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ABSTRACT

Microalgae are a highly diverse group of unicellular organisms that grow in a wide range of aquatic environments and are widely
used as dietary supplements for both human and animal applications. Microalgae are rich in lipids, proteins, carbohydrates and
other valuable bioactive components such as pigments, antioxidants and vitamins. Those components have shown bioactivity not
only by affecting cell, organ and tissue functionality but also have notable antimicrobial and immunomodulatory properties,
positioning microalgae as a potential natural antibiotic substitute. Although production costs of microalgae are high, it has been
shown that relatively low (< 1%) inclusion levels of microalgae in the diet of animals affect physiological functions and per-
formance. Microalgae can be fed as whole biomass but also as a fraction (the lipid, protein, carbohydrate or rest fraction). Feedings
a fraction of microalgae may be beneficial when only a specific bioactivity of a fraction is required in animals, thereby reducing the
cost of feed. For instance, when microalgae are fractionated for human applications, the resulting byproducts or ‘side-stream
fractions’, present a cost-effective feed alternative for livestock. In addition, feeding microalgae or their fractions during periods
when young animals are more susceptible to health issues can not only enhance cost-effectiveness but also potentially support
their recovery. The aims of this review are (i) to present an overview of the mode of action of the lipid, protein and carbohydrate
(rest) fractions of microalgae on whole body physiology, (ii) to summarize previous research on the bioactivity of dietary fractions
of microalgae in livestock production and (iii) to propose novel strategies to use whole microalgae biomass or their fractions as
functional feed to support resilience in young growing animals during vulnerable health episodes.

1 | Introduction (Millet and Maertens 2011) and pharmaceutical dose of ZnO
(European Parliament 2001; European Parliament 2004) increases
the importance to produce diets that maintain and/or improve
animal performance and promote resistance to pathogens. In
addition to an increase in animal performance and health, the
quality of the animal products for human consumption is also
important. Consumers expect animal products to have high
nutritional value and quality in meat, eggs and milk (de Aratjo
et al. 2022), so production and quality are inextricably linked.

Most feed for monogastrics such as chickens and pigs derives from
terrestrial resources such as soybeans, corn, wheat and oilseed.
Therefore, livestock production directly competes with crop pro-
duction for land and resources (Karlsson and R66s 2019). Given
global warming and climate change threats, animal nutritionists
are currently emphasizing local resources over imported feed
ingredients. This combined with the EU-ban on feeding antibiotics
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Feeding chickens, pigs and cattle to produce enough meat, eggs
and milk to feed more than seven billion people is a great
challenge. Maintaining such a rate of production while keeping
our ecosystem and biodiversity in balance is becoming an even
greater challenge (Herrero et al. 2015). With livestock production
expected to double between 2017 and 2050 (Hoque et al. 2022), a
significant expansion in the cultivation of land-grown commod-
ities will be required to meet nutritional needs in the livestock
sector. Alternatives to land-grown commodities such as soybean,
corn, wheat and oilseeds are needed to maintain the balance
between food, feed and biofuel industries. Soil degradation, water
scarcity and drastic climate change are also major challenges for
livestock agriculture. Accordingly, novel sustainable feedstuffs
and improved resource efficiency will play a critical role in the
sustainability of livestock systems on arable land. Microalgae
could partly fulfil this need because of their non-reliance on land,
coupled with sustainable cultivation possibilities in a wide range
of highly-controlled aquatic settings (Olabi et al. 2023), which
positions them as potential breakthrough.

Beyond their strict nutritional value, feed ingredients can also
provide ‘non-strict nutritional’ functional properties that influ-
ence factors such as feed intake (satiety), gastrointestinal pas-
sage rate, pro- and antimicrobial activity, antioxidative effects,
immune signalling and metabolic responses (Biesalski
et al. 2009; Lalles et al. 2009; Jansman 2016). The potential of
microalgae as a feed ingredient for poultry, pigs and cattle has
been increasingly recognized (Saadaoui et al. 2021; Bature
et al. 2022; Van Nerom et al. 2024). Their role, however,
depends strongly on the level of dietary inclusion. At lower
doses (generally < 1%), microalgae are mainly considered as a
feed additive due to their bioactive compounds (e.g., pigments,
antioxidants, fatty acids, vitamins), which can modulate animal
physiology, immune response and health (Roques et al. 2022).
These bio-functional effects enhance the economic attractive-
ness of microalgae in livestock feeds.

In contrast, at higher inclusion levels (2%-10%), microalgae
function more as a nutritional ingredient, particularly as a
protein source. This is especially relevant for protein-rich spe-
cies such as Chlorella or Spirulina, where the contribution to
dietary protein supply becomes nutritionally significant,
alongside lipids and carbohydrates. Their use at these higher
inclusion levels may gain further importance if cultivation costs
decrease. Nevertheless, both the strict nutritional and the non-
strict nutritional functional properties of microalgae are highly
variable. This variability depends on (i) the specific species and
its chemical composition (protein, lipids, polysaccharides,
vitamins, pigments, antioxidants and minerals), (ii) production
conditions (time of year, pH, temperature, cultivation method)
and (iii) the specific nutritional requirements of the animal
species, their life stage and health status (Madeira et al. 2017;
Alagawany et al. 2021). Microalgae can be supplied as whole
biomass or as specific fractions (lipids, proteins, carbohydrates
or other components). Targeting a particular fraction for its
bioactive properties may be advantageous for specific animal
needs, potentially reducing overall feed costs.

It is essential to evaluate the chemical composition of micro-
algae not only in terms of their nutritional value but also for
their functional properties. This review examines the primary
macronutrient fractions of microalgae—namely proteins, lipids
and carbohydrates—and their impacts on animal performance

and health. It will explore the potential applications of micro-
algae based on the functional roles of these macronutrient
fractions, tailored to different animal species, life stages and
health conditions. In the absence of comprehensive studies on
fractionated microalgae constituents, this review cites total
biomass studies as proxies to illustrate potential biofunctional
effects, although direct validation remains limited. Additionally,
the review will address the cost-effective use of microalgae by-
products as functional feed ingredients and discuss strategies
for incorporating whole biomass or fractionated microalgae,
particularly during critical health phases such as the neonatal,
weaning and post-calving periods.

2 | Bioactive Microalgae Fractions

Microalgae and their derived fractions present valuable sources
of bioactive compounds suitable for enhancing animal feed, both
in livestock and in the young pet segment. The process of bior-
efinery facilitates the extraction of these fractions by breaking
down the biomass into distinct macro- and micro-nutrient
components. While this review primarily focuses on biofunc-
tions of various microalgae fractions and compounds in animals,
comprehensive discussions of biorefinery techniques are availa-
ble in the works of other authors (Vanthoor-Koopmans
et al. 2013; Ba et al. 2020; Kuo et al. 2021), which complement
the perspectives presented here. Although this process can en-
hance the value of the final products, it also raises production
costs. As a potential solution, utilizing by-products from biofuel
production or other human applications (Ibrahim et al. 2023)
could provide a cost-effective source of microalgae fractions for
animal feed, while optimizing biorefinery techniques to yield
nutrient-rich fractions from the whole microalgae biomass.
Recent studies also emphasize that despite higher investment
costs compared to commercially available counterparts derived
from traditional agricultural sources, microalgae systems offer
long-term economic and environmental benefits as they reduce
dependence on arable land and freshwater (Ferreira et al. 2025).
Redirecting research efforts from biofuel applications to bior-
efinery co- and by-products is crucial to improve the economic
viability and competitiveness of microalgae-derived fractions
(Bhattacharya and Goswami 2020). Biorefineries fractionate
whole microalgae biomass, isolating various macro- and micro-
nutrient-rich components. The macronutrient fractions en-
compass the lipid or oil fraction, the protein fraction and the
residual fraction containing carbohydrates and ash. The
micronutrients—pigments, vitamins and minerals—may be
present in different concentrations in the macronutrient fractions
(Pignolet et al. 2013; Bastiaens et al. 2017). Various techniques
for extracting microalgae fractions include solvent-based lipid
extraction, aqueous solubilization for proteins and obtaining
carbohydrate-rich residues following lipid and protein extraction
(Chew et al. 2017). However, to enhance the absorption and
utilization of bioactive compounds from microalgae, purification
is often necessary, as undigestible macromolecules in the cell
walls (e.g., cellulose, hemicelluloses, sulfated polysaccharides,
algaenan/sporopollenin-like polymers and callose) can obstruct
their effectiveness in humans or animals. To address this issue,
milling and disrupting the whole microalga prior to fractionation
have proven effective (Mendes-Pinto et al. 2001; Neumann
et al. 2018; Teuling et al. 2019).
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In Table 1, the health benefits and biofunctionalities of chemical
compounds present in the lipid, protein and residual fractions of
microalgae are summarized. These functional ingredients are
noted for their antimicrobial and immunomodulatory properties,
suggesting their potential as natural alternatives to antibiotics
(Gadde et al. 2017; Dewil et al. 2018; Saadaoui et al. 2021).
Recent reviews have highlighted the significant health benefits of
dietary microalgae, emphasizing their antioxidant and antiviral
properties. Additionally, microalgae are recognized as promising
candidates for animal feed due to their content of essential bio-
molecules, including amino acids, polyunsaturated fatty acids
(PUFAs) and high-value products such as carotenoids and vita-
mins (Holman and Malau-Aduli 2013; Kotrbacek et al. 2015;
Gadde et al. 2017; Saadaoui et al. 2021). The link from dietary
fraction ingestion to the biological effects in livestock is often
assumed and extrapolated from the in vitro and in vivo studies
cited below (Table 1 and the following paragraph ‘Fractions of
microalgae as functional feed ingredient’). With respect to
in vitro research, it always remains uncertain whether orally
ingested bioactive compounds of microalgae reach their targets
in the body (certain cell types, microbiota and other biochemical
compounds) and are able to exert their mode of action. With
respect to previous in vivo research in non-livestock species, it
may be that certain biological effects of microalgae are species-
specific. In both cases, the cited in vitro and in vivo studies need
to be validated for use in livestock species.

3 | Fractions of Microalgae as Functional Feed
Ingredient

3.1 | Lipid Fraction

The biorefinery of microalgae is mostly oriented towards biofuel
production and usually involves the extraction of the lipid fraction,
particularly the glycerides (Chew et al. 2017; Khoo et al. 2023).
Eventhough the lipid fraction is mostly used as biofuel, there are
potential benefits for animals as well. The long-chain fatty acid
profiles of some microalgae species are enriched with PUFAs such
as eicosapentaenoic acid (EPA), alpha-linolenic acid (ALA), ara-
chidonic acid (AA), docosahexaenoic acid (DHA) and linoleic acid
(LA). These omega-3 and omega-6 fatty acids are considered es-
sential, thus cannot be synthesized by humans and animals, and
must be obtained through the diet. Beyond their essential nature,
DHA and EPA are recognized for their biological functions that
include anti-oxidant and anti-inflammatory activities, bolster
mental health and mitigate risks associated with several ailments,
including cardiac diseases, arrhythmia, stroke, rheumatoid
arthritis and hypertension (Udayan et al. 2017).

Regarding bioactivities, PUFAs are also ligands for free fatty
acid receptors, which are involved in the regulation of insulin
secretion, insulin sensitivity, palatability, pain and inflamma-
tion. Also, PUFAs such as linolenic acid and linoleic acid
decrease inflammation and improve metabolic diseases
(Kimura et al. 2020). Chou et al. (2008) have demonstrated a
high binding affinity of PUFAs derived from Chlorella sor-
okiniana for the peroxisome proliferator-activated receptors
(PPARSs). These receptors are highly involved in controlling
fatty acid oxidation, lipogenesis, glucose homoeostasis, insulin
sensitivity, inflammation and cell proliferation and apoptosis
(Kersten et al. 2000; Tyagi et al. 2011).

The activation of PPARs can be modulated by various lipid
compounds present in microalgae, including astaxanthin
(Choi 2019; Le Goff et al. 2019), oxylipins, lipid mediators
resulting from PUFA oxidation (Avila-Romén et al. 2018) and
phytosterols (Ciliberti et al. 2019; Le Goff et al. 2019). Avila-
Roman et al. (2018) demonstrated that oxylipins extracted from
Chlamydomonas debaryana and Nannochloropsis gaditana ex-
hibit anti-inflammatory effects on a human acute monocytic
leukaemia cell line. In the inflammatory response, TNF-a
receptors activate nuclear factor kB (NFxB), which translocates
to the nucleus and initiates the expression of various inflam-
matory mediators such as interleukins, nitric oxide synthase
and cyclooxygenase-2. Oxylipins from microalgae act as ligands
for PPAR-y, and during its nuclear translocation, PPAR-y in-
teracts with NF«xB, thereby inhibiting NFxB's nuclear migration
and subsequently reducing inflammatory responses (Avila-
Roman et al. 2018). Similarly, Ciliberti et al. (2019) observed
that sterols from the lipid extract of C. sorokiniana bind to
PPARs, leading to decreased proliferation of sheep peripheral
blood mononuclear cells, which are crucial for immune
response and inflammation regulation. Furthermore, Le Goff
et al. (2019) reviewed the effects of xanthophylls and phytos-
terols on PPAR-mediated functions, noting that astaxanthin-
bound PPAR-y modulates the expression of glucose transporter
4 (GLUT4), facilitating glucose uptake into muscle and adipose
tissues. Phytosterols also influence lipid metabolism by regu-
lating hepatic hydroxymethylglutaryl-CoA reductase, which
synthesizes cholesterol precursors, and by stimulating low-
density lipoprotein (LDL)-C receptors to enhance the clearance
of plasma cholesterol.

Besides modulating immune functions, the lipid fraction of
microalgae has been linked with other biofunctionalities.
Dembitsky et al. (2000) have characterized fatty acid amides
from Rhizoclonium hieroglyphicum which as been recognized as
ligands for the cannabinoid receptors in mammals. The recep-
tors are mainly situated in the brain affecting behaviour,
including mood, memory, appetite and pain perception, but
also in the gut, where they modulate motility, enteroendocrine
functions and intestinal barrier functionality (Zou and
Kumar 2018). Furthermore, Toraman et al. (2016) identified
several nitrogen related metabolites in microalgae bio-oils, such
as indoles, amides, amines and imides, with roles in muscle
contraction, behaviour modulation, gut motility and anti-
oxidant activities (Tomberlin et al. 2017).

In conclusion, the lipid fraction of microalgae, rich in essential
PUFAs and other bioactive compounds, holds significant
potential beyond biofuel applications. Its diverse benefits,
including anti-inflammatory effects, metabolic improvements
and modulation of immune responses, highlight its promise in
enhancing both animal health and human nutrition.

3.2 | Protein Fraction

For cost-efficiency, defatted microalgae are often used rather
than separately extracting the protein fraction. However, cell
wall disruption techniques employed during lipid extraction
can compromise protein integrity, making direct protein ex-
traction a better option when an intact protein hydrolysate is
needed. Although protein hydrolysate has already been
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produced from various sources such as feather meal (Pan
et al. 2016), fish meal (Norgaard et al. 2012) and insect meal
(Cho et al. 2020) and used as such in livestock feed, microalgae's
potential remains relatively untapped despite the existing
research. For example, a study on undernourished mice dem-
onstrated that dietary supplementation with Chlorella vulgaris
enzymatic hydrolysate positively affected hematopoiesis and
leucocyte count (Morris et al. 2007). The undernourished mice
showed a decrease in immunocompetence due to decreased
bone marrow cellularity. However, the C. vulgaris hydrolysate
was found to recover bone marrow cellularity and increase the
number of peritoneal exudates immuno-potential cells, while a
commercial diet had no effect.

Peptides derived from microalgae have a broad range of applica-
tions, including anti-inflammatory, antioxidant, antidiabetic, an-
tihypertensive and dyslipidemia-reducing effects (Li et al. 2019).
However, the bioavailability of these peptides after digestion
remains uncharacterized as most information was obtained from
in vitro or in vivo and involved parenteral administration. Peptides
from C. vulgaris have been shown to reduce lipopolysaccharide
(LPS)-induced inflammation in an in vitro study using macro-
phage cells and in vivo through the topical application on ther-
mally injured rats (Cherng et al. 2010). The peptides reduced pro-
inflammatory cytokines such as TNF-a in injured rats. The anti-
oxidant effect of peptides derived from C. vulgaris was demon-
strated in vitro by quenching free radicals and protecting the DNA
(Sheih et al. 2009), while dietary phycocyanin derived from Spi-
rulina  platensis improved growth and antioxidant/anti-
inflammatory indices in growing rabbits under heat stress
(Abdelnour et al. 2020). The anti-hypertensive activity of C. vul-
garis selected peptides was tested in rats, resulting in the reduction
of diastolic and systolic blood pressure by the tri-peptides Thr-Thr-
Trp and Val-His-Trp, respectively, 2h after oral gavage (Xie
et al. 2018). It was suggested that the mode of action of these
peptides was by binding to angiotensin converting enzymes (ACE)
(Xie et al. 2018). Noteworthy, microalgae's anti-hypertensive ef-
fects are widely accepted and were described as early as 1989
(Yamaguchi et al. 1989). The presence of ACE inhibitory peptides
has been shown in frequently used microalgae species like C.
vulgaris and S. platensis (Suetsuna and Chen 2001), in Nanno-
chloropsis oculata (Samarakoon et al. 2013) and Isochrysis spp.
(Wu et al. 2014; J. Chen et al. 2020). In addition, the dyslipidemia-
reducing-activity of peptides derived from S. platensis has been
shown in rats (Hua et al. 2018). Peptide containing protein
hydrolysate reduced expression of genes related to lipogenesis,
such as sterol regulatory element-binding protein 1c (SREBP-1c)
and acetyl CoA carboxylase (ACC), which participate in the syn-
thesis of free fatty acids. Peptides derived from microalgae also
offer some unique applications for wound healing and regulation
of fibroblast functionality, as demonstrated by several studies on
C. vulgaris (C. L. Chen et al. 2011; K. H. Kang, Salim, et al. 2013;
Mohseni et al. 2019; de Melo et al. 2019). Although the mode of
action is not entirely deciphered, the most common hypothesis is
that the peptides from the microalgae modulate the expression of
matrix metalloproteinase-1, which is responsible for collagen
degradation.

In summary, peptides derived from microalgae exhibit notable
biofunctional properties such as anti-inflammatory, anti-
oxidant, antihypertensive and dyslipidemia-reducing effects.
Despite promising in vitro and in vivo findings, further research

is required to assess their bioavailability and underlying
mechanisms. While defatted microalgae offer cost-efficiency,
direct protein extraction is recommended to maintain peptide
functionality, especially for these biofunctional properties.

3.3 | Carbohydrate or Residual Fraction

The residual fraction that remains after microalgae’s lipid and
protein extraction, is composed of carbohydrates and minerals.
The bio-activity of microalgae derived polysaccharides is greatly
influenced by their structural features, such as molecular
weight, monosaccharide compositions, glycosidic bonds and
functional groups (sulfate and acetyl groups) (Yuan et al. 2020).
In addition, the bio-activity differs depending on the microalgae
species and type of fractionation imposed on microalgae for
deriving the polysaccharides. The carbohydrate fraction of mi-
croalgae mainly consists of the polysaccharides from the cell
walls. The biological activities induced by the polysaccharides
are anti-microbial, immunomodulatory, anti-oxidant, hypolipi-
demic, anti-cancer and anti-asthmatic (Yuan et al. 2020; Tounsi
et al. 2022). Wan et al. (2020) extracted and purified a poly-
saccharide from Chlorella pyrenoidosa and showed its hypoli-
pidemic activity using a rodent model. Additionally, the study
showed that the bioactive compounds increased short-chain
fatty acids suggesting that this increase directly resulted from
the modulation of the gut microbiota composition with
increased abundance of bacteria like Coprococcus, Lactobacillus
and Turicibacter, which are often associated with improved
health (Wan et al. 2020). Polysaccharide extracts of C. vulgaris
have shown immunomodulatory effects on peripheral blood
mononuclear cells in chickens (Mirzaie, Tabarsa, et al. 2020).
Both crude polysaccharides and extracts of polysaccharides
increased the expression of systemic cytokines like interferon-
gamma and interleukin-2 in chicken, demonstrating the im-
munomodulatory potentials of polysaccharides like f3-glucans
derived from microalgae (Mirzaie, Tabarsa, et al. 2020). As yet,
little information is available on the bioactivity of extracted
carbohydrates and polysaccharides from microalgae, and most
knowledge has been gathered by extrapolation from the whole
biomass of microalgae. Tounsi et al. (2022) have summarized
the gathered knowledge on polysaccharides derived from mi-
croalgae and indicated the fibre-source potential, the prebiotic
action and the ability to promote beneficial intestinal bacteria as
a functional food.

In summary, the residual fraction of microalgae contains specific
carbohydrates, especially the bioactive polysaccharides, which
makes it an attractive feed ingredient with potential biofunctions
for livestock species, as reviewed by Tounsi et al. 2022.

4 | Fractions of Microalgae Used in
Livestock Feed

A summary of livestock studies on the lipid fraction, the de-
fatted protein-rich and defatted carbohydrate-rich fractions of
microalgae is presented in Table 2.

From the studies presented in Table 2, it can be concluded that
biologic effects of fractionated microalgae are demonstrable and
that specific conclusions on individual studies can be drawn.
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However, general conclusions are hard to formulate due to the
limited number of studies and the large variation in experi-
mental set-up, such as strain of microalgae, type of fraction,
animal species and primary outcome parameters.

4.1 | Lipid Fraction

The organic fraction of microalgae, obtained after biorefinery
stages, predominantly consists of polar lipids, such as phospho-
lipids and neutral lipids, including triglycerides and fatty acids
(Pignolet et al. 2013). This fraction comprises a mix of saturated,
monounsaturated fatty acids (MUFA) and PUFA. The fatty acid
content and ratios are influenced by the microalgae species and
their growth conditions (Pignolet et al. 2013; Bastiaens
et al. 2017). Moreover, some lipophilic pigments (mainly carot-
enoids) with high added value for the livestock sector can also be
present in the organic fraction (Halim et al. 2012; Nobre
et al. 2013). However, only a few livestock studies have assessed
the effects of the lipid fractions on animal performance and
physiology as well as animal welfare and health.

In poultry nutrition, the entire biomass of microalgae is fre-
quently used as a matrix to deliver its lipid content, not only due
to cost-effectiveness but also because of the extensive nutri-
tional benefits that the biomass provides beyond just lipids, as
noted by Swigtkiewicz et al. (2015). Research in this area pre-
dominantly centres on the impact of whole microalgae biomass
on egg quality (A. Mens et al. 2022). However, only a couple of
studies have focused specifically on the lipid fraction from mi-
croalgae in laying hens (Neijat et al. 2016; Michalak et al. 2020).
Neijat et al. (2016) found that dietary omega-3 fatty acids were
effectively incorporated into egg yolks. Michalak et al. (2020)
investigated the effects of a lipid extract from S. platensis on the
fatty acid profile of eggs, noting that while there was a tempo-
rary increase in docosapentaenoic acid levels in eggs 60 days
after supplementation, this effect diminished by 90 and
120 days. In swine production, the focus on microalgae lipid
content, particularly the PUFA profile, is primarily driven by
the goal of enhancing meat quality through the retention of
omega-3 fatty acids in muscle tissues (Sardi et al. 2006; Madeira
et al. 2017; Vossen et al. 2017; Moran et al. 2018; de Tonnac and
Mourot 2018; Kalbe et al. 2019). These studies have consistently
utilized whole microalgae biomass as the source of lipids. To
date, there is a lack of research specifically exploring the effects
of isolated microalgae lipid fractions in pig studies. In cattle, the
supplementation of whole microalgae for their lipid content
aims to improve meat (Madeira et al. 2017) and milk quality. As
a potential drawback, it has been shown that the inclusion of
dietary PUFA via administration of whole microalgae leads to
decreased feed intake and reduced milk fat (Allen 2000;
Boeckaert et al. 2008; Marques et al. 2019). However, one study
investigated the isolated lipid fraction from microalgae and the
effects on omega-3 fatty acids composition of milk. In this
study, Stamey et al. (2012) used a rumen-protected microalgae
oil for 7 days and showed a constant increase in DHA content in
milk fat for 6 consecutive days, but when the isolated oil frac-
tion was compared to whole microalgae biomass, the yield
transfer of DHA was superior for the whole microalgae bio-
mass. This indicates that whole microalgae may be more
effective than the isolated lipid fraction. In dairy ewes, sup-
plementing DHA-rich algal oil increased milk DHA and total
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n-3 and lowered SFA/atherogenic index, although at ~2.3%
algal oil, it reduced feed intake, milk fat and yield (Manso
et al. 2022). A separate study using marine algal oil in combi-
nation with soybean oil increased milk DHA and CLA, with
forage-dependent magnitudes and milk yield remained largely
unchanged (Reynolds et al. 2006). In dairy goats, microalgae oil
raised milk/rumen PUFA (increased CLA and trans-11 C18:1)
without impairing performance (Beyzi and Dalli 2023).
Although lipid fractions have been studied mainly in terms of
their impact on the quality of meat, eggs and milk, their
influence on general animal health is still less researched.
Therefore, further research is needed to evaluate the effects of
specific fractions in addition to the whole biomass.

4.2 | Defatted Protein-Rich Fraction

From a nutritional perspective, the protein fraction may hold
the greatest potential for livestock feed, as it remains the pre-
dominant component following lipid extraction. The defatted
protein-rich aqueous fraction of microalgae is certainly the most
used fraction in animal feed, firstly because of the need for
sustainable protein in the livestock sector and secondly, because
the lipid fraction (the oil) of microalgae is often used for biofuel
production or human application (Halim et al. 2012; Bastiaens
et al. 2017; Amorim et al. 2021). In livestock feed research, the
defatted microalgae fraction is primarily utilized to investigate
the impact of dietary protein on animal performance and
health. However, it is important to note that this fraction also
contains carbohydrates and micronutrients, including various
forms of protein (Bleakley and Hayes 2017).

In poultry, defatted microalgae Staurosira sp. has been used to
assess the replacement of soybean meal and corn in both
broilers and laying hens (Austic et al. 2013). Furthermore, de-
fatted Desmodesmus sp. of microalgae was used to assess growth
performance and protein metabolism of broilers (Ekmay
et al. 2014). The crude protein content of defatted fractions of
microalgae greatly varied among the studies. For instance,
Austic et al. (2013) used defatted microalgae that contained
19.1% crude protein, whereas the content of crude protein in the
study of Ekmay et al. (2014) was up to 31.2%. The effects of
these defatted microalgae on growth performance were largely
comparable to conventional protein ingredients, except for a
decrease in body weight during the first week of life (Austic
et al. 2013). Further, Mirzaie, Sharifi, et al. (2020) used C. vul-
garis defatted fraction to assess broilers' immune responses,
antioxidant status and intestinal mucosal morphology. The
defatted microalgae fraction at a 1% dietary inclusion level
seems to have beneficial effects on both the immune system and
gut health by improving cell-mediated immune responses and
enhancing the structural integrity of the small intestine.

In swine and poultry, Gatrell et al. (2014) have studied four
types of full-fat and defatted microalgal biomass from biofuel
production research that contain 13.9%—38.2% crude protein
and 1.5%—9.3% crude fat. Supplementing these microalgal bio-
masses at 7.5% in the diets of weanling pigs, broiler chicks and
laying hens showed no adverse effects on growth performance,
egg production and quality, plasma and tissue biochemical in-
dicators and/or faecal chemical composition. In pigs, Ekmay
et al. (2014) have assessed the effect of defatted Staurosira sp.

and Desmodesmus sp. as protein substitutes in feed. The
Staurosira sp. reduced the daily gain and gain-to-feed ratio,
probably due to the defatted microalgae's high ash and rela-
tively low protein level. However, the defatted Desmodesmus sp.
at a dietary inclusion level of 10% did not affect daily gain or
feed intake but decreased plasma uric acid and urea nitrogen
concentrations by 23%—39%, suggesting increased metabolic
protein efficiency (Kohn et al. 2005). The latter could be useful
in reducing nitrogen emissions.

Currently, defatted microalgae fractions are predominantly
employed as a proxy for investigating the effects of microalgae
protein on livestock health and performance. The use of puri-
fied microalgae protein fractions in livestock feed is minimal in
poultry, swine and nonexistent in cattle, likely due to unclear
benefits and high production costs.

4.3 | Defatted Carbohydrate-Rich Fraction

The carbohydrate fraction that remains after microalgae's lipid
extraction contains polysaccharides, including various (-
glucans, which are of great interest to the livestock sector
(Pignolet et al. 2013). De Jesus Raposo et al. (2015) reviewed the
diverse applications of microalgae-derived polysaccharides,
highlighting  their anti-viral, anti-bacterial and anti-
inflammatory properties. Carbohydrate-rich microalgae frac-
tions have been used both in pigs and poultry. Urriola et al.
(2018) formulated feed with up to 20% defatted microalgae ex-
tract, which was 76% carbohydrates and 5.72% protein. This
high inclusion level tended to raise liver ammonia and lower
liver arginine and ornithine, suggesting a downregulation of the
urea cycle in nursery pigs. The reduction in urea metabolism is
likely caused by a shift from urinary nitrogen (N) excretion
towards faecal N excretion (due to increased incorporation of N
in the faecal microbiota). Dietary carbohydrates from micro-
algae may enhance gut microbial fermentation, leading to the
incorporation of free nitrogen, produced from pigs' protein
metabolism, into microbial protein rather than its excretion in
urine as urea and ammonia. Incorporating free N in faecal
microbial protein is more environmentally friendly than urinary
excretion of N as urea and ammonia. Research on poultry by
Zhang et al. (2020) involved injecting polysaccharides from
Chlorella sp. in ovo and assessing the birds' microbiomes. The
study found no significant changes in microbial diversity or
short-chain fatty acid levels in the caecal digesta. The effec-
tiveness of this in ovo injection technique for influencing the
microbiome later in life remains uncertain. Importantly, Chlo-
rella sp.'s polysaccharides resemble yeast cell wall 3-glucans
(Pignolet et al. 2013), which have a proven record in modulating
livestock gut microbiota (Kogan and Kocher 2007).

In addition to the polysaccharides, the residual fraction of mi-
croalgae might also be used as a source of minerals in livestock.
For instance, defatted Nannochloropsis oceanica, at a 0.5%
inclusion, was as effective as inorganic iron in recuperating the
growth performance of anaemic pigs (Manor et al. 2017). With a
comparable approach and similar result, C. vulgaris was used as
a selenium source, but the whole biomass was used rather than
the residual fraction. The whole biomass of C. vulgaris was
compared to selenium from sodium selenite. The effects of
C. vulgaris on growth performance, selenium concentration in
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breast meat and excreta, activity of glutathione peroxidase in
meat and oxidative stability of meat in broilers were equal to or
better than the effects of supplemental sodium selenite (Dlouha
et al. 2008).

5 | Fractions of Microalgae and Animal
Performance

The effects of dietary whole microalgae on pig, poultry, cattle and
small ruminant performance have been reviewed before (Madeira
et al. 2017; Saadaoui et al. 2021; Kusmayadi et al. 2021; Orzuna-
Orzuna et al. 2023; Boukrouh et al. 2025). The general consensus
is that whole microalgae, depending on the inclusion dose and
digestibility, improve body weight gain of animals based on the
nutritional and functional characteristics of the microalgae. In
small ruminants, inclusion of microalgae in the diet, mostly whole
Schizochytrium biomass, consistently enriches milk/meat with
long-chain n-3 PUFA without major performance penalties at
moderate inclusion; a goat meta-analysis reports unchanged milk
yield but higher lactose/protein/fat yields and a more favourable
milk FA profile, and a lamb meta-analysis shows improved
growth and possible meat quality (Orzuna-Orzuna et al. 2023;
Boukrouh et al. 2025). Studies on fractionated microalgae are
limited; the few small ruminant trials with DHA-rich algal oil
confirm strong milk DHA transfer but at higher doses can depress
feed intake and milk-fat (Manso et al. 2022; Reynolds et al. 2006;
Beyzi and Dall1 2023). A study in goats by Kyriakaki et al. (2024)
showed that adverse effects of high doses of the PUFA-rich mi-
croalga Schizochytrium on performance may be alleviated by a diet
with higher forage inclusion.

The whole biomass of Chlorella contains, in general, 20%—40%
carbohydrates, 20%—60% protein and 10%—20% fat (Saadaoui
et al. 2021). Austic et al. (2013) and Ekmay et al. (2014) showed
that the effects of defatted microalgae on the growth performance
of broilers were largely comparable to conventional protein ingre-
dients when added to the diets. Gatrell et al. (2014) studied the
effects of supplementing defatted microalgal biomass at 7.5% in the
diets of weanling pigs, broiler chicks and laying hens. Compared to
a control diet, similar effects on performance were reported. Apart
from that, whole microalgae also enhance the nutritional quality of
animal products like meat, eggs and milk (Vossen et al. 2017; A.
Mens et al. 2022; Stamey et al. 2012). However, studies using
fractionated microalgae on animal performance and product
quality are scarce. Studies on fractionated microalgae generally
emphasize animal health and the mechanisms by which micro-
algae affect physiological and immunological processes, rather than
focusing on animal performance. As a result, animal group sizes
are typically small, leading to low statistical power regarding
growth and feed intake data. However, some research has docu-
mented effects of fractionated microalgae on animal performance.
H. K. Kang et al. (2017) conducted a study in broilers which
indicated that increasing the inclusion level of Chiorella by-product
by 25, 50 or 75 g/kg to a basal diet improved BW gain in a linear
manner (p < 0.05). The Chlorella by-product was low in carbohy-
drates (1.1%), protein (0.2%) and fat (0.9%), indicating that its
impact on growth performance is likely due to functional rather
than nutritional effects. Overall, these studies suggest that frac-
tionated microalgae are well tolerated by growing animals and
could serve as alternative nutritional or functional feed ingredients.

6 | The Potential of Microalgae Fractions to
Support Resilience in Animals

The increasing interest in microalgae biomass as an animal feed
supplement is evident, but research on microalgae fractions
remains limited. This is primarily due to the technical and cost-
related challenges of producing microalgae and their fractions.
As production methods advance and the livestock industry
continues to face challenges, there may eventually be a
threshold where the cost of microalgae or its fractions becomes
justified by the reduction in livestock losses or the benefit from
livestock service. Incorporating whole microalgae as a supple-
ment for young, growing animals during high-stress periods,
such as weaning, may provide an effective and cost-efficient
strategy to enhance livestock resilience and performance. As
animals mature and their health becomes more manageable,
the necessity for ongoing microalgae supplementation might
decrease. Conversely, while maturation may reduce the need
for continued supplementation, it is also associated with
increased oxidative stress in older age. Therefore, supplemen-
tation with microalgae may remain beneficial at later stages of
life due to their antioxidant properties. Moreover, using whole
microalgae instead of isolated fractions could offer additional
advantages, as they contain antioxidants that help protect bio-
active components from degradation. For instance, the fatty
fraction of microalgae, rich in PUFAs, is susceptible to oxida-
tion when isolated. However, within the whole microalgae
matrix, antioxidants like lutein and carotenoids can safeguard
PUFAs from oxidation, thereby maintaining their beneficial
effects on animal resilience (S. Lee et al. 2006). The ban on in-
feed antibiotics has increased the need for natural alternatives,
such as dietary microalgae or their fractions, to replace anti-
biotics (Gadde et al. 2017; Saadaoui et al. 2021). To maximize
the economic efficiency of microalgae as a functional feed, it is
essential to identify specific time-windows and vulnerable
periods in animals' lives where microalgae inclusion can fortify
resilience and long-term health and development. For non-
mammalian animals, vulnerable periods typically occur in
the weeks following birth, while for mammals, these periods are
usually around weaning. In the case of broilers, the first 2 weeks
after hatching are considered the most critical (Alagawany
et al. 2021), while for laying hens, this vulnerable period for
stress seems to be somewhere in the early rearing period
before Week 10 (reviewed by A. J. W. Mens et al. 2020). For
calves, vulnerable windows in which microalgae could be added
to their (liquid) diet during the first 4 weeks after birth, while
for other mammals such as pigs, dogs and cats and other
ruminants, the 2-week period after weaning is crucial (Heo
et al. 2013; Wilson et al. 2017; Buddington and Sangild 2011).
Furthermore, incorporating microalgae or their fractions into
creep feed during the suckling phase may help ‘prepare’
mammals for the upcoming stressful and health-compromising
period that follows weaning (Xiong et al. 2019). A recent study
(A. V. Lee et al. 2019) assessed the effect of PUFA's, especially
DHA from the whole biomass of the microalgae Aurantiochy-
trium limacinum, on the immune- and global stress-response of
weaned piglets exposed to bacterial LPS. The microalgae
inclusion in the diet reduced fever and cortisol levels in plasma
and affected cytokine levels, indicating an immunomodulating
effect of microalgae in young animals. Another effect of mi-
croalgae on young animals was reported by Manor et al. (2017),
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who showed that 0.5% of defatted N. oceanica restored the
growth performance of anaemic weaned pigs. In young broilers
(2—3 weeks of age), it was shown that the inclusion of 0.8%
C. vulgaris biomass in the diet effectively influenced immune
responses related to inflammatory status and promoted broiler
growth (Roques et al. 2022).

In addition to these early life stages, microalgae could also serve
during other critical periods in an animal's life when they are
more susceptible to diseases and experience decreased per-
formance. For instance, cows often face increased health chal-
lenges in the postpartum period due to the physiological
demands of giving birth and the onset of lactation. Providing
microalgae as a dietary supplement during this time may en-
hance the cow's immune system and overall health, improving
productivity and reducing disease incidence. More generally,
transition periods, such as changes in diet, housing or man-
agement practices, can create stress and negatively impact
health and productivity in various livestock species. Microalgae
supplementation during these times can help mitigate the
negative effects of stress on animal performance, health and
welfare. However, it is important to point out that immune-
related reactions to microalgae supplementation should be
interpreted with caution. An observed stimulation of the
immune system does not necessarily mean a positive or nega-
tive result. On the one hand, increased immune activity may
reflect improved immune readiness, which contributes to dis-
ease resistance and resilience at critical times. On the other
hand, prolonged or excessive immune activation can stress the
metabolism and potentially divert resources from growth,
reproduction or milk production. Therefore, immune responses
should always be evaluated in the context of overall health,
productivity and welfare indicators to determine whether the
effect of microalgae is beneficial or a physiological burden.

The composition of (rest) fractions of microalgae is still a mix of
macronutrients. For instance, the defatted protein fraction also
contains some carbohydrate, and the defatted carbohydrate
fraction also contains some protein. The lipid fraction may be the
purest. All fractions show immune-modulatory potential, and at
the moment, it is not possible to indicate which fraction may be
the most effective in supporting animal resilience at various
challenges (inflammatory, oxidative stress, pathogen challenge).
Therefore, studies in various livestock species are needed to
determine the beneficial effects of whole microalgae and their
(rest) fractions on the resilience of animals during vulnerable
periods of their lives. To fully validate the applicability of mi-
croalgae as a supplement for young animals, it is essential to
conduct comprehensive testing across various microalgae strains,
growth conditions and substrates. This includes evaluating the
effects of different microalgae fractions on a range of young
animal species. Research should focus on identifying which
strains offer the most significant benefits in terms of growth
performance, resilience and overall health. Additionally, ex-
amining how varying growth conditions and substrates influence
the quality and efficacy of the microalgae is crucial. This
approach will help determine optimal conditions for microalgae
cultivation and application, ensuring that the benefits observed
in one species or setting can be consistently replicated across
different species and environments. Such a thorough investiga-
tion will provide a robust foundation for implementing
microalgae-based supplements in diverse livestock systems.

7 | Advantages and Disadvantages of In-Feed
Fractionated Microalgae

Advantages:

1. Optimal use of waste products (side-streams after bior-
efinery of microalgae) thereby contributes to fulfilling
governmental policies to improve resource efficiency and
a circular economy.

2. Turn a low-value waste product into a high-value dietary
supplement product.

3. Depending on the composition of the fraction, the desired
bioactivity can be matched with the specific needs and
phenotype of an animal.

4. Cell disruption techniques are necessary for fractionation,
thereby releasing the bioactive compounds for optimal
absorption by the gastrointestinal tract of the animal.
Thus, this creates innovative opportunities for food/feed
technologists or engineers.

5. Cultivation of microalgae is costly; therefore, low in-feed
dosages are mandatory for economic viability. This is
possible because bioactivity occurs at low dietary inclu-
sion levels (< 1%—2%). Fractionated microalgae as a side-
stream product of biorefinery further increases economic
feasibility (achievability) for the use in feed.

Disadvantages:

1. The use of fractionated microalgae in feed is still in its infancy;
large-scale production is limited, and availability is low.

2. Feeding trials with fractionated microalgae are scarce;
therefore, reliable information on the bioactivity of certain
fractions of microalgae is not yet available.

3. Commercially, currently it lacks ‘value-based pricing’
research that assesses how much customers are willing to
pay based on the product's perceived value.

4. Standardization of the biorefinery process to fractionate
microalgae on a large scale is lacking. Therefore, the
composition and bioactivity of the fractions are variable
and partly unpredictable.

8 | Conclusions

While the utilization of whole microalgae biomass in live-
stock feed has been extensively explored, studies on mi-
croalgae fractions remain limited. Fractionation of the
microalgae is costly, difficult to produce as bulk and
therefore less used in feed. The biorefinery concept applied
to microalgae supposes valorizing by-products originating
from biofuel production or human applications (food,
pharma, cosmetics) for animal feed, which aids sustain-
ability. However, this concept is still in its infancy and
producing each fraction with satisfactory yield and quality
seems, as yet, out of reach. As soon as by-products from
microalgae cultivation, like the defatted and deproteinized
fractions, become available for animal feed in large quan-
tities, these fractions of microalgae may become a cost-
effective alternative to the whole microalgae biomass. Until
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then, feeding whole microalgae biomass seems the best
option to offer solutions for the livestock sector's challenges.
Microalgae act as a functional feed on the animal's physi-
ology, expressing anti-inflammatory, anti-oxidant, anti-
bacterial and anti-viral bioactivity. Feeding whole micro-
algae biomass or fractions for restricted periods when
(young) animals are vulnerable to stress and disease may be
supportive to the animals' health and/or an alternative to in-
feed antibiotics and thus reduce the use of therapeutic an-
tibiotics by creating resilient livestock. Microalgae or their
fractions could be used in livestock species and pets as
natural supplements for animals often facing pathogenic
challenges. Relevant doses for microalgae or fractions
thereof as a functional feed to increase health and resilience
of young growing animals are likely to be below an inclusion
level of 1%, thereby restricting the costs of supplementing
animal feed with microalgae. Further dose-response
research is needed to characterize the fractions fully and
to understand their in-feed bio-functionality and mode of
action in vulnerable animals. It is also necessary to further
test various microalgae strains, growing conditions, sub-
strates and fractions thereof in various young animal species
to validate applicability.
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