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ABSTRACT

Recent decades have witnessed significant shifts in sand and dust storm patterns across 
East Asia, yet the exact spatiotemporal patterns and mechanisms driving these changes 
remain unclear. Here, we analyzed daily meteorological observations and satellite 
aerosol products to derive dust optical depth, sand and dust storm (SDS) frequency, 
and related indices for 2001–2024. Our results show that SDS is concentrated in 
northern China and southern Mongolia and exhibits a clear northward migration. 
Partial‐correlation analyses reveal that, in sparsely vegetated regions, pre‐season 
snow cover exerts a stronger negative control on spring dust activity than vegetation 
cover. Both generalized linear models and structural equation modeling further reveal 
that, in these low‐vegetated regions, soil moisture generated from late winter snow 
cover is the primary factor mitigating dust generation, with wind speed remaining a 
contributing, but vegetation‐independent, factor. By contrast, in highly vegetated 
regions, vegetation is the dominant dust suppression mechanism, primarily through 
attenuating wind speed. Our results suggest that the observed northward shift in SDS is 
driven primarily by reduced winter snow cover and earlier snowmelt under warming, 
rather than by insufficient afforestation, thus underscoring the pivotal role of cryo
spheric changes in modulating aeolian processes.
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1. Introduction

Desert dust plays a significant role in aerosol radiative forcing, biogeochemical cycling, and agricultural 
productivity (Filonchyk 2022; Li et al. 2022), and is also a major natural hazard affecting human health, 
transportation, infrastructure, and a range of economic activities (Middleton 1991; Park and Choi 2016). East 
Asia’s desert dust source regions are among the largest global emitters, releasing approximately 500–1100 
Tg of dust into the atmosphere annually (Zhang, Arimoto, and An 1997; Kim et al. 2024). Within mobile and 
stabilised dune interiors, limited precipitation and low vegetation make the aeolian processes of sediment 
erosion, transport, and deposition largely uncontrollable (Gao, Narteau, and Gadal 2021; Naeimi et al. 2023). 
In contrast, at desert margins, aeolian dynamics are shaped by a combination of human activity, precipita
tion (including snowfall), and surface cover, with severe dust events frequently impacting densely popu
lated regions (D'Odorico et al. 2007).

Numerous studies have highlighted the positive role of vegetation in mitigating sand and dust storms 
(SDS) at desert margins (Wang et al. 2021; Wang et al. 2022), which has been a key motivator behind China's 
large-scale afforestation projects. Notable examples include the Three-North Shelterbelt Project along the 
edges of the Tengger Desert, the Mu Us Desert, and the recently completed “edge-locking” project in the 
Taklamakan Desert (Cheng et al. 2025; Yan et al. 2025). These efforts aim to reduce the impact of SDS on 
oasis regions through tree planting and other engineering measures. However, despite these initiatives, the 
frequency and scope of dust events indicate that “edge-locking” projects have not effectively curtailed SDS 
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occurrences. In 2023, China recorded 17 dust events, five of which reached storm intensity, setting a 
decade-high record (Wu et al. 2025). This raises a critical question: Can vegetation truly prevent SDS? What 
other factors beyond vegetation contribute to the formation of SDS? These questions remain inadequately 
addressed.

While some studies suggest that recent desert dust sources affecting China are primarily from Mongolia 
(Chen et al. 2023), it is important to note that the Gobi Desert in Mongolia has been recognised as a major 
dust source for many decades (Middleton 1991; Natsagdorj, Jugder, and Chung 2003). What recent analyses 
indicate, however, is that Mongolia’s relative contribution to SDS impacting northern China has increased in 
recent years (Chen et al. 2023; Wu et al. 2025). Government officials and researchers often attribute this to 
insufficient afforestation efforts in Mongolia, which have exacerbated land desertification (Lee and Sohn 
2011; Bao et al. 2023). However, satellite observations reveal a predominant greening trend across vast 
northern regions, including Mongolia, with this trend being particularly pronounced in early spring due to 
earlier phenological shifts (Piao et al. 2015; Lian et al. 2022; Jiang, Shen, and Yang 2025). Another significant, 
yet often overlooked, change alongside vegetation is the reduction in winter snow cover (Yang, Peng, and 
Dan 2025). Snow cover decline exposes more soil, especially toward the end of the cold season, as 
accelerated snowmelt leaves previously snow-covered land unprotected, making it more vulnerable to 
wind erosion and SDS formation (Yin et al. 2022). As temperatures rise in spring, the soil becomes drier and 
looser, further enhancing its susceptibility to wind erosion and contributing to the intensity of SDS 
(Meinander et al. 2022; Hall et al. 2021b). Collectively, these findings indicate that the increasing influence 
of Mongolian sources on SDS over northern China cannot be satisfactorily explained by afforestation 
deficits alone, but instead calls for attribution frameworks that jointly account for snow and vegetation, soil 
hydrothermal conditions and atmospheric circulation.

Several recent studies have explored how snow cover and snowmelt influence SDS activity in the Gobi 
and other cold or arid regions (Amino et al. 2021; Maki et al. 2022; Meinander et al. 2025), this snow–SDS 
linkage has still received less attention than vegetation effects. In particular, it remains unclear, at the scale 
of the East Asian desert margins, whether snow or vegetation exerts the dominant control on current SDS 
activity. Here we hypothesise that, in regions with low vegetation cover, snow dynamics play a more 
dominant role in regulating wind and sand activity in the subsequent year than relatively small interannual 
changes in vegetation cover. Under this hypothesis, climate warming, by reducing winter–spring snow 
cover across northern regions and shortening the duration of snow protection, is gradually transforming 
these areas into increasingly important sources of SDS.

To evaluate this hypothesis, satellite and ground-based observations were integrated within a unified 
statistical framework. East Asian dust events were identified using daily dust aerosol concentrations from 
MODIS Deep Blue Collection 6.1, together with observational records of floating dust, blowing sand and 
sand storms from 632 meteorological stations, so that both the intensity and displacement of SDS could be 
characterised. Additionally, partial correlation analysis, generalised linear models, and structural equation 
modelling (SEM) were used to simulate and compare the effects and driving mechanisms of both 
vegetation and snow cover on dust activity across different levels of vegetation cover. The results offer 
new insights into the mechanisms driving changes in dust activity in East Asia in order to inform China’s 
desertification management strategies.

2. Materials and methods

2.1. Study region

This study focuses on dust activity in the Three-North Shelterbelt Project area (China) and Mongolia 
(Figure 1). Given that SDS in the mobile and stabilised dunes is primarily driven by wind, with minimal 
influence from vegetation and snow, this study focuses on the “desert edge area”—regions where dust 
activity, vegetation, and snow cover overlap. Specifically, the study area is defined as regions where the 
annual frequency of dust aerosol optical depth (DOD), snow cover frequency (SCF ), and Normalised 
Difference Vegetation Index (NDVI) > 0 simultaneously exceeds 30% between 2001 and 2024. These 
areas, located at the desert periphery, serve as a basis for analysing the interactions between vegetation, 
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snow, and dust. In contrast, regions where DOD is frequently greater than 0 but NDVI and SCF are very low 
correspond to the core desert (roughly equivalent to mobile and stabilised dunes) and are therefore 
excluded from this study.

In addition, SDS activity in East Asia is largely concentrated in spring, reflecting the combined influence 
of the Mongolian high-pressure system and regional vegetation phenology (Figure S1). Accordingly, this 
study focuses on the spring months, March–May.

2.2. Dust activity analysis using ground-based observations and remote sensing data

(1) Ground-based dust observations
The meteorological record of SDS from 2001 to 2024 was obtained from the China Meteorological 

Administration (2025). This dataset includes continuous daily dust activity observations from 632 stations 
across northern China over the 24-year period. Dust events were classified according to the China National 
Standard GB/T 20480-2017. Floating dust (horizontal visibility < 10 km; near-surface wind speed < 3 m/s), 
blowing sand (1 < horizontal visibility ≤ 10 km), and sand storms (horizontal visibility ≤ 1 km) are defined 
and used in this study. Additionally, the comprehensive dust index (CDI) for each station was calculated as 
follows:

CDI = floating dust × 1 + blowing sand × 2 + sand storm × 3 (1) 

(2) Remote sensing data and DOD calculation
Dust Aerosol Optical Depth (DOD) for the period 2001–2024 across the study region was retrieved using 

MODIS DB Collection 6.1 aerosol products from the Aqua (MYD04_L2) and Terra (MOD04_L2) platforms. 
These Level-2 products have a native footprint of approximately 10 km and employ the Deep Blue 

Figure 1. Location of the study region (a and b). The distribution of mobile and stabilised dunes is based on Zheng et al. 
( 2024). Panels (c)-(f) display photos of the Chinese government’s “edge-locking” projects along the desert margins of the 
Taklamakan and other deserts. These efforts have involved substantial financial and human resources in planting species 
such as Tamarix (salt cedar) and Alhagi (camelthorn) to combat desertification.
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algorithm to detect terrestrial aerosol loads over bright land surfaces based on blue-band radiances 
(Anderson et al. 2005).

The aerosol products consist of Aerosol Optical Depth (AOD) at 550 nm, single scattering albedo (SSA) at 
470 nm, and the Ångström exponent (AE ). Prior to calculating DOD values, AOD, SSA, andAE were mapped 
from the native swath to a regular 0.1° × 0.1° grid (comparable in scale to the native footprint) using a 
nearest-neighbour cell-assignment scheme. This preserves the original retrievals without introducing 
additional spatial smoothing and is widely used in previous studies deriving DOD from MODIS Deep 
Blue products (Kok et al. 2017; Pu and Ginoux 2018; Yao et al. 2024). Sensitivity tests with bilinear and 
inverse-distance-weighted interpolation yielded DOD fields and trends that were nearly indistinguishable 
from those based on the nearest-neighbour scheme, and therefore the nearest-neighbour interpolation was 
adopted in all subsequent analyses. To minimise the influence of low-quality data, only AOD measurements 
classified as high or very high quality were used for the DOD retrieval (Kok et al. 2017).

DOD was calculated using the method outlined by Pu and Ginoux (2018), which separates the 
contributions of fine particles and coarse-mode dust from the AOD:

DOD AOD= × 0.98 0.5098 + 0.0512 2 (2) 

( < 0.99) (3) 

Here, is the AE at 470 nm and is the SSA. Dust absorption of solar radiation and its separation from 
other scattering aerosols, such as sea salt, are considered when < 0.99.

Daily DOD values were calculated by averaging the Terra and Aqua DOD when both were available, or by 
using data from the available platform when only one set was accessible (Pu and Ginoux 2018; Wang et al. 
2021). The monthly mean DOD, and sand and dust storm frequency (DSF , number of days when DOD > 0.2) 
(Ginoux et al. 2012) were then calculated for northern China and Mongolia.

2.3. Vegetation cover and snow metrics

(1) Snow cover frequency (SCF) and start of melting date (SOM)
Snow indices and phenological metrics were derived from the MODIS/Terra Snow Cover Daily Global 500 

m product (MOD10A1, Collection 6.1; Hall et al. 2002, Hall, Salomonson, and Riggs 2021a). In this product, 
the NDSI_Snow_Cover band stores the fractional snow-covered area within each 500 m pixel as an integer 
between 0 and 100 (%), whereas values outside this range (e.g. 200, 201, 211, 237, 239, 250, 254, 255) are 
quality or condition flags indicating cloud, night, water, or missing data (Hall et al. 2002; Hall, Salomonson, 
and Riggs 2021a). In this study, only pixels with NDSI_Snow_Cover values in the 0–100 range were retained 
as valid snow retrievals, and all flag values were masked as missing. NDSI_Snow_Cover was then normalised 
from its original 0–100% range to a 0–1 range by division by 100; this normalised quantity is hereafter 
referred to as fractional snow cover (f_snow ).

To reduce the impact of clouds and atmospheric interference, an 8-day maximum-value compositing to 
the daily f_snow time series was applied and then smoothed the composites using the Savitzky–Golay filter 
(Savitzky and Golay 1964). Monthly snow cover frequency (SCF ) for each pixel and year was calculated as 
the fraction of days within a given month with f_snow 0.1, following previous work that uses 0.1 as a 
conservative threshold separating snow-covered and snow-free conditions (He et al. 2024, Zhang et al. 
2019a).

The start of melt date (SOM) was then defined as the first day in a given year when the smoothedf_snow
remained below 0.1 for at least five consecutive days, indicating the persistent disappearance of the 
seasonal snowpack.

(2) Vegetation index and fractional vegetation coverage (FVC)
The Normalised Difference Vegetation Index (NDVI) was used as the primary vegetation index due to its 

strong correlation with canopy density and aboveground biomass (Tucker 1979, Smith et al. 2019). NDVI is 
calculated as:

NDVI =
+

NIR Red

NIR Red
(4) 
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where NIR and Red were derived from Band 2 (NIR: 841–876 nm) and Band 1 (red: 620–670 nm) of the 
MODIS surface reflectance eight-day product (MOD09A1 v6), respectively. NDVI was used to represent the 
monthly maximum vegetation cover.

To compare the impacts of vegetation and snow on dust activity across different vegetation coverages, 
fractional vegetation coverage (FVC) was calculated. FVC is defined as:

FVC
NDVI

=
NDVI

NDVI NDVI
min

max min
(5) 

where NDVImax and NDVImin represent the NDVI values of fully covered vegetation and bare soil, respectively. 
To reduce uncertainty in determining extreme NDVI values, the NDVI values at the 5% and 95% percentiles 
from the surface grid values were selected as NDVImin and NDVImax , respectively.

2.4. Hydro-climate context

(1) Wind speed, temperature, and precipitation data sources
In this study, daily wind speed, temperature and precipitation were obtained from 632 surface stations 

maintained by the China Meteorological Administration (2025), and from ERA5 reanalysis (Service 
Copernicus Climate Change, 2017). These homogenised station records are available only within China, 
and no long-term dust and meteorological station network in Mongolia is available that is directly 
comparable to the China Meteorological Administration (CMA) dataset in terms of observing standards 
and event coding. Accordingly, in the attribution of station-based dust activity (CDI), collocated CMA station 
meteorological observations were used, whereas in the attribution analyses based on satellite-derived DOD
and DSF , ERA5 meteorological fields at the grid scale were used.

(2) Drought indices
The Standardised Precipitation Evapotranspiration Index (SPEI) at the 3- and 6-month scales, calculated 

based on daily temperature and precipitation data from 2001 to 2024, was used to assess regional drought 
condition. The SPEI is based on the climatic water balance between precipitation and potential evapo
transpiration (PET) and combines the sensitivity of the Palmer Drought Severity Index with the multi- 
temporal flexibility of the Standardised Precipitation Index (Vicente-Serrano, Beguería, and López-Moreno 
2010). For each month i, water balance was calculated as follows:

D P PET=i i i (6) 

Where Pi is monthly precipitation and PETi is monthly potential evapotranspiration derived from station- 
based meteorological data. The water-balance series was then accumulated over different time scales k
(k = 3, 6 months in this study):

D D=i
k

j

k

i j
( )

=0

1

(7) 

Where Di
k( ) is the k-month accumulated climatic water balance at month i , obtained by summing the 

monthly water-balance series D over the current month and the preceding k 1 months. The resulting Di
k( )

series was fitted to a log-logistic probability distribution. The cumulative probability was finally transformed into 
a standardised normal variable with mean zero and unit variance, yielding the SPEI at time scale k . Negative SPEI 
values indicate drier-than-normal conditions, while positive values indicate wetter-than-normal conditions. In 
this study, SPEI3 and SPEI6 were used to represent short- and medium-term moisture conditions, respectively.

(3) Evapotranspiration data sources
Evapotranspiration data, including vegetation transpiration (Ec), soil evaporation (Es) and canopy 

interception (Ei), were obtained from the Penman–Monteith–Leuning evapotranspiration Version 2 
(PML_V2) product (Gan et al. 2018; Zhang et al. 2019b). PML_V2 provides global land-surface ET and 
gross primary production (GPP) at 500 m spatial resolution and 8-day temporal resolution for the period 
2000–2023, covering latitudes from 60°S to 90°N. The PML_V2 estimates have been evaluated against 

GISCIENCE & REMOTE SENSING 5



observations from 95 eddy-covariance flux sites worldwide and shown to be reliable (Zhang et al. 2019b). 
These data were used to quantify the exchange of water vapour among the atmosphere, vegetation and 
soil in our study region.

(4) Soil moisture data sources
Soil moisture fields were obtained from the NASA Global Land Data Assimilation System Version 2.2 

(GLDAS-2.2) Catchment land-surface model daily product at 0.25° × 0.25° spatial resolution (Li et al. 2019). 
GLDAS-2.2 provides globally consistent land-surface states and fluxes from 2003 to the present, based on 
the CLSM-F2.5 model with GRACE data assimilation. The surface soil moisture (SoilMoist_S_tavg, 0–2 cm) 
and profile soil moisture (SoilMoist_P_tavg, integrated soil column) were used to represent near-surface 
and vertically integrated soil water conditions.

These hydro-climate variables, such as wind speed, drought indices, soil moisture, and evapotranspira
tion, were used to explore the mechanisms underlying the interactions between vegetation, snow, and dust 
activity (Table 1).

2.5. Analysis

(1) Trend analysis
The Mann–Kendall (MK) trend test is applied for identifying temporal variation patterns in vegetation 

and their influencing factors. The null hypothesis assumed no trend at the 0.05 confidence level (p value). A 
positive change slope (z value) indicates an increasing trend, while a negative z value signifies a decreasing 
trend (Hamed and Ramachandra Rao 1998).

(2) Partial correlation analysis
Partial correlation analyses were conducted to examine the responses of dust activity to snow cover and 

vegetation. Spring dust activity was represented by DOD, DSF andCDIfor March–May of each year. When 
assessing the effects of snow cover, partial correlation coefficients were calculated between these spring 
dust indices and the mean snow-cover frequency (SCF ) in the preceding 1, 2,…, n months (i.e. winter and 
early-spring months before March–May), while controlling for the corresponding March–May NDVI and 
maximum wind speed (Windmax ). When assessing the effects of vegetation, analogous partial correlations 
were computed using pre-seasonNDVIas the predictor and controlling for SCF and Windmax . Because 
vegetation activity is largely dormant in mid-winter, lagged winter NDVIwas not considered. A three- 
month pre-season window (SCFpre3) was ultimately adopted, as it showed the strongest and most spatially 
coherent influence on DOD, DSF andCDIacross the study region.

(3) Generalised linear model
To quantify how snow, vegetation, humidity and wind jointly influence station-level dust activity, the 

Zero-Inflated Negative Binomial (ZINB) regression model was applied. ZINB is a member of the generalised 
linear model family, specifically designed for overdispersed count data with excess zeros (e.g. when no dust 
event is recorded) (Faroughi and Ismail 2017).

The response variable is the monthly dust activity index (CDI) at 632 meteorological stations, derived 
from daily observations of floating dust, blowing sand, and sand and dust storms. CDI was aggregated to 
monthly values for March, April and May over the period 2001–2024. For each station–month, explanatory 
variables were constructed at the same temporal resolution. Wind speed and the SPEI were derived from 
station-based meteorological records. Vegetation and snow-cover indicators were calculated as spatial 
averages within a 30 km buffer around each station, using the corresponding gridded remote-sensing 
products. Because dust activity can be influenced by antecedent drought, snow and vegetation conditions, 
we initially constructed a comprehensive candidate predictor set that included both current-month values 
and 1–3 month lags of these variables. Before model fitting, missing values were interpolated using a 
sliding-average method, and all predictors were standardised to have a mean of zero and a standard 
deviation of one so that the regression coefficients are directly comparable in magnitude and represent 
standardised effect sizes. To avoid multicollinearity and obtain a parsimonious model, we applied the 
variance inflation factor (VIF) to the full candidate predictor set. For each predictor xk , the VIF is defined as:

VIF R= 1 / (1 ),k k
2 (8) 
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Where Rk
2 is the coefficient of determination obtained by regressing xk on all other predictors. Large VIF 

values indicate that a predictor can be well explained by a linear combination of the remaining predictors 
and therefore suffers from multicollinearity. In this study, we iteratively removed predictors with VIF > 5 and 
recomputed VIFs until all remaining predictors had VIF < 5. The final set of predictors retained after this 
screening is shown in Equations (9a)-9(b).

The ZINB model was fitted separately for two vegetation-cover regimes (FVC < 0.5 and FVC ≥ 0.5) to 
distinguish low- and high-vegetation conditions. It consists of two linked components: (i) a count compo
nent, which models the expected frequency of dust events (CDI_count), and (ii) a zero-inflation component, 
which models the Bernoulli process determining whether a station–month is in a “susceptible” state for 
dust (CDI_prob). The model can be written as:

SPEI SPEI NDVI NDVI NDVI SCF

SCF Wind Wind

log( i) = + · + · + · + · 0.1 + · 0.3 + ·

+ · + · + ·

ratio ratio

pre avg

0 1 3 2 6 3 4 5 6

7 3 8 9 max

(9a) 

SPEI SPEI NDVI NDVI NDVI SCF

SCF Wind Wind

logit( i) = + · + · + · + · 0.1 + · 0.3 + ·

+ · + · + ·

ratio ratio

pre avg

0 1 3 2 6 3 4 5 6

7 3 8 9 max

(9b) 

where i is the expected count (CDI_count) for station–monthi, i is the probability that station–month i
belongs to the “SDS happen” state CDI_prob( ); k and k are regression coefficients for the CDI_count and 
CDI_prob components, respectively.

Model performance was evaluated using the coefficient of determination (R²) and standard error metrics 
(RMSE and MAE). The standardised regression coefficients and their significance levels were used to quantify the 
relative contribution of each predictor to SDS occurrence and frequency. Because our primary objective is to 
infer process relationships rather than to develop an operational forecasting tool, the models were fitted to the 
full 2001–2024 station–month data set for each vegetation-cover group and evaluated using these goodness-of- 
fit diagnostics and residual cheques, rather than a separate training/validation split.

(4) Structural equation modelling (SEM)
To further disentangle the direct and indirect pathways by which climate and surface conditions influence 

dust activity, we used structural equation modelling (SEM). SEM is a confirmatory multivariate statistical 
framework, and is applied here to test a hypothesised eco-hydrological network linking drought, snow, soil 
moisture, vegetation, wind speed and dust activity, rather than to build an operational prediction model.

For the SEM analysis, the same 632 meteorological stations covering March–May for the period 2003–2023, 
which reflects the overlap between the dataset (Table 1), were applied. At each station, the response variable is 
the monthly dust index (CDI), and the explanatory variables are constructed at the same station locations and 
monthly resolution. Wind speed and drought conditions are derived from station-based meteorological records, 
while vegetation indices, snow metrics, soil moisture, and evapotranspiration components are obtained as 
spatial averages within a 30 km buffer around each station from the corresponding gridded products.

Separate SEMs were fitted for low- and high-vegetation regimes (FVC < 0.5 and FVC ≥ 0.5) to allow the 
pathways to differ with vegetation cover. The models include paths from snow cover and snowmelt timing to 
soil moisture, vegetation and drought (SPEI), from these variables to wind speed and evapotranspiration, and 
ultimately to CDI , thereby capturing both direct and indirect effects. SEMs were fitted in AMOS v. 21.0 using the 
covariance matrix of the observed variables. Model adequacy was assessed using standard fit indices: the Root 
Mean Square Error of Approximation (RMSEA), the Standardised Root Mean Square Residual (SRMR) and the 
Comparative Fit Index (CFI), with RMSEA < 0.05, SRMR < 0.08 and CFI > 0.90 taken to indicate an acceptable fit (Guo 
et al. 2022; Kakeh et al. 2023). The Tucker–Lewis Index (TLI) was also reported in the Supplementary Information.

3. Results

3.1. Trends in dust activity: evidence of northward movement

Between 2001 and 2024, regions with an annual average DOD greater than 0.2 were predominantly located 
in the desert and sandy areas of northern China and southern Mongolia, including the Taklamakan Desert, 
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Gurbantünggüt Desert, Kumtag Desert, Qaidam Basin Desert, Badain Jaran Desert, Tengger Desert, Ulan 
Buh Desert, Kubuqi Desert, Mu Us Desert, Hunshandake Desert, Khorchin Sandy Land, Great Gobi, Eastern 
Gobi Desert Steppe, and Gobi Lakes Valley desert steppe. In addition, areas downwind of deserts or at the 
desert edges, such as the Hexi Corridor and the western Loess Plateau, also exhibited higher DOD values. 
Among these regions, the Taklamakan Desert had the highest annual average DOD, the most days with 
DOD > 0.2, and the highest CDI values recorded at its meteorological stations (Figure 1 and Figure S2).

From an interannual perspective, the “desert edge area” showed a slight decreasing trend in spring DOD
from 2001 to 2024 (-0.000014/year), with the frequency of dust events (number of days with DOD > 0.2) also 
decreasing at a rate of -0.00516/year. The CDI index peaked in 2016, then declined sharply from 2016 to 
2019, with a slight recovery in recent years. Monthly trends indicated that April experienced the most 
significant decrease in dust activity, while March and May saw a slight resurgence in dust events (Figure 2
and Figure S3).

Spatially, dust activity exhibited a distinct “northward shift” pattern. In the southern desert edges (such 
as the Mu Us Desert, southern Qaidam Basin, southern Tengger Desert, and around the Taklamakan Desert), 
DOD and the frequency of days with DOD > 0.2 significantly decreased, with the most pronounced decline 
in the Mu Us Desert. In contrast, northern regions (including the northern Gurbantünggüt Desert, Badain 
Jaran Desert, southern Mongolian grasslands, northern Khorchin Sandy Land, Great Gobi, Eastern Gobi 
Desert Steppe, and Gobi Lakes Valley desert steppe) saw a significant increase in DOD. The CDI index 
changes aligned with this spatial trend, although some areas on the periphery of the Taklamakan Desert 
showed an increase in CDI , despite satellite observations not detecting significant increases in DOD. This 
discrepancy may stem from differences in observation methods—station-based measurements rely on 
wind speed and visibility, whereas satellites detect aerosol concentrations.

In summary, while overall spring dust activity in East Asia has not changed drastically since 2001, the 
spatial pattern has shifted, with a trend of dust activity moving northward.

3.2. Comparison of snow and vegetation’s impact on dust activity

Comparative partial correlation analysis reveals that in areas with low vegetation cover, snow cover during 
the winter and spring seasons is significantly negatively correlated with SDS activity in the following year. 
The impact of snow cover on DOD, DSF , and CDI is notably stronger than that of the vegetation index 
during the same period, with these differences being statistically significant at p = 0.05. As vegetation cover 
increases, the difference in partial correlation coefficients between snow cover and dust activity gradually 
diminishes. Specifically, when fractional vegetation coverage (FVC) exceeds 0.5~0.7, the vegetation index 
has a stronger influence on DOD and DSF than winter and spring snow cover (SCFpre3), highlighting that in 
high-vegetated areas, the importance of vegetation status increases. However, in low-vegetated areas, 
winter snow cover remains the dominant factor influencing the interannual variability of SDS in the 
subsequent year (Figure 3).

Since the partial correlation analysis only considered maximum wind speed, vegetation index, and snow 
cover during the winter and spring seasons, it may have overlooked the impact of other potential variables 
on SDS. To further clarify the driving mechanisms, this study employed a generalised linear model (i.e. ZINB) 
that incorporated a broader set of variables, including different vegetation indices, humidity indicators, 
snow parameters, and wind speed indicators. After filtering out highly co-linear variables using the variance 
inflation factor (VIF), the key variables shown in Figure 4 were selected. The results indicate that these 
variables explain 35% of the variation in SDS in low-vegetated (FVC < 0.5) areas and 31% in high-vegetated 
(FVC ≥ 0.5) areas.

Figure 4a shows the standardised regression coefficients for each variable when modelling the proba
bility of SDS occurrence. In low-vegetated areas (FVC < 0.5), increased maximum and average wind speeds 
significantly raised the probability of SDS occurrence, while increased snow cover frequency during the 
previous three months (SCFpre3) significantly reduced this probability. Additionally, the current month's 
vegetation index, snow cover, and moisture index (SPEI3) also showed a negative impact, passing the 
significance test at p = 0.05, but their standardised coefficients were much smaller than those of wind speed 
and SCFpre3. In areas with FVC ≥ 0.5, the impact of snow during the previous three months became 
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insignificant, with SDS occurrence primarily driven by maximum wind speed. Vegetation cover and snow 
increase during the current month helped to suppress SDS occurrence to a lesser extent.

Figure 4b shows the standardised coefficients for each variable when modelling the frequency of SDS 
occurrences. In low-vegetated areas, snow cover frequency during the previous three months (SCFpre3) was 
the most critical factor affecting SDS frequency, with the strongest negative effect, indicating that more 
snow cover during winter and spring leads to a lower frequency of SDS. Meanwhile, increased wind speed, 
especially maximum wind speed, also raised SDS frequency, though its impact was slightly weaker than that 
of SCFpre3. Vegetation-related variables, such as NDVI , NDVI0.1ratio, and NDVI0.3ratio, showed some uncertainty. 
This could be due to insufficient moisture in low-vegetated areas, making it difficult for vegetation to form 
effective coverage barriers.

In summary, in low-vegetated areas, SDS are mainly driven by enhanced wind speeds and reduced snow 
cover, with snow cover frequency during the previous three months being the most critical factor in 

Figure 2. Spatiotemporal trends in spring dust activity at the desert margins of East Asia during 2001–2024. Panels (a), 
(b), and (c) show the interannual evolution of regional mean dust optical depth (DOD), dust storm frequency (DSF ; days 
with DOD > 0.2), and the station-based comprehensive dust index (CDI) for March–May. Shaded areas indicate ± 1 
standard deviation across grid cells (for DOD and DSF ) or stations (for CDI). For each panel, the fitted linear trend (slope, 
per year) and the corresponding Mann–Kendall test statistic (z) and p-value for 2001–2024 are reported. Panels (d), (e), 
and (f) show the spatial distribution of MK z values for DOD, DSF , and CDI , respectively. Positive (negative) z values 
indicate increasing (decreasing) trends. The significance of trends is categorised into four levels based on the MK p-value: 
p < 0.01, 0.01 ≤ p < 0.05, 0.05 ≤ p < 0.1, and p ≥ 0.1.
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suppressing SDS, even more influential than wind speed. In high- vegetated areas, maximum wind speed is 
the dominant factor, while vegetation also contributes to reducing SDS occurrence.

3.3. Drivers of shifting dust activity under diverse vegetation coverage

To further elucidate the specific mechanisms by which vegetation and snow influence wind and sand 
activities under different vegetation cover conditions, this study uses SEM to explore the influence 

Figure 3. Partial correlation coefficients between dust activity and pre-season snow cover and vegetation index across 
different fractional vegetation coverage (FVC). The striped areas indicate significant differences in the correlation 
coefficients between pre-season snow cover and vegetation index (p < 0.05). Panel (a) represents dust activity as dust 
optical depth (DOD) from MODIS DB Collection 6.1 aerosol products; panel (b) represents dust activity frequency (DSF , the 
number of days when DOD > 0.2); and panel (c) represents dust activity as the comprehensive dust index (CDI), calculated 
based on observation records of floating dust, blowing sand, and SDS.
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pathways among factors such as vegetation, snow cover, wind speed, and evapotranspiration. The 
analysis was conducted under two scenarios: when fractional vegetation cover (FVC) is less than 0.5 
and when it exceeds 0.5. To ensure temporal consistency, reduce data uncertainty, and minimise human 
interference, data from March to May each year were used. The model's goodness of fit is shown in 
Table S1.

There are significant differences in the formation pathways and eco-hydrological driving mecha
nisms of spring SDS under different vegetation cover areas (Figure 5). The results from the structural 
equation modelling show that wind speed is the most dominant factor driving SDS in both regions. In 
areas where FVC is less than 0.5, the positive path coefficient for wind speed on the comprehensive 
dust index (CDI) is 0.22 (p < 0.05), indicating that enhanced wind speed significantly exacerbates SDS. 
However, the vegetation’s role in reducing wind speed is weak (path coefficient of -0.01), making it 
difficult to form an effective windbreak or sand-blocking function. At this stage, SDS is more influenced 
by the combined effects of climate and surface processes: winter snow increases soil moisture (path 
coefficient of 0.57, p < 0.05), and subsequent snowmelt recharges the upper soil layers, facilitating soil 
crusts formation, litter accumulation, and root development, thereby stabilising the substrate and 
reducing the supply of loose, fine particles available for deflation. Consequently, even when synoptic 
conditions are favourable for dust uplift, the frequency of SDS events tend to be lower than under drier 
conditions. (Figure 5a).

In contrast, in areas where FVC is greater than 0.5, the effect of wind speed on SDS is more significant 
(path coefficient of 0.31, p < 0.05). Meanwhile, vegetation becomes the key regulatory factor in controlling 
SDS by reducing wind speed (path coefficient of -0.27). Although the direct impact of snow cover, soil 
moisture index, and vegetation on CDI is relatively small (path coefficients all < 0.1), these variables play a 
service role in regulating the eco-hydrological environment of dust source areas by influencing wind speed 
and surface soil erodibility. In these areas, excessive snow cover may delay soil thawing and inhibit early 
spring vegetation greening, weakening evapotranspiration. Thus, winter snow cover is negatively corre
lated with spring vegetation index. Additionally, an increase in humidity typically corresponds to adequate 
moisture and vigorous plant transpiration, helping to enhance the ecosystem’s buffering capacity against 
SDS (Figure 5b).

Overall, in low-vegetated areas, dust formation is more strongly influenced by moisture conditions 
shaped by winter snow, while wind speed remains a key factor but is less affected by vegetation. In high- 
vegetated areas, wind speed still plays a major role in dust occurrence; however, dense vegetation can 
substantially reduce wind speed, making it the most effective factor in suppressing SDS.

Figure 4. Standardised ZINB regression coefficients for modelling the probability of SDS occurrence (a) and dust 
frequency (b). Two separate plots are presented: the first plot focuses on the zero-inflation component, illustrating the 
effects of predictors on the probability of observing dust events; the second plot highlights the effect of predictors on the 
frequency of dust events (count component), showing the standardised coefficients and their 95% confidence intervals for 
each group. In both plots, significance is indicated by colouring the points red for significant predictors (p < 0.05) and grey 
for non-significant predictors.
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4. Discussion

4.1. Driving factors of dust activity change with vegetation cover: snow is the dominant factor in 
low-vegetated areas

This study found that the control exerted by snow exhibits marked spatial variability and dominates in 
regions where vegetation cover is low. Both the structural equation modelling and the generalised linear 
model indicate that, in these areas, the frequency of winter–spring snow cover (SCFpre3) has a strongly 
negative effect on both the probability and frequency of dust-storm weather, with an intensity significantly 
greater than that of vegetation or moisture indices. Two mechanisms underlie this control: first, winter 
snow acts as a major water input, alleviating early-spring surface desiccation and reducing wind erosion of 
bare soil (Yang, Peng, and Dan 2025); second, snow cover delays the exposure of the soil surface, effectively 
narrowing the window during which spring winds can entrain sand and dust (Wu et al. 2022; Yang, Peng, 
and Dan 2025). By contrast, although wind speed remains the most direct driver in high-cover areas 
(FVC ≥ 0.5), vegetation exerts an indirect buffering effect by reducing wind speed, while snow’s direct 
influence on dust weather is comparatively weak (Wu et al. 2022). This shift in control mechanisms 
demonstrates that, under low-vegetated conditions, snow rather than vegetation is the critical factor 
governing dust transport.

4.2. Northward migration of dust activity closely linked to diminishing snow: vegetation recovery 
alone is insufficient in combating dust activity

From 2001 to 2024, both MODIS DOD and station-based CDI data reveal a pronounced northward migration 
in the centre of dust activity: frequencies decreased markedly in southern source areas (e.g. Mu Us Desert, 

Figure 5. Structural equation modelling (SEM) results for the drivers and pathways of spring dust activity (CDI) at the 
desert margins of East Asia, based on March–May data from 2003 to 2023. The SEM assumes that dust activity is primarily 
controlled by wind, vegetation, humility, and snow-related variables. Latent variables are represented by orange ellipses 
and observed indicators by blue rectangles. Arrows denote hypothesised directional effects among latent and observed 
variables, and the numbers on the arrows are standardised path coefficients estimated by the SEM. Line thickness is 
proportional to the absolute value of the standardised coefficient. Green arrows indicate positive effects, red arrows 
indicate negative effects. Solid arrows denote statistically significant paths (p < 0.05), whereas dashed arrows represent 
non-significant paths that are retained to show the hypothesised causal structure. (a): SEM results for stations with 
fractional vegetation cover (FVC) < 0.5; (b): SEM results for FVC ≥ 0.5.
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southern Tengger Desert) but increased in southern Mongolia and northwestern China (e.g. northern 
Gurbantünggüt Desert, Great Gobi, Eastern Gobi Desert Steppe, and Gobi Lakes Valley desert steppe). This 
trend cannot be explained simply by a “lack of afforestation in Mongolia” or “insufficient vegetation 
recovery”. Indeed, under global warming, springtime vegetation productivity in northern regions has 
generally risen (the “greening” trend in NDVI) with no large-scale degradation (Yu et al. 2003; Zhao et al. 
2023). However, remote sensing shows that winter snow depth, frequency, and duration have declined 
across Mongolia and northern China (Figure S4). As a result, snow’s dust-suppression effect is waning, 
exposing dry, bare soils in early spring as new desert dust sources. Therefore, on the low-cover desert 
margins, the retreat of snow is the core ecological driver of the northward shift in dust activity, rather than 
solely afforestation deficits or inadequate desert-control measures.

4.3. Implications

Our findings suggest that China’s ambitious tree-planting initiatives along desert margins (e.g. Taklamakan, 
Badain Jaran, Tengger, Ulan Buh) are unlikely to deliver the expected reductions in dust-storm weather 
given current global warming trends. Previous studies have noted that edge-zone vegetation restoration 
often relies on intensive irrigation, depleting groundwater, and pitting agricultural, urban, and ecological 
water demands against one another—ultimately leading to transient vegetation recovery followed by 
decline (Wang et al. 2011; Han et al. 2020). This study adds a new perspective: vegetation mitigates dust 
primarily by weakening surface wind speeds, but in low-cover areas it functions as isolated barriers, unable 
to form a continuous, effective windbreak network. Only when vegetation coverage reaches a high level 
can a coherent wind corridor develop to attenuate wind speed and fix sand effectively. Achieving such high 
cover in natural source-edge environments requires rigorous maintenance, replanting, and irrigation; any 
drought, frost damage, or trampling instantly degrades coverage and protection. In contrast, winter snow, 
with its continuous, uniform cover and enhanced surface cohesion, suppresses wind erosion and dust much 
more effectively than sparse vegetation.

Thus, relying solely on large-scale afforestation or shrub-planting is both costly (financially and in terms 
of water) and yields limited wind and sand control benefits under low-cover conditions, making such 
projects prone to underperformance. Moreover, if efforts focus only on greening surfaces without measures 
to preserve snow cover or suppress desert dust sources, dust-storm hazards will remain unmitigated. We 
therefore recommend prioritising afforestation in desert-edge zones where natural precipitation is relatively 
ample, groundwater levels are higher, and wind erosion is most severe—avoiding blind planting in hyper- 
arid areas. In low-cover regions, project strategies should shift toward semi-natural reinforcement methods 
that combine engineering and ecological restoration. Concurrently, snow fences, artificial windbreaks, and 
surface mulches (e.g. biological mats, mineral films) should be deployed to retain snow cover during winter 
and spring, thereby reducing exposed sandy surfaces at the source.

The present study has provided an integrated, observation-based assessment of the drivers of spring 
SDS activity in East Asia, highlighting the key role of snow cover in sparsely vegetated regions. Building 
on these results, several extensions can be envisaged. First, a positive feedback is likely whereby desert 
dust deposited on seasonal snowpacks lowers surface albedo, accelerates snowmelt and lengthens the 
period during which bare, erodible surfaces are exposed (Gautam et al. 2013; Clow, Williams, and Schuster 
2016); this dust–snow–SDS feedback was not explicitly quantified here, but could be examined by 
coupling the present surface-process framework with snow–albedo and surface energy-balance models. 
Secsond, large-scale atmospheric circulation could be incorporated more explicitly by linking the 
framework to indices describing the Mongolian cyclone and broader mid-latitude circulation regimes 
(Liu et al. 2020), thereby clarifying how circulation modulates snow, wind and SDS occurrence. Third, 
further progress is expected to benefit from improved ground-based observations in Mongolia: at 
present, station-based dust and meteorological analyses can be carried out only for northern China, 
whereas conditions in Mongolia are inferred from satellite and reanalysis products. The establishment of a 
coordinated, long-term Chinese–Mongolian SDS monitoring network with harmonised observing stan
dards and event coding would greatly strengthen cross-border assessments of SDS dynamics and dust- 
source attribution in the East Asian desert margins.

14 L. ZHENG ET AL.



5. Conclusion

This study shows that between 2001 and 2024, although the overall intensity of dust activity in East Asia 
exhibited only slight changes, its spatial pattern has undergone significant restructuring: the centre of dust 
activity has shifted northward, with a spatial trend of increasing intensity in the north and decreasing 
intensity in the south. While wind speed has remained a key driving factor for dust activity, the vegetation- 
ecology-hydrology processes enabling or constraining dust activity vary depending on surface cover: in 
low-vegetated areas, winter-spring snow plays a critical role in regulating soil moisture and spring 
vegetation, which is essential for suppressing dust frequency in the following year; in high-vegetated 
areas, maximum wind speed dominates, with vegetation gradually contributing to dust suppression.

In recent years, due to climate warming, winter-spring snow cover in northern China and southern 
Mongolia has decreased, leading to reduced spring moisture and exacerbating surface dryness. Under 
wind-driven conditions, active dust source areas have shifted northward toward drier sandy regions, likely 
intensifying in the future. Given that it requires intensive human investment and water resource use to 
maintain high vegetation cover in desert edge zones, large-scale afforestation projects in these areas often 
yield limited success and fail to effectively fix sand. Instead, precise measures are recommended in areas 
with relatively abundant natural precipitation, with priority given to semi-natural sand-fixation combina
tions (such as snow fences, artificial windbreaks, biological mats, or mineral films), thereby enhancing the 
sustainability and economic benefits of wind and sand control projects.
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products, accessed on 2025-12-01 from https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.2/summary, and 
maintained by the NASA Goddard Earth Sciences Data and Information Services Centre (Li et al. 2019).

Software

The statistical analysis in this study was conducted using R. Trend analysis was performed using the “terra” and 
“Kendall” packages; partial correlation analysis was carried out with the “ppcor” package; generalised linear models 
were constructed using the “glmmTMB” package; structural equation modelling was performed with the “lavaan” and 
“semTools” packages; and data visualisation of the above results was done using the “ggplot2” package.
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