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Considering health-related traits among breeding selection criteria has been proposed as a way to 
improve pig robustness. This study investigated the potential of whole blood RNA-sequencing data for 
predicting immunity-related traits, stress indicators and carcass weight, using data from 255 pigs belong-
ing to a commercial Duroc population. The prediction performance of mixed models fitting either geno-
mic (G), transcriptomic (T) or both effects as independent (GT) was evaluated and compared. Three 
additional models addressing the redundant information between G and T were also evaluated: the 
GTC model that subtracts the genetic effect from the transcriptome, the GTCi model that makes this cor-
rection based on the estimated heritability of T effects, and a multiomic model that weights G and T 
effects in a multiomics relationship matrix. The models including gene expression information captured
a higher proportion of variance than the genomic model for all studied traits but carcass weight. Adding
transcriptomic effects improved both model fit and phenotypic prediction of all immunity traits, partic-
ularly those with a high transcriptomic contribution such as the abundance of T helper and cd T cells, the
haptoglobin concentration and the leukocyte counts. Considering the interaction between genomic and
transcriptomic effects led to greater prediction accuracies, with the GTCi model performing the best.
Our work demonstrates the value of considering gene expression data to predict immunity traits as well
as the importance of adequately modelling the interaction between genomic and transcriptomic effects.

© 2025 The Author(s). Published by Elsevier B.V. on behalf of The animal Consortium. This is an open 
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 
Implications 

Immunity-related traits could be considered in pig breeding 
programmes to improve animal robustness. Including gene expres-
sion data into genomic prediction models could contribute to bet-
ter predictions of these traits but poses challenges regarding 
modelling several omics data. The present study confirms the 
potential of the blood transcriptom e data to accurately predict rel-
evant immunity phenotypes in swine and provide key insights
about how modelling the overlap between genomic and transcrip-
tomic effects. These results open the possibility of considering
expression panels in breeding programmes to improve the porcine
immunity profile.
Introduction 

Improving animal robustness and resilience against biotic stress 
factors is an increasingly important goal in pig breeding. Increasing 
disease resistance has been traditionally approached by finding 
biomarkers of resistance to specific pathogens and incorporating
them into breeding programmes. Immunity parameters have been
proposed as indicators of animal immune capacity and robustness
(Visscher et al., 2002), and its genetic determinism has been 
proved with medium to high heritability estimates (Ballester 
et al., 2020, 2023; Roth et al., 2022; Flori et al., 2011). Thus, consid-
ering immunity traits into breeding programmes to improve gen-
eral immunocompetence, as proposed by Knap and Bishop (2000)
and Visscher et al. (2002), could be an alternative way to increase
animal robustness and disease resistance.

Selection based on such immunity parameters would rely on 
adequate models to accurately predict breeding. The inclusion of 
genomic data into models for genetic evaluation of complex traits
has been proved to increase the accuracy of predicted breeding val-
ues (Misztal et al., 2020). In addition, developments in high-
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throughput molecular technologies make it more feasible and 
affordable to include additional omics data layers such as gene 
expression data into predictive models. Different approaches for
considering transcriptomics data in genomic prediction models
have been proposed (Hu et al., 2022; Legarra and Christensen,
2022; Liu et al., 2022; Perez et al., 2022; Li et al., 2019). Most 
implementations of these approaches have focused on the accu-
racy of trait prediction (Morgante et al., 2020; Li et al., 2019;
Schrag et al., 2018; Takagi et al., 2014), but the inclusion of another 
layer of information was also expected to improve the prediction of
breeding values (Perez et al., 2022). 

One main issue in the inclusion of transcriptomics data into 
predictive models lies in the overlap between transcriptomic and
genetic effects. As transcript expression levels are impacted by
genetics (Cheung et al., 2003), considering both effects into the 
model may introduce redundant information, which may result
in biased predictions (Michel et al., 2021). Several modelling 
strategies have been proposed to manage the genetic overlap
amongst omics data layers. Christensen et al. (2021) tried a two-
step modelling strategy in which transcriptomic variance was cal-
culated after all genomic variance component had been removed.
Alternatively, Perez et al. (2022) proposed correcting the transcrip-
tomic relationship matrix by conditioning it on the genotypes, 
using the genomic heritability, i.e. the proportion of phenotypic
variance explained by the genomic component. This method was
later revised by Haas et al. (2025), who showed that, instead, the 
heritability of the transcriptomic effects should be used. A more
direct approach was proposed by Liang et al. (2022), in which 
the contributions of genomics and transcriptomics data to a multi-
omic effect were identified based on the better fit of the model.

The present study aimed to predict immunity traits using mixed 
models incorporating two layers of omics data, genomics and tran-
scriptomics, and to evaluate the potential gain in predictive ability
resulting from the inclusion of transcriptomic information. Several
mixed models and strategies for considering the covariance
between genomic and transcriptomic covariates were considered.
Material and methods

Animal material 

The analysed data come from a population of 255 healthy pig-
lets (129 females and 126 males) from a commercial Duroc popu-
lation. These animals belonged to six commercial batches, each 
containing between 37 and 46 individuals. Animals were fed ad li-
bitum with a cereal-based diet and were all raised in the same
farm. Hair and blood samples were collected at 60 ± 8 days of
age. Blood was collected from the external jugular vein for both
immunity phenotyping and genomic and transcriptomic analyses.
Details about hair collection, blood extraction and samples man-
agement can be found in Ballester et al. (2020). 

Traits 

A group of 13 health-related traits, representative of both 
innate and adaptive immunity, was selected from all traits mea-
sured in the population (Ballester et al., 2020, 2023). The studied 
traits included the concentration of immunoglobulins, acute phase 
proteins, stress indicators, leukocyte subpopulations, cell counts 
and phagocytosis capacity. Moreover, carcass weight was also con-
sidered as a representative production-related trait, measured at a
different time.

Total concentrations of immunoglobulins G and M, as well as C-
reactive protein (CRP), were obtained by ELISA (Bethyl Laborato-
ries Inc., Bionova, Spain and Abcam Plc., Spain) from plasma and
2

serum samples, respectively. Absorbance was read using an ELISA 
plate reader (Bio-Rad) and bioinformatically analysed with Micro-
plate manager 5.2.1 software (Bio-Rad). Haptoglobin (HP) concen-
tration was obtained from serum samples using colorimetric 
assays (Tridelta Development Limited, Ireland). For phagocytosis 
measurements, whole blood samples were incubated with 
fluorescein-labelled opsonised E. coli (BD Pharmigen, Spain) and 
analysed with flow cytometry using the MACSQuant Analyzer 10 
Flow cytometer (Miltenyi Biotec GmbH, Bergisch Gladbach, Ger-
many) with the appropriate software MACSQuantify software 
v2.6 (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany), obtain-
ing the percentage of cells presenting % of phagocytic cells as well 
as the fluorescence intensity (measure of phagocytic uptake). Dif-
ferent leukocyte subpopulation levels were quantified by perform-
ing a hemogram on blood samples using CELL-DYN® 3700 (Abbott, 
Spain) in the Laboratory Echevarne (Spain; Barcelona); in this 
study, we analysed lymphocyte, monocyte, and total leukocyte 
counts. Peripheral blood mononuclear cells were extracted using 
gradient centrifugation with Histopaque-1077 (Sigma, Spain); the 
peripheral blood mononuclear subpopulations analysed in this 
study, such as cd T cells and T helper cells, were quantified by
immunolabelling with specific monoclonal antibodies. The cd T
cells were quantified using APC Rat Anti-Pig cd T Lymphocytes
(MAC320 clone, BD Biosciences, Spain). T helper cells (CD3+CD4
+CD8-) were labelled with Fluorescein emission Mouse Anti-Pig
CD8a (76-2-11 clone), Alexa Fluor® 647 Mouse Anti-Pig CD4a
(74-12-4 clone) and PE-CyTM7 Mouse Anti-Pig CD3e (BB23-8E6-
8C8 clone) (BD Biosciences, Spain). Stained cells were analysed
by flow cytometry using a MACSQuant Analyzer 10 Flow cytometer
(Miltenyi Biotec GmbH, Bergisch Gladbach, Germany) and the
FlowlogicTM software v7.3 (Inivai Technologies, Melbourne, Aus-
tralia). Stress parameters were also considered: cortisol concentra-
tions in blood and hair were measured using targeted liquid
chromatography-tandem mass spectrometry and an ELISA kit
(Cusabio Technology LLC., Bionova, Spain), respectively; for more
details about the hair extraction and the characterisation of T cell
subpopulations, refer to Ballester et al. (2020; 2023). Finally, trace-
ability of these animals was maintained during growing and fat-
tening periods, and hot carcass weight was measured at
slaughter, at an average weight of 129 kg and 180 days of age.

The normality of all phenotypes was assessed using the 
Shapiro-Wilk test and phenotypes were adjusted using log2 trans-
formation when required to reach normality, which was the case 
for all phenotypes with the exception of immunoglobulin M con-
centration, % of phagocytic cells and carcass weight. Exceptionally, 
the cortisol concentrations in hair and blood did not achieve nor-
mality after log transformation; therefore, a square root transfor-
mation was applied, which achieved normality. The impact on
each of the phenotypes of three potential co-factors, sex, batch
and date of laboratory analyses was evaluated through linear mod-
els performed with the base R lm function. Those co-factors with a
significant impact on a specific trait were considered in subsequent
models.

Genotypes 

Genomic DNA was isolated from blood samples using NucleoS-
pin Blood (Macherey-Nagel, Germany). Sample purity was assessed 
with a Nanodrop ND-1000 spectrophotometer. From the isolated 
DNA, genotypes for 68 516 single−nucleotide polymorphisms 
(SNPs) were obtained using the GGP Porcine HD Array (Illumina,
San Diego, CA) using the Infinium HD Assay Ultra protocol (Illu-
mina). Genotype quality control was performed using Plink
v1.90b3.42 (Purcell, 2007) and was set to eliminate genotypes with 
a minor allele frequency less than 0.05 or with more than 10%
missing genotype data. After filtering, 42 641 SNPs remained.
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The resulting genotypes were submitted to an imputation pipe-
line departing from a multibreed Pig Genomics Reference Panel
from PigGTEx (Teng et al., 2022), which included 1 602 whole-
genome sequence samples covering over 100 pig breeds. A total 
of 42 M autosomal biallelic SNPs were considered for imputation.
The imputation procedure was performed using Beagle v5.1
(Browning et al., 2018). SNPs with a dosage R-squared > 0.8 were 
considered properly imputed and selected. Afterwards, the same 
filters of minor allele frequency below 0.05 and missing data above
10% were applied. A total of 8 499 177 SNPs remained after filter-
ing, with an accuracy of imputation of R2 = 0.91.

Gene expression levels

RNA was extracted from whole blood samples using TempusTM 

Spin RNA Isolation Reagent Kit (Thermo Fisher Scientific, Spain). 
Concentration, purity and integrity of the isolates were measured 
using a Nanodrop ND-1000 spectrophotometer and Fragment Ana-
lyzer (Agilent Technologies Inc., Santa Clara, CA), respectively. All
samples had a RNA integrity number value greater than 8. Globin
and ribosomal depletion were performed using Ribo-Zero Plus
rRNA depletion (Illumina), creating the libraries to be sequenced.

RNA sequencing was performed with an Illumina NovaSeq6000 
platform at Centro Nacional de Análisis Genómico (CNAG-CRG, 
Barcelona, Spain). Sequencing depth was set at > 55M with
paired-end reads. FastQC software (Wingett and Andrews, 2018) 
was used to perform quality control. Mapping was performed
using STAR 2.75.3a software (Dobin et al., 2013) against the refer-
ence Sscrofa11.1 genome assembly with the Ensembl Genes 109 
annotation database. Quantification of gene counts was performed
with RSEM 1.3.0 software (Li and Dewey, 2011). 

Raw counts were then normalised with the EdgeR R package
(Robinson et al., 2009) using the trimmed mean on M−values, fol-
lowed by a log2 transformation. Minimum expression thresholds 
were established at expression in less than 5% of the population 
and an average count inferior to 0.69 counts per million. Normality
was tested using the Shapiro-Wilk test with a leave-one-out
approach, which allowed for the detection and subsequent
removal of outliers. A total of 16 063 genes remained after filtering.

Prediction models incorporating transcriptom ic effects

Several prediction models using omics data were used, all based 
on the basic animal model for BLUP. In the following section, each 
model used will be introduced with their particularities and key
features. All analyses using mixed linear models were constructed
with ASReml R (Version 4.2) (Butler et al., 2023) in R Studio (Ver-
sion 2025.05.0) (Posit Team, 2025). 

Genomic and transcriptom ic models
The first model used was the genomic (G) model (VanRaden, 

2008) which incorporates the additive genomic relationship matrix 
to define the genetic similarities between individuals:

y Xb g e 1

where y* stands for the vector of phenotypes is the vector of fixed 
effects (sex and batch) and X is the corresponding incidence matrix,
and stands for the vector of random additive genetic values of all
individuals, distributed as ∼ N(0, G , G being the additive geno-
mic relationship matrix and the additive genomic variance. The 
genomic relationship matrix G was computed as where V 
is the matrix of centred and standardised genotypes for all individ-
uals and m is the number of genotypes. Finally, e is the vector of
residual effects, distributed as e ∼ N(0, I , and the residual 
variance.
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The transcriptomic (T) model (Guo et al., 2016) considers the 
transcriptomic instead of the genomic effect, as follows:

y Xb t e 2

where t stands for the vector of random transcriptomic effects , dis-
tributed as t ∼ N(0, T , being T the transcriptomic relationship
matrix and the transcriptomic variance. T is described as

where W is the matrix of centred and standardised expres-
sion levels for all individuals precorrected by sex and batch and k is
the number of genes which expression was factored in.

The genomic and transcriptomic (GT) model (Li et al., 2019) 
incorporates both genomic and transcriptomic effects, treating
and as independent random effects:

y Xb g t e 3

where all terms are as defined above in Eqs. (1) and (2). 

Models addressing the overlap between genomic and transcriptomic
information

Two models described by Perez et al. (2022) and Haas et al.
(2025) consider the overlap between genomic and transcriptomic 
information by conditioning transcriptomic data on SNP genotypes 
to render them independent, i.e. to correct for the covariance 
between genomic and transcriptomic effects, on the basis of either
the heritability (GTC model) or the heritability of transcript effects
(GTCi model). These models are defined as follows:

y Xb g t c e 4

being the vector of transcriptomic effects conditioned to geno-
types, with a conditioned transcriptomic relationship matrix

where can be computed in two different but mathe-
matically equivalent ways (Haas et al., 2025). Here, we used the 
expression which is advised 
to use if the number of SNPs is (much) larger than the number of
genotyped animals (Haas et al., 2025). The matrix is defined here 

as where pj stands for the allele frequency of SNP j.

In the GTC model, is computed as where

and are the residual and genomic variances estimated from G

model, i.e. is the estimated genomic heritability. In GTCi model,

a heritability of transcript-level was estimated iteratively by 
maximising the log-likelihood of Eq. (4) and considered for comput-

ing lambda as This was done by testing differ-

ent values of (in steps of 0.001) between 0.045 and 0.995, as
described in Haas et al. (2025), and selecting the value that max-
imised the log-likelihood.

Finally, a multiomic (M) model, described by Liang et al. (2022), 
considers only a multiomic random effect combining genomic 
and transcriptomic effects as follows:

y Xb m e 5

where the multiomic effect is distributed a ∼N(0, , and the 
multiomic relationship matrix M is defined as:
where r is the ratio between the impact of genomic and tran-
scriptomi c effects on the trait, taking values between 0 and 1. 
When r = 1, the M model would be equivalent to the G model; when
r = 0, it would correspond to the T model. Following Liang et al.
(2022), the r parameter was iterated by assigning values between 
0.045 and 0.995 in increases of 0.001 and the value yielding the
highest maximum likelihood was used for subsequent analyses.

r2 
t )

r2 
t 

T WW 
k ,

g 
t 

tc 

Tc 
WcWc 

k , Wc 

Wc I G G I G 1G W,

G 

G 
G 

j 
2pj 1 pj
k ,

r2 
g k k mr2 

e 
r2 
g 

m 1 
h2g

1 ,

r2 
e 

h2 
g 

(h 
2 
t )

k 2pq 1 

h 
2

t

1 .

h 
2 
t 

(m) 

sm Mr2 
m )

M r G 1 r T,
(G) 

(T 



T. Jové-Juncà, V.P. Haas, M.P.L. Calus et al. Animal 20 (2026) 101742
Variance components estimation

The variance components for genomic, transcriptomic or multi-
omic effects on immunity-related and carcass traits under the con-
sidered models (G, T, GT, GTC, GTCi and M) were estimated by
restricted maximum likelihood using the R package ASReml R (Ver-
sion 4.2) (Butler et al., 2023). The proportion of total phenotypic 
variance explained by the random effects under the different mod-
els was computed, and the log-likelihood of each model was
retained.

From the variance components, the heritability of each trait in 

models considering genetic effects was calculated as

where is the genetic variance and is the sum of the vari-
ances of all random factors included in the model. Similarly, the
proportion of transcriptomic variance (t2) was calculated as

where is the transcriptomic variance, and is 

defined as above. The r parameter considered in MBLUP was also 
iterated this way using the same increments and interval of iter-
ated values and selected by maximum likelihood.

Model fit comparison

A likelihood ratio test between models was performed to test 
the improvement of fit of the model for the different studied traits 
resulting from the inclusion of either transcriptomic or genomic 
effects. For all studied traits, models considering the two omics 
effects (GT, GTC, GTCi) were compared against both G and T models 
when nested; the T model was not considered nested in models
with transcriptomic effects conditioned to genotypes (i.e. GTC
and GTCi). The ratio between the log-likelihoods of the compared
models, following a chi-square distribution, was computed and
tested for significance as described in the ASReml R reference man-
ual (Butler et al., 2023). 

Prediction ability of models with transcriptomic effects

The gain in prediction accuracy resulting from the incorporation 
of several layers of omics data into predictive models was evalu-
ated. A random 90/10 split approach with 500 iterations was used 
to test the ability of the studied models to predict immunity-
related traits and carcass weight. At each iteration, missing values 
were assigned to the phenotypes of 10% of the population selected
at random to create a test subpopulation. For each combination of
trait-model, the accuracy of phenotypic prediction was assessed
upon the vector of correlations resulting from the 500 iterations,
obtaining the mean and the confidence interval of the measure.
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Table 1 
Descriptive statistics, normalisation procedure and cofactors for analysed pig immunity-re

Traits N Mean

Immunoglobulin M concentration in plasma (mg/mL) 255 2.28
Immunoglobulin G concentration in plasma (mg/mL) 255 12.71
Haptoglobin concentration in serum (mg/mL) 255 −0.13
C-reactive protein concentration in serum (lg/mL) 254 2.14
Phagocytic cells (%) 255 43.54
Phagocytic uptake (FITC) 255 0.67
Leukocytes count (n/lL) 254 4.29
Lymphocytes count (n/lL) 254 4.06
Monocytes count (n/lL) 252 2.68
T helper cells (% of PBMCs) 234 0.21
cd T cells (% of PBMCs) 235 0.84
Cortisol concentration in plasma (nM) 254 13.97
Cortisol concentration in hair (pg/mg) 255 2.19
Carcass weight (kg) 245 98.52

Abbreviations: FITC = Fluorescein emission; PBMC = Peripheral blood mononuclear cells

4

Differences in prediction accuracy across the models were com-
puted at each iteration, as proposed by Hothorn et al. (2005) and 
Schrauf et al. (2021), thus reducing the variability in accuracy 
due to the random selection of testing samples in the comparison 
of models. The differences computed across the Markov chains
were then used to generate the statistics (mean and 95% confi-
dence intervals) for the prediction accuracy differences between
models.

Accuracy of genetic evaluation

The accuracy in predicting the expected breeding values for the 
different immunity-related traits (i.e. the elements of vector g) was 
also computed for the different models except for the T and M 
models (i.e. all models considering separate genetic/genomic 
effects). A similar ten-fold cross-validation approach as described
above was used. The accuracy of genomic prediction was calcu-
lated using the correlation between the predicted breeding values
(vector g) and the observed phenotypes corrected by fixed effects.

Results 

In the present study, we analysed the possibility of including 
RNA-sequencing data into predictive models for fitting 13 
immunity-related traits, including immunoglobulins, acute phase 
proteins, cortisol concentrations, phagocytic measurements, and
the abundance of blood cell subpopulations, as well as carcass
weight. Descriptive statistics for the analysed traits are presented
in Table 1. 

Genetic parameters under multiomic models

The proportion of phenotypic variance of each immunity and 
carcass trait explained by genomic, transcriptomic or multiomic
effects in the analysed models is represented in Fig. 1, whereas 
Table 2 shows the estimated heritability for each trait obtained 
from models incorporating different layers of omic data. More 
details about the variance components estimates and the likeli-
hood values of the different models can be found in Supplementary 
Table S1. In general, the GTCi model was the model explaining the 
highest proportion of phenotypic variance for the majority of traits,
followed by GTC, M and GT models.

The highest heritability across models (Table 2) was found for 
dc T cells in the G model (0.52). This estimate decreased when 
transcriptomic data were incorporated into the model (0.22 in
GT), but part of this heritability was recovered when the covari-
ance between genome and transcriptome was considered in the
lated and carcass traits.

SD CV Normalisation Cofactors 

0.85 0.37 − sex, batch 
4.94 0.39 log2 sex, batch 
0.36 −2.92 log2 sex, batch 
0.31 0.15 log2 sex, batch 
8.08 0.19 − sex, batch, date of analysis
0.03 0.05 log2 sex, batch, date of analysis
0.14 0.03 log2 sex, batch 
0.15 0.04 log2 sex, batch 
0.20 0.08 log2 sex, batch 
0.22 1.07 log2 sex, batch 
0.30 0.35 log2 sex, batch 
3.21 0.23 square root sex, batch 
0.19 0.09 log2 sex, batch 
11.82 0.12 − sex, batch 

.

move_t0005
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Fig. 1. Stack bar plots showing the percentage of variance components for different immunity traits in pigs across different models: genomic model (G), transcriptomic model 
(T), genomic and transcriptomic as independent effects (GT), transcriptomics conditioned to genomics on the basis of either the heritability of the trait (GTC) or the
heritability of transcriptomic effects (GTCi), and multiomic model (M). The estimated variance components were genetic (Vg), transcriptomic (Vt), multiomic (Vm) and
residual (Ve) variances. CRP and HP stand for C-reactive protein and haptoglobin concentrations in serum, respectively.
model (0.31 in GTC). A similar pattern was observed for T helper 
cell abundance, with heritability estimates ranging from 0.48 (G) 
to 0.23 (GTC). High heritabilities were also estimated for IgG and 
carcass weight, but for these traits, the heritability estimates 
showed little change when transcriptomic data were included in
the model. Traits with low heritabilities, such as monocyte count
and % of phagocytic cells, presented higher heritabilities in models
conditioning the transcripts on the genotypes (i.e. GTC and GTCi).
The rest of the traits (immunoglobulin M, HP and CRP concentra-
5

tions, phagocytic uptake, cortisol concentration in hair, leukocyte 
and lymphocyte counts) presented medium to low heritabilities, 
and a slight decrease in the heritability estimate when considering
transcriptomic effect, again being the heritability under the GTC
model the closest to the heritability under the G model.

The proportion of variance explained by the transcriptomic 
component of the model (t2) is shown in Table 2. In the T model, 
with only transcriptomic effects, t2 was greater than 0.5 for all
analysed traits but phagocytic uptake, cortisol concentrations in
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Table 2 
Parameter estimates (SD between parentheses) across different models for pig immunity-related and carcass traits. Estimated parameters: heritability (h2), proportion of variance
explained by transcriptomic effects (t2), heritability of transcriptomic effects and the ratio between the impact of genomic and transcriptomic effects (r). Models: genomic 
model (G), transcriptomic model (T), genomic and transcriptomic as independent effects (GT), transcriptomics conditioned to genomics on the basis of either h2 (GTC) or
(GTCi), and multiomic model (M).

h2 t2 r

GTCi 
model 

M 
model 

Traits G model GT model GTC model GTCi model T model GT model GTC model GTCi model 

Immunoglobulin M in plasma (mg/
mL)

0.351 
(0.112) 

0.227 
(0.107) 

0.262 
(0.088) 

0.217 
(0.064) 

0.660 
(0.141) 

0.403 
(0.139) 

0.484 
(0.142) 

0.692 
(0.104) 

0.425 0.359 

Immunoglobulin G in plasma (mg/
mL)

0.505 
(0.129) 

0.460 
(0.131) 

0.470 
(0.124) 

0.466 
(0.129) 

0.770 
(0.144) 

0.123 
(0.135) 

0.151 
(0.144) 

0.126 
(0.136) 

0.045 0.787 

0.214 
(0.118) 

0.087 
(0.114) 

0.137 
(0.067) 

0.053 
(0.022) 

0.855 
(0.114) 

0.783 
(0.086) 

0.813 
(0.099) 

0.924 
(0.029) 

Haptoglobin in serum (mg/mL) 0.867 0.1 

0.221 0.
(125)

0.196 
(0.116) 

0.203 
(0.104) 

0.212 
(0.093) 

0.588 
(0.158) 

0.435 
(0.148) 

0.478 
(0.150) 

0.528 
(0.150) 

C-reactive protein in serum
(lg/mL)

0.187 0.31 

0.087 
(0.114) 

0.094 
(0.096) 

0.128 
(0.083) 

0.137 
(0.080) 

0.642 
(0.128) 

0.631 
(0.131) 

0.674 
(0.124) 

0.687 
(0.121) 

Phagocytic cells (%) 0.111 0.13 

0.147 
(0.128) 

0.099 
(0.125) 

0.122 
(0.121) 

0.124 
(0.121) 

0.198 
(0.124) 

0.165 
(0.147) 

0.174 
(0.154) 

0.175 
(0.155) 

Phagocytic uptake (FITC) 0.075 0.375 

0.287 
(0.129) 

0.161 
(0.101) 

0.191 
(0.084) 

0.207 
(0.074) 

0.831 
(0.114) 

0.719 
(0.110) 

0.743 
(0.100) 

0.764 
(0.088) 

Leukocytes count (n/lL) 0.184 0.183 

0.337 
(0.131) 

0.212 
(0.116) 

0.265 
(0.098) 

0.236 
(0.108) 

0.690 
(0.137) 

0.560 
(0.127) 

0.591 
(0.116) 

0.572 
(0.122) 

Lymphocytes count (n/lL) 0.045 0.275 

0.093 
(0.105) 

0.107 
(0.099) 

0.116 
(0.093) 

0.148 
(0.068) 

0.687 
(0.134) 

0.653 
(0.133) 

0.668 
(0.130) 

0.755 
(0.107) 

Monocytes count (n/lL) 0.215 0.141 

0.477 
(0.141) 

0.141 
(0.108) 

0.227 
(0.076) 

0.312 
(0.095) 

0.878 
(0.122) 

0.744 
(0.121) 

0.740 
(0.075) 

0.587 
(0.112) 

T helper cells (% of PBMCs) 0.488 0.164 

0.526 
(0.128) 

0.219 
(0.109) 

0.305 
(0.035) 

0.254 
(0.101) 

0.818 
(0.117) 

0.677 
(0.111) 

0.694 
(0.011) 

0.677 
(0.104) 

cd T cells (% of PBMCs) 0.045 0.245 

Cortisol concentration in plasma
(nM)

0.363 
(0.124) 

0.351 
(0.126) 

0.358 
(0.124) 

0.235 
(0.167) 

0.397 
(0.164) 

0.025 
(0.126) 

0.022 
(0.129) 

0.398 
(0.304) 

0.894 0.935 

Cortisol concentration in hair (pg/
mg)

0.143 
(0.104) 

0.135 
(0.104) 

0.143 
(0.103) 

0.099 
(0.071) 

0.075 
(0.075) 

0.052 
(0.114) 

0.087 
(0.120) 

0.444 
(0.242) 

0.823 0.72 

0.489 
(0.136) 

0.498 
(0.135) 

0.500 
(0.135) 

0.127 
(0.129) 

0.001 
(0.033) 

0.013 
(0.138) 

0.024 
(0.141) 

0.771 
(0.130) 

Carcass weight (kg) 0.955 0.974 

Abbreviations: FITC = Fluorescein emission; PBMC = Peripheral blood mononuclear cells.
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hair and in blood, and carcass weight. The highest t2 obtained with 
the T model was for the relative amount of T helper cells, where the 
transcriptomic variance explained up to 88% of the phenotypic
variance. As expected, the t2 values were lower in those models
considering also the genomic effect, except for carcass weight
and % of phagocytic cells.

The heritability of the transcript-level effect on each trait , 
estimated in the GTCi model, is also shown in Table 2. This param-
eter varied widely across traits, taking values between 0,045 and

0.955. In general, the highest values were obtained for traits 
with negligible transcriptomic effects, such as carcass weight or 
cortisol concentrations, whereas traits with high transcriptomic

contribution, such as lymphocytes count or dc T cells, showed
bellow 0.1. The one notable exception to this trend was HP concen-

tration, for which both t2 and estimates took values above 0.8, 

but also T helper cells that showed medium having relevant 
transcriptom ic contribution.

Models fit of immunity traits

The improvement in model fit from considering either tran-
scriptomic or genomic effects in the model was evaluated by a like-
lihood ratio test comparing models that incorporate both effects 
(GT, GTC, GTCi models) against either G or T models. Additionally,
both G and T models were compared to a fixed effects model (i.e.
without random effects). The statistics from these model compar-
isons are presented in Table 3. Both G and T models presented a 
highly significant (P-value < 10−5 ) increase in the likelihood
regarding a fixed model, thus confirming these omics effects on
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all the analysed traits. Models considering both genomic and tran-
scriptomic effects provided a better fit than the G model for all 
traits, except for those with the lowest t2 estimates: cortisol con-
centration in both serum and hair, carcass weight, and in some 
comparisons, the phagocytic uptake. Incorporating genomic effects 
into models with transcriptomic effects (the comparison between 
T and GT models) also improved the model fit for certain traits; 
however, this result was less consistent across traits and model
comparisons. The most significant fit improvement derived from
incorporating genomic effects into a model with transcriptomics
was observed for those traits with high heritability, such as plasma
immunoglobulin G concentration and carcass weight. Conversely,
the fit for HP concentration, phagocytic traits, monocytes count,
or lymphocytes count did not improve with the addition of geno-
mic effects to a model with transcriptomics.

Predicting immunity traits from multiomic data

The accuracy (obtained by cross-validation) of phenotypic pre-
diction of immunity and carcass traits with the different models
considering omics data is reported in Table 4 and Fig. S1. With 
the G model, prediction accuracies were below 0.4 for all traits. 
The highest prediction accuracies were for cd T cells (0.387), fol-
lowed by plasma immunoglobulin G and M concentrations 
(0.368 and 0.341), carcass weight (0.330) and T helper cells 
amount (0.329). As expected, prediction accuracy from the G 
model was highly correlated (0.972) with the heritability estimate
of the trait, so traits with the lowest heritabilities (% of phagocytic
cells and monocytes count) presented the lowest accuracies. The
model considering transcriptomic effects (T) presented prediction
accuracies correlating with the t2 (0.872). This accuracy was above
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Table 3 
Significance (P-value) of the likelihood ratio test (LRT) between models incorporating both genomic and transcriptomic effects vs models with either genomic or transcriptomic 
effects, for different pig immunity-related and carcass traits. Models: genomic model (G), transcriptomic model (T), genomic and transcriptomic as independent effects (GT),
transcriptomics conditioned to genomics on the basis of either the heritability of the trait (GTC) or the heritability of transcriptomic effects (GTCi).

Traits LRT vs fixed model LRT vs GBLUP LRT vs TBLUP

G model T model GT model GTC model GTCi model GT model 

Immunoglobulin M in plasma (mg/mL) <1 × 10−5 <1 × 10−5 7.1 × 10−3 8.8 × 10−3 3.1 × 10−3 2.2 × 10 −3

Immunoglobulin G in plasma (mg/mL) <1 × 10−5 <1 × 10−5 1.7 × 10−2 2.7 × 10−2 1.8 × 10−2 7.4 × 10 −5

Haptoglobin in serum (mg/mL) <1 × 10−5 <1 × 10−5 <1 × 10−5 <1 × 10−5 <1 × 10−5 1.1 × 10 −1

C-reactive protein in serum (lg/mL) <1 × 10−5 <1 × 10−5 <1 × 10−5 <1 × 10−5 <1 × 10−5 1.7 × 10 −2

Phagocytic cells (%) <1 × 10−5 <1 × 10−5 <1 × 10−5 <1 × 10−5 <1 × 10−5 1.4 × 10 −1

Phagocytic uptake (FITC) <1 × 10−5 <1 × 10−5 1.9 × 10−3 2.3 × 10−3 5.0 × 10−1 2.2 × 10 −1

Leukocytes count (n/lL) <1 × 10−5 <1 × 10−5 <1 × 10−5 <1 × 10−5 <1 × 10−5 1.7 × 10 −2

Lymphocytes count (n/lL) <1 × 10−5 <1 × 10−5 <1 × 10−5 <1 × 10−5 <1 × 10−5 1.2 × 10 −1

Monocytes count (n/lL) <1 × 10−5 <1 × 10−5 1.6 × 10−4 5.5 × 10−4 2.6 × 10−2 7.0 × 10 −2

T helper cells (% of PBMCs) <1 × 10−5 <1 × 10−5 1.2 × 10−1 1.2 × 10−1 6.0 × 10−2 4.7 × 10 −2

cd T cells (% of PBMCs) <1 × 10−5 <1 × 10−5 <1 × 10−5 <1 × 10−5 <1 × 10−5 3.7 × 10 −3

Cortisol in plasma (nM) <1 × 10−5 <1 × 10−5 2.9 × 10−1 3.1 × 10−1 2.5 × 10−1 2.7 × 10 −3

Cortisol in hair (pg/mg) <1 × 10−5 <1 × 10−5 <1 × 10−5 <1 × 10−5 <1 × 10−5 3.0 × 10 −2

Carcass weight (kg) <1 × 10−5 <1 × 10−5 2.9 × 10−1 2.3 × 10−1 1.3 × 10−1 <1 × 10 −5

Abbreviations: FITC = Fluorescein emission; PBMC = Peripheral blood mononuclear cells.

Table 4 
Accuracy (mean and 95% confidence interval) of phenotype prediction for pig immunity-related and carcass traits with different models incorporating omics information: 
genomic model (G), transcriptomic model (T), genomic and transcriptomic as independent effects (GT), transcriptomics conditioned to genomics on the basis of either the
heritability of the trait (GTC) or the heritability of transcriptomic effects (GTCi), and multiomic model (M).

Traits G model T model GT model GTC model GTCi model M model 

Value CI Value CI Value CI Value CI Value CI Value CI 

Immunoglobulin M in plasma
(mg/mL)

0.341 [-0.065,0.631] 0.400 [0.081,0.653] 0.410 [0.030,0.685] 0.345 [-0.053,0.622] 0.371 [0.16,0.536] 0.427 [0.047,0.699] 

Immunoglobulin G in plasma
(mg/mL)

0.368 [-0.024,0.685] 0.292 [-0.064,0.556] 0.377 [-0.014,0.673] 0.372 [-0.040,0.689] 0.366 [0.109,0.579] 0.390 [0.004,0.674] 

Haptoglobin in serum
(mg/mL)

0.162 [-0.238,0.474] 0.561 [0.218,0.786] 0.552 [0.222,0.758] 0.188 [-0.201,0.505] 0.455 [0.269,0.607] 0.559 [0.228,0.767] 

C-reactive protein in serum
(lg/mL)

0.165 [-0.168,0.509] 0.406 [0.081,0.668] 0.410 [0.045,0.669] 0.181 [-0.154,0.513] 0.390 [0.187,0.564] 0.422 [0.077,0.675] 

Phagocytic cells (%) 0.051 [-0.318,0.353] 0.568 [0.189,0.822] 0.570 [0.205,0.812] 0.133 [-0.208,0.470] 0.550 [0.329,0.750] 0.573 [0.204,0.818] 
Phagocytic uptake (FITC) 0.100 [-0.264,0.419] 0.198 [-0.228,0.589] 0.182 [-0.217,0.541] 0.046 [-0.312,0.357] 0.097 [-0.163,0.332] 0.208 [-0.184,0.569] 
Leukocytes count (n/lL) 0.204 [-0.145,0.515] 0.595 [0.308,0.798] 0.600 [0.324,0.796] 0.203 [-0.158,0.516] 0.610 [0.426,0.734] 0.604 [0.327,0.800] 
Lymphocytes count (n/lL) 0.236 [-0.132,0.538] 0.594 [0.308,0.809] 0.602 [0.318,0.817] 0.268 [-0.087,0.565] 0.566 [0.381,0.72] 0.606 [0.326,0.819] 
Monocytes count (n/lL) 0.064 [-0.267,0.421] 0.512 [0.160,0.775] 0.509 [0.161,0.770] 0.064 [-0.282,0.411] 0.478 [0.235,0.675] 0.517 [0.175,0.770] 
T helper cells (% of PBMCs) 0.329 [-0.074,0.655] 0.457 [0.097,0.743] 0.427 [0.066,0.726] 0.309 [-0.065,0.649] 0.287 [0.007,0.519] 0.464 [0.102,0.743] 
cd T cells (% of PBMCs) 0.387 [0.022,0.659] 0.596 [0.249,0.810] 0.606 [0.275,0.814] 0.427 [0.121,0.674] 0.617 [0.441,0.761] 0.610 [0.284,0.816] 
Cortisol in plasma (nM) 0.135 [-0.268,0.508] 0.149 [-0.182,0.442] 0.150 [-0.235,0.512] 0.136 [-0.257,0.512] 0.256 [0.038,0.448] 0.177 [-0.205,0.531] 
Cortisol in hair (pg/mg) 0.273 [-0.123,0.594] 0.190 [-0.147,0.485] 0.259 [-0.104,0.579] 0.332 [-0.033,0.619] 0.128 [-0.117,0.355] 0.277 [-0.079,0.577] 
Carcass weight (kg) 0.330 [-0.029,0.622] −0.133 [-0.424,0.085] 0.323 [-0.023,0.625] 0.285 [-0.093,0.595] 0.228 [0.046,0.424] 0.335 [-0.014,0.626] 

Abbreviations: FITC = Fluorescein emission; PBMC = Peripheral blood mononuclear cells.
0.50 for traits with high t2 : different leukocyte counts, proportion 
of cd T cells, % of phagocytic cells and HP concentration in plasma.
These same traits were also the best predicted (accuracy from 0.51
to 0.61) under the GT model.

Among models fitting both genomic and transcriptomic effects, 
the GTC model performed similarly to the G model in terms of pre-
diction accuracy. The highest accuracy was observed for traits with 
high heritability, being cd T cells the trait best predicted under the 
GTC model (mean accuracy of 0.43), followed by plasma 
immunoglobulin G and M concentrations (0.37 and 0.35); the low-
est accuracy (below 0.06) was for phagocytic uptake and monocyte 
count. Models including genomic and transcriptomic effects (GT,
GTCi and M models) yielded accuracies above 0.5 for those traits
with high transcriptomic contribution, such as cd T cells (accuracy
0.61), different leukocyte counts (from 0.48 to 0.61), HP concentra-
tion (0.56) and % of phagocytic cells (0.55 and 0.57). Hardly any dif-
ferences were observed between the prediction accuracies
provided by GTCi and M models, but for T helper cells.
7

To increase the discriminatory power when comparing accura-
cies between models, within-trait differences in prediction accu-
racy across cross-validation iterations were also calculated and
are shown in Fig. 2 and presented in Table S2. All models consider-
ing the two omics effects but GTC model (i.e. GT, GTCi and M mod-
els) showed better prediction accuracy than the G model for 
different leukocyte and lymphocyte counts. Predictions from GTCi 
in general were the most accurate but accuracies were similar to 
the M model. The GTCi model also performed better than the G 
model in predicting serum HP concentrations and was suggestive 
to better predict the concentration of CRP, cd T cells and % of
phagocytic cells, while surpassing GTC for monocyte count. Con-
versely, when comparing the four two-omics models (GT, GTC,
GTCi and M models) with the transcriptomic model, no relevant
increase in the prediction ability of the model was detected for
any of the analysed traits but carcass weight. What is more, the
GTC underperformed compared to the T model in predicting leuko-
cyte count and serum HP concentration.
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Breeding value accuracy

The accuracy of the predicted breeding values for immunity and 
carcass traits under the models including additive genetic effects
(i.e. GT, GTC and GTCi models) is presented in Table 5. The breeding 
value accuracy varied greatly between traits, but not so much 
across models (within trait). Across traits, the breeding value accu-
racy was closely related to the estimated heritabilities. Accord-
ingly, the highest accuracies of genetic evaluation were obtained 
for plasma immunoglobulin G and M concentration and the 
amount of cd T cells (accuracies from 0.32 to 0.43). Carcass weight
also maintained relatively high genetic prediction accuracy across
models (from 0.27 to 0.29). Conversely, the % of phagocytic cells
and monocytes count presented the lowest breeding value accura-
cies across all models (from 0.05 to 0.13).

Between-model differences in the accuracy of genetic evalua-
tion for the different traits are presented in Fig. S2. It can be 
observed that GTC offered the best genetic evaluation in terms of 
breeding value accuracy for several immunity traits, particularly 
for cd T cells, % of phagocytic cells, immunoglobulin concentrations 
(both G and M), and lymphocyte count. For other traits, such as HP
and CRP concentrations, and leukocytes and monocytes count, the
highest breeding value accuracy was obtained with the GTCi
model.

Discussion 

The inclusion of immunity traits into pig breeding programmes 
is a promising strategy for improving animal robustness and dis-
ease resistance. In the present study, we evaluated the potential 
to include transcriptomic information into genomic evaluation 
models to better predict immunity traits in pigs. To achieve our 
objective, we tested different mixed-modelling strategies across 
14 traits, including immunity traits such as immunoglobulins (M
and G), HP and CRP concentrations, % of phagocytic cells and
uptake, leukocytes, monocytes and lymphocytes counts, propor-
tions of T helper cells and cd T cells, as well as welfare and produc-
tion traits such as carcass weight and cortisol concentration in
plasma and hair.

Medium to high heritabilities were obtained for the analysed 
traits across models considering the additive genetic effect with 
a genomic relationship matrix. According to these estimates, T cell 
subpopulations’ relative abundance and immunoglobulin G con-
centration were the most heritable traits, while % of phagocytic
cells and monocyte count were the lowest. These heritability esti-
mates were similar if not a bit lower to those previously obtained
in the same population (Jové-Juncà et al., 2024; Ballester et al.,
2020, 2023) with a pedigree-based animal model, and also similar 
to the ones described for these traits in other populations (Flori 
et al., 2011; Clapperton et al., 2008, 2009; Henryon et al., 2006;
Edfors-Lilja et al., 1994). When transcriptomic data were consid-
ered in the model, the estimated heritability decreased for most 
of the traits analysed but those with low heritability, as previously
reported by Morgante et al. (2020) and Wade et al. (2022) for com-
plex traits like starvation resistance and pathogen tolerance in ref-
erence species such as Drosophila melanogaster and Populus nigra. 
In our study, the decrease regarding the heritability estimated in 
the G model was generally lower when the covariance between 
genomic and transcriptomic effects was removed in the model 
(i.e. GTC and GTCi) than when both genomic and transcriptomic
effects were considered as independent (i.e. GT). This is consistent
with the rationale behind GTC and GTCi, in which the fraction of
the genetic effect captured by the transcriptome was subtracted
from the model, thereby simplifying the estimation of genetic
effects from the genomic relationship matrix. It is, however, impor-
8

tant mentioning that the confidence intervals of heritability esti-
mates of different models overlapped, so these results were not
totally conclusive.

The estimated proportion of phenotypic variance explained by 
the blood transcriptome varied considerably among traits but 
was generally larger than the estimated heritability, exceeding 
50% of the total variance for 10 out of the 14 analysed traits. It 
should be noted that the prediction accuracy obtained in the 
model, including only transcriptomic effects (T), was highly corre-
lated to the proportion of phenotypic variance explained by the
blood transcriptome. This way, for those traits with higher t2 esti-
mates, the blood transcriptome allowed much better phenotypic
prediction than the genomic model, suggesting that the transcrip-
tome acts as an ‘‘intermediate phenotype” that captures part of the
genetic variation of the traits.

The traits with the highest transcriptomic contribution were 
the abundance of T helper cells and HP concentration, followed
by leukocyte count and cd T cells, showing values similar to those
reported by Morgante et al. (2020) for starvation resistance in Dro-
sophila melanogaster. All the traits are known to be functionally
related to immunity and immunocompetence (Ballester et al.,
2020, 2023; Holtmeier and Kabelitz, 2005; Mair et al., 2014;
Noelle and Snow, 1992). Leukocyte count has been associated with 
survivability after PRRSV infection (Tarrés et al., 2024), and specific 
leukocyte subsets, such as T helper and cd T cells, are well−known
markers of immune activation following infection or vaccination
(Pedrera et al., 2024; Schmidt et al., 2021) and have also been 
linked to disease resistance in pigs (Le Page et al., 2022; Tarrés
et al., 2024). Additionally, serum HP concentration has shown links 
with gut symbiotic microbiota and may play a role in the occur-
rence of opportunistic pathogens (Ramayo-Caldas et al., 2021). 

On the opposite side, the cortisol concentration in hair and the 
carcass weight showed scarce contribution of the blood transcrip-
tome. The transcriptome is highly dependent on both tissue and
sampling time (Perez et al., 2022; Azodi et al., 2019; Guo et al.,
2016). As such, it is plausible that cortisol concentration in hair 
was lowly associated with the blood transcriptome, and the panel 
of gene-expression levels obtained at 60 days of age, far before the 
age of slaughter at 180 days, was poorly related to carcass weight. 
The transcriptome predictive value for these traits would be
expected to improve if the expression panel were analysed at a
time closer to the phenotype measure and/or from tissues more
functionally related, such as the adrenal gland or liver for cortisol
concentration, and muscle, liver, or adipose tissue for carcass
weight.

In line with the estimated transcriptomic effects, the inclusion 
of transcriptomic data in the model allowed capturing a higher 
proportion of phenotypic variance than the genomic prediction
model for the vast majority of immunity traits. This is also concor-
dant with results obtained in previous studies (Haas et al., 2025;
Perez et al., 2022) for metabolic and production traits in mice 
and quails. Conversely, the addition of genomic data to models 
already considering transcriptomic information provided a less
consistent improvement of fit, only notable in the traits with the
highest heritability estimates. This reinforces the idea proposed
by Michel et al. (2021) that genetic effects may be almost fully rep-
resented by the transcriptomic profile. Among the analysed immu-
nity traits, nearly all genetic variance of T helper cells and cd T
cells, leukocytes, and HP concentration appeared to be captured
by the transcriptomic component.

Among models including both genomic and transcriptomic 
effects, the GTCi model captured the largest proportion of pheno-
typic variance for the majority of analysed traits, while the model
considering genomic and transcriptomic effects as independent
(GT) captured the least. As indicated by Haas et al. (2025), correct-
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Fig. 2. Boxplots depicting differences in accuracy of porcine immunity phenotypes prediction between different models: genomic (G), transcriptomic (T), genomic and 
transcriptomic as independent effects (GT), transcriptomics conditioned to genomics on the basis of either the heritability of the trait (GTC) or the heritability of
transcriptomic effects (GTCi), and multiomic (M) models. CRP and HP stand for C-reactive protein and haptoglobin concentrations in serum, respectively.
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Table 5 
Accuracy (mean and 95% confidence interval) of breeding value prediction for pig immunity-related and carcass traits with different models incorporating omics information: 
genomic model (G), genomic and transcriptomic model (GT), genomic and transcriptomic as independent effects (GT), transcriptomics conditioned to genomics on the basis of
either the heritability of the trait (GTC) or the heritability of transcriptomic effects (GTCi).

Traits G model GT model GTC model GTCi model 

Value CI Value CI Value CI Value CI 

Immunoglobulin M in plasma (mg/mL) 0.341 [-0.065,0.631] 0.341 [-0.057,0.612] 0.345 [-0.053,0.622] 0.327 [0.113,0.508] 
Immunoglobulin G in plasma (mg/mL) 0.368 [-0.024,0.685] 0.367 [-0.031,0.684] 0.372 [-0.040,0.689] 0.360 [0.083,0.581] 
Haptoglobin in serum (mg/mL) 0.162 [-0.238,0.474] 0.150 [-0.258,0.504] 0.188 [-0.201,0.505] 0.209 [-0.016,0.417] 
C-reactive protein in serum (lg/mL) 0.165 [-0.168,0.509] 0.178 [-0.155,0.499] 0.181 [-0.154,0.513] 0.182 [-0.061,0.396] 
Phagocytic cells (%) 0.051 [-0.318,0.353] 0.051 [-0.318,0.353] 0.133 [-0.208,0.470] 0.096 [-0.146,0.345] 
Phagocytic uptake (FITC)1 0.100 [-0.264,0.419] 0.100 [-0.264,0.419] 0.046 [-0.312,0.357] 0.049 [-0.200,0.286] 
Leukocytes count (n/lL) 0.204 [-0.145,0.515] 0.171 [-0.194,0.475] 0.203 [-0.158,0.516] 0.207 [-0.046,0.421] 
Lymphocytes count (n/lL) 0.236 [-0.132,0.538] 0.232 [-0.126,0.540] 0.268 [-0.087,0.565] 0.203 [-0.073,0.436] 
Monocytes count (n/lL) 0.064 [-0.267,0.421] 0.051 [-0.294,0.393] 0.064 [-0.282,0.411] 0.155 [-0.076,0.362] 
T helper cells (% of PBMCs)1 0.329 [-0.074,0.655] 0.287 [-0.115,0.638] 0.309 [-0.065,0.649] 0.250 [-0.008,0.493] 
cd T cells (% of PBMCs)1 0.387 [0.022,0.659] 0.351 [0.004,0.642] 0.427 [0.121,0.674] 0.380 [0.179,0.589] 
Cortisol in plasma (nM) 0.273 [-0.123,0.594] 0.282 [-0.093,0.590] 0.285 [-0.093,0.595] 0.271 [0.037,0.468] 
Cortisol in hair (pg/mg) 0.135 [-0.268,0.508] 0.135 [-0.258,0.509] 0.136 [-0.257,0.512] 0.115 [-0.145,0.346] 
Carcass weight (kg) 0.330 [-0.029,0.622] 0.334 [-0.024,0.621] 0.332 [-0.033,0.619] 0.248 [0.049,0.450] 

Abbreviations: FITC = Fluorescein emission; PBMC = Peripheral blood mononuclear cells.

 

ing for redundant information between the genetic and transcrip-
tomic effects generally results in a lower residual variance. Our
results also suggest that the GTCi modification proposed by Haas 
et al. (2025) addresses the overlap between genomic and transcrip-
tomic information more effectively than the GTC and M models.

Both GTC and GTCi models aimed to remove the covariation 
between genomic and transcriptomic effects, but the GTCi model 
corrected on the basis of the estimated heritability of the transcrip-
tomic effects, rather than on the heritability of the trait, as in the
GTC. In fact, the heritability of the transcriptomic effects on the

phenotypes differed notably from the heritability of the trait, 
while it tended to be larger in those traits with low variance of 
transcriptomic effects. Among immunity traits with relevant tran-
scriptomic contribution, the serum HP concentration showed by 
far the highest heritability of transcriptomic effects, indicating that
most of the transcriptomic effects variance on this trait was
explained by additive genetic effects. Conversely, except for T
helper cell abundance and immunoglobulin M concentration that

showed medium the transcriptomic effects on the rest of 
immunity traits were mainly modulated by other sources of vari-
ability, such as environmental or physiological variability, and
had a negligible heritable component.

The M model also tried to correct for redundant information,
introducing a ratio , between the impact of genomic and tran-
scriptomic effects. The amount of variance captured by the M 
model was, however, lower than that captured by GTCi. Despite 
weighting the genomic and transcriptomic effects in the multi-
omics relationship matrix, the M model captured the same propor-
tion of phenotypic variance than considering both effects as
independent (GT), as in fact, the variance of multiomic effects of
M closely corresponded to the weighted sum of transcriptomic
and transcriptomic variances in the GT.

The capability of the studied models to predict the immunity 
traits was analysed in terms of their phenotypic prediction accu-
racy obtained by cross-validation, observing that in general, the 
G model had the lowest accuracy compared to the rest of models, 
while GTCi and M models tend to have the highest ones for most 
of the traits. In general, GTCi and M showed similar predictive 
performance across traits, suggesting certain statistical equiva-
lence between the two iter ative procedures to approach the rela-
tionship between genomic and transcriptomic effects on each
trait. While the limited sample size led to wide and generally
overlapped confidence intervals for these accuracies, significant

(h 
2 
t )

h 
2 
t ,

(r)
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differences were observed when applying Schrauf et al. (2 021)
methodology, i.e. selecting the same test population for all mod-
els at each iteration of the cross-validation. This procedure suc-
cessfully eliminated the variability generated by the random 
selection of the test population  and  allowed  confirming  the
improvement in phenotypic prediction derived from including 
transcriptomic information in the case of white cells (leukocytes, 
monocytes and lymphocytes) counts and the proportion of 
phagocytic cells. In all cases, GTCi significantly outperformed 
conventional GBLUP, and also GTCBLUP for leukocytes, whereas 
M outperformed G only for leukocytes and lymphocytes. Differ-
ences between GTCi and M accuracies were not significant. This 
way, the better fit of models incorporating transcriptomic data 
did not always translate into better phenotypic prediction; prob-
ably, a larger sample size would allow o bserving larger signifi-
cant differences across models. The high accuracy of phenotype
predictions when considering transcriptomic information would
suggest that environmental effects were partially captured by
the transcriptomic effect. Similar increases in accuracy were
reported by Haas et al. (2025) in their study for P and Ca utilisa-
tion, BW gain, feed intake, and feed conversion ratio in quails. 
However, these authors also observed a g reater accuracy of
GTC when compared with the G model. As previously reported
by Perez et al. (2022), the increase in accuracy derived from 
incorporating transcriptomic effects was dependent on the tran-
scriptomic effect contribution to phenotypic variation (i.e. posi-
tively correlated with t2 ). Among the analysed immunity traits, 
a particular increase in accuracy was observed for leukocyte 
and lymphocyte counts, cd T cells and % of phagocytic cells, 
whereas the prediction accuracy did not increase r egarding G
model levels for traits lowly associated with transcriptomic
effects such as cortisol concentrations.

Finally, the accuracy of genetic evaluation was also assessed, 
but no significant differences across models for the accuracy of 
predicted breeding value were reported. Only a suggestive superi-
ority of the accuracy obtained in the GTC for HP and CRP concen-
trations, % of phagocytic cells, lymphocytes count and cd T cells,
and GTCi for monocytes and leukocytes counts and HP and CRP
concentrations was observed. These results are in agreement with
those reported by Perez et al. (2022) in bone mineral density, BW, 
fat percentage and circulating cortisol and triglycerides, who found 
better genomic prediction with GTC than with G models. In any
case, the wide confidence intervals prevented us from drawing
definitive conclusions in this regard.
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Within the model, differences across immunity traits regarding 
the accuracy of genetic evaluation followed the same pattern than 
heritability estimates. This way, traits belonging to adaptive immune 
processes, such as immunoglobulin concentrations or T helper cells 
proportion, presented a high accuracy of genetic evaluation, while 
traits belonging to innate immunity processes (e.g. traits related to 
phagocytosis or monocytes count) had a low accuracy of predicted 
breeding values. The most accurate genetic evaluation was obtained 
for the proportion of cd T  cells,  which  are  i  nvolved in both types of
immunity (innate and adaptive). The cortisol concentrations, not
directly involved in immunity but acting as stress indicators, pre-
sented disparate accuracies and suggesting a higher environmen-
tal effect on the measure of chronic stress (cortisol in hair) than on 
the acute stress (cortisol in plasma). As a whole, genetic evaluation 
accuracies endorse the potential success of a breeding programme 
to improve robustness based on adaptive immunity traits, and partic-
u larly on the abundance of cd T cells subpopulation, a trait previously
remarked as a potential selection criteria for its high heritability
(Ballester et al., 2020, 2023) and links to production performance
(Jové-Juncà et al., 2024; Meng et al., 2021). The present study has 
gone further by testing the potential of transcriptomic information 
to improve the prediction of these immunity traits using different 
modelling strategies. However, the limited sample size did not allow 
to be conclusive regarding the accuracy of the genetic evaluation 
when considering transcriptomic information in the model. More-
over, the present study has focused on piglets’ blood transcriptome 
and immunity status during the transitional sta ge (60 days of age),
in which animals are exposed to several stressors and robustness is
particularly relevant, but transcriptomic profiles are known to vary
across time and tissues (Bryois et al., 2017; Teng et al., 2022). Future 
research should validate these findings in larger sample sizes, differ-
ent populations and other physiological stages. Also, comparing tran-
scriptomic contribution from other tissues functionally related to 
immunity, such as spleen or lymph nodes, would be worthy. Finally, 
the design of targeted panels of functionally relevant transcripts that
may capture most of the transcriptomic contribution to immunity
phenotypes, as reported by Haas et al. (2025) for productive traits 
in quails, remains as an interesting approach for a m ore affordable
prediction of immunity profiles from transcriptomic data.

In conclusion, the addition of transcriptomic information to 
genetic evaluation models improved model fit and phenotypic pre-
diction of pigs’ immunity traits, particularly for traits with a high 
transcriptomic contribution, such as HP concentration, leukocyte 
counts, cd T cells and T helper cells abundances. Furthermore, the 
transcriptome could be used to predict traits that are strongly influ-
enced by environmental factors and are difficult to measure directly, 
such as immune cell subpopulations or the phagocytic index. The 
models that corrected for overlap among omics data layers per-
formed best for most immunity traits, particularly when adjusting 
by the heritability o f the transcriptomic effect and when dealing with
traits with a strong transcriptomic influence. Based on the results
presented in this study, we conclude that the genomic prediction
of immunity traits is feasible and can be substantially improved by
the inclusion and proper modelling of transcriptomic data.
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