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A B S T R A C T

The Royle-Nichols occupancy model is commonly used for comparison of wildlife abundance 
between sites or years with biomonitoring data, such as camera-trap or bioacoustics records. The 
method requires that records of species are subdivided into sampling intervals with detection or 
non-detection. Here, we evaluated how the choice of interval length - which is commonly chosen 
arbitrarily - affects the outcomes of such comparisons. Using simulations and field data, we find 
that interval length can affect model results substantially. In some cases, different interval lengths 
can yield opposite differences in abundance between locations. Our results indicate that the in
terval length should be carefully selected based on properties of the data rather than arbitrarily 
chosen. Careful selection increases the accuracy of species’ abundance comparisons, and makes 
population comparisons more effective. We provide guidelines for optimizing the choice of in
terval length.

1. Introduction

Accurate estimation of species abundance is crucial for assessing the effectiveness of conservation actions and informing man
agement strategies. Understanding population dynamics enables conservationists to evaluate the impact of interventions, prioritize 
resources, and implement adaptive management practices. In recent years, the use of continuous recorders has gained traction for 
broad-scale occurrence monitoring, providing a valuable tool for collecting extensive data on species presence across diverse habitats. 
This large amount of occurrence data enables the use of advanced methods like the Royle-Nichols model (Royle and Nichols, 2003), 
which is a commonly used method for abundance analysis with wildlife monitoring data, such as bioacoustics or camera-trapping data. 
Using the model, one can estimate the relative abundances of a species in given areas while accounting for uncertainty in detection, 
which is common in ecological surveys. The model typically employs a hierarchical Bayesian framework, which allows for the 
incorporation of various levels of uncertainty in the data. This is particularly useful in ecological studies, where data can be sparse or 
variable. In particular, the model allows for the inclusion of environmental variables that may influence species abundance and 
detection. This enables researchers to assess how factors like habitat type, climate, and human activities such as hunting affect species 
populations (Van Kuijk et al., 2022). Because of its competence to estimate relative abundances, it is often used in studies aimed at 
conservation and management of wildlife populations. By providing accurate estimates of relative abundance and understanding the 
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factors that influence it, conservationists can make informed decisions.
A central component of the Royle-Nichols model is the estimation of detection probability. This is the likelihood that a species is 

observed, given that it is present. The model uses basic recordings of captures and non-captures to estimate the probability that an 
individual that is present is actually detected (i.e. the detection probability; MacKenzie et al., 2002; Mackenzie and Royle, 2005; 
O’Connel et al., 2011; Steenweg et al., 2018). It requires multiple repeated surveys or sampling occasions over a period of assumed 
population closure, and yields a series of detection and non-detection points (Royle and Nichols, 2003). The model then relates the 
number of observations to the detection probability. Specifically, it can account for the heterogeneity in detection probabilities be
tween locations that characterizes biomonitoring data (Tobler et al., 2015). The model then derives a probability of detecting occu
pancy, which corresponds to the probability that at least one individual is available for detection at a sampling point (Welsh et al., 
2013). By modelling this probability of detecting occupancy as a function of the per-individual detection rate and estimated local 
abundance, relative abundance estimates can be calculated (Royle and Nichols, 2003). These can be used to, for example, compare 
species populations between areas, years, or treatments, a commonly used approach to assess impacts of wildlife conservation and 
management on biodiversity (O’Connel et al., 2011; Steenweg et al., 2017; Oliver et al., 2023).

To use the model, the continuous data produced by camera traps, bioacoustics devices, and other sensors are transformed into a 
detection/non-detection matrix by splitting the data into repeated sampling intervals, which requires balancing the number and length 
of the sampling intervals or repeated surveys. The number of repeated surveys is known to affect model outcomes (MacKenzie et al., 
2002; Tyre et al., 2003; Field et al., 2005; Mackenzie and Royle, 2005). Overall, increasing the number of repeated surveys enhances 
both the precision and accuracy of an occupancy estimation (MacKenzie et al., 2002). When only two repeated surveys are utilized, 
accuracy is generally low (unless detection probabilities are high); hence, a minimum of three repeats is recommended (Mackenzie and 
Royle, 2005). When detection probability is low, the number of required repeats increases (Field et al., 2005).

In practice, interval length varies widely among camera-trap studies (Burton et al., 2015), from as short as one day (Ahumada et al., 
2011; Beaudrot et al., 2016) to as long as 30 days (e.g., Sunarto et al., 2015). Also, it is common practice to choose a single time-interval 
length for all species in a study, regardless of their abundance (Bowler et al., 2017; Van Kuijk et al., 2022). The choice of interval length 
is rarely justified explicitly, but most studies seem to aim for many short intervals (1 – 5 days) to retain more detections.

It is likely that interval length affects the Royle-Nichols model’s outcomes, because interval length affects the estimation of 
detection rates. When interval length increases and the corresponding number of intervals thus decreases, detectability increases. 
Selecting too large intervals will remove any differences in detections between sites, as non-detections become absent. Non-detections 
at sampling points with detections are needed to estimate the detection probability, providing insight in the probability that in
dividuals have been present but have not been recorded at sampling points with non-detections only. On the other hand, selecting too 
short intervals (i.e. 1 day) may lead to zero inflation (which causes problems with model fitting and statistical power; Denes et al., 
2015) and very low detection probabilities, which can be difficult to estimate.

Here, we assess how the choice of interval length affects the relative differences in abundance between sites estimated by the Royle- 
Nichols model. First, we tested whether and how results change when using different interval lengths, using camera-trapping data from 

Table 1 
Per species, we estimated the optimal interval length for the comparison between FSC and non-certified sites. From left to right, the corresponding 
average sampling effort per location-pair (i.e. total number of survey days), difference in detection rates (Δr) between the areas, difference in the 
proportion of sampling points with detections (Δp), the interval length (dT, in days) that minimizes the estimated difference in relative abundance, 
the estimated difference in relative abundance associated with this interval length, and the estimated difference in relative abundance when a 1-day 
interval length is used are shown.

Common species name Latin species name NSE Δr Δp dT Δ rel. abund.

dT 1 day

African brush-tailed porcupine Atherurus africanus 5213 0.03 0.07 8 0.023 0.026
Marsh mongoose Atilax paludinosus 5439 0.00 0.12 2 0.040 0.049
Black footed mongoose Bdeogale nigripes 4529 0.07 0.34 26 0.023 0.032
Peter’s duiker Cephalophus callipygus 4860 0.19 0.32 27 0.019 0.042
Bay duiker Cephalophus dorsalis 4860 0.01 0.00 27 0.023 0.049
White-bellied duiker Cephalophus leucogaster 4832 0.03 0.19 16 0.042 0.049
Ogilby's duiker Cephalophus ogilbyi 4860 0.01 0.00 27 0.023 0.040
Yellow-backed duiker Cephalophus silvicultor 4832 0.07 0.33 16 0.023 0.026
Emin's pouched rat Cricetomys emini 6375 0.09 0.36 28 0.023 0.047
Lady Burton's rope squirrel Funisciurus isabella 5299 0.01 0.02 6 0.023 0.026
Servaline genet Genetta servalina 5321 0.01 0.07 5 0.026 0.040
Western gorilla Gorilla gorilla 4860 0.05 0.21 27 0.042 0.049
Water chevrotain Hyemoschus aquaticus 5471 0.00 0.05 1 0.026 0.026
African forest elephant Loxodonta cyclotis 4529 0.09 0.42 26 0.022 0.024
Mandrill Mandrillus sphinx 5471 0.00 0.00 1 0.023 0.023
African palm civet Nandinia binotata 4221 0.01 0.07 22 0.031 0.040
Chimpanzee Pan troglodytes 6448 0.09 0.23 29 0.029 0.049
Blue duiker Philantomba monticola 4529 0.02 0.02 26 0.023 0.026
Red river hog Potamochoerus porcus 4894 0.03 0.23 14 0.031 0.032
Forest giant squirrel Protoxerus stangeri 6448 0.03 0.05 29 0.023 0.040
Long-nosed mongoose Xenogale naso 5439 0.00 0.02 2 0.023 0.026
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a study in Western Equatorial Africa (Republic of Congo and Gabon; Zwerts et al., 2024). Second, using individual-based simulations, 
we explored how the difference between actual relative abundance and that estimated with the Royle-Nichols model depends on 
interval length, species density, study duration, and number of sampling points. Third, we created a simple tool to select the optimal 
interval length. As an example, we applied this tool to the data from Zwerts et al. (2024).

2. Methods

2.1. Does interval length affect population comparisons?

We evaluated how the choice of interval length affected the relative differences in abundance between sites, using camera-trapping 
data of mammals in tropical forests across the Republic of Congo and Gabon from Zwerts et al. (2024). The study deployed a total of 
474 camera traps (Bushnell Trophy Cam HD and Browning 2018 Spec Ops Advantage) across 7 paired logging concessions (seven 
non-certified seven FSC-certified—timber logged according to principles of the Forest Stewardship Council) in Gabon and the Republic 
of Congo, during 2018 – 2021. Cameras were installed in 1 km × 1 km grids with a random starting point, resulting in roughly 28–36 
cameras per concession while minimizing spatial autocorrelation. Each camera was mounted 30 cm above the ground on the nearest 
suitable tree offering at least 4 m of visibility. The habitats encompassed mixed lowland rainforest stands within relatively intact forest 
matrices; at each camera point, microhabitat features such as visibility, slope, presence of fruiting trees, nearby watercourses, and signs 
of hunting were recorded. Cameras were deployed simultaneously within each paired set of concessions for approximately 2–3 months, 
ensuring comparable temporal coverage and limiting seasonal bias. Each paired set of logging concession was sampled once; hence 
there were no repeat samplings across years. With the collected data, Zwerts et al. (2024) estimated encounter rates, which they then 
used to examine whether FSC-certification benefits animals in logged forests.

The dataset includes 21 mammalian species with each > 150 detections (Table 1). For each of these species, we stored daily de
tections per camera in an i by j presence/absence matrix, where i was the number of cameras and j was the number of recording days for 
a camera. Column length depended on the survey effort (in days) of the camera with the highest number of camera trapping days. Row 
length depended on the number of cameras used in the study. Each cell (i,j) of the matrix contained the values 0, 1, or NA (0 for non- 
detection of the species by camera i on day j, 1 for detection of the species by camera i on day j, and NA in case the camera had already 
stopped recording at that day). Because of the daily activity cycle that most animals have, the interval length used in the Royle-Nichols 
model must be a multiple of one full day.

For a range of interval lengths (1 ≤ dT ≤ 30 days), we calculated the relative abundance of each species in FSC-sites versus non- 
certified sites. We disregarded all cameras with an individual sampling effort shorter than 3 x dT. Incomplete sampling intervals were 
disregarded. For example, interval lengths of 4 days with a cut-off at 30 days yielded a study duration of 28 days. We analyzed the data 
using the occuRN function (Fiske and Chandler 2011) in R version 4.1.2 (R Core Team 2022). We used the presence/absence matrix 
created with the selected interval length in the Royle-Nichols model to estimate how much a species’ abundance differs between the 
two forest management types, in terms of estimated relative abundance (ΘFSC / (ΘFSC + Θnon-FSC); estimation ΘFSC for actual abundance 
λFSC and estimation Θnon-FSC for actual abundance λnon-FSC). We also recorded the Z-score of the comparison, which indicates the 
certainty of a difference in relative abundance between the two area types (when Z = 0, abundances are estimated to be exactly equal; 
when Z > 1.96, a species’ abundance was estimated to be significantly higher in FSC-certified than in non-certified sites (p < 0.05); 
likewise, when Z < -1.96, a species’ abundance was estimated to be significantly lower in FSC-certified than in non-certified sites). We 
assumed that detection probability (r) at each camera was affected by visibility (v; which was visually assessed into 0–10 m, 11–20 m, 
and > 20 m categories), and abundance (λi) was affected by area type (FSC versus non-certified). To avoid pseudo replication, each 
location-pair was analyzed separately to obtain the pair specific values for ΘFSC and Θnon-FSC. Subsequently, we performed a Bayesian 
analysis on these values of all pairs combined, using the glmer-function from the R-package rstanarm (Goodrich et al., 2025).

2.2. Does interval length affect the accuracy of the Royle-Nichols model?

We assessed the accuracy of the Royle-Nichols model in terms of the difference between the actual simulated relative abundance 
and that estimated using the Royle-Nichols model. To estimate accuracy per interval length, we used the Royle-Nichols model to 
compare site data generated with a spatially explicit individual-based model (similar to the approach in Neilson et al., 2018). In our 
model, we had individuals move randomly within a 5 × 5 km area consisting of 1000 × 1000 patches (i.e., one cell represented a 
5 ×5 m area, consistent with the average detection range of a camera trap). Of all the patches, 100 represented camera traps, which we 
placed in a grid with 500 m spacing between consecutive sampling points (Fig. S1). We let the number of individuals in the area differ 
between simulation runs to obtain a range of 10 densities (0.32, 0.48, 1.28, 1.60, 3.84, 4.80, 7.68, 9.60, 11.52, and 14.40 individuals 
km-2). We randomly placed the individuals in the area, and had them move for 90 days using steps of three patches per minute, and 
turning in a random direction after each step. Directions (0 < α ≤ 2π) were drawn from a van Mises distribution with κ = 1 (see Fig. S1
for simulations with different values of κ). During nighttime, movement stopped for 11 consecutive hours. If an individual moved 
outside the simulation area, it re-appeared on the other side (i.e. periodic boundary conditions). For each simulated day, we recorded 
the number of captures per camera trap. We simulated each density 50 times.

We created datasets for comparison by combining data from two different density simulations into one presence/absence matrix 
plus a corresponding covariate matrix that included the location information (Loc1 for the data from simulations with the first density 
and Loc2 for the data from simulations with the second density). We subsampled each of the 5000 obtained datasets (100 density 
combinations x 50 replicates) and created detection histories using 30 different interval lengths (dT = 1–30 days). We formatted the 
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data to an input matrix that contains presence/absence (1/0) data per sampling point (= row) and time interval number (= column). 
We tested our simulations for temporal autocorrelation by following 10 individuals over 7 days. We used the acf function in the tseries 
library, with a one day lag in the autocorrelation estimation. We observed that autocorrelation is negligible, even at the smallest 
interval length of one day (mean = − 0.118, median = 0.190, min = − 0.857, max = 0.560).

In addition, we generated 6 different study durations by cutting of the simulation data at T = 7, 14, 21, 30, 60, and 90. Furthermore, 
we use subsampling to generate datasets with different numbers of sampling points: 25, 50, 75, and 100 per location.

We did not simulate any differences in detection probabilities (r) between sampling points. Using the Royle-Nichols model, we 
estimated the two abundances (estimation Θ1 for actual abundance λ1 and estimation Θ2 for actual abundance λ2) for each of the 1000 
density-combinations and calculated the estimated relative abundance as (Θ1 / (Θ1 + Θ2). Using the estimated and actual relative 
abundances, we calculated the difference in relative abundance as our measure of accuracy.

2.3. Choosing the optimal interval length

We created a simple tool to select the optimal interval length. Using the Royle-Nichols results of the simulation data, accuracy of the 
Royle-Nichols model per interval length can be estimated for a given dataset. To do so, we calculated average accuracy (A; here 
denoting the difference between actual relative abundance and relative abundance estimated with the Royle-Nichols model) for 2646 
combinations of three variables that can be easily derived from empirical data: (i) the difference in detection rates (r, the average 
number of presence recordings in the presence/absence matrix) between two simulations (Δr, 0 ≤ Δr < 1, in 21 equidistant intervals), 
(ii) the difference in the proportion of sampling points with detections between two simulations (Δp, 0 ≤ Δp < 1, in 21 equidistant 
intervals), and (iii) the survey effort (i.e. total number of sampling days, NSE, 175 < NSE, divided in 6 intervals: 175–1500, 1500–2250, 
2250–3000, 3000–4500, 4500–6750, > 6750 survey days). We excluded all simulations without any detections.

Given a presence/absence matrix, the three variables Δr, Δp, and NSE can be calculated per interval length (dT). For each of these 
combinations of Δr, Δp, and NSE, we select the corresponding accuracy from the simulation data. We can then evaluate which interval 
length will result in the most reliable predictions.

We tested our tool on the simulation data. For each combination of density-pair, number of sampling points, and study duration, we 

Fig. 1. Relative abundances per species and interval length in FSC compared to non-certified timber logging concessions. (red: higher abundances in 
non-certified than in FSC sites; green: higher abundances in FSC than in non-certified sites). Latin species names can be found in Table 1.

M. de Jager et al.                                                                                                                                                                                                      Global Ecology and Conservation 66 (2026) e04065 

4 



estimated the deviation in relative abundance for each dT (0 ≤ dT ≤ 30 days) and selected the interval length with the smallest 
estimated deviation. Subsequently, we used the actual difference between the simulated relative abundance and that estimated with 
the Royle-Nichols model using the selected dT’s to calculate a Goodness of Fit value per total sampling effort (i.e. the number of 
sampling points ⋅ study duration) and study duration: 

GoF = 1 −

∑
(θ1

/
(θ1 + θ2) − λ1/(λ1 − λ2))

2

∑
(λ1/(λ1 + λ1) − λ1/(λ1 + λ1))

2 , (1) 

where Θ1 and Θ2 are the estimated abundances and λ1 and λ2 are the actual abundances at locations 1 and 2, respectively. We also 
tested the tool using simulation data with different combinations of movement tortuosity (κ = 0, 1, 5, and 10), densities (0.3, 0.5, 3.8, 
4.8, 11.5, and 14.4 individuals km− 2), numbers of sampling points (25, 50, 75, and 100 sampling points), and study durations (30, 60, 
and 90 days).

Fig. 2. Difference between actual relative abundance and that estimated with the Royle-Nichols model, per study duration (x-axis, in days), interval 
length (y-axis, in days), and combination of simulations with two different densities (rows and columns, individuals per km2). In this figure, only 
results with 50 sampling points per simulation are shown. (See Fig. S3, S4, and S5 for results with 25, 75, and 100 sampling points, respectively).
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We applied this accuracy estimation on the analyses performed on the data by Zwerts et al. (2024). Per species, we calculated NSE, 
Δp, and Δr for all dT. Using the tool for estimating accuracy, we predicted how well the Royle-Nichols model should be able to provide 
correct results. The R-script to implement this selection of optimal interval length to other datasets is available at https://doi.org/10. 
5281/zenodo.10424188.

3. Results

3.1. Does interval length affect population comparisons?

As is common in camera-trapping studies, the sampling period per camera varied widely, ranging between just 1 and as many as 
239 days per camera (due to Covid travel restrictions, some cameras have been deployed longer than three months). 447 camera traps 
had 7 or more recording days (average = 85 and SD = 49 recording days). Depending on the interval length, the total sampling effort 
thus differed greatly (Fig. S2).

Eleven of the examined species had a higher abundance in FSC- than in non-certified sites and two species were more abundant in 
non-certified than in FSC-certified sites, regardless of interval length. However, for 6 species, interval length qualitatively affected the 
abundance comparison between FSC- and non-certified sites (Fig. 1). These results demonstrate that the choice of interval length can 
indeed affect the outcome of comparisons using the Royle-Nichols occupancy model.

3.2. Does interval length affect the accuracy of the Royle-Nichols model?

The ability to detect correct relative abundances depended on the modeled densities, the study duration, the interval length, and 
the number of sampling points (i.e. camera traps; Fig. 2). Estimated relative abundances differed most from actual relative differences 
when densities were similar and low (λ1 = λ2 = 0.3 km− 2). Accuracy increased with study duration and with the number of sampling 
points (Fig. S3-S5). Accuracy was generally highest with intermediate sampling intervals. In case of low densities, small sampling 

Fig. 3. Difference between the actual relative abundance and that estimated using the Royle-Nichols model per sampling effort (panels, in survey 
days), difference in detection rates (x-axes), and difference in the proportion of sampling points with detections (y-axes) between the compared 
simulations.
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intervals result in zero inflation. Here, larger intervals provide higher accuracy. In contrast, in case of high densities, large sampling 
intervals result in the loss of absence data. Here, smaller sampling intervals provide higher accuracy.

Whereas actual densities are not available in empirical studies, emergent properties such as detection rates and proportions of 
cameras with detections can be easily derived from biomonitoring data. Variation in accuracy mainly depends on both differences in 
detection rates (Δr) and differences in the proportion of cameras with detections between locations (Δp; Fig. 3). In general, detection 
rate increases with density and interval length (Fig. 4). Interval length can only negatively affect detection rate when detections in the 
last, incomplete interval are omitted. For example, when the 1-day presence/absence vector of a sampling point is [0 1 1 0 0 0 0 0 0 1 1] 
and a 3-day interval length is used, the last two detections are omitted (becoming [1 0 0]). In this case, the detection rate decreases 
from 4/11 = 0.36 when dT = 1–1/3 = 0.33 when dT = 3. Likewise, interval length can affect the proportion of sampling points (e.g. 
camera traps) with detections (p), if first detections by one or more sampling points are truncated. For example, in the case of [0 
0 0 0 0 0 0 0 0 1 0], a detection is present at dT = 1, but not at dT = 3, as the last two days are omitted (as the vector becomes [0 0 0]). 
While the proportion of sampling points with detections increased with density and study duration (Fig. 4), study duration did not 
affect detection rate. Convergence of the Royle-Nichols occupancy model failed in 0.01 % of all cases, and only when both densities 
were low and dT = 1. In general, model convergence failed for long studies with many sampling points, showing that zero-inflation can 
be an issue in such analyses.

3.3. Choosing the optimal interval length

Comparing Royle-Nichols estimated relative abundance to actual relative abundance in simulations with κ = 1, goodness of fit 
ranged between 0.837 (7 day study with 25 cameras) and 0.995 (90 day study with 100 cameras; Fig. S6). Goodness of fit increased 
with total sampling effort. Tortuosity did not affect goodness of fit (Fig. S7).

We estimated accuracy of the Royle-Nichols models’ results shown in Section 3.1. For some species, the deviation from the actual 
relative abundance varied greatly between different interval lengths (Table 1; Fig. 5; Fig. S8). The interval lengths at which the 
estimated deviation from actual relative abundance was minimized ranged between 1 and 29 days (Table 1). The estimated deviation 
corresponding to these interval lengths varied between 0.019 and 0.042 (with an average estimated deviation of 0.027). In contrast, 
the estimated deviation ranged between 0.023 and 0.049 (with an average of 0.036), when the standard interval length of one day was 
used.

When we used the species-specific interval lengths that minimized estimated deviation (Fig. 6), we found the following results. In 
seven species, FSC-certification positively affected abundance (Z > 1.96). These are all large species. Two of these species are critically 
endangered (African forest elephant and Western gorilla), one is endangered (Chimpanzee), and two are near-threatened (White- 
bailed duiker and Yellow-backed duiker), due to habitat destruction and bush meat hunting. In thirteen species (of which eleven least 
concern, one vulnerable (Mandrill), and one near threatened (Bay duiker) IUCN-status), FSC-certification had no significant effect. In 
one species (Emin’s pouched rat), FSC-certification negatively affected abundance (Z < -1.96). Emin’s pouched rats are easily tamed 
and are held as exotic pets. A comparison between these results to those produced with the arbitrarily chosen 1-day interval showed 

Fig. 4. Average detection rates (the average number of presence recordings in the presence/absence matrix; top panels) and percentages of 
sampling points (e.g. camera traps) with detections (bottom panels) per density (x-axes), study duration (columns), and interval length (colors). Bars 
indicate SD.
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that models with species-specific interval lengths resulted in more significant outcomes (Fig. 6). That is, for most species, the z-value 
estimated with the ‘optimized Royle-Nichols model’ was further from zero than those estimated using a 1-day interval. For example, 
with the 1-day interval, we observed no difference in chimpanzee and Western gorilla abundance between FSC- and non-certified 
logging concessions. Yet, with the optimized interval length, chimpanzee and Western gorilla abundances were significantly higher 
in FSC- than in non-certified logging concessions. With the 1-day interval, we found no significant effects for seventeen species and a 
significantly higher abundance in FSC-certified sites for four species, compared to non-certified sites. The model with species-specific, 
optimized sampling intervals thus yielded less conservative results.

4. Discussion

Choosing the length of sampling intervals is a necessary step in applying discrete models (such as the Royle-Nichols model) to 
continuous survey data, but guidelines on optimizing this choice had been lacking. Selecting short intervals (i.e., 1 day) may lead to 
zero inflation (Denes et al., 2015) and very low detection probabilities, which can be difficult to estimate, while selecting large in
tervals might result in the absence of zeros in the occupancy data, leading to the inability to detect differences in a species’ abundance 
between areas. Series of detections combined with non-detections give more insight into the differences in abundances between sites, 
where sites with higher abundances of individuals have more detections and fewer non-detections over time compared to sites with 
lower numbers of individuals. Using sampling intervals that are too large will remove these differences in detections between sites. In 
addition, non-detections at sampling points with detections are needed in order to estimate the detection probability, which also gives 
insight in the probability that, at sampling points with non-detections only, individuals have been present but have not been recorded. 
Choosing the wrong interval length may result in an incorrect comparison between two locations, and can lead to erroneous man
agement decisions.

Our study showed that the common choice to segment the study duration into as many sampling units as it contains days, to retain 
as much information as possible, is not always the best. Rather, the optimal interval length and number may differ between species 
within a study, and depends on rarity. Furthermore, we found that interval length can impact the outcome and accuracy of the Royle- 
Nichols model’s results. Re-analysis of camera-trapping data from a field study (Zwerts et al., 2024) revealed that the choice of interval 
length can even affect the direction of relationships. Thus, interval length should not be standardized at a given value, but be carefully 

Fig. 5. Estimated deviation from the actual relative abundance per species and interval length. Latin species names can be found in Table 1.
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chosen based on the properties of the data.
MacKenzie and Royle (2005) recommended surveying many sampling points for a short period when dealing with rare species. In 

contrast, they recommended surveying few sampling points for long periods when dealing with common species. In general, the 
Royle-Nichols model predicted relative abundances more reliably when studies were longer, average densities were higher, and 
differences in densities between areas were larger. In practice, however, study length and number of sampling points are constrained 
by the availability of equipment, labor, and battery power (Zwerts et al., 2021). We recommend an increase in the number of sampling 
points over an increase in study duration (Fig. S6). Other studies have also provided guidelines and tools to optimize this choice (e.g., 
Beaudrot et al., 2019; Kays et al., 2020; Zwerts et al., 2021). Study setups may not always be ideal, but may still provide reasonable 
results when their limitations are considered and sensible choices are made when analyzing the data.

Our study has several limitations. One limitation that is generic to the Royle-Nichols model is that it assumes demographic and 
geographic closure. To meet this assumption, we restricted the study duration in our simulations to a maximum of 90 days. A second 
limitation of our study is that we used simulated data, which generally do not reflect the complexity of animal movement. In most 
species, individuals constrain their movements to ranges much smaller than the survey area, which may lead to concentrations of 
detections at a subset of the sampling points, with some sampling points detecting many animals and others few or none. With 
increasingly skewed numbers of detections across sampling points, the need to replicate over space rather than time increases. Such 

Fig. 6. : Comparison of species’ abundances between concessions in the Republic of Congo and Gabon with and without FSC certification, for 21 
mammalian species. Z-values, resulting from the Royle-Nichols abundance model using the adjusted interval length (i.e. the interval length that 
corresponds to the lowest estimated deviation given the data; diamonds) or the commonly used fixed interval length (1 day; squares), indicating 
whether a species is estimated to be more abundant in FSC-certified forests than in non-FSC concessions (green area, Z > 1.96), more abundant in 
non-FSC than in FSC-certified concessions (red area, Z < -1.96), or equally abundant in both FSC and non-FSC concessions (grey area, 
− 1.96 ≤ Z ≤ 1.96).
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constrained movements of individuals change the patterns that we found, but the need for interval length selection remains the same. 
Our results indeed show that, regardless of the turning behavior of individuals, the interval length selected with our tool provides a 
better fit than using the standard 1-day interval (Fig. S7). Third, a large disadvantage of models using count data (including presence- 
absence data, such as the Royle-Nichols model; MacKenzie et al., 2002; O’Connel et al., 2011; Steenweg et al., 2018) is that collected 
data is pooled into segments. Such pooling decreases the amount of information we can use from the collected data. Other methods that 
do not have this drawback are time-to-detection models (Guillera-Arroita et al., 2011; Henry et al., 2020; Emmet et al., 2021; 
Priyadarshani et al., 2022; Pautrel et al., 2024). Yet, these models require a larger number of parameters than models relying on count 
data, which can be problematic to estimate (Pautrel et al., 2024).

This study demonstrated that the choice of interval length plays a pivotal role in the accuracy of detecting abundance differences. It 
may have far-reaching implications for the assessment of conservation efforts, as there is no one-size-fits-all solution. In general, an 
interval length should be selected that maximizes the survey effort as well as the differences between areas in detection rates and 
proportion of sampling points with detections. The optimal interval length is inherently context-dependent, and may depend on many 
factors, such as the species' behavior, the spatial and temporal scales of the study, and the intricacies of the used modelling techniques. 
Hence, we advocate to carefully select interval length (for example, by using the tool that we provided) and to implement a well- 
designed sampling strategy.

Our study focused on how well the Royle-Nichols model can estimate relative differences in abundance between sites. We do not 
address estimation of absolute abundances, as these estimations vary to a very large extent and are far more unpredictable than relative 
abundance estimations (Fig. S9). We therefore do not recommend using the Royle-Nichols model, with or without our tool, to assess 
absolute abundances of species in a study region.

For the future, we suggest developing systematic frameworks for interval length choice. In such frameworks, interval length choice 
(or data segmentation in general) can be adapted across diverse ecological contexts. Developing these frameworks requires further 
research. For example, we need to further investigate how interval length selection interacts with different species and different 
environmental conditions. Future studies could also explore integrating advanced statistical techniques and machine learning algo
rithms to automate the selection process. An accurate assessment of species abundance can increase the effectiveness of conservation 
initiatives. Hence, the careful selection of interval length is a linchpin in the evaluation of such conservation initiatives.
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