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Temperature variability projections remain
uncertain after constraining them to best
performing Large Ensembles of individual
Climate Models

Laura Suarez-Gutierrez1,2,3,6 & Nicola Maher 4,5,6

Changes in temperature variability affect the frequency and intensity of
extreme events, as well as the regional range of temperatures that ecosystems
and society need to adapt to. While accurate projections of temperature
variability are vital for understanding climate change and its impacts, they
remain highly uncertain. We use rank-frequency analysis to evaluate the per-
formance of eleven single model initial-condition large ensembles (SMILEs)
against observations in the historical period, and use those that best represent
historical regional variability to constrain projections of future temperature
variability. Constrained projections from the best-performing SMILEs still
show large uncertainties in the intensity and the sign of the variability change
for large areas of the globe. Our results highlight poorly modelled regions
where observed variability is not well represented such as large parts of Aus-
tralia, South America, and Africa, particularly in their local summer season,
underscoring the need for further modelling improvements over crucial
regions. In these regions, the constrained projected change is typically larger
than in the unconstrained ensemble, suggesting that in these regions, multi-
model mean projections may underestimate future variability change.

To understand how global warming will affect the Earth’s climate,
society and ecosystems, we must not only understand the changes in
the mean climate, but also whether and how climate variability will
change1. Projecting changes in temperature variability is crucial for
understanding potential future changes in extreme events, the range
of temperature conditions that any given region could experience1–4,
and the impacts of these changes on ecosystemdynamics and habitats
(e.g., refs. 5,6). This is because changes in extreme values in a dis-
tribution are affected by changes in the mean, its variance, and the
skewness of the distribution7–9. For example, projected decreases in
winter temperature variability in the northern hemisphere mid-

latitudes result in less frequent cold air outbreaks than expected by
warming alone10. Furthermore, increases in summer temperature
variability in Europe are expected to exacerbate the increases in heat
extremes projected from global warming2–4,11.

Although future changes in temperature variability can have
important consequences, there are large uncertainties in the projec-
tions of how temperature variability will change under warming. The
IPCC AR6 report flagged only medium confidence in changes in the
extratropics and in the winter hemisphere mid-to-high latitudes, with
low model agreement found everywhere else on the globe12. This
uncertainty in the projected estimates of surface air temperature
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variability applies not only to the intensity of the changes, but also to
their sign, with lowmodel agreement on the direction of the variability
change over large areas13.

While overall projections are uncertain, there is some consensus
on how temperature variability will likely change over certain regions.
Variability is projected to increase over the tropical land surface in
CMIP5, single model initial-condition large ensembles (SMILEs), and
17-member Ensemble Simulations of Extreme Weather Events under
Nonlinear Climate Change (ESSENCE) models due to drying soil in the
southern hemisphere and increases in atmospheric variability in the
northern hemisphere and thermal advection1,14,15. In Europe, projected
reductions in winter variability are related to a lower land-sea tem-
perature contrast16 and a decrease in horizontal temperature gradients
and therefore advection17, while projected increases in summer
variability2 relate to changes in soil drought frequency3,18, regions that
lose summer snowcover19, and changes in the surface heatbalance16. In
the mid-latitudes, in CMIP5 and ESSENCE, variability is projected to
decrease due to decreases in meridional temperature gradients and
sea ice loss1,14, with 60N the latitude where the largest changes in
fractional snow cover occur. The 60N latitude is also a region of
decreasing variability, particularly in winter20. In the Arctic, a study
using SMILEs shows that all models have increased temperature
variability as long as sea ice exists, with variability decreasing once sea
ice is lost15. This decrease can be constrained by choosing models that
represent sea ice well, which causes the magnitude of the variability
decrease to be larger than in unconstrained models21.

Daily temperature variability projections follow a similar pattern
to interannual variability, with a projected reduction in variability in
northern mid-latitudes and projected increases in low latitudes. In the
northern hemisphere summer, this reduction in the high latitudes is
only in North America, the high Arctic, and Africa with increases
elsewhere4,22. Although in general there are large regions where evi-
dence on a broad scale shows agreement on the projected sign of the
change, models can still have large differences in themagnitude of the
change, demonstrating high uncertainty, particularly on an annual
scale23.

It remains, however, unclear whether climate models disagree on
the direction and intensity of temperature variability changes because
they do not adequately simulate present-day temperature variability,
or whether they disagree due to intrinsic model differences in how the
drivers of temperature variability change in a future climate. There-
fore, a possible hypothesis is that the ability of models to project
future temperature variability depends on their ability to simulate
historical variability. If this were true, subsampling models based on
their historical performance in capturing observed variability would
yield reduced uncertainty in future projections. This means that by
constraining projections to models that best match observations and
agree on their historical variability representation, the range of future
variability change projections across best-performing models would
be reduced, and thus be less uncertain. In contrast, the alternative
hypothesis is that different models’ projections of future temperature
variability depend not simply on past temperature variability, but
rather on how the Earth system as a whole evolves over different
regions in eachmodel. If this were true, subsamplingmodels based on
their historical performance would not necessarily reduce future
uncertainty, as long as those historically best-performing models still
exhibit diverging behaviors in their representation of future tem-
perature variability changes. In this study, we address these questions
by, first evaluating in a multi-model super ensemble of SMILEs which
models can adequately represent observed regional variability under
current climate conditions. Second, we subsample the super ensemble
to those adequate models, per season and region, and compute con-
strained future projections for regional temperature variability. Third,
we compare the full ensemble with this subset of the ensemble to
determine if the uncertainty in our projections is lowered by

constraining them to only models that adequately capture historical
variability.

There has been a suite of work that aims to understand the best
way to weight and/or subsample climate model output (e.g.,
refs. 24–27). These studies typically consider two important factors:
model performance and model independence24. For individual appli-
cations, subsampling for models that adequately represent observa-
tions can lead to a reduction of errors28. However, when considering
future change, model skill has been found to only relate weakly to the
projected change, highlighting that past model performance does not
guarantee better future projections29. Climate models are also known
to not be independent of each other30,31, leading tomulti-modelmeans
that are not created from independent samples. Studies such as24 have
shown that weighting by a combination of performance and inde-
pendence can increase the skill of projections by up to 17%, high-
lighting the added value of using subsampling and constraining
methods. The SMILEs used in our analysis are largely independent (as
found by comparing the family trees in refs. 24,30) across CMIP5 and
CMIP6 models (excluding GFDL-SPEAR-MED, which has not yet been
included in previous work on this topic). Therefore, we limit the super-
ensemble constraining to performance-only metrics. We note that
some of the models used here reflect several generations of model
development and are thus not independent, e.g., CanESM2 and
CanESM5, CESM-LE and CESM2-LE, and MPI-GE5 and MPI-GE6, which
likely share model features32. This study provides, to our knowledge,
the first performance-constrained projections of temperature varia-
bility and its change globally.

Furthermore, previous work assessing variability changes typi-
cally confounds model differences and internal variability, by using a
multi-model mean (e.g., ref. 1), or uses a single SMILE ignoring
potential model differences3, or uses several SMILEs, but does not
consider model performance when assessing model uncertainty (e.g.,
ref. 13). SMILEs themselves are an invaluable tool for assessing pro-
jections of temperature variability3,12,13,15,33. Without SMILEs, long time
periods are needed to sufficiently sample temperature variability.
These long time periods, by necessity, encompass a range of warming
levels above pre-industrial conditions, thus potentially experiencing
changes in the variability itself. SMILEs, however, allow for tempera-
ture variability tobe composited fromall ensemblemembers at a given
year (or period of years), therefore yielding time-varying (or global-
warming level varying) estimates of temperature variability that are
not confounded by potential underlying changes in variability.

SMILEs also allow for a more robust evaluation of model perfor-
mance and comparison against observations, determining perfor-
mance by assessing whether observations fall within the range of
possible climate outcomes, now better-sampled by large ensembles of
climatemodel simulations33. Thus, SMILEs allow us to evaluate climate
model estimates of internal variability in the historical period more
robustly than ever before. In this study, we make use of these advan-
tages and build on previous work by employing and expanding the
rank-frequency model evaluation framework of ref. 33 to assess how
well models simulate historical summer and winter temperature
variability. This rank-frequency evaluation framework, which resem-
bles probabilistic forecast verification techniques in the climate pre-
diction literature34–36 is basedonassessingwhether observations occur
across all ensemble ranks (i.e., the position an observation takes
among the sorted ensemble members for a given time step) of an
SMILE with comparable frequency. We then use the results of this
region- and season-based evaluation to constrain projections of
regional temperature variability for both seasons atfivewarming levels
above pre-industrial conditions.

The aims of our study are threefold:
• Evaluate how well each SMILE captures historical temperature
variability in both summer and winter seasons over individual
regions.
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• Assess model agreement in the projections of temperature
variability across all SMILEs for both the sign of the change and
the spread of the ensemble.

• Constrain the projections using the SMILEs that performwell over
the historical period, and assess whether this provides an increase
in model agreement for future projections.

Results
Temperature variability evaluation
We begin by evaluating model performance in capturing temperature
variability over the historical record. For this, we apply an expanded
version of the rank-frequency model evaluation framework presented
in ref. 33 to detrended and non-detrendedmonthlymean temperature
anomalies in 11 SMILEs compared to historical observations, for 9
Ocean and 24 Land regions in both the December, January, February
(DJF) and June, July, August (JJA) seasons. We expand the rank-
frequency evaluation framework in ref. 33 by incorporating two for-
mally defined evaluation criteria (e.g., Fig. 1). This rank-frequency
evaluation framework assesses model performance based on a simple
principle: whether observations occur uniformly across the whole
ensemble spread, or in other words, across all ensemble ranks. Tradi-
tionally, this has been assessed in the ensemble forecasting literature
by evaluating rank histogram flatness35,37. However, the fact thatwe are
evaluating free-running uninitialised simulations against a relatively
short observational record means that the internal variability in the
climate systemmay be insufficiently sampled on these time scales, and
thus rank histograms may appear to be not flat, even for perfectly
performing models.

To overcome this, we assess the flatness of the rank histogram
using a perfect-model rank range test, which does not make any
assumptions about the shape of the underlying distribution and takes
into account both ensemble size and serial correlation. This perfect-
model range is constructedby treating each ensemblemember in each
SMILE as if it were observations, and calculating the resulting spread of
model rank histograms. This provides a distribution of rank histo-
grams that reflect perfect-model behavior for the record length con-
sidered here, yet may indeed not be perfectly flat. This perfect-model
rank range gives us a baseline of possible deviations from flatness for
the observations rank histogram that could occur due to insufficient
internal variability sampling or other factors. Therefore, as long as the
observations rank histogram is within the perfect-model rank histo-
gram range, non-uniformity in the observations rank frequencies
could arise from insufficient variability sampling and does not neces-
sarily prove that the considered model does not capture observations
adequately. We use this perfect-model rank range to assess model
performance for spatially averaged metrics. Thus, when the observa-
tional rank histogram iswithin theperfect-model rankhistogramrange
(e.g., as for detrended and non-detrended L8 examples in Fig. 1a, e),
themodel captures the variability in regionally averaged temperatures
adequately for the region and season considered (Criteria 1; see
“Methods” for further details).

This first evaluation criteria based on spatially aggregatedmetrics
(e.g., time series and histograms in Fig. 1a–h), is complemented by a
second grid-cell based evaluation criteria (e.g., Fig. 1i, j), to account for
biases at the grid-cell level that may be smoothed or compensated by
spatial averages. This second test follows similar uniform rank fre-
quency principles, but is simplified to allow for a computationally
efficient grid-cell level performance assessment. Instead of assessing
the full spectrum of ranks against a perfect-model range, we assess
only the minimum and maximum ranks and central rank sections
against fixed frequencies assumed to be a reflection of uniform rank
frequency distribution. Thus, this test assesses whether anomalies at
the grid-cell level show model biases by observations clustering
around the center bounds of the simulated ensemble spread or falling

outside of its limits with too high frequencies (Criteria 2; see “Meth-
ods” for further details).

These two types of biases would equate to non-flat rank histo-
grams. For variability overestimationbiases,whenobservations cluster
in the center of the ensemble spread, rank histograms would exhibit a
moundor convex shape (e.g., detrended L12 (g) or bothdetrended and
non-detrended L20 examples (d, h) in Fig. 1). For variability under-
estimation biases, when observations fall too frequently outside of
both ends of the ensemble spread, rank histogramswould exhibit a ’U’
or concave shape (e.g., detrended L19 example in Fig. 1f). For obser-
vations falling too frequently outside of only one side of the ensemble
spread, this could indicate an asymmetrical variability under-
estimation bias (isolated most clearly for detrended data) or a bias in
the forced response (i.e., too strong or too weak warming signal in the
model compared to observations, most clearly visible for non-
detrended data). In this case, rank histograms would exhibit a slan-
ted shape (e.g., non-detrended L19 (b) and L12 (c) examples in Fig. 1).

Therefore, the two evaluation criteria in this rank-frequency eva-
luation framework are as follows:

• Evaluation Criteria 1. Perfect-model rank range regional level
performance: the observational rank histogram for regionally
averaged temperatures must lie within the perfect-model rank
range across all ranks (with a maximum 10% deviation).

• Evaluation Criteria 2. Threshold-based grid-cell level perfor-
mance: at least 50% of the region’s grid-cells must be unbiased,
meaning, at the grid-cell level, (a) observations do not cluster
excessively within the central percentiles of the ensemble (i.e.,
observations do not occur with more than 80% frequency within
the central 75th percentile ensemble bounds, indicative of
variability overestimation bias) and (b) fall outside the ensemble
range too frequently (i.e., observations do not occur with more
than 8% frequency outside of the ensemble spread, indicative of
variability underestimation bias for detrended data).

Only when both criteria are fulfilled do we determine that the
model in question offers an adequate performance for the region and
season considered, and is thus selected to be part of the constrained
ensemble for that particular region and season. To create our
performance-constrained ensemble based on how well the models
represent the variability in historical observations, and tominimize the
effect of potential model biases in the representation of forced chan-
ges and warming trends on our evaluation, we base this constraint on
an evaluation of detrended temperature data (e.g., Fig. 2a; right col-
umn in Fig. 1). However, for users interested in assessing model per-
formance in capturing both temperature variability and forced
changes, we also provide the full evaluation for non-detrended tem-
perature data (e.g., Fig. 2b; left column in Fig. 1). We also provide the
full results of this evaluation, including evaluation time series and rank
histograms and results for Criteria 1 and the grid-cell level assessment
maps for Criteria 2 for all 11 SMILEs separately, for the DJF and JJA
seasons and for both detrended and non-detrended temperatures
against GISTEMPv4 and ERSSTv5 observations, respectively for land
and ocean regions, in the Supplementary Information Section 1.

The results summarized in the temperature variability Evaluation
Matrices (Fig. 2) reflect both evaluation criteria. Numbers mark the
percentage of grid cells in the region that exhibit an adequate,
unbiased representation of observations. The color shading marks
cases that fulfill Criteria 1 (with the observations rank histogramwithin
the perfect-model range). For the regions and seasons that also fulfill
Criteria 2 (at least 50%of the grid cells are non-biased) and are deemed
to be adequately simulated by a given model both at regionally-
aggregated and at the grid-cell level, the fields are highlighted in green
and considered adequately captured and part of the constrained
ensemble. When only Criteria 1 is fulfilled (the rank of the spatially
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aggregated metric fits the perfect model range, but less than 50% of
the grid cells are unbiased) the fields are highlighted in gray and
considered inadequate.

Our evaluation shows that some regions are systematically not
well represented (Fig. 2a) by all or most models across both seasons:
e.g., Arctic (O1) and Antarctic (O2) Oceans, for which Criteria 1 is ful-
filled, indicating adequate performance for spatially averaged

temperatures, but exhibit unbiased area fractions below 10% of the
region’s grid cells for most SMILEs. Other regions where most SMILEs
offer an inadequate representation of temperature variability are the
Southern Ocean (O9), the Indian Peninsula (L20), and Northern Aus-
tralia (L22), as well as the Amazon basin (L6), Northern (L12) and
Eastern Africa (L14), and Southern Australia (L23), all specifically in the
local summer season. Our results also show that certain areas of the
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world are systematically well captured by most models, especially in
the local winter season, namely North America (L1–L4), Southern
South America (L8), Europe and Northern Africa (L9–L11) and North
and Central Asia (L16–L19). We also find that local winter seasons are
generally simulated better by most models more often than local
summer seasons. This may be because models struggle to simulate
summer convective processes or land processes and land-atmosphere
interactions more than they struggle to simulate large-scale winter
circulation. Lastly, it is also worth noting that some of the regions that
our evaluation highlights as systematically misrepresented in most
models are regions with known widespread observational data quality
issues, such as the SouthernOcean (O9) orNorthern and EasternAfrica
(L12, L14)38–40. This lack of sufficient temporal and spatial observational
coverage could yield a potentially unreliable model performance
assessment over these areas.

Our assessment also reveals some biases common across most
models (Supplementary Information). Over land, most models show a
marked overestimation of temperature variability over the tropics,
especially over the Amazon basin, South Asia and Australia, both inDJF
and JJA, and present for both detrended and non-detrended data.
GFDL-SPEAR-MED and CESM-LE produce a substantially less biased
temperature representation over these regions. Variability under-
estimation biases are relatively rare over land for most models,
potentially due to our relatively conservative threshold for this bias to
account for varying ensemble sizes (see “Methods” for further details).
Variability underestimation biases are much more commonly found
over the oceans, especially once the confounding effect of forced
signal biases is removed by basing the evaluation on detrended data.
These variability underestimation biases over the oceans occur most
commonly over the Eastern Pacific and North Atlantic oceans and near
sea-ice edges in both polar oceans. In contrast, variability over-
estimation biases are also commonly found over the ocean for most
models, especially over the Central Pacific and Southern Oceans, and
both Polar Oceans, for which all models perform poorly across both
seasons.

Strikingly, the Top 3 best performing models in our framework
simulate 47 to 40 regions adequately, from a total of 66 regions across
the 9 ocean regions and 24 land regions for the two seasons. The Top 3
best performing models in our framework in terms of highest number
of adequately simulated regions (in brackets) are: CESM-LE (47),
CESM2-LE (43), GFDL-SPEAR-MED (40). The Top 3 best performing
models based on non-detrended data (Fig. 2b), meaning the models
offering the best general model performance for both variability and
forced changes simultaneously, are CESM-LE (33), CESM2-LE (28), and
MPI-GE5 (26). SMILEs most affected by forced response biases, as in
exhibiting the largest decreases in adequately simulated regions using
non-detrended versus detrended data, are CSIRO-MK3.6 (with 33
adequately simulated regions with detrended data to 10 with non-
detrended data), GFDL-SPEAR-MED (40 to 21 adequate regions), and
ACCESS (28 to 11 adequate regions). This performance drop indicates
that these models misrepresent forced changes over large areas; even

though some, such as GFDL-SPEAR-MED,may capture the variability in
historical temperatures adequately.

The evaluation of non-detrendeddata (Fig. 2b and Supplementary
Information Section 1) reveals generally worsenedmodel performance
over most ocean regions except the Northern Atlantic Ocean (O3) and
over most generally poorly-model land areas, such as Central and
South American (L4, L6, L7) and most of Asia and Oceania (L17–L24).
This indicates thatmodels present ample biases in their representation
of forced changes over these areas, in addition to potential variability
biases. However, in some limited cases, there may appear to be higher
agreement between non-detrended data and observations than for
detrended data (e.g., for L12 in JJA, as in Fig. 1 for CanESM5). This
improved agreement could arise from the fact that misrepresented
forcing signals can counteract commonly-found variability over-
estimation biases, e.g., observations warming faster than the model
ensemble and thus crossing the ensemble spread from its lower to
upper sections in the historical period, yet remaining within the
ensemble limits due to an overestimation of variability (as in L12 for
Fig. 1 or in the idealized example in Fig. 1f in ref. 33). This is just an
example of how forced response biases may confound variability
assessments. To avoid these confounding effects, we base our con-
straint criteria exclusively on detrended data. Note, however, that,
particularly for observations, detrending may not perfectly remove all
forced changes (see “Methods” for further details) and may influence
potential discrepancies between observed and simulated detrended
data. Users that seek an assessment of which models best capture real
world behavior as observed, including both variability and forced
signal responses simultaneously, may again refer to this non-
detrended evaluation (Supplementary Information Section 1
and Fig. 2b).

Constrained vs. unconstrained temperature variability
projections
The projections of temperature variability in each SMILE for all 5
warming levels and each region for DJF (Fig. 3) and JJA (Fig. 4) show
that, typically, the multi-ensemblemean (MEM) exhibits the same sign
of the change with increasing warming level in the full unconstrained
ensemble as in the constrained ensemble (same sign of change as
compared to the first bar which is variability at 1 degree of warming).
Beyond the sign of the change, the absolute magnitude of the MEM
temperature variability is qualitatively lower or similar in the con-
strained ensemble as in the unconstrained ensemble (see difference
between colored and black solid lines). The exceptions where varia-
bility is larger in the constrained ensemble are Central North America
(L3), Northern Asia (L16), Central Asia + Tibetan Plateau (L18), Eastern
Asia (L19), South Pacific (O7), Indian (O8) in DJF and North Atlantic
(O3), South Pacific (O7) in JJA. These results indicate that the MEM is
generally a good representation of the sign of the change, also in the
full unconstrained ensemble, but that the magnitude of the variability
itself tends to be overestimated in the full ensemble as compared to
the constrained ensemble. Additionally, while the constraint does not

Fig. 1 | Example of the rank-frequency evaluation framework for June, July,
August (JJA) temperatures in CanESM5 against GISTEMPv4 observations. Time
series and rank histograms for the evaluation of spatially averaged temperatures
(Criteria 1) for non-detrended (a–d) and detrended data (e–h). Time series show
ensemble maximum and minimum (lines) and central 75th percentile ensemble
spread (shading) against observations (dots). Rank histograms show the observa-
tions rank frequency accumulated for 3-rank bins (bars), the running mean rank
frequency over a centered n/5 rank window (lines; for 1 to n−1 ranks) and the
absolute frequencies of rank 0 and n (crosses), with n the number of ensemble
members, for observations (color) and perfect model rank range (gray). If obser-
vations rank frequency iswithinperfect-model range for all rankwindows, Criteria 1
is met (highlighted by green star at the top right if Criteria 1 is met; if not, by a red
cross). Percentages at the top left show the frequency of regionally averaged

observations occurring above (red) or below (blue) ensemble limits, or clustering
within the central 75th percentile range (gray), analogous to the grid-cell evaluation
in Criteria 2. Center maps show the grid-cell evaluation of temperature variability
(Criteria 2; i non-detrended temperatures, j detrended temperatures). Gray
hatching (variability overestimation bias) shows observations clustering within the
central 75th percentile with more than 80% frequency. Red and blue shading
(variability underestimation bias) shows observations falling beyond the ensemble
maximum or minimum, respectively, with more than 8% frequency. Dotted areas
represent ocean grid cells or where observations are missing and therefore
excluded. Bottom maps show region codes for land (k) and ocean (l) regions.
Results for all 11 Single model initial-condition large ensembles (SMILEs) can be
found in the Supplementary Information (SI).
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change the sign of the projected change in temperature variability, it
can help to reduce the uncertainty in these changes, reducing the
potential range of magnitudes of the change, particularly in regions
that are poorly represented in climate models.

How this multi-model spread or uncertainty in the magnitude of
the change (errorbars in Figs. 3 and 4) changes between the con-
strained and unconstrained ensembles is somewhat complex. The
errorbars themselves show the multi-model ensemble spread, and are
thus determined by the end members of the multi-model ensemble.

The interquartile range of the multi-model ensemble is shown in the
wider bars. By design, the errorbars only decrease when the end
members of the ensemble are removed. Therefore, only if our eva-
luation proves the more extreme model members to not perform
adequately, and thus removes them from the constrained ensemble,
does the uncertainty in the projections decrease. This becomes more
likely to happen by chancewith the removal ofmoremodels, but is not
a predetermined nor expected outcome. Generally, constraining the
projections to best-performing models yields a decrease in model

Fig. 2 | Temperature Variability Evaluation Matrices. Temperature Variability
Evaluation Matrix for different ocean (O1–O9) and land (L1–L24) regions for
December, January, February (DJF) and June, July, August (JJA) months for the
11 single model initial-condition large ensembles (SMILES) for detrended (a) and
non-detrended (b) temperature anomalies. Shading marks the fulfillment of Cri-
teria 1, that the rank histogram of spatially averaged observations falls within the
perfect-model rank range. Numbersmark the percentage of grid cells in the region
that exhibit an unbiased representation of monthly surface air temperature (TAS)
GISTEMPv4 observations over land and sea surface temperature (SST) ERSSTv5
observations over the oceans. An unbiased simulation at the grid cell level corre-
sponds to observed monthly values exceeding the ensemble maxima or minima
less than 8% of the months respectively, and occurring with the central 75th

percentile ensemble bounds nomore frequently than 80% of the months. A region
and season are considered to be adequately simulated by a given model when it
fulfils Criteria 1 (green and gray shading) and Criteria 2 (exhibiting at least 50% of
the grid cells are unbiased).When both criteria are met the field is shaded in green,
when only Criteria 1 is met the field is shaded in gray (see “Methods” for further
details on the evaluation framework). The four bottom rows show the total number
of regions that each model simulates adequately (TOTAL), as well as per season
(T_Season) and across ocean (T_Ocean) and land (T_Land) regions, respectively. The
last two columns show the number of models that adequately simulate a region
per season. Regions for which less than 3 SMILEs offer adequate simulations are
highlighted in red.
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spread, thus an increase in model agreement and improved (as in less
uncertain) projections. For regions where substantially fewer models
are used in the constrained ensemble (6 or less), the model spread
decreases substantially, as seen for example for the Amazon (L6) in
both seasons or Southern Australia (L23) in DJF or the Tropical Pacific
Ocean (O6) in JJA. However, this is not always the case, as seen in North
Atlantic (O3) in DJF and Western North America and Central North
America (L2 and L3) in JJA where the constrained ensemble consisting
of 3 and 6 adequately performing models respectively has an almost
identical spread as theunconstrained 11-model ensemble.Wenote that
this exception is, albeit interesting, rare. Over several regions, the
constrained projections indeed show an increase in model agreement,
even for a large number of selected best-performing models. This can
be seen for example in Northern Europe (L9) and Central North
America (L3) in DJF with 8 and 9 models respectively included or in
Northern Asia (L16) and Southern Australia (L23) in JJA both with 8
models included. These results indicate thatperformance constraining
can indeed decrease the uncertainty in future variability projections,
although this uncertainty is not eliminated completely, with decreased
yet substantial remaining multi-model spreads in the constrained
ensemble for most adequately modeled regions and uncertainties
remaining large over key, poorly-modeled regions.

The magnitude of the temperature variability at 1 °C (Fig. 5; DJF &
Fig. 6; JJA—left column panels) in both seasons is typically lower in the
constrained compared to the full ensemble also at the grid-cell level,
except for in the northern hemisphere extratropics in DJF. This high-
lights the improved representationof thepresent day variability, as the
lower variability in the constrained ensemble over land is in better
agreement with observations, except for again in the northern hemi-
sphere extratropics in DJF (Fig. 7). We note that the variability over the

ocean shows little improvement in the constrained ensemble, and
tends to be overestimated in DJF and underestimated in JJA. While the
variability itself is lower in the constrained ensemble, the change in
variability from 1° to 3 °C of global warming increase (Fig. 5; DJF & Fig.
6; JJA—second column panels) tends to be larger in the constrained
ensemble compared to the unconstrained. In particular, the variability
in the constrained ensemble is much larger in both seasons over
Northern South America and is somewhat larger over central Africa,
Australia, and the extratropical Indian Ocean in JJA. The change in
variability itself in both ensembles is typically positive in sign except
for most of the northern hemisphere extratropical and higher latitude
land masses and parts of the ocean in DJF in agreement with previous
work1,2,12,14–21.

Over three key areas that are typically poorly represented inmany
climate models, namely Australia & South-East Asia, South America,
and Africa (Figs. 5 and 6), temperature variability is overestimated at
the 1 °C warming level as compared to observations (Fig. 7). This
overestimation, while present in both seasons, is largest in the local
summer: for Australia and central SouthAmerica in the austral summer
(DJF), and larger in Northern Africa in JJA. This overestimation, while
still present, is smaller in the constrained ensemble (Fig. 7). While the
mean estimate of temperature variability is overestimated, the pro-
jected variability change from 1–3 °C is typically larger in the con-
strained ensemble over these regions. This overestimation of the
variability itself at 1 °C and underestimation of the change from 1 °C to
3 °C manifests as larger variability in the full ensemble at 3 °C than the
constrained ensemble in these regions (Fig. 7 left panels). This implies
that the absolute value of the variability at 3 °C is overestimated in the
full ensemble, but the change in variability may be underestimated,
meaning that the interpretation of results could be biased in either

Fig. 3 | Multi-ensemble mean December, January, February (DJF) temperature
variability defined as the standard deviationover each region at eachwarming
level for both the full ensemble (black) and the constrained ensemble (color).
Results are shown relative to the variability at 1 degree of warming in the full
ensemble. Errorbars show the full model spread (i.e. the end members of each

ensemble), with the fatter errorbars highlighting the 25th and 75th percentiles. The
number of models that accurately represent observed variability are shown in the
titles. Note we choose to exclude the polar oceans from these plots due to issues
around the ice edges.
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Fig. 4 | Multi-ensemble mean June, July, August (JJA) temperature variability
defined as the standard deviation over each region at each warming level for
both the full ensemble (black) and the constrained ensemble (color). Results
are shown relative to the variability at 1 degree of warming in the full ensemble.
Errorbars show the fullmodel spread (i.e. the endmembers of each ensemble),with

the fatter errorbars highlighting the 25th and 75th percentiles. The number of
models that accurately represent observed variability are shown in the titles. Note
we choose to exclude the polar oceans from these plots due to issues around the
ice edges.

Fig. 5 | The difference between the full and constrained ensembles in Decem-
ber, January, February (DJF). a Temperature variability defined as the standard
deviation over each region at 1 °C averaged across the full ensemble,b temperature
variability at 1 °C averaged across the constrained ensemble, c difference between
(a) and (b), d difference in temperature variability between 3 °C and 1 °C averaged
across the full ensemble, e difference in temperature variability between 3 °C and
1 °C averaged across the constrained ensemble, f difference between (d) and (e),
g model agreement on the sign of the change (red = agreement, white =

disagreement) in the full ensemble,hmodel agreement on the signof the change in
the constrained ensemble, i difference between (g) and (h), j model agreement in
the magnitude of the change (standard deviation across the full ensemble in the
difference in temperature variability between 3 °C and 1 °C), kmodel agreement on
the magnitude of the change in the constrained ensemble, l difference between (j)
and (k) (shown as a percentage of the standard deviation (STD) of the full
ensemble; j). Note in a and b two colorbars exist one over the ocean (purple) and
one over the land (orange).
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direction depending on whether one computes the actual value of
future variability or the value of the future change in variability. This is
particularly true over South America in both seasons and central and
South Africa and Australia in JJA, emphasizing that our projections of
increased temperature variability and consequently temperature
extremesmay be underestimated in these poorly represented regions.

While we cannot assess whether the future projections are more
realistic in the constrained ensemble compared to the full ensemble, as
we do not have observations of the future, we can compare the pro-
jections with those from the most realistic model over these poorly
modeled regions in the historical period. CESM2 is one of the two
models that best represent Australia & South-East Asia (L21–23), South
America (L6–8), and Africa (L12–16; the other being CESM-LE), with 15
“good performances” out of 22 across both regions and seasons. By
using this model as a proxy for possible future observations, we can

compare the differences at 3 °C of warming between the full and
constrained ensemble, the constrained ensemble (excluding CESM2),
and CESM2 (Fig. 8; see Supplementary Information Figs. 3.1 and 3.2 for
a spatially aggregated comparison across all regions). We find that,
except for South America (where CESM2-LE fails to capture historical
variability according to our evaluation for L6 and L7) and Africa in DJF
the constrained estimate is closer to CESM2 (our “good model”) than
the full ensemble, tentatively suggesting that our future projections
might be more realistic in the constrained ensemble compared to the
full ensemble.

Finally, we assessmodel agreement in twoways. First, we consider
agreement on the sign of the change. We find some patches of
improved model agreement on the sign of the temperature variability
change (Figs. 5 and 6, when panel i is blue) in India and Australia in DJF
and small parts of South America, Africa and all of northern Australia in

Fig. 6 | Thedifference between the full and constrained ensembles in June, July,
August (JJA). aTemperature variability defined as the standarddeviationover each
region at 1 °C averaged across the full ensemble, b temperature variability at 1 °C
averaged across the constrained ensemble, c difference between (a) and (b),
d difference in temperature variability between 3 °C and 1° averaged across the full
ensemble, e difference in temperature variability between 3 °C and 1° averaged
across the constrained ensemble, f difference between (d) and (e), g model
agreement on the sign of the change (red = agreement, white = disagreement) in

the full ensemble, hmodel agreement on the sign of the change in the constrained
ensemble, i difference between (g) and (h), jmodel agreement in themagnitude of
the change (standard deviation across the full ensemble in the difference in tem-
perature variability between 3 °C and 1 °C),kmodel agreementon themagnitudeof
the change in the constrained ensemble, l difference between (j) and (k) (shown as
a percentage of the standard deviation (STD) of the full ensemble; j). Note in a and
b two colorbars exist one over the ocean (purple) and one over the land (orange).

Fig. 7 | Comparison of the full and constrained ensembles at 1 °C with obser-
vations. Observed estimate of temperature variability defined as the standard
deviation across the observed time series pooling all 3 months of data (a: Decem-
ber, January, February; DJF, d: June, July, August; JJA). Full ensemble estimate of
temperature variability defined as the standard deviation at 1 °C of warming minus
the observed estimate (b: DJF, e: JJA). Constrained ensemble estimate minus the

observed estimate (c: DJF, f: JJA). Note the observations have been detrended using
a secondorder polynomialfit. Observations are taken fromERSSTv5 over the ocean
andGISSover the land as described in the “Methods”. Note in a andb two colorbars
exist one over the ocean (purple) and one over the land (orange). Differences over
the ocean and land also have different colourscales shown by the colorbars on the
right hand side of the plot.
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JJA. Next, we assess model agreement on the range of potential mag-
nitude of the change. This is assessed by taking the standard deviation
across the multi-model ensemble constituted by each model’s mean
change in temperature variability. Regions with high uncertainty in the
magnitude of projected temperature variability change (Figs. 5 and 6j,
k—darker green colors) in both seasons are the Tropical Pacific Ocean,
Southern Ocean, Northern South America and the northern Hemi-
sphere extratropical land surface. We find that the uncertainty in the
magnitude of the change is similar or larger in the full ensemble
compared to the constrained ensemble, except for in patches of the
ocean. Regions that show substantially less uncertainty in the magni-
tude of the change in the constrained ensemble are South America,
India, Australia & South-East Asia, the west Pacific Ocean and Southern
Ocean in DJF and north South America, Africa, parts of Australia and
the Southern Ocean in JJA. Typically, regions where model agreement
on the sign of the change is substantially improved are regions where
the constrained ensemble includes many fewer models than the full
ensemble. Note, however, that this is not a predetermined result. We
tested the change in the standard deviation (understood as the
uncertainty in themagnitude of the change) in a constrained ensemble
of either 4 or 6 randomly selectedmodels by sampling 1000 times, and
find the standard deviation decreased approximately 2/3 of the time
and increased 1/3 of the time.

In summary, our results highlight that constraining by historical
model performance in the past does not necessarily improve model
agreement in the future. However, while the agreement on the sign of
the change is not drastically improved by the constraint, the spread of
projections and hence the uncertainty in the variability change can be
limited using this method. This shows that selecting models that best
simulate historical variability can still beuseful, albeit not a silver bullet
that can be used to rectify all model differences and uncertainty in
future temperature variability change projections.

Discussion
In this study we produce projections of future temperature variability
based on simulations from the available SMILEs, and constrain them to
those SMILEs that best capture historical temperature variability in
observations over different regions and seasons. Thiswork expands on
previous rank-frequency evaluation frameworks33 by including two
formally designed evaluation criteria. These criteria determine whe-
ther models adequately capture historical observations, considering
the limited sampling of internal variability allowed by the relatively
short observational record, by implementing a perfect-model evalua-
tion set up. This novel and rigorous variability evaluation enables end-
users of these SMILEs to select the best-fitting model for their region
and season of interest. Furthermore, it provides a frame of multi-
model reference, as many large ensemble studies are currently still
based on one single model or on a very limited number ofmodels. We
urge caution in using projections from a single model, as we find that
some widely used models show a rather poor performance in captur-
ing observed temperature variability and observed forced changes,
and should therefore be used with care.

Our evaluation reveals CESM-LE, CESM2-LE andGFDL-SPEAR-MED
as theTop 3best performingmodels in capturing isolated temperature
variability (i.e., using detrended temperature data as base for the
evaluation). The Top 3 best performing models capturing both tem-
perature variability and forced changes in the historical record are
CESM-LE, CESM2-LE, and MPI-GE5. We also find that temperature
variability is systematically not well represented by all or most models
across both seasons over large areas, e.g., the Arctic (O1), Antarctic
(O2), and Southern (O9) Oceans, or the Indian Peninsula (L20) and
Northern Australia (L22) for both seasons, as well as the Amazon basin
(L6), Northern (L12) and Eastern Africa (L14), and Southern Australia
(L23) specifically in the local summer season. In contrast, some areas
are systematicallywell captured bymostmodels, especially in the local

Fig. 8 | Difference between the full and constrained ensembles over poorly
represented land regions. Full ensemble estimate of temperature variability
defined as the standard deviation over each regionminus the constrained estimate
at the 3 °C warming level (left 2 columns; a, b, e, f, i, j). The right two columns
(c, d, g, h, k, l) show the same thing but with the CESM2 estimate of variability

minus the constrained ensemble (with CESM2 excluded). Shown for poorly
represented land regions, Australia and South-East Asia (top row; a–d), South
America (middle row; e–h), and Africa (bottom row; i–l) for both June, July, August
(JJA; left) and December, January, February (DJF; right).

Article https://doi.org/10.1038/s41467-025-67005-y

Nature Communications |          (2026) 17:314 10

www.nature.com/naturecommunications


winter season, e.g., North America (L1–L4), Southern South America
(L8), Europe and Northern Africa (L9–L11) or North and Central Asia
(L16–L19).

Our results highlight that models typically overestimate tem-
perature variability in the current climate. In some regions, particularly
in South America in both seasons, and parts of Africa, Australia in JJA,
they may, however, underestimate the projected temperature varia-
bility change. While the uncertainty in the sign of the change is gen-
erally unchanged by constraining the ensemble, the performance-
based constraint presented here can help reduce the ensemble spread
and reduce the range of possible magnitudes of the projected change,
providing a performance-constrained estimate of both the projected
change and the model uncertainty around it. This improvement in
model agreement in both the sign and magnitude of the change typi-
cally (but not only) occurs in regions where themodels underperform,
and hence the constrained ensemble contains many less members
than the full ensemble (e.g. Australia, Africa, and South America). In
these regions we find that temperature variability itself is typically
overestimated in present day climate; while the constrained ensemble
provides a larger projected change in variability (Figs. 5 and 6). This
means that variability projections that ignore model performance in
capturing current variability yield underestimated variability increases
in these regions, and thus may underestimate increases in warm
temperature extremes compared to the performance-constrained
ensemble. Furthermore, the overestimation of current climate varia-
bility combined with underestimation of its increase suggests that our
models may overestimate present day potential extremes This has
implications for planning for extreme events. These results are vital for
producing robust future projections of extremes and to inform ade-
quate adaptation strategies.

We highlight that models perform more adequately in the local
winter season. This is cause for concern, as for many regions the local
summer season that is less well simulated reflects the period when
temperature extremes and temperature variability changes are likely
to be the most impactful. The set of regions and seasons where tem-
perature variability is captured incorrectly by all or most models
according to our evaluationmetrics paints anunsettling picture. These
regions, including the Amazon basin and Indian Peninsula in both
seasons, Central America and East Africa in JJA, and the Maritime
Continent and Northern Australia in DJF, are some of the most popu-
lous, vulnerable and environmentally diverse regions on Earth, and the
lack of adequate simulations of current climate temperature variability
estimates endangersnotonly the reliability ofour projections of future
variability and its change, but alsoour base knowledgeon thepotential
climatic, socioeconomic and ecological impacts that climate change
may bring over these areas.

Our work highlights that, while constraining by historical model
performance in the past can reduce the spread of temperature varia-
bility change projections and hence reducemodel uncertainties, these
uncertainties are not completely erased. Even when successfully
identifying several models that perform adequately in capturing
today’s climate in certain regions, model disagreement in temperature
variability projections remains, in many cases, large. Thus, model dif-
ferences across temperature variability change under future climatic
conditions remain, over large areas, unreconciled. We urge the com-
munity to continue working on constructing and improving upon cli-
mate models that better capture real-world processes, while
producing independent projections of future climates that sufficiently
sample inter-model uncertainties that cannot yet be reduced. Our
work highlights that the climate science community cannot yet afford
to move away from having several independent climate models to
sufficiently sample model uncertainty. As modeling centers across the
world are pooling resources and developing fewer, less independent
models, we risk losing sight or the range of possible futures that we
need tobeprepared for.Our attempt to constrainprojections of future

temperature variability change based on historical performance is an
example of a change in the climate system that cannot yet be foreseen
with the best available knowledge.

Therefore, we can summarize the main conclusions and implica-
tions from this study as follows:

• We provide a comprehensive evaluation of the state-of-the-art
SMILEs ability to represent the historical summer and winter
temperature variability in observations. We identify CESM-LE and
CESM2-LE as the SMILEs that provide the best representation of
isolated temperature variability as well as of both temperature
variability and forced change, with GFDL-SPEAR-MED and MPI-
GE5 as close third in each category respectively. This multi-model
evaluation across all available CMIP5 and CMIP6 SMILEs provides
a basis for model selection for the assessment of temperature
variability and extremes, which cannot be correctly simulated if
the underlying variability is incorrect.

• Our evaluation also shows that some regions are systematically
not well represented such as the Southern Ocean (O9), the Indian
Peninsula (L20), and Northern Australia (L22), as well as the
Amazon basin (L6), Northern (L12) and Eastern Africa (L14), and
Southern Australia (L23), all specifically in the local summer sea-
son. We also find that certain areas of the world are systematically
well captured by most models, especially in the local winter sea-
son, namelyNorth America (L1–L4), Southern South America (L8),
Europe and Northern Africa (L9–L11) and North and Central Asia
(L16–L19). Finally, we conclude that local winter seasons are
generally simulated better by most models more often than local
summer seasons.

• Similar to the IPCC, we find low model agreement on the sign of
the change over large parts of the Earth’s surface, and largemodel
disagreement on the magnitude of the projected change under
futurewarming, particularly over the land surface and the tropical
Pacific Ocean. This implies that we cannot afford to move away
from multi-model ensembles that sufficiently capture the uncer-
tainty in our future projections.

• The constrained ensemble decreases model spread over some
regions and gives a lower range of projected futures, providing a
smaller range of potential future projections and greater model
agreement, particularly in South America, India, Australia &
South-East Asia, thewest PacificOcean and SouthernOcean in DJF
and north South America, Africa, parts of Australia and the
Southern Ocean in JJA. However, the constraint does not
substantially increase model agreement on the sign of the
projected change.

Methods
Climate model simulations and observational data
We include 11 SMILEs from a broad range of climate models across
different CMIP generations: ACCESS-ESM1.541, CanESM242, CanESM543,
CESM-LE44, CESM2-LE45, CSIRO-MK3.646, GFDL-ESM2M47, GFDL-SPEAR-
MED48, MIROC649, MPI-GE550 and MPI-GE651.

Each SMILE consists of many simulations for each climate model
that differ only in their initial state, and evolve under the same specific
forcing conditions. However, the SMILEs differ in the number of
simulations included (from 30 up to 100 members), in their rate of
warming under increasing anthropogenic emissions (Equilibrium Cli-
mate Sensitivity, ECS, values of 2.4 K to more than 5 K), in the initi-
alization method (from micro atmospheric perturbations to different
initial states sampled from the control simulation), in the generation of
forcing scenarios used (CMIP5 to CMIP6), and in the forcing scenario
(historical simulations are extended with a high emissions scenario
such as RCP8.5, SSP370 or SSP585). More details can be found in
Table 1, and in previous studies33,50,52,53 and references therein.

Observed surface air temperature data from the GISSTEMPv439

dataset for the period of 1880-2024 and sea surface temperature data
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from ERSSSTv554 from 1854–2024 are used for the evaluation and
comparison to the SMILE simulations. We define surface air tempera-
tures (TAS) as the near-surface 2m air temperature anomaly over land
grid cells, and sea surface temperatures (SST) as the surface tem-
perature over ocean grid cells. For the purpose of comparing model
simulations and observations, all simulated data are regridded to the
coarser resolution of GISSTEMPv4 (180 × 90) and ERSSTv4 (180 × 89)
observations, and subsampled to grid boxes where observations are
available. Both observed and simulated data are compared as
anomalies calculated with respect to the climatological baseline
defined by the period 1961–1990 in each ensemble member and
observations.

We define 24 land regions and 9 ocean regions (Fig. 1k, l) roughly
following the IPCC SREX region definition55. Some regions have been
merged or sightly reshaped to avoid having regions consisting of too
few land or ocean grid cells, respectively.

As projections of temperature variability depend on both the
greenhouse gas emissions and the climate sensitivity of the model22;
we base our multi-model comparison on warming levels rather than
selecting specific time periods. This allows for a comparison that is
independent of how fast a model warms. Warming levels are shown in
Supplementary Information Table 1, and defined relative to a baseline
period of 1850–1899 in each SMILE. Eachwarming level is computed as
the year when the global mean surface temperature (annual) from the
SMILE ensemble mean crosses an individual warming level.

Rank-frequency variability evaluation framework
The rank-frequency evaluation framework applied in this study
determines how well models capture the internal variability in obser-
vations based on a simple principle: whether the range of climate
states, in this case defined by winter and summer monthly mean
temperature anomalies, as simulated by a climate model agrees well
with the range that observations cover in the historical period. This
framework allows us to assess amodel’s performance in simulating the
variability in observations without the need to parametrize or make
any assumptions regarding the shapes of the observed or simulated
distributions. The basis of this evaluation framework, which resembles
probabilistic forecast verification techniques in the climate prediction
literature34–36, is demonstrated for annual mean temperatures and 10
SMILEs in ref. 33. It was first developed to evaluate European summer
temperature and precipitation in MPI-GE5 in ref. 56; Supporting
Information Figs. S1–S3; and further expanded globally for MPI-GE5 in
ref. 50 and in ref. 11 for annual mean temperatures and summer
maximum temperatures, respectively, as well as in ref. 57 for

temperatures over North America in six SMILEs. For further details on
the existing framework and its theoretical justification and inter-
pretation based on idealized and specific examples see ref. 33.

Here, we expand on this existing evaluation framework by incor-
porating two formally defined evaluation criteria, which again assess
model performance based on whether observations occur uniformly
across all ensemble ranks of an SMILE (i.e., the position an observation
takes among the sorted ensemblemembers for a given time step). The
first criteria, based on spatially averaged metrics, determines whether
observations occur across all rank windows with uniform frequency.
Traditionally, this has been assessed in the ensemble forecasting lit-
erature by evaluating rank histogram flatness35,37. However, the rela-
tively short lengthof theobservational recordmeans that the influence
of internal variabilitymaynotbe robustly sampledon these timescales.
This potentially insufficient variability sampling, combined with the
fact that we are comparing observations against uninitialised, free-
running model simulations means that, with the sample size available,
rank histograms may not be perfectly flat, even for perfectly per-
forming models.

To overcome this, we apply a perfect-model rank range test. This
range is constructed by treating each ensemblemember in each SMILE
as if it were observations, and calculating the resulting spreadofmodel
rank histograms. This approach provides a relatively wide distribution
of rank histograms that reflectperfect-model behavior, yetmay indeed
not be perfectly flat. These deviations from flatness in a perfect-model
set up can occur either systematically because the simulated tem-
perature distribution is skewed or non-normal, or because the record
length is too short to sufficiently sample rank variability, or both.
Similarly, the observational rank histogrammay also appear to be non
flat for the same reasons,without necessarily implying incorrectmodel
performance. Since in a perfect-model setup eachmember captures its
model behavior perfectly, this rank range gives us a baseline of pos-
sible deviations that could occur due to insufficient internal variability
sampling or other factors, even for models that capture observations
adequately.

Therefore, we determine adequate model performance for spa-
tially averagedmetrics when the observations rank histogram is within
the perfect-model rank histogram range (Criteria 1). In this test, we
allow for a maximum deviation of 10% of the rank frequency value
beyond the perfect-model range bounds (so for an upper perfect-
model rank frequency bound of 3% for any particular rank, the max-
imum allowed rank frequency for observations would be 3.3%). To
minimize the effect of varying ensemble sizes and potentially spurious
effects resulting from the insufficient rank variability sampling due to

Table 1 | Details of single model initial-condition large ensembles (SMILE) experiments included

SMILE Members Years Gen. Forcing ECS Reference

ACCESS* 40 1850–2100 CMIP6 Hist + SSP585 3.9 K 41

CanESM2 50 1950–2100 CMIP5 Hist + RCP8.5 3.7 K 42

CanESM5* 50 1850–2100 CMIP6 Hist + SSP585 5.7 K 43

CESM-LE 40 1920–2100 CMIP5 Hist + RCP8.5 4.1 K 44

CESM2-LE* 100 1850–2100 CMIP6 Hist + SSP370 5.1 K 45

CSIROMK3.6 30 1850–2100 CMIP5 Hist + RCP8.5 4.1 K 46

GFDL-ESM2M 30 1861–2100 CMIP5 Hist + RCP8.5 2.4 K 47

GFDL-SPEAR-MED* 30 1921–2100 CMIP6 Hist + SSP585 1.8 K 48

MIROC6* 50 1850–2100 CMIP6 Hist + SSP585 2.6 K 49

MPI-GE5 100 1850–2099 CMIP5 Hist + RCP8.5 2.8 K 50

MPI-GE6* 50 1850–2100 CMIP6 Hist + SSP585 2.8 K 51

Experiment name, number of members, simulated years used, forcing generation, forcing scenarios, and Equilibrium Climate Sensitivity (ECS) of SMILE experiments included in our study. All
experiments include historical forcing (Hist) until 2005 for CMIP5 or until 2014 for CMIP6. CMIP6 generation SMILEs aremarked by a star. ECS refers to the equilibrium temperature response to the
doubling of carbon dioxide43,50,58,59. Note that CESM2-LE consists of two 50-member sets with slightly varying biomass burning emissions forcing fields, that we treat as a single 100 member
ensemble45.
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the finite sample size, this test is performed over windows of aggre-
gated ranks. Therefore rank frequencies are assessed as the running
mean across individual rank frequencies over an n/5 rankwindow,with
n being the ensemble size (for n = 50 members, 10-rank running
average) for ranks 1 to n − 1, and as the actual rank frequency for ranks
0 and n (e.g., Fig. 9).

This first evaluation criteria based on spatially aggregatedmetrics
is complemented by a second grid-cell level evaluation criteria, to
account for biases at the grid-cell level that may be smoothed or
compensated in this spatial average. This second test follows similar
uniform rank frequency principles, but is simplified to allow for a
computationally efficient grid-cell level performance assessment.
Instead of assessing the full spectrum of ranks against a perfect-model
range, we assess only the top, bottomand central rank sections against
fixed frequencies assumed to be a reflection of an adequate rank
distribution. Therefore, this test assesses whether observed
anomalies at the grid-cell level cluster around the center bounds of the
simulated ensemble spread or fall outside of its limits with too high
frequencies.

We determine when these grid-cell level variability biases are
present (Criteria 2), according to the following principles: (a) A varia-
bility overestimation bias is detected when observed values cluster
within the central 75th percentile ensemble bounds (12.5th to 87.5th
percentiles) more frequently than 80% of the time steps. This bias
implies that the model simulations are systematically more extreme
than observed values and the width of the distribution is over-
estimated by the model, and would result in a mound shaped rank
histogram. (b) A variability underestimation bias is detected when
observed values exceed the ensemble minima or maxima, also
understood as observations taking minimum or maximum ranks
respectively, more than 8% of the months. This bias implies that the
model fails to simulate extreme enough events with adequate fre-
quency, which means that observations exhibit a systematically wider
distribution than themodel, andwould result in a concave shaped rank
histogram. To account for non-symmetrical behavior over the warm
and cold tails of the temperature distributions,we account for this bias
in variability underestimation when observations fall too often below
the ensemble minima or above the ensemble maxima separately.
Lastly, when neither bias (a) nor (b) are present, we determine a grid-
cell to be unbiased. Therefore for the second criteria, we consider a
region and season to be adequately simulated by a given model at the

grid-cell level when at least 50% of the grid cells in the region are
unbiased (Criteria 2).

Note that the variability underestimation threshold of 8% is cho-
sen to be rather conservative to account for the different ensemble
sizes and relatively short observational record considered in this eva-
luation. For a 50-member perfect-model ensemble assessed over an
infinitely long observational record, observations would exceed the
ensemblemaxima, whichmarks on average a 1-in-50-years event, 2% of
the time, or twice a century. Due to internal variability, this frequency
may fluctuate in any given century, as seen in the minimum and
maximum rank frequencies for perfect model ranges (gray crosses in
the rank frequency histograms in the Supplementary Information
evaluation or in Fig. 9) oscillating between 0 to over 10% for 50-
member ensembles. Additionally, these perfect model ranges in the
minimum and maximum rank frequencies also fluctuate for regions
that exhibit non-normal or skewed behavior in their temperature dis-
tributions. This means that in some particular cases this variability
underestimation threshold frequency may be larger than the theore-
tical expectations, even in a perfect model set up. For this reason, and
in the interest of simplicity for our evaluation framework, we choose a
fixed frequency of 8% in ensemble limit exceedance as a variability
underestimation bias threshold. For a more in-depth assessment of
these biases we recommend to account for the effect of ensemble size
and assign a varying threshold for this criteria for each SMILE assessed,
ideally depending on the ensemble size and following perfect-model
behavior as guideline. Similarly, the variability overestimation thresh-
old frequency determining how often observations may cluster within
the central 75th percentile of the ensemble spread is set at 80%, and
not at 75%, to account for this effect of internal variability.

Therefore, the two evaluation criteria used in our framework are
as follows:

• Evaluation Criteria 1. Perfect-model rank range regional level
performance: the observations rank histogram for regionally
averaged temperatures must lie within the perfect-model rank
range across all ranks (with a maximum 10% deviation).

• Evaluation Criteria 2. Threshold-based grid-cell level perfor-
mance: at least 50% of the region’s grid-cells must be unbiased,
meaning, at the grid-cell level, (a) observations do not cluster
excessively within the central percentiles of the ensemble (i.e.,
observations do not occur with more than 80% frequency within
the central 75th percentile ensemble bounds, indicative of

Fig. 9 | Example of time series and rank frequency histograms for MIROC6
against GISTEMPv4 observations. Time series and rank frequency histograms of
spatially aggregated June, July, August (JJA) temperature anomalies (TAS) for land
regions L7 (left panel) and L8 (right panel). Time series show the ensemble max-
imum and minimum (colored lines) and central 75th percentile ensemble spread
(shading) against observations (black dots). Rank histograms show the frequency
of each place that observations would take in a list of ensemble members ordered
by ascending temperature anomaly values. Rank0 indicates observations are below
the minimum ensemble value, and rank n, with n the number of ensemble mem-
bers, indicates that observations exceed the maximum ensemble value for that
particular month. For a model that perfectly represents observations over an
infinitely-long observational record, all ranks should occur with uniform frequency
and its histogram should be roughly flat. To illustrate how internal variability may
affect rank frequencies given the non-infinite record length considered, we include
a perfect-model rank range (gray), which shows the range of rank histograms that
each ensemble member would yield if it were observations. Histogram bars

illustrate the individual rank frequency for observations, lines illustrate the running
mean rank frequency over a centered n/5-bin window for observations (solid
colored lines), and for the perfect model rank range (gray dashed lines). Crosses
represent the frequency of minimum (0) and maximum (n) ranks for observations
(colors), and for perfect model range (gray). If the rank frequency exhibited by
observations (colors) is within this perfect-model range (gray) for all rankwindows,
with amaximumallowed deviation of 10%, themodel fulfils Criteria 1 for this region
and season, showing an adequate model performance for spatially aggregated
metrics, and is highlighted by a green star at the top right. If it does not fulfill this
criteria is it noted by a red cross at the top right. Percentages at the top left of the
histograms show the frequency of monthly anomalies occurring above (red) or
below (blue) ensemble limits, or clustering within the central 75th percentile range
(gray), analogous to the thresholds for the grid-cell evaluation in Criteria 2. The full
selection of time series and rank histogram figures for all regions, seasons and
models can be found in the Supplementary Information.

Article https://doi.org/10.1038/s41467-025-67005-y

Nature Communications |          (2026) 17:314 13

www.nature.com/naturecommunications


variability overestimation bias) and (b) fall outside the ensemble
range too frequently (i.e., observations do not occur with more
than 8% frequency outside of the ensemble spread, indicative of
variability underestimation bias).

Only when both criteria are fulfilled, we consider the model in
question offers an adequate performance for the region and season
considered, and is selected to be part of the constrained ensemble for
the particular region and season.

These evaluation results are summarized in the temperature
variability Evaluation Matrix for different ocean (O1–O9) and land
regions (L1–L24) for DJF and JJA months for the 11 SMILES for detren-
ded data used for our assessment constraint (Fig. 2a) and additionally
for non-detrendeddata (Fig. 2b). Numbersmark the percentage of grid
cells in the region that exhibit an adequate, unbiased representation of
observations. The color shading marks cases that fulfill Criteria 1, with
the observations rank histogram within the perfect-model range. For
the regions and seasons that also fulfill Criteria 2 and are deemed to be
adequately simulated by a given model at the grid-cell (at least 50% of
the grid cells are non-biased), the fields are highlighted in green and
considered adequately captured. When only Criteria 1 is fulfilled,
meaning the rank of the spatially aggregated metric fits the perfect
model range but 50%or less of the grid cells areunbiased, thefields are
highlighted in gray and considered inadequate.

We also show the full results of this evaluation, including evalua-
tion time series and rank histograms and results for Criteria 1 and the
grid-cell level assessment maps for Criteria 2 for all 11 SMILEs sepa-
rately, for the DJF and JJA seasons and for both detrended and non-
detrended temperatures against GISTEMPv4 and ERSSTv5 observa-
tions, respectively for land and ocean areas, in the Supplementary
Information.

For the purposes of this evaluation, we use monthly mean tem-
perature anomalies relative to the period 1961–1990, and model out-
put data are regridded to match the different observational grids for
land- and ocean-based evaluations. All evaluations are performed over
the period for which each observational record is available starting in
1900 until 2024, and restricted to the period when simulations are
available for the models that span shorter periods than observations.
To avoid spurious effects of in-homogeneous variability behavior over
the Amazon region in some models over the first years of their simu-
lations, Amazon land region (L6) evaluations start only from 1920
onward. To isolate variability biases frompotential biases in the forced
warming rate, we base our main performance assessment and con-
straint on detrended temperatures, and provide the analogous
assessment on non-detrended temperatures for comparison.
Detrending is done for model data by subtracting from each model
member the model’s ensemble mean, and by subtracting a least
squares quadratic trend from observations, both at the grid-cell level.
Note that, in contrast to subtracting the ensemblemean, subtracting a
quadratic trend may not ensure a perfect removal of the forced signal
from observations, and remaining forced effects in observations may
contribute to some of the discrepancies found in our evaluation.
Lastly, to allow a more finely resolved temporal analysis and to
increase sample size we perform this rank-frequency evaluation on
monthly mean temperature anomalies instead of seasonal averages.

Variability estimates
Temperature variability is computed for each season at each of 5
warming levels as the standard deviation of temperature pooled from
each of the 3-months in the season for 11-years centered on the year
defined for each warming level. All other calculations use the metho-
dology of ref. 23 to take multi-ensemble means and calculate changes
in temperature variability. Calculations for the full ensemble use all
data from all SMILEs, while calculations for the constrained ensemble

use data from the SMILEs deemed as adequate in the variability eva-
luation framework in Fig. 2a for each specific region and season. The
errorbars in Figs. 3 and 4 are defined as the minimum and maximum
values across the ensemble. Model agreement in the third column of
Figs. 5 and 6 is defined as when greater than 50% (light blue and red)
and 80% (dark blue and red) of the models in the ensemble agree on
the sign of the change. Uncertainty in the magnitude of the change in
the fourth column of Figs. 5 and 6 is shown as the standard deviation
across eachmodel’s individual estimate in the ensemble (i.e. for the full
ensemble across 11 estimates, one from each model). Results in
Figs. 3–8 are shown as the multi-ensemble mean (MEM) of the indivi-
dual SMILE results. Results are typically shown for the MEM of the full
and the MEM of the constrained ensemble separately, with the dif-
ference also plotted.We note that Figs. 3–6 exclude regions Arctic (O1)
and Antarctic (O2) as nomodels performadequately here, however we
are concerned sea-ice may influence our results in this region when
calculating variability.

Data availability
The SMILE data used in this study can be found on a common grid in
the Multi Model large ensemble archive version 2 [MMLEAv253] and
downloaded from the NSF NCAR Geoscience Data Exchange https://
www.cesm.ucar.edu/community-projects/mmlea/v2. GISSTEMPv4 can
be downloaded from NASA-GISS at https://data.giss.nasa.gov/
gistemp39 and ERSSTv5 can be downloaded from the NOAA Physical
Sciences Website https://psl.noaa.gov/data/gridded/data.noaa.ersst.
v5.html54.

Code availability
All code used in this research can be found at https://doi.org/10.5281/
zenodo.17058694. The analysis and figures in this article have been
created using Climate Data Operator (CDO) software, Python and
NCAR Command Language (NCL, NCAR 2019; Version 6.6.2).
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