RE STORATI ON W) Check for updates
ECOLOGY SER

The Journal of the Society for Ecological Restoration

RESEARCH ARTICLE

Ungulate responses to the addition of silicate rock
powder in acidified oak (Quercus robur) forests
at the Veluwe, the Netherlands

Moniek J. M. Heurman'-> ©, Maaike J. Weijters® ©, Sylvana Harmsen'! ©, Henk Siepel* @,
Judith Sitters® @, Joost J. Vogels*> ©, Patrick A. Jansen'®’

Abstract

Introduction: Addition of silicate rock powder (SRP) is an increasingly used measure to restore vegetation and fauna on acidified
mineral-poor soils in protected areas. In theory, however, the positive effects of SRP addition on vegetation may be offset by grazing
and browsing ungulates attracted to higher-quality forage.

Objectives: This study aimed to determine whether SRP addition to acidified old oak (Quercus robur) forests attracts foraging ungu-
lates in the short term.

Methods: We measured wildlife activity within an SRP-addition experiment established at nine Quercus robur forests at the Veluwe,
the Netherlands, 3 years after SRP application. Each site had three 0.5-ha plots: one with addition of volcanic SRP, one with addition of
metamorphic SRP, and one control. We used camera trapping to quantify foraging by four ungulate species: wild boar (Sus scrofa), red
deer (Cervus elaphus), roe deer (Capreolus capreolus), and European fallow deer (Dama dama).

Results: While SRP addition increased mineral concentrations in tree leaves within 3 years after treatment, we found no significant dif-
ferences between treatments in the frequency and duration of ungulate foraging.

Conclusion: Our study yields no evidence for the attraction of foraging ungulates to oak forests treated with SRP within 3 years after
application.

Implications for Practice: Old pedunculate oak forests on sandy podzolic soils in Europe are highly sensitive to soil acidification due
to deposition of reactive atmospheric nitrogen, resulting in impoverishment of protected vegetation and fauna. A restoration interven-
tion that is increasingly used to mitigate these negative effects is the application of silicate minerals in the form of SRP. However, SRP-
treated plots in heathland systems appeared to attract foraging ungulates shortly after treatment, presumably because of higher forage
quality. This has raised concerns that ungulates may offset positive effects of SRP addition on tree recruitment in forests. Our study,
however, yielded no evidence for foraging ungulates being attracted to SRP-treated plots in old oak forests in the Netherlands 3 years
after treatment. Delayed effects remain possible, highlighting the need for long-term monitoring to capture the full impacts of SRP
addition.

Key words: camera trapping, Cervus elaphus, herbivory, pedunculate oak, red deer, soil restoration, Sus scrofa, tree recruit-
ment, wild boar

Introduction atmospheric CO, as major causes (van Breemen et al. 1984,
Soil acidification is a major environmental problem worldwide, Rice & H.erman 20125 Tia.n & Niu 2015). Soil ac.idiﬁcation
with acid rain, nitrogen deposition and increased levels of can result in both the leaching of important base cations, such
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Ungulates and silicate rock powder

as magnesium, potassium, and calcium, loss of the buffering
capacity, and mobilization of heavy metals (e.g., Al) which
can be toxic (Blume et al. 2016). Nutrient imbalances in the soil
caused by soil acidification can negatively affect the abundance
of soil organisms (Biinemann et al. 2006) and the growth, health
and nutrient content of vegetation (Pabian et al. 2012a, 2012b).
A persistent cause of soil acidification is increased nitrogen
deposition from traffic, industry and intensive agriculture
(Elser 2011; Holtgrieve et al. 2011; Stokstad 2019; Penuelas
et al. 2020; van der Maas et al. 2021).

An ecosystem that is particularly affected by nitrogen-
driven soil acidification are old pedunculate oak (Quercus
robur) forests on sandy podzolic soils in Europe. These for-
ests are protected under European Natura 2000 law as “Acid-
ophilous oak woods with Quercus robur on sandy plains”
(habitat code H9190) because of their high conservation
value (Molder et al. 2019). Their vitality, however, has been
declining for decades (Thomas et al. 2002), driven primarily
by acidifying (SO, NO,, NH,) and eutrophying (NO,
NH,) deposition (Skidmore et al. 2024), in interaction with
biotic factors (e.g., pathogens, infestation by insects and her-
bivory) and abiotic factors (e.g., drought stress) (Thomas
et al. 2002). Soils have lost their buffering capacity as the
base cations leach out (Krug & Frink 1983, Tian &
Niu 2015), which ultimately causes increased tree mortality,
and impoverishment of the understory vegetation and fauna.
Herbs and flowers are being replaced by homogenous vegeta-
tion mainly consisting of tall grasses (Bobbink et al. 2010),
which reduces food quality and quantity available to the local
fauna (Nijssen et al. 2017).

One restoration intervention that is increasingly used to
mitigate these negative effects is the application of silicate
minerals in the form of silicate rock powder (SRP), extracted
from stone quarries. SRP is rich in Ca, Mg, and other base-
providing minerals. Application of SRP reduces soil acidity
and partly restores the soil buffer capacity (Vogels
et al. 2018; Jansone et al. 2020; Swoboda et al. 2021; van
der Bauwhede et al. 2024), and possibly increases soil micro-
bial activity, enhances decomposition rates, and increases
nutrient availability for plants (Martikainen et al. 1989;
Bloem et al. 2022). SRP addition seems effective in combat-
ting acidification of the soil in these forests and is an exper-
imental component of the restoration strategy for this
habitat type (Hommel et al. 2020). Experiments have shown
that SRP addition reduces the N content in the soil and leaves
and increases levels of K, Ca, and Mg in acidified forests
(Aarnio et al. 1995; Aarnio et al. 2003; Pabian et al. 2012a;
de Vries et al. 2019). Although effects of SRP addition may
take more than 10 years to fully express (Moore et al. 2012;
Court et al. 2017), they can emerge already within few years
after application. For example, SRP addition improved
topsoil chemistry in Dutch forest areas just 3 years after
application and increased base cation concentration in
leaves, indicating that the nutrient uptake by vegetation
starts soon after the treatment (de Vries et al. 2019).

Forest managers have expressed concerns that in forests,
positive effects of SRP addition may be offset by increased

herbivore activity (Den Ouden et al. 2020), because improved
elemental content of plants can make this more palatable to
grazing and browsing ungulates. Ungulates are known to for-
age selectively to meet their high needs of P, Ca, and Mg to
produce antlers, horns and bones (French et al. 1956; Tajch-
man et al. 2018) and during the weaning period (Tajchman
et al. 2018). That SRP addition indeed attracts ungulates is
suggested by a study in the Netherlands in which elevated
levels of grazing by cattle were observed in experimentally
treated heathland plots 3 years after addition of SRP
(Weijters et al. 2018). It is thus conceivable that herbivores
are attracted to forest stands that have undergone SRP addi-
tion or liming and increase their foraging time in these stands
(Pabian et al. 2012a; Weijters et al. 2018).

The aim of this study was to determine whether SRP addi-
tion to acidified pedunculate oak forests elevates levels of for-
aging by ungulates 3 years after treatment, like seen in
heathland by Weijters et al. (2018). Our approach was to
compare the levels of foraging between plots of oak forest
3 years after experimental addition with two types of SRP
applied to nine different old oak forest sites in the Veluwe,
the Netherlands. We tested the hypotheses that ungulates
(1) forage SRP-treated plots more often (higher number of
foraging events) than untreated control plots and (2) spend
more time foraging in these plots.

Methods

Study Area

The study was conducted at the Veluwe, the largest protected
land area in the Netherlands (coordinates: 52.140336;
5.824105) with a total area of approximately 130,000 ha.
Annual precipitation averages around 960 mm, temperature
averages 11-12°C (KNMI, Deelen Airport). The Veluwe
has a long history of intense use by humans, including agri-
cultural clearances, wood-cutting, sod-cutting and grazing that
degraded the area by the end of the Middle Ages (Buis 1985). Like
elsewhere across Northwestern Europe, this produced a degraded
drift sand landscape, known as the ‘European Aeolian Sand Belt’
(Koster 2009). Nowadays, the Veluwe consists of a patchwork of
remnants of old deciduous forest, heathland, drift sand, cropland
and young, mostly coniferous forest (van den Burg et al. 2015;
den Ouden et al. 2020).

Oak forests (Quercus robur and Q. petreae) are native to the
Veluwe. These forests have a long history of exploitation for fuel
wood, boar feed and timber (Buis 1985). Many oak forests were
coppiced for firewood and bark for leather tanning (Buis 1985;
Rovekamp & Maes 2002). Between 1900 and 1940, when coppic-
ing ceased, many oak coppices transformed into high forests
(Bijlsma et al. 2019). The old oak forests remaining at the Veluwe
today include forest remnants dating back to before 1850
(Buiteveld & Koelewijn 2006; Hommel et al. 2020). These forests
are considered valuable because they harbor many tree species of
autochthonous origin (Révekamp & Maes 2002) and often support
a higher biodiversity, and are protected under the Natura 2000 hab-
itat directive as “acidophilous oak woods with Quercus robur on
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Figure 1. Large mammal species in the old oak forest of the Veluwe, photographed by camera traps in this study. (A) Female red deer with young; (B) fallow

deer; (C) young wild boar; (D) male red deer; (E) male roe deer; (F) male red deer.

sandy plains (habitat code H9190).” The Veluwe is considered a
stronghold of this habitat type (Bijlsma et al. 2009). The Veluwe
is also home to a variety of mammalian herbivores and omnivores,
including roe deer (Capreolus capreolus), European fallow deer
(Dama dama), red deer (Cervus elaphus), rabbits and hares
(Leporidae), murids (Muridae), and omnivore species such as wild
boar (Sus scrofa) (Fig. 1). These ungulates at the Veluwe have a
strong influence on tree recruitment and understory vegetation
(den Ouden et al. 2020).

Experimental Design

The study was conducted within an existing experimental setup to
assess the impacts of SRP addition on old oak forests. The experi-
ment includes nine old oak forests across the Veluwe that together
can be considered representative for this system (Table S1; Fig. 2).
All forests had canopies dominated by pedunculate oak (Quercus
robur); five had a dominant undergrowth of European blueberry
(Vaccinium myrtillus). Each forest site had three experimental plots

of 70 x 70 m (0.5 ha) that had a similar soil structure, elevation
and vegetation. Three treatments had been randomly assigned
and applied during February—April 2020: (1) spreading of volcanic
SRP (Eifelgold, 10 t/ha), (2) spreading of heteromorphic SRP
(Soilfeed, 10 t/ha), and (3) a control. Soilfeed and Eifelgold both
contain Ca, K, P and Mg in variable concentrations; Eifelgold con-
tains three times more Mg and P than Soilfeed (Bloem et al. 2022)
(Table S2). At the time of our study, leaves of oak trees already
showed increased concentrations of Ca and K in both SRP addition
treatments, and elevated Mg concentrations in the Fifelgold treat-
ment (Sitters et al. 2023), indicating that SRP resulted in increased
elemental uptake by the vegetation.

Camera Trapping

Plot visitation and foraging by ungulates was measured with
wildlife camera traps from late March to early July of 2023, that
is, during the early growing season (Didion et al. 2009). In each
of the 27 plots, we deployed two camera traps (Reconxy
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Figure 2. Location of the nine experimental sites at the Veluwe. WH

hyperfire 2, Reconyx Inc., Wisconsin, USA) in 5 rounds of
3 weeks, yielding 10 deployments and approximately 210 days
of sampling effort per plot. Deployments were adjacent to 10 dif-

ferent oak trees, scattered across the plots, that had been se

and marked for monitoring leaf chemistry in a companion study.
The cameras were set up in motion-trigger mode, with a

10-picture rapid-fire upon each trigger and without

between subsequent triggers. A time-lapse photograph was
taken every 12 hours at 12:00 and 24:00 hours to quantify pos-
sible camera failure. Cameras were mounted on trees that

and SB both contain two locations: WH North and WH South and SB North and SB South.

classifications were validated, and the behavior was manually
scored as foraging, standing, walking/running, and resting.
The data were exported from Agouti in camtrapdp format
(Bubnicki et al. 2023).

Data preparation and analysis were done in R (version 4.3.1).
Observations were filtered to include only foraging animals of
the species of interest: wild boars (Sus scrofa), red deer (Cervus
elaphus), roe deer (Capreolus capreolus), and fallow deer
(Dama dama). Then we calculated the total number of foraging
events and foraging seconds per species per tree.

lected

delay

offered a clear line of sight of at least 10 m northward. The cam-

eras were mounted with the lens 50 cm off the ground.

vegetation that blocked the view of the sensor was pruned down.
A walk test was performed to check if the cameras were properly

set up. The maximum detection distance usually exceeded

Images were processed in the camera-trapping platform
Agouti (www.agouti.eu; Casaer et al. 2019). The footage was
linked to the corresponding plot ID, corresponding tree, the dis-
tance of the walk test and the camera height. Agouti grouped
images into sequences with a cut-off time of 120 seconds.
Artificial Intelligence was used for the classification of
sequences by species (Western Europe species model version
4a), and sequences for which this failed were annotated manu-

ally. Species, number of individuals and behavior
recorded. For all ungulate observation

sequences,

Short

Data Analyses

To assess whether the number of foraging events and the forag-
ing time differed between treatments, we fitted general linear
mixed models (GLMMs) using the glmmtmb package (Brooks
et al. 2017), with a negative binomial type 2 distribution for
the foraging events, and a Tweedie distribution for the foraging
time. Both these distributions are well-suited for nonnormal
count or count-related continuous data with random effects
(Bolker et al. 2009). Treatment was included as a fixed effect,
and site and tree (nested structure) were included as random
effects. To account for the small difference in sampling effort
between the deployments, we included the log of the effort as
an offset. To improve the convergence of the models, we

10 m.

WwEre
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Table 1. Number of individuals observed per species by treatment for each of the nine forests. C = control, E = Eifelgold and S = Soilfeed.

Forest Treatment Wild Boar Fallow Deer Red Deer Roe Deer
Hoog Baarlo C 49 0 121 48
S 100 0 146 94
E 54 0 88 65
Woeste Hoeve North C 7 63 27 1
S 34 99 70 6
E 5 45 48 1
Woeste Hoeve South C 9 45 58 4
S 13 102 104 9
E 14 98 120 8
Keulerbosch C 17 0 2 14
S 50 0 11 12
E 23 0 11 9
Eikenheg C 108 6 43 32
S 72 13 20 30
E 39 3 30 23
Heidensberg C 52 4 25 18
S 95 4 16 49
E 101 2 13 32
Stroesebergen North C 480 0 35 69
S 296 0 8 28
E 578 0 19 100
Stroesebergen South C 283 0 25 25
S 231 0 22 30
E 113 0 0 19
Maanschoten C 156 0 27 55
S 87 0 22 48
E 161 0 41 60
Total 3,234 484 1,152 889
used the L-BFGS-B optimization method (Byrd et al. 1995; Zhu Discussion

et al. 1997). Model validation was performed using the
DHARMa package (Hartig 2022) to assess residual dispersion,
zero inflation, and overall model fit.

Results

Of the 270 deployments, 269 were successful. Deployment
duration averaged 21.9 days (&= 4.57 SD). A total of 3,987 ani-
mal observations of the species of interest were obtained, show-
ing 6,466 individuals (Tables 1 & S4). The number of observed
animals per day ranged almost 10-fold between locations, from
15.4 at Stroesebergen North to 1.6 observations per day at Keu-
lerbosch (Fig. 3; Table S3). Wild boar was the most frequently
observed species, with a total record of 3,234 individuals. Of
the cervids, red deer was the most observed species with 1,152
individuals observed across all the locations. Fallow deer were
observed in just four locations (Fig. 3; Table 1).

Significant differences in foraging events between the treat-
ment plots and the control were found for none of the ungulate
species, neither in terms of the number of foraging events nor
in terms of the duration of those events. Neither the Eifelgold
treatment nor the Soilfeed treatment showed significant differ-
ences compared with the control (GLMM; Table 2). Inclusion
of all foraging events—also non-foraging—yielded a similar
pattern (not shown).

In this study, we tested the hypothesis that SRP addition in for-
ests attracts wild ungulates, potentially interfering with tree
recruitment. We used camera traps to compare wildlife activity
between treatments in SRP addition experiments in nine oak for-
ests across the Veluwe, the Netherlands. Despite evidence of
increased concentrations of Ca, K, and Mg in tree leaves
(Sitters et al. 2023), we found no evidence of preferential use
of treated plots by ungulates.

None of the three ungulate species showed a significant dif-
ference between the number of foraging events or the duration
of the foraging events between the treatments and the control.
This was unexpected given the importance of these elements
in ungulate diet (French et al. 1956; Tajchman et al. 2018),
and given responses seen in an earlier study in heathland (Weij-
ters et al. 2018). Several earlier studies only considered the
effects of measures aimed at reducing forest soil acidification
on wildlife other than ungulates. For example, Pabian and col-
leagues (Pabian & Brittingham 2007; Pabian et al. 2012b) found
that the abundance of snails and birds increased after liming,
which only increases the availability of Ca and Mg but can lower
soil acidity very effectively. Snails require Ca for their shells,
high acidity degrades shells, and birds in turn feed on snails to
acquire Ca for their eggs (Graveland et al. 1994; Graveland &
vanderWal 1996). These dependencies, however, were more
direct and related specifically to Ca.
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Figure 3. Number of foraging individuals between experimental plots with the addition of two types of SRP and control plots, in nine acidified oak forests across
the Veluwe, the Netherlands. Shown are the relationships between the total number of foraging events and treatment (left column) and between the total foraging
time and treatment (right column). (A, B) Wild boar; (C, D) Cervids grouped; (E, F) Fallow deer; (G, H) Roe deer; and (I, J) Red deer.

The lack of observed differences was unlikely an artifact of
our experimental design. Our design controlled for differences
in habitat properties with treatments replicated across sites.
Our sampling effort—around eight camera months per plot—
was fairly high, and all sites had a good number of captures. In
fact, the sites with the highest capture rates showed the smallest
differences between treatments. The proximity of the three treat-
ment plots within each forest site was also advantageous as this
gave animals a discrete choice between the alternative treat-
ments. The problem of animals walking through and between

plots was accounted for by focusing on animals displaying for-
aging behavior. Also, the SRP dose (10 tons ha~!) was well cho-
sen. It was similar to previous SRP addition projects at the
Veluwe, based on expert judgment and model calculation of
the acidification model VSD+ (de Vries et al. 2019), and repre-
sentative of management interventions in this ecosystem.
There are several potential ecological explanations for the
lack of ungulate responses. The most plausible is that any chem-
ical responses of the understory vegetation were too small for
ungulates to detect or to induce preference. It is possible that
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Table 2. GLMM comparisons of foraging by ungulates between treated and control plots in the old oak forests at the Veluwe, in terms of the number and dura-
tion of foraging events. Values shown are model coefficients for comparisons with control plots. None of the differences were statistically significant at p = 0.05
note that estimates are not back transformed.

Number of Foraging Events

Total Visit Duration in Seconds

Eifelgold Soilfeed Eifelgold Soilfeed

Wild boar p = 0.583, p =0.954, SE = 0.851, p =0.687, SE = 1.082, p =0.997, SE = 1.08,

SE = 0.852, Z=1.122 Z=10.635 Z=0.923
Z =0.684

Cervids /= 0.268, p = 0.353, SE = 0.348, p =0.225, SE = 0.463, p =0.199, SE = 0.466,
SE =0.348,Z = 0.77 Z=1.015 Z =0.485 Z=0.429

Fallow deer p = 0.149, p =0.457, SE = 1.627, p =0.583, SE = 0.852, Z = 0.684 p =0.382, SE = 1.776,
SE = 1.635, Z = 0.091 Z =10.281 Z=0.215

Roe deer p =0.223, p =0.635, SE = 0.55, p =0.185, SE = 0.759, f =0.531, SE =0.741,
SE = 0.566, Z = 0.394 Z=1.154 Z=10.243 Z=0.717

Red deer p = 0.235, p =0.277, SE = 0.594, p =0.197, SE = 0.665, p =0.277, SE = 0.665,
SE = 0.594, Z = 0.396 Z=0.467 Z =0.296 Z=0419

our assessment happened too early after SRP addition to expect
effects—model calculations indicate that the SRP addition may
take 10—15 years to reach its full effects (de Vries et al. 2017).
Elevated levels of Ca, K and Mg had been measured in the
foliage of the trees in the canopy and in the year prior to sam-
pling (Sitters et al. 2023), but this does not necessarily imply a
meaningful increase in the understory vegetation that can be
selected by ungulates.

A second possible explanation is that the ungulates in this
study did not experience a limitation for the observed increased
elements (i.e., Ca, Mg, or K), resulting in no selective feeding
behavior for these elements. For the Veluwe region, deficiencies
of Na, P and Ca are reported for ungulates, but not for K or Mg
(Groot Bruinderink et al. 2000). Foraging may have been steered
geared towards elements that did not increase in our study sites,
for example, P and Na. This explanation cannot, however,
explain the lack of foraging selection for increased Ca in the
SRP-treated plots.

A third possibility is that understory vegetation cover was too
sparse to induce preferential feeding. A fourth is that food abun-
dance and quality are relatively high during our assessment, the
early growing season, allowing less selective foraging behavior.
William et al. (2018), for example, found that female roe deer
are less selective under high-resource conditions. Fifth, inter-
and intra-specific competition and human disturbance may have
constrained the expression of feeding preferences (Gaynor
et al. 2018; Zini et al. 2023). We consider this less plausible
because treatment plots within forests were not far apart, hence
were likely effected by the same disturbances. Finally, the min-
eral uptake by the ungulates may already have been sufficient
due to artificial mineral licks. We rule out this explanation
because mineral licks were ample only at one site (Hoog
Baarlo). They were entirely absent at the two sites at Woeste
Hoeve (Natuurmonumenten 2023, personal communication)
and scarce in the six remaining sites.

Overall, we found no evidence for attraction of feeding ungu-
lates to oak forests with SRP addition, at least not within 3 years
after treatment. The lack of observed differences is likely due to

a combination of limited improvement of forage attractiveness,
lack of meaningful increases in the elements that are likely to
be deficient in the studied ungulates, and high ambient food
availability. We cannot rule out that SRP addition still increases
browsing by deer and rooting by wild boar during fall and win-
ter, when the feeding behavior and nutritional needs of the ani-
mal might differ. This can be tested by repeating this study in
those seasons. More importantly, we cannot rule out that ungu-
lates will show responses later, for example, after a decade,
when the effect of SRP on addition on soil and vegetation has
fully expressed. This can be tested by repeating the study after
another 10 years.
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