonconvex. Since standard ICNNs cannot model nonconvex functions, we introduce IC2N, a modified ICNN architecture for efficiently 
learning nonconvex constraints.

Inspired by Sankaranarayanan and Rengaswamy (2022), we relax the non-negativity of the final layer’s weight matrix 𝑊𝐿−1, allowing IC2N to 
approximate nonconvex constraints via a difference-of-convex decomposition (Wen et al., 2018). For input 𝑦 ∈ R𝑛, IC2N computes 𝑓 (𝑦) = 𝑔(𝑦)−ℎ(𝑦), 
with 𝑔 convex and ℎ concave. This relaxation captures nonconvexities but introduces two challenges for LP reformulation. First, minimizing 𝑧𝐿
becomes ill-posed since negative weights in 𝑊𝐿−1 make the objective unbounded. Second, non-monotonic input–output relationships may yield 
suboptimal or invalid solutions in dynamic OWF optimization, where the objective depends on the product of time-varying variables and parameters. 
These issues must be addressed to ensure reliable LP reformulation. The first issue is tackled by leveraging the IC2N structure in the following 
inference problem:
Min
𝑧𝑙

‖𝑧𝐿−1𝑊𝐿−1‖1 (4a)

𝑠.𝑡.

𝑧1 ≥ 𝑦𝑊0 + 𝑏0 (4b)

𝑧𝑙+1 ≥ 𝑧𝑙𝑊𝑙 + 𝑏𝑙 𝑙 ∈ [1, 𝐿 − 2] (4c)

𝑧𝐿 = 𝑧𝐿−1𝑊𝐿−1 + 𝑏𝐿−1 (4d)

𝑧 ≥ 0 𝑙 ∈ [1, 𝐿 − 1] (4e)
𝑙
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The objective (4a) minimizes the 𝓁1 norm of the final layer’s linear output (excluding bias), i.e., ‖𝑧𝐿−1𝑊𝐿−1‖1, serving as a convex proxy 
in a difference-of-convex decomposition. Although convex, the 𝓁1 norm is applied to a linear combination with mixed-sign weights, yielding 
a piecewise structure that can switch between convex and concave parts, and thus a nonconvex overall mapping. Eqs. (4b)–(4d) define the 
activations up to 𝑧𝐿, while (4e) enforces non-negativity to layer 𝐿 − 1. Unlike ICNNs, IC2N omits residual terms 𝑦𝑉𝑙: although such connections 
may improve stability, prior work shows they are unnecessary and that removing them simplifies the architecture while enhancing nonconvex 
expressiveness (Sankaranarayanan and Rengaswamy, 2022). Note that we specifically adopt the 𝓁1 norm because it yields a convex, piecewise-
linear objective that treats positive and negative contributions of 𝑧𝐿−1𝑊𝐿−1 symmetrically. Other convex norms (e.g., 𝓁2, 𝓁𝑝, 𝓁∞, or the Frobenius 
norm) produce smooth, nonlinear, or element-selective results, which do not preserve the desired difference-of-convex structure in the objective 
function. The proposition and proof that follow rely on this property.

Next, we tackle the second issue concerning monotonicity. While IC2N inference is exact when used independently, its non-monotonic behavior 
complicates embedding within broader optimization problems such as OWF. We address this by introducing a monotonicity regularization term 
during training, which ensures exactness of IC2N LP-based inference when embedded into the broader optimization. Here, exactness means that the 
LP in (4a)–(4e) produces the same 𝑧𝐿 as a standard feedforward evaluation of the trained network. Embedding within a broader optimization refers 
to integrating this LP into the OWF model while still reproducing the original IC2N output despite additional surrounding constraints (i.e., hydraulic 
constraints not represented in the IC2N inference) and a specific objective, such as minimizing pumping costs under time-varying electricity prices. 
Under the conditions formalized in Proposition  1, the LP inference remains exact and can reliably approximate pump hydraulics and energy 
consumption constraints within the OWF problem.

Proposition 1.  The LP inference defined by (4a)–(4e) remains exact and can reliably approximate pump hydraulics and energy consumption constraints 
within the OWF problem under the following conditions:

1. Activations 𝜎 ∶ R → R≥0 are convex and non-decreasing,
2. Hidden layer weights satisfy 𝑊𝑙 ≥ 0 for 𝑙 ∈ [1, 𝐿 − 2],
3. No complicating constraints are imposed on 𝑧𝐿,
4. The objective ‖𝑧𝐿−1𝑊𝐿−1‖1 is monotonic in 𝑧𝐿.
Under these conditions, the LP inference defined by (4a)–(4e) yields the same output (𝑧𝐿) as the standard forward evaluation of the trained 

IC2N for any feasible input, so that the LP inference is exact when embedded in the OWF problem. Detailed explanations and the complete proof 
are provided in Section S1 of the supplementary materials.

In practice, the ReLU activation function satisfies condition 1 of the proposition, as it is both convex and non-decreasing. Condition 2 can be 
enforced during training through weight clipping or projected gradient methods to ensure non-negative weights in the hidden layers. Condition 
3 is satisfied by avoiding additional constraints on 𝑧𝐿 beyond those implied by the LP inference itself, so that the surrounding OWF objective 
and feasibility region do not interfere with the tightness of the LP relaxation. Satisfying condition 4 (monotonicity between 𝑧𝐿 and ‖𝑧𝐿−1𝑊𝐿−1‖1) 
requires explicit regularization. To this end, we introduce a monotonicity regularization term, denoted by L𝑀 , which penalizes negative covariance 
between 𝑧𝐿 and ‖𝑧𝐿−1𝑊𝐿−1‖1 across a batch of 𝑁 training samples. The term is defined as: 

L𝑀 = 1
𝑁

𝑁
∑

𝑖=1

(

‖𝑧(𝑖)𝐿−1𝑊𝐿−1‖1 − 𝑧̄𝐿−1
)(

𝑧(𝑖)𝐿 − 𝑧̄𝐿
)

(5)

where 𝑧̄𝐿−1 = 1
𝑁

∑𝑁
𝑗=1 ‖𝑧

(𝑗)
𝐿−1𝑊𝐿−1‖1 and 𝑧̄𝐿 = 1

𝑁
∑𝑁

𝑗=1 𝑧
(𝑗)
𝐿  are the batch means.

Eq.  (5) computes the empirical covariance between ‖𝑧𝐿−1𝑊𝐿−1‖1 (i.e., the norm of the penultimate layer linear transformation excluding bias) 
and 𝑧𝐿 (i.e., the output layer), encouraging a positive correlation and thereby promoting the desired monotonicity. The total training loss function 
is then defined in Eq.  (6) as follows: 

LTOT = 1
𝑁

𝑁
∑

𝑖=1
(𝑧(𝑖)𝐿 − 𝑥(𝑖))2 + 𝜁L𝑀 (6)

The first term in Eq.  (6) is the Mean Squared Error (MSE) between predicted outputs 𝑧(𝑖)𝐿  and ground truth targets 𝑥(𝑖). The hyperparameter 𝜁
controls the strength of the monotonicity regularization and should be tuned via cross-validation to balance predictive accuracy and monotonic 
behavior. With this regularization, IC2N can approximate nonconvex relationships, such as the energy consumption of VSPs, using flow rate and 
pressure head as inputs and predicting power consumption. In this role, the trained IC2N acts as a physics-informed surrogate model, implicitly 
capturing hydraulic constraints within the prediction task. Note that Eq.  (6) does not require modification across applications: as long as the training 
data originate from a stationary operating profile that can be represented via a difference-of-convex decomposition, the methodology and proof 
remain valid. The only application-dependent adjustment is the choice of the regularization weight 𝜁 , which promotes the desired monotonicity 
required by Condition 4.

3.3. Neural network-informed OWF

The final OWF formulation integrates ICNN-based approximations for friction head losses and an IC2N-based model for pump hydraulics. Before 
presenting the mathematical formulation, we introduce the variables used in the ICNN and IC2N inference procedures for the OWF problem. The 
neural network inputs are collected in the vectors 𝑦𝑖,𝑗,𝑡, which contain the relevant physical hydraulic variables for each edge (𝑖, 𝑗) at time step 
𝑡: flow and diameter for the ICNN, and flow and head gain for the IC2N. Latent activations of each hidden layer are represented by the vectors 
𝑧𝑖,𝑗,𝑡,𝑙, with the final-layer activation 𝑧𝑖,𝑗,𝑡,𝐿 corresponding to the network output: friction loss for the ICNN and pump energy consumption for the 
IC2N. The forward propagation from input to output is implemented as linear constraints in (8a)–(9f), thereby replacing the original nonlinear 
hydraulic constraints. From this point onward, the symbol  denotes decision variables and parameters specifically associated with the ICNN-based 
approximation of friction head losses, whereas variables associated with the IC2N retain the standard notation.
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The objective minimizes total electricity costs for water pumping, with the IC2N providing estimates of pump energy consumption. As defined 
in Constraints (4a)–(4e), the objective of the IC2N serves as a convex proxy for true pump power consumption, formulated as a function of the 
final layer’s linear transformation and scaled by time-varying electricity prices. It is formulated as follows:

Min
∑

𝑡∈T
𝑃 𝑒𝑙
𝑡

⎛

⎜

⎜

⎝

∑

(𝑖,𝑗)∈P

∑

𝛾∈𝛤𝐿−1

∑

𝑑∈𝛤𝐿

|𝑊𝐿−1,𝛾,𝑑 |𝑧𝑖,𝑗,𝑡,𝐿−1,𝛾
⎞

⎟

⎟

⎠

(7a)

Eq.  (7a) defines the IC2N-assisted OWF objective. For each time step 𝑡, the electricity price 𝑃 𝑒𝑙
𝑡  multiplies the convex proxy of pump power, 

computed from the penultimate layer activations 𝑧𝑖,𝑗,𝑡,𝐿−1,𝛾 and the trained weights 𝑊𝐿−1,𝛾,𝑑 . The use of absolute weights ensures convexity, and 
since 𝑧𝑖,𝑗,𝑡,𝐿−1,𝛾 ≥ 0, we have |𝑊𝐿−1,𝛾,𝑑 |𝑧𝑖,𝑗,𝑡,𝐿−1,𝛾 = |𝑊𝐿−1,𝛾,𝑑𝑧𝑖,𝑗,𝑡,𝐿−1,𝛾 |. Bias terms are excluded, as they are fixed and do not affect optimization. This 
formulation ensures tight IC2N inference constraints at optimality, thereby enabling the approximation of true nonlinear pump power consumption. 
Although the LP objective does not directly yield energy cost (unlike the NLP formulation), the actual pump power consumption can be recovered 
post-optimization via the IC2N output 𝑧𝑖,𝑗,𝑡,𝐿,𝑑 .

Constraints (8a)–(8f) define the ICNN inference procedure used to approximate friction head losses. These constraints replace constraints (1d)–(1f)
from the original NLP formulation, thereby providing a linear ICNN-based approximation. 

𝑦𝑖,𝑗,𝑡,0 = 𝑞𝑖,𝑗,𝑡 (𝑖, 𝑗) ∈ E, 𝑡 ∈ T (8a)

𝑦𝑖,𝑗,𝑡,1= 𝐷𝑖,𝑗 (𝑖, 𝑗) ∈ E, 𝑡 ∈ T (8b)

𝑧𝑖,𝑗,𝑡,1,𝑑≥
∑

𝛾∈𝛤 𝑦
𝑊 0,𝛾,𝑑𝑦𝑖,𝑗,𝑡,𝛾 + 𝑏0,𝑑 (𝑖, 𝑗) ∈ E, 𝑡 ∈ T, 𝑑 ∈ 𝛤 1 (8c)

𝑧𝑖,𝑗,𝑡,𝑙+1,𝑑≥
∑

𝛾∈𝛤 𝑙
𝑊 𝑙,𝛾,𝑑𝑧𝑖,𝑗,𝑡,𝑙,𝛾 +

∑

𝛾∈𝛤 𝑦
𝑉 𝑙,𝛾,𝑑𝑦𝑖,𝑗,𝑡,𝛾 + 𝑏𝑙,𝑑 (𝑖, 𝑗) ∈ E, 𝑡 ∈ T, 𝑙 ∈ [1, 𝐿 − 1], 𝑑 ∈ 𝛤 𝑙+1 (8d)

𝑧𝑖,𝑗,𝑡,𝑙,𝑑≥ 0 (𝑖, 𝑗) ∈ E, 𝑡 ∈ T, 𝑙 ∈ [1, 𝐿 − 1], 𝑑 ∈ 𝛤 1 (8e)

𝑧𝑖,𝑗,𝑡,𝐿,0 𝐿
𝐸
𝑖,𝑗 = ℎ𝑖,𝑡 − ℎ𝑗,𝑡 (𝑖, 𝑗) ∈ E, 𝑡 ∈ T (8f)

Constraint (8a) sets the first input neuron to the flow rate 𝑞𝑖,𝑗,𝑡, while constraint (8b) assigns the pipe diameter 𝐷𝑖,𝑗 to the second input neuron, 
embedding the key hydraulic variables. Constraints (8c) and (8d) define the affine transformations in the first and deeper hidden layers, respectively, 
where neuron outputs depend on weighted sums of inputs and previous layer outputs plus biases. Constraint (8e) enforces nonnegativity of 
all neuron outputs, ensuring the ICNN’s convexity. Finally, constraint (8f) links the ICNN’s output to the nodal head difference ℎ𝑖,𝑡 − ℎ𝑗,𝑡. The 
intermediate variables 𝑧𝑖,𝑗,𝑡,𝑙,𝑑 form a latent-space representation of the frictional forces in the pipe, which depend on flow and diameter as well 
as other hydraulic parameters (e.g., roughness) internally captured by the network during training, while the final-layer activation 𝑧𝑖,𝑗,𝑡,𝐿,0 directly 
approximates the resulting friction head loss used in the OWF constraints. Unlike the general ICNN inference problem (3a)–(3d), minimizing the 
final ICNN output explicitly in the objective is unnecessary here. Since friction losses determine pump head gain, which the IC2N model minimizes 
indirectly by reducing pump energy consumption, the ICNN output 𝑧𝐿 is implicitly minimized as part of the overall optimization.

Constraints (9a)–(9f) define the IC2N inference procedure used to approximate pump hydraulics and energy consumption. These constraints 
replace the nonlinear constraints (1h)–(1i) from the original NLP formulation, thereby providing a linear IC2N-based approximation of the pump 
model. 
𝑦𝑖,𝑗,𝑡,0 = 𝑞𝑖,𝑗,𝑡 (𝑖, 𝑗) ∈ P, 𝑡 ∈ T (9a)

𝑦𝑖,𝑗,𝑡,1 = ℎ𝑗,𝑡 − ℎ𝑖,𝑡 (𝑖, 𝑗) ∈ P, 𝑡 ∈ T (9b)

𝑧𝑖,𝑗,𝑡,1,𝑑 ≥
∑

𝛾∈𝛤 𝑦
𝑊0,𝛾,𝑑𝑦𝑖,𝑗,𝑡,𝛾 + 𝑏0,𝑑 (𝑖, 𝑗) ∈ P, 𝑡 ∈ T, 𝑑 ∈ 𝛤 1 (9c)

𝑧𝑖,𝑗,𝑡,𝑙+1,𝑑 ≥
∑

𝛾∈𝛤 𝑙

𝑊𝑙,𝛾,𝑑𝑧𝑖,𝑗,𝑡,𝑙,𝛾 + 𝑏𝑙,𝑑 (𝑖, 𝑗) ∈ P, 𝑡 ∈ T, 𝑙 ∈ [1, 𝐿 − 2], 𝑑 ∈ 𝛤 𝑙+1 (9d)

𝑧𝑖,𝑗,𝑡,𝐿,𝑑 =
∑

𝛾∈𝛤𝐿−1

𝑊𝐿−1,𝛾,𝑑𝑧𝑖,𝑗,𝑡,𝐿−1,𝛾 + 𝑏𝐿−1,𝑑 (𝑖, 𝑗) ∈ P, 𝑡 ∈ T, 𝑑 ∈ 𝛤𝐿 (9e)

𝑧𝑖,𝑗,𝑡,𝑙,𝑑 ≥ 0 (𝑖, 𝑗) ∈ P, 𝑡 ∈ T, 𝑙 ∈ [1, 𝐿 − 1], 𝑑 ∈ 𝛤 1 (9f)

Constraint (9a) assigns the first input neuron 𝑦𝑖,𝑗,𝑡,0 to the pump flow 𝑞𝑖,𝑗,𝑡, while (9b) sets the second input neuron 𝑦𝑖,𝑗,𝑡,1 to the hydraulic head 
gain ℎ𝑗,𝑡 − ℎ𝑖,𝑡. Constraint (9c) defines the first hidden layer’s activation via an affine transformation of inputs, and constraint (9d) propagates 
this linear structure through the intermediate layers. Constraint (9e) computes the final output as a linear function of the last hidden layer, while 
constraint (9f) enforces nonnegativity on hidden neuron outputs, maintaining convexity. The intermediate variables 𝑧𝑖,𝑗,𝑡,𝑙,𝑑 capture the internal 
nonlinear behavior of the pump hydraulics as a latent-space representation, whereas the final-layer activation 𝑧𝑖,𝑗,𝑡,𝐿,0 provides the IC2N-based 
approximation of pump energy consumption, effectively replacing the original nonlinear pump power curve and linking directly to the physical 
quantity 𝑝𝑖,𝑗,𝑡 in the OWF problem.

The complete formulation of the proposed neural network-assisted OWF problem is summarized in (10). The objective function and constraints 
together define a linear program that efficiently approximates the original OWF problem and can be solved using standard off-the-shelf optimization 
solvers. 

Min
𝛯

(7a), 𝑠.𝑡.

⎧

⎪

⎨

⎪

⎩

(8a) − (8f),
(9a) − (9f),
(1b), (1c), (1j) − (1l).

(10)

The set of decision variables for the optimization problem is defined as follows: 𝛯 ∶= {𝑞𝑖,𝑗,𝑡, ℎ𝑛,𝑡, 𝑝𝑖,𝑗,𝑡, 𝑘𝑖,𝑗,𝑡, 𝑧𝑖,𝑗,𝑡,𝑙,𝑑 , 𝑧𝑖,𝑗,𝑡,𝑙,𝑑 , 𝑦𝑖,𝑗,𝑡,𝜉 , 𝑦𝑖,𝑗,𝑡,𝜉 , ∣
(𝑖, 𝑗) ∈ E ∪P ∪V ⊆ A, 𝑛 ∈ J ∪R ∪ S ⊆ N, 𝑡 ∈ T, 𝑙 ∈ L, 𝑑 ∈ 𝛤 𝑙 , 𝜉 ∈ 𝛤 𝑦}. Constraints (8a)–(8f) describe the ICNN approximation of friction head losses. 
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Fig. 2. EPANET water distribution network test cases used in this study: NET1 (left), and Anytown (right).

Constraints (9a)–(9f) represent the IC2N approximation of pump hydraulics and power consumption. Finally, constraints (1b), (1c), and (1j)–(1l) 
include all original linear network constraints from the NLP model, such as network flow conservation, tank dynamics, and physical bounds on 
system variables, which remain unchanged.

4. Results and discussion

4.1. Case study

We demonstrate our approach on two adapted EPANET test cases: NET1 and Anytown, whose layouts are shown in Fig.  2. NET1 (Rossman, 
2000) is a simplified WDN with 11 nodes (9 junctions, 1 reservoir, 1 elevated tank), 12 pipes (19.3 km, 250–450 mm), and one pump. Demand 
varies from 40–95 l/s across six nodes, supplied by the reservoir and tank (259 m elevation, 15.4 m diameter, 30.5–45.7 m operating range). To 
assess scalability, we also use Anytown (Walski et al., 1987), a benchmark urban WDN with 19 nodes (16 junctions, 1 reservoir, 2 tanks), 34 pipes 
(69.6 km, 200–400 mm), and three parallel pumps. Demand ranges 200–550 l/s across 16 nodes. Tanks (65.5 m elevation, 16 and 17 m diameter) 
operate between 3–10.7 m.

The ICNN predicts pipe friction losses from synthetic data generated with the Darcy–Weisbach equation (1d), with the friction factor computed 
via the Haaland equation (1e). We sample 150,000 scenarios of flow and diameter (pipe length fixed at 1m), yielding head loss per unit length 
(later scaled in optimization, Eq. (8f)). The ICNN maps flow and diameter to head loss with three hidden layers (10, 5, 2 neurons), enforcing 
convexity by clipping 𝑊𝑙 ≥ 0 for 𝑙 ∈ [1, 𝐿−1]. It is trained for 20,000 epochs and tested on unseen data.

The IC2N predicts VSP power using data from the empirical model (1h)–(1i), incorporating efficiency via the reference ℎ–𝑞 curve and speed 
adjustment. We sample 250,000 scenarios of flow and head gain (min relative speed 0.6). The IC2N maps inputs to power with two hidden layers 
(24, 48 neurons), enforcing 𝑊𝑙 ≥ 0 for 𝑙 ∈ [1, 𝐿−2]. It is trained for 25,000 epochs with a monotonicity regularization term (𝜁 = 10−4, Eqs. (5)–(6)). 
For both models, inputs and outputs are MinMax-scaled, and data is split into training (70%), validation (20%), and test (10%) sets. ReLU activations 
and the Adam optimizer are used with a mean squared error loss. The datasets used in this study, including all network input data and the training 
datasets for the ICNN and IC2N models, are available in the online repository (Bianchi, 2025).

The proposed neural network-informed OWF problem is solved using Gurobi and compared against the exact NLP formulation solved with 
IPOPT. We also test two state-of-the-art approximations: piecewise linear approximation (MILP) and convex relaxation (CVX), both solved with 
Gurobi. The MILP replaces nonlinearities with piecewise linear segments using an SOS2-based PLA (Beale and Tomlin, 1970) for the univariate 
constraint (1e) and a triangular PLA (Geißler et al., 2011) for the bivariate constraints (1h)–(1i). The CVX method applies the quasi-convex hull 
relaxation (Li et al., 2018; Bianchi et al., 2023) to reformulate nonconvexities into convex constraints. These comparisons assess IC2N computational 
efficiency, solution accuracy, and trade-offs with alternative methods. We refer the reader to Sections S2 and S3 of the supplementary materials for 
a detailed description of the MILP and CVX model formulations. Simulations are implemented in Python v3.12.3 with Pyomo v6.8.2 on a laptop 
with 32GB RAM and an Intel(R) Xeon(R) 6-core 2.80GHz processor.

4.2. Numerical results

Table  1 compares the results of the proposed neural network-informed OWF formulation (IC2N) with those of the nonlinear formulation (NLP 
and NLP-INI), the mixed-integer linear formulation (MILP), and the convex relaxation (CVX), applied to the NET1 and Anytown test cases. NET1 
represents a small-scale network, while Anytown serves as a larger-scale benchmark, helping to assess the scalability of the different approaches. 
Note that the NLP-INI model initializes the NLP model with the solution of the CVX problem to provide a warm start, thereby enhancing solver 
convergence and stability. We refer the reader to Section S4 of the supplementary materials for a detailed description of the initialization procedure. 
The evaluation criteria include the objective function value, computational time, and optimality gap, which indicates how closely each solution 
approaches the reference provided by NLP-INI. Note that, in the IC2N model, the optimization objective acts as a convex surrogate. Therefore, the 
true objective value (i.e., the total electricity cost) reported here is calculated a posteriori from the network output and the electricity price profile.

Across the two networks, the results highlight clear differences in how each formulation balances computational effort and solution quality. 
For NET1, where all methods remain close to the NLP-INI reference, the primary distinction lies in efficiency. The NLP formulation attains the 
8 
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Table 1
Comparison of various OWF problem formulations based on objective function value, solution time, and optimality gap relative to the 
NLP solution for NET1 (small) and Anytown (large) networks.
 Network Formulation Objective (A C ) Time (s) Optimality gapa (%) 
 

NET1

NLP 257.41 63.26 0.00  
 MILP 257.61 192.48 0.08  
 CVX 254.77 0.04 1.03  
 NLP-INIc 257.41 1.20 0.00  
 IC2N 258.26 0.06 0.33  
 

Anytown

NLP N/Ab N/Ab N/Ab  
 MILP 1898.81 511.57 0.67  
 CVX 1848.49 0.14 3.36  
 NLP-INIc 1911.59 3.84 0.00  
 IC2N 1906.18 0.17 0.28  
a NLP-INI solution serves as a reference for optimality gap calculation.
b Model converged to a locally infeasible solution.
c NLP model initialized with solution of CVX problem.

Fig. 3. NET1 results comparison across NLP-INI, MILP, CVX, and IC2N formulations showing time series (top) and absolute errors (bottom) for pump flow, pump 
head gain, pump power, and friction head loss in pipe (10,11). Absolute error is computed using the NLP-INI solution as the reference. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

reference solution (257.41 e) but requires substantially longer runtimes, whereas NLP-INI achieves the same solution with an order-of-magnitude 
speed-up, confirming the effectiveness of warm-starting. MILP maintains high accuracy but exhibits considerably higher computational cost, even 
at this small scale. In contrast, CVX and IC2N demonstrate significantly lower runtimes. CVX does so at the expense of a larger optimality gap, 
while IC2N retains a tight approximation of the reference solution, indicating that the neural network–informed linearization successfully preserves 
problem structure while remaining computationally lightweight.

The differences become more pronounced in the Anytown benchmark. The NLP formulation fails to converge, illustrating the difficulty of 
applying nonconvex continuous optimization methods to larger hydraulic networks. MILP continues to produce accurate solutions but with a 
substantial increase in solution time, suggesting scalability limitations. CVX remains extremely fast but exhibits the largest deviation from the 
reference, mirroring its looser relaxation. IC2N, however, attains a near-reference solution while keeping computational time comparable to CVX, 
demonstrating strong scalability and robustness. Overall, the results indicate that the IC2N formulation offers an effective compromise between 
accuracy and computational efficiency, particularly in contexts where classical NLP approaches become unreliable or impractical.

In addition to computational performance, we also assess whether the proposed IC2N formulation preserves the expected physical behavior. In 
the following, we highlight how the IC2N model respects realistic hydraulic relationships and translates into operationally meaningful scheduling 
decisions. To gain further insight into the model’s hydraulic behavior, Fig.  3 compares the performance of the IC2N model with the NLP-INI 
reference, as well as the MILP and CVX approximations, on the NET1 (small) network. The analysis focuses on four key decision variables: pump 
flow, pump head gain, pump power, and friction head loss in a selected pipe. The top row of the figure presents time series plots of the NLP solution 
alongside the approximations over the 24-hour simulation horizon. The bottom row displays the absolute error distributions of the approximations 
relative to the NLP solution, where the horizontal black line indicates the median, the box represents the interquartile range (IQR), and the whiskers 
span the full range of errors.

Visual inspection of the time-series plots in the upper panel shows that all three approximation models generally follow the NLP trend (thick 
black line), although their accuracy varies. The MILP formulation (green dashed line) consistently demonstrates the closest match to the NLP 
reference. IC2N (blue dashed line) also provides a good approximation, while CVX (yellow dashed line) exhibits the most pronounced deviations 
from the NLP solution. The lower panel, comprising box plots of absolute errors, quantitatively substantiates these observations.
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Fig. 4. Anytown results comparison across NLP-INI, MILP, CVX, and IC2N formulations showing time series (top) and absolute errors (bottom) for pump flow, 
pump head gain, pump power, and friction head loss in pipe (2,3). Absolute error is computed using the NLP-INI solution as the reference.

MILP achieves the highest accuracy, with the smallest median errors and tightest IQRs across all variables. For pump flow, MILP exhibits 
a median absolute error of approximately 1.63 l/s, with an IQR from 0.34 l/s to 4.28 l/s and a maximum error of 24.38 l/s. For pump head, 
the median error is about 0.2 m, with an IQR from 0.14 m to 0.5 m and a maximum of 1 m. In the case of pump power, the median error is 
approximately 1.08 kW, with an IQR from 0.41 kW to 3.54 kW and a maximum of 14.1 kW. For head loss, the median error is about 0.11 m, with 
an IQR from 0.06 m to 0.25 m and a maximum of 0.64 m.

IC2N delivers moderately higher errors than MILP but remains substantially more accurate than CVX. Its median errors are roughly 2.6 times 
larger for pump flow (4.19 l/s vs. 1.63 l/s), 1.5 times larger for pump head (0.3 m vs. 0.2 m), 2.5 times larger for pump power (2.68 kW vs. 
1.08 kW), and 1.9 times larger for head loss (0.21 m vs. 0.11 m) compared to MILP. Compared to CVX, IC2N reduces median errors by 23% 
for pump flow, 17% for pump head, 82% for pump power, and 0% for head loss. Moreover, its IQRs are consistently narrower, indicating better 
robustness and more consistent performance.

CVX exhibits the largest median errors and widest IQRs, reflecting substantial inaccuracies and high variability. For pump flow, the median 
error is 5.47 l/s (IQR 0.32–14.05 l/s, max 30.2 l/s), over 3 times larger than MILP and 30% larger than IC2N. Pump head shows a median of 0.36 m 
(IQR 0.17–1.70 m, max 3.01 m), roughly 1.8 times larger than IC2N and 1.8 times larger than MILP. Pump power displays the most pronounced 
discrepancies, with a median error of 15.31 kW (IQR 5.7–23.5 kW, max >56 kW), more than 14 times larger than MILP and over 5 times larger 
than IC2N. For head loss, the median is 0.21 m (IQR 0.12–0.51 m, max 1.13 m), about double MILP and equal to IC2N.

Fig.  4 presents the same comparison for the larger and more complex Anytown network. This comparison evaluates the performance of each 
approach for a more challenging system with greater spatial and hydraulic complexity than the smaller NET1 case, thus providing valuable insights 
into the scalability and robustness of the proposed approach.

The time-series plots for Anytown show that MILP continues to provide the closest approximation to the NLP trend, while IC2N maintains a 
relatively good fit and CVX exhibits more substantial deviations and less consistent tracking of the reference. The lower panel, which presents box 
plots of absolute errors, quantitatively reinforces these findings. For pump flow, MILP achieves a median absolute error of approximately 6.96 l/s, 
with an IQR from 1.84 l/s to 16.14 l/s and a maximum error of 46.29 l/s. IC2N performs slightly better in terms of central tendency, with a median 
error of 4.62 l/s, an IQR from 0.32 l/s to 18.53 l/s, and a maximum error of 39.48 l/s. This corresponds to an improvement of about 34% in the 
median error compared to MILP. However, MILP still shows tighter variability, indicating greater consistency.

For pump head, MILP has a median absolute error of 0.81 m, whereas IC2N achieves a lower median error of 0.5 m, indicating a 38% reduction. 
However, the IQR for IC2N (0.27 m to 1.48 m) is wider than that of MILP (0.36 m to 1.36 m), indicating that IC2N may occasionally produce larger 
errors across time steps. In the case of pump power, IC2N achieves a median absolute error of 6.88 kW, while MILP’s median error is 8.24 kW. This 
represents a reduction of approximately 16.5% in median error. However, the upper tail for IC2N is heavier, with a maximum error of 54.38 kW 
compared to MILP’s 22.89 kW.

For friction head loss, IC2N also shows lower central errors, with a median of 0.26 m compared to MILP’s 0.47 m, equivalent to a 45% reduction. 
Nevertheless, IC2N has a broader IQR (0.07 m to 0.96 m) and maximum error of 3.12 m, whereas MILP has a tighter IQR (0.27 m to 0.86 m) and a 
maximum of 1.63 m. This again highlights the trade-off between average-case accuracy and worst-case deviations. Compared to CVX, IC2N clearly 
offers superior performance across all variables. For instance, CVX’s median absolute error for pump flow is 36.86 l/s, nearly eight times higher 
than IC2N’s. In pump power, CVX shows a high median error of 65.62 kW, nearly 10 times larger than IC2N’s 6.88 kW. Similar gaps are observed 
in pump head (1.99 m for CVX vs. 0.5 m for IC2N) and head loss (0.92 m vs. 0.26 m).

4.3. Discussion

The comparative evaluation underscores the strengths of the IC2N approach, particularly in terms of computational efficiency and solution 
quality. On the NET1 network, IC2N achieves a 0.33% optimality gap relative to the NLP baseline, slightly less accurate than MILP’s 0.08%, but 
solves in only 0.06 s, over 3200 times faster than MILP (192.48 s) and more than 1000 times faster than NLP (63.26 s). The NLP-INI variant reduces 
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time to 1.20 s but remains about 20 times slower than IC2N. For the more complex Anytown network, NLP fails to find a feasible solution, while 
IC2N attains a 0.28% gap, outperforming MILP (0.67%) and CVX (3.36%) in accuracy, solving in 0.17 s, approximately 3000 times faster than 
MILP and over 20 times faster than NLP-INI. These results suggest that IC2N offers a favorable trade-off for large-scale systems, balancing accuracy 
and speed. Initializing NLP with the solution of CVX improves convergence, but adds modeling overhead and may not scale well. In larger networks 
with multiple technologies and nonlinear profiles, the quality of the CVX starting point can degrade, limiting the reliability of NLP-INI.

Time-series and error analyses show MILP yields the lowest median absolute errors on NET1. IC2N’s errors are roughly 1.6 to 2.5 times higher 
but still substantially better than CVX, reducing median pump power error by over 80% and pump flow error by 23% relative to CVX. On Anytown, 
IC2N outperforms MILP by lowering pump flow and head errors by about 34% and 38%, and pump power and head loss errors by 16.5% and 45%, 
respectively. However, IC2N exhibits higher variability with broader interquartile ranges and larger maximum errors, while MILP maintains tighter 
error distributions. CVX shows the poorest performance across all variables, with median errors up to ten times higher than IC2N on Anytown.

Overall, IC2N balances speed and accuracy effectively. While MILP is marginally more consistent on small networks, IC2N achieves near-MILP 
accuracy with orders-of-magnitude faster solve times, making it well suited for a wide range of applications. It is particularly promising for Monte 
Carlo-based scenario optimization, where the problem must be solved repeatedly, or for network expansion problems that already involve substantial 
integer complexity. In such cases, introducing additional integer variables through MILP or MINLP formulations would likely be computationally 
prohibitive. It is worth noting that the ICNN and IC2N models used in this study are relatively small. In practice, neural networks are designed to 
be only as complex as necessary to capture system dynamics while avoiding overfitting. The chosen model sizes were sufficient for the hydraulic 
complexity of the WDNs considered here. For more complex networks or operating conditions, larger or deeper architectures may be required.

Although the results demonstrate good predictive performance, potential underfitting, overfitting, and limitations in generalizability are inherent 
challenges of surrogate modeling. Such issues were observed during training and were mitigated through careful data selection and hyperparameter 
tuning. A detailed quantitative analysis is beyond the scope of the present work, but we note these aspects to emphasize that data quality and model 
design remain essential when applying ICNN/IC2N surrogates in other contexts. Further, neural networks’ sensitivity to noisy inputs and lack of 
interpretability pose additional challenges, and may require retraining, integration of domain knowledge, and exploring other hybrid data-driven 
and physics-based approaches to improve reliability.

5. Conclusion

This work developed a hybrid optimization framework integrating the proposed IC2N neural network architecture into water distribution 
network optimization, enabling accurate approximation of nonlinear hydraulic relationships within a convex optimization setting. The proposed 
method achieves near-MILP solution quality with computational speeds several orders of magnitude faster, demonstrating scalability and robustness 
across network sizes. On benchmark networks, it solved the OWF problem over 3000 times faster than traditional MILP, while maintaining an 
optimality gap below 0.33% and reducing errors in critical operational variables by up to 80% compared to state-of-the-art convex relaxations. 
These findings suggest IC2N as a practical alternative for large-scale and complex water system optimization problems where traditional methods are 
computationally prohibitive. The approach offers stakeholders a practical, data-driven tool for supporting decision-making in water distribution 
planning and operations. While the current study focuses on relatively small benchmark networks to enable direct comparisons with nonlinear 
and mixed-integer optimization methods, future work will extend the framework to established large-scale benchmark networks, such as the one 
presented in Marchi et al. (2014), as well as real-world cases. This will allow a more thorough assessment of the method’s practical applicability 
and scalability in realistic operational settings. Additionally, future research will incorporate emerging technologies and address uncertainty to 
further enhance real-time control and planning applications.
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