
International Journal of Disaster Risk Reduction 133 (2026) 105979 

A
2
(

 

Contents lists available at ScienceDirect

International Journal of Disaster Risk Reduction

journal homepage: www.elsevier.com/locate/ijdrr  

Advancing Earth Observation-based methods for rapid mapping and 

estimation of flood and drought impacts on rice production in the 

Philippines
Arnan B. Araza a,b ,∗, Elmer Alosnos c
a Earth Systems and Global Change, Wageningen University and Research, The Netherlands
b IMPACT R&D, 47 Razburg, San Agustin Bay, Laguna, Philippines
c Philippine Rice Research Institute, Science City of Muñoz, Nueva Ecija, Philippines

A R T I C L E  I N F O

Keywords:
Loss & Damage
Earth Observation
Flood Depth
Agricultural Drought
DRRM
Philippines

 A B S T R A C T

Floods and droughts increasingly threaten rice production in the Philippines, yet loss and 
damage (L&D) estimates for rice production are constrained by traditional administrative 
reporting. While flood and drought extents can be rapidly derived from Earth Observation (EO) 
data; hazard severity, such as flood inundation depth and extreme drought intensity, remains 
more difficult to map in near real-time at large scales. This study accounted for the probabilistic 
nature of hazard severity and integrated it with crop phenology when applying specific damage 
curves. Rice production costs and baseline yields were subsequently incorporated to quantify 
disaster L&D from field to administrative levels. Both flooding associated with Typhoon Odette 
(Rai) and the 2024 drought in Iloilo Province were used as case studies. We estimate that the 
typhoon damaged 9.3% of rice area and caused losses due to flooding of PHP 270.9 ± 0.8 
million, while the 2024 drought damaged 37.6% of rice area with losses of PHP 390.0 ± 0.3 
million. Both estimates are lower than provincial reports (flood: PHP 692 million; drought: PHP 
707 million). Influencing our estimates is the fact that 59% of rice was at the seedling stage 
and inundated by only <0.5 m, while during the drought, 85% of rice areas were classified as 
not highly severe. Moreover, municipality reports may have included unaffected and unverified 
areas on top of standardized costing practices used. Relative to Typhoon Odette, losses under 
an extreme flood event (with 1% annual probability) are projected to be up to 3.5 times 
higher. Hotspots of combined extreme drought and flood events are derived to further support 
transitions toward impact-based forecasting systems embedded in climate information service 
platforms.

1. Introduction

Rising sea surface temperatures and increased atmospheric water vapor are driving more frequent and intense hydrometeoro-
logical hazards across the Western Pacific, including tropical cyclones, flooding and droughts [1]. This escalation is particularly 
evident in the Philippines, being consistently ranked first in the Global Climate Risk Index reports [2]. The country faces around 
20 typhoons each year and recurrent El Niño events that trigger agricultural droughts, all compounded by limited adaptive and 
coping capacities [3]. The economic toll is severe particularly in the agriculture sector. The Philippine Statistics Authority (PSA) 
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reported approximately USD 300 million in disaster-related losses between 2012 and 2022 [4]. While national policies on disaster 
risk reduction and management (DRRM) including post-disaster loss and damage (L&D) are in place, they remain poorly connected 
to broader development policies and lack comprehensive coverage for the agricultural sector [5].

The Philippine rice sector ranks among the most vulnerable to natural disasters. Grown mainly in lowland areas, rice covers about 
3 million ha and provides 34% of the national calorie intake. This vulnerability is intensified by the prevalence of smallholder farmers 
with 57% cultivate less than 1 ha along with limited resources, which put entire season production costs at risk [6]. Agricultural 
losses to extreme weather events since the past decade have reached record-high damages [7]. The most devastating event was 
Super Typhoon Haiyan in 2013, which caused approximately PHP 10.6 billion in agricultural damage, of which 26% was attributed 
to rice production [8]. Another example is from Typhoon Ursula in 2019, which led to 35–70% yield deficits and extended recovery 
period for Western Visayas’ rainfed farmers [9]. Similarly, recurring agricultural droughts induced by El Niño are also incurring 
significant damages. For instance, the 2019 El Niño event caused PhP 1.33 billion in crop damage [10]. Flood and drought impacts 
are further exacerbated by the fact that only around 11% of farmers hold formal insurance, and not all affected farmers receive 
adequate relief. As of 2017, only about 1.7 million of 8.8 million registered smallholders (19%) are insured [11]. This is compounded 
by insufficient DRRM funds, which are frequently delayed or difficult to release due to untimely L&D information. Current L&D 
reporting mechanisms typically rely on coarse, aggregated data and simplifying assumptions during administrative consolidation, 
which can limit the timeliness and consistency of L&D estimates [4]. The process not only slows the release of farmer insurances and 
local government calamity funds, but also increases risk to misallocate resources, leaving out the most affected farming communities. 
Moreover, reliance on manual and incentive-driven reporting can inflate figures in some cases while overlooking localized impacts 
in others, undermining both transparency and trust in the system [12]. These highlights the urgent need for rapid and accurate L&D 
appraisal to facilitate timely public relief and recovery efforts.

Earth Observation (EO) offers a solution by providing timely and spatially extensive information on damaged areas, particularly 
over rice cultivation areas. For instance, Mata et al. [13] used Synthetic Aperture Radar (SAR) data from Sentinel-1 processed 
in Google Earth Engine to map the flood inundation footprint of Typhoon Ulysses (2020) achieving an accuracy of 95%. The 
study confirmed that croplands were indeed severely affected while estimating associated losses with the help of local experts. 
Similarly, Tumaneng et al. [14] demonstrated the utility of SAR data for rapid flood mapping and damage assessment, specifically 
analyzing agricultural losses from Typhoons Rolly and Ulysses by incorporating localized land cover maps and population density. 
For drought monitoring, indices derived from optical satellite data, such as the Vegetation Health Index (VHI) from MODIS, have 
shown potential in indicating agricultural drought severity and damaged areas [15]. This study also indicated yield losses% before 
and after drought events. The FAO’s Agricultural Stress Index System (ASIS) also utilizes VHI to monitor agricultural drought 
globally and at country-level. For the Philippines, ASIS has been implemented since 2016 to provide crucial 10-day assessments 
of agricultural drought [16]. There were studies also that used MODIS-based models to estimate crop yields under drought for crop 
insurance [17,18].

While Mata et al. [13]; Tumaneng et al. [14]; Dumalag et al. [19]; Perez et al. [15] integrated various satellite data sources to 
enhance agricultural damage monitoring, few have utilized EO data to estimate rice yield L&D itself and yet has to estimate L&D until 
farm-level. Most applications remain at coarse administrative scales, often provincial or regional, limiting their utility to such scales 
which is the frontline of disaster response in the Philippines [20]. Farm-level estimates offer clear advantages as they allow more 
precise targeting of assistance and insurances especially for smallholder farmers. Aside from the scale, it is important to consider 
the crop phenology which critically modulates vulnerability during specific growth stages of rice [21]. For instance, Boschetti et al. 
[22] integrated SAR and MODIS to delineate flood extent and assess exposure across different rice stages, however, L&D were not 
quantified. Kurihara et al. [23] estimated typhoon-induced damage in rice areas but assumed that all rice was at the mature stage. 
Similarly, although VHI has been used for monitoring agricultural drought per municipality, the use of such index into stage-specific 
rice yield L&D estimation remains unexplored.

Furthermore, most damage estimates from past studies were reported as deterministic values i.e., without confidence intervals. 
Consequently, uncertainty in both input data and damage parameters remains unquantified, reducing the reliability of these 
assessments. Major sources of uncertainty such as classification errors in flood extent maps [24], variability in per-hectare production 
costs, and the probabilistic nature of the hazard severity itself are seldom accounted for in the final loss estimation. As cautioned 
by Lagmay and Racoma [25], deterministic maps such as traditional flood susceptibility maps can be misleading, as they fail 
to capture the range of possible outcomes. In contrast, probabilistic approaches offer a more realistic representation of hazard 
uncertainty, especially when such estimates serve as basis for government calamity funds or international aid. A robust approach 
involves using Monte Carlo simulations technique to propagate and combine uncertainties from key input data used to estimate 
total damages at aggregated levels [26,27].

As current studies are constrained by the L&D estimation at coarse administrative scales, limited consideration of hazard severity 
and crop growth stages, and the use of deterministic estimates that overlook uncertainty, this study aims to address these gaps by 
leveraging the increasing EO products on rice crop yield, growth stage, flood and drought together with an uncertainty estimation 
step in Philippine rice areas. This study applied this framework to two events that affected Iloilo province: the flood impacts of 
Typhoon Odette (2021) and the 2024 drought event. The L&D estimation and analysis is extended considering a worst-case flood 
event for comparison and anticipation. Specifically, we aim to (1) Conduct farm-level % yield loss mapping for both flood and 
drought events that accounts for the probabilistic nature of hazard severity and damage variability depending on crop stages; 
(2) Compare this EO-derived damage estimates against official government damage reports at municipal to provincial level; (3) 
Propagate and quantify uncertainty of estimated yield losss using Monte Carlo; and (4) Provide L&D estimates from an extreme 
flood event. In line with these, we are aiming to answer these research questions:
2 



A.B. Araza and E. Alosnos International Journal of Disaster Risk Reduction 133 (2026) 105979 
Fig. 1. Overall workflow of the methodology. Highlighted in yellow are EO inputs while blue are EO outputs.

1. How can EO data, integrated with crop phenology and hazard severity (flood and drought), be used to generate estimates of 
rice production losses from farm to provincial scales?

2. How do these L&D estimates compare with official damage reports from municipalities and even with a worst-case flood 
event?

2. Materials and methods

Fig.  1 summarizes the methodology workflow of the study and presents the main sections involving the EO inputs and steps 
used for mapping % yield losses to the L&D estimation proper. The first part is about the flood and drought severity maps; the 
second part involves running damage model and mapping % damage maps; and the third is the L&D estimation and comparison 
with local government reports. The diagram shows steps as squares and inputs and outputs as rectangles (yellow if EO input and blue 
if output), including those with margins as intermediate outputs. We follow the Post-Disaster Needs Assessment (PDNA) definition 
that damage is the destruction of agricultural assets valued at repair or replacement cost at pre-disaster prices, while losses are the 
shortfalls in production and income plus added costs until recovery. L&D refers to both physical and monetary estimates, we refer 
to agricultural drought when we say ‘‘drought’’.

2.1. Study area

Iloilo Province in Western Visayas (10.7–11.5◦ N, 122.0–123.6◦ E) spans approximately 4720 km2, about 56% of which is 
classified as agricultural land. The province is a major rice-producing area, with irrigated lowland rice systems dominating the 
floodplain areas. Based on the Iloilo Provincial Annual Profile [28], the province has a population of roughly 2.56 million, including 
the highly urbanized Iloilo City. The province receives more than 2000 mm of annual rainfall, concentrated from June to October. 
The province receives more than 2000 mm of annual rainfall, largely concentrated between June and October. Iloilo is classified as 
having a high tropical cyclone hazard, and is also prone to El Niño–induced droughts occurring approximately every 3 to 5 years. 
The western region is bounded by the Central Panay Mountain Range, while the central and eastern lowlands host expansive rice 
production supported by large-scale irrigation systems. In terms of socio-economic conditions, the province reflects a mix of urban 
growth and an agriculture-dependent rural economy. While some areas are transitioning to high-value crops and mixed farming 
systems, rice continues to be the primary livelihood for most farming communities. This combination of topography, climate 
exposure and agricultural dependence makes Iloilo a strategic case for mapping and managing multi-hazard risks to agriculture 
under climate change scenarios. See Fig.  2 for the study area map.

2.2. Local government disaster reports

In the Philippines, Local Government Units (LGUs) are mandated to submit post-disaster damage reports within days of a hazard 
event, detailing impacts on infrastructure, agriculture and livelihoods. These reports are consolidated at the municipal and city levels, 
then forwarded to the Provincial Disaster Risk Reduction and Management Office (PDRRMO), which collates municipal-wide damage 
statistics eventually submitted to the region. Coordination is done with national agencies such as the Department of Agriculture (DA) 
to ensure standard reporting formats and cost assumptions [29,30]. In this study, we used municipal-level reports for Typhoon Rai 
herein called as Typhoon Odette (local name) and the 2024 drought as reference for comparison with EO-derived estimates.
3 
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Fig. 2. Study area map of Iloilo province showing recent rice area map (green pixels) from PRiSM data of DA-PhilRice.

Table 1
Input data layers, sources and key references.
 Category Source Spatial res. Temporal res. Main uncertainty Reference  
 Rice yield Sentinel-1, PRiSM 20 m seasonal model error Mabalay et al. [31]  
 Rice planting date Sentinel-1, PRiSM 20 m seasonal model error Mabalay et al. [31]  
 Flood extent DOST-ASTI 10 m event classification error https://bit.ly/3ywNazl  
 Flood depth FWDET v2.1 30 m event DEM variability Cohen et al. [32]  
 Agricultural drought MODIS-VHI 1 km monthly severity-class thresholds Bokusheva et al. [33]  
 Baseline yield Sentinel-1, PRiSM 20 m seasonal model error Mabalay et al. [31]  
 Price & production cost Regional DRR report n/a event sampling and subjectivity DA,DRRM,LGU 2022–2024 
 Flood-damage curves Literature 20 m static curve-fit covariance Kurihara et al. [23]  

2.3. Data and preprocessing

Table  1 summarizes the EO data and ancillary datasets, data source and remote sensing data used i.e., mostly based on Sentinel-
1. The temporal resolution is also shown with EO products produced during disaster events and rice cropping season. The main 
uncertainty source of each EO data is also emphasized. All EO data were projected to EPSG:4326 and resampled to 10 m.

2.4. Mapping the flood and drought affected areas
Flood depth mapping using FwDET 2.1

Flood depth was derived with the Flood-water Depth Estimation Tool (FwDET v2.1; Cohen et al. [32]) whose required inputs 
are a flood inundation mask and a digital elevation model (DEM). The flood inundation mask was obtained from open-access data 
provided by DOST-ASTI [34]. They used a deep learning classification model using a pair of Sentinel-1 GRD scenes for classifying 
flood extents e.g., pre-event 2021-12-13 and peak 2021-12-16, VV polarization. The FwDET topography requirement was represented 
4 
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by a DEM we produced after averaging multiple DEM sources namely SRTM 1′′, NASADEM 1′′, MERIT 90 m, 5 m IfSAR data and 
the GEDTM30 v1.1 (see Table S1 for details of the DEM used). The FwDET approach estimated flood depth by converting the flood 
extent into boundary cells derived from the DEM. The boundary elevations were propagated from the flood boundary toward the 
interior of the inundated area, assigning each inundated grid cell the elevation of its nearest flood boundary. Flood depth was then 
computed as shown in Eq. 1. 

𝐷𝑖 = 𝑊𝑖 −𝑍𝑖, (1)

where 𝐷𝑖 is the flood depth at grid cell 𝑖, 𝑊𝑖 is the estimated water surface elevation and 𝑍𝑖 is the DEM elevation. Uncertainty 
in flood depth arises from vertical errors in the DEM at both the inundated cell and its associated boundary cell. These uncertainties 
were propagated to obtain a grid-cell-specific depth uncertainty and flood depth was subsequently represented as a probabilistic 
variable sampled within the Monte Carlo loss model (Section 2.6).

Probabilistic agricultural drought severity mapping

We derived agricultural drought severity using the Vegetation Health Index (VHI) computed from MODIS NDVI (MOD13Q1; 
250 m, 16-day) and daytime land surface temperature (LST; MOD11A1; 1 km, daily), following Kogan [35]. The LST was resampled 
to 250 m and both variables were aggregated to 14-day composites. VHI was expressed on a 0–100 scale (Eq. 2).

VHI = 0.5
(

1 −
NDVI − NDVImin

NDVImax − NDVImin

)

+ 0.5
(

1 −
LST − LSTmin

LSTmax − LSTmin

)

× 100 (2)

Pixel-wise mean VHI was computed over the drought window (January–May 2024) and converted to a normalized drought 
severity index 𝑆 ∈ [0, 1], with higher values indicating more severe stress (Eq. 3).

𝑆 = 100 − ̄VHI
100

(3)

Thresholds for severe drought reported in the literature vary within the range 𝑆 ≥ 0.60–0.70 [15,35,36]. We therefore treated 
the severity threshold as uncertain within this range and constructed an ensemble of severity masks. The empirical probability of 
severe drought (𝑝𝑠) was defined as the fraction of thresholds within this range exceeded at each pixel in (Eq. 4).: 

𝑝𝑠 =
1
𝐾

𝐾
∑

𝑘=1
I(𝑆 ≥ 𝜃𝑘), (4)

where 𝜃𝑘 ∈ [0.60, 0.70] denotes severity thresholds sampled within the literature-reported range, 𝐾 is the number of thresholds 
considered, and I(⋅) is the indicator function. An 80% one-sided confidence criterion was subsequently applied to 𝑝𝑠 to retain only 
pixels with robust evidence of severe drought, yielding both a probabilistic drought severity surface and a confidence-filtered mask 
suitable for subsequent loss estimation.

2.5. Pixel–level % yield loss mapping

From the rice planting date map, we derived associated crop stages such as seedling, tillering, panicle initiation, heading, 
milk, soft dough and maturity. They were also grouped into 3 phenological classes: vegetative, reproductive, maturity. Then, for 
every inundated pixel, the mean water depth and flood duration were discretized to the bins used from data implemented in the 
Philippines [37] (depth 0-2 m; duration 4, 8, 12, 16, 20 or ≥27 days). These three inputs consist the depth-duration-stage matrix 
and damage curve [37] and written to a raster of % yield loss. The matrix gives integer values, so the resulting map represents a 
mean loss.

The same procedure was applied to drought-affected pixels, replacing flood depth with drought severity map. The VHI composites 
for January–May 2024 were first converted to a pixel-wise probability of ‘‘severe’’ stress, 𝑝𝑠, by evaluating thresholds from 30–40% 
severity. The mean probability therefore embodies the disagreement among sources, while the variance 𝜎2𝑠 = 𝑝𝑠(1−𝑝𝑠) quantifies that 
ambiguity. For each crop stage the corresponding minimum and maximum drought losses were linearly interpolated with weight 𝑝𝑠, 
producing an expected drought-loss raster 𝐿𝑑 and an accompanying uncertainty 𝜎𝐿𝑑

∝
√

𝑝𝑠(1 − 𝑝𝑠). Flood loss 𝐿𝑓  is thus controlled 
by discretized depth–duration classes, whereas drought loss 𝐿𝑑 is modulated by probabilistic VHI severity.

2.6. Loss estimation and comparisons
Loss estimation from pixel to aggregated levels.

The losses were estimated by integrating two monetary components: (i) revenue losses due to reduced paddy yield and (ii) 
production costs already incurred by farmers at the time of the event. Revenue loss was computed by combining the baseline yield 
without or minimal disaster event (see Table  1), the % yield loss and farm-gate prices sampled from the empirical price distribution 
observed during the two-week post-event trading window. This valuation follows the framework commonly used in DA and LGU 
calamity assessments.

Uncertainty in hazard severity, yield loss, prices and production costs was propagated using a Monte Carlo simulation framework 
implemented at the pixel level. For each grid cell, multiple realizations were generated by repeatedly sampling stochastic inputs, 
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including flood depth uncertainty, probabilistic drought severity, price variability, and cost variability. In each realization, pixel-
level damage cost was computed only for cells classified as affected, thereby accounting for commission errors in flood mapping 
and uncertainty in drought masking.

For each Monte Carlo realization, pixel-level monetary damage was estimated according to Eq. 5: 
𝐷(𝑛) = 𝑌0 𝐿

(𝑛) 𝑃 (𝑛) + 𝐶 (𝑛), (5)

where 𝑌0 is the disaster-free baseline yield, 𝐿(𝑛) is the sampled fractional yield loss, 𝑃 (𝑛) is the farm-gate price drawn from the 
empirical price distribution, and 𝐶 (𝑛) is the production cost sampled from the province-specific cost distribution.

The ensemble of Monte Carlo realizations yielded pixel-wise distributions of monetary loss, from which the mean expected 
damage and associated uncertainty were derived. These pixel-level estimates were then aggregated to administrative levels using 
area-weighted summation. Province-level expected loss and uncertainty were computed following Eq. 6: 

𝜇tot =
∑

𝑖∈
𝐴𝑖 𝜇𝐷,𝑖, 𝜎2tot =

∑

𝑖∈
𝐴2
𝑖 𝜎

2
𝐷,𝑖, (6)

where  denotes the set of pixels within the administrative unit, 𝐴𝑖 is the pixel area, and 𝜇𝐷,𝑖 and 𝜎𝐷,𝑖 are the mean and standard 
deviation of pixel-level damage derived from the Monte Carlo ensemble, assuming spatial independence of errors. Reported loss and 
damage estimates were presented as expected values with corresponding 95% confidence intervals.

Comparison of estimates with local reports and extreme events

At the municipality level, we compared the L&D estimates from this study and the local reports (Sect. 2.2) through scatterplots 
and mirroring bar graphs. We estimated the Pearson’s correlation (r) among the two sources while paying attention to the magnitude 
of disagreement. We further compared the spatial pattern and magnitude of losses by highlighting whether the LGU-based is higher 
than 20% than EO-based and vice versa.

Another set of comparisons was initiated between Typhoon Odette (2021) and extreme flood event i.e., a flood with a 1% annual 
probability of occurrence  Lagmay [38]. We summed per-pixel loss estimates for Typhoon Odette and the extreme flood scenario, 
then computed both million-PHP to allow direct comparison. We assessed agreement in flood hotspots by computing the overlap of 
binary flood extents and by calculating the correlation between municipality-level loss totals.

For agricultural drought, we applied an empirical threshold of VHI ⩽ (mean=0.2) to derive an expanded drought-extent mask, 
which was clipped to the rice-growing area. We then overlaid the binary maps for the extreme flood scenario and the expanded 
drought extent to identify multi-hazard ‘‘hotspots’’ and summarized both the absolute hotspot area (ha) and its share of total rice 
area by municipality.

3. Results

3.1. EO inputs and the spatial yield loss map

Fig.  3 shows the map inputs used to estimate the pixel-level and total rice production losses due to flooding from Typhoon 
Odette in mid-December 2021. The majority of the rice area then was in the seedling stage (59.2%), followed by tillering (21.5%) 
and panicle initiation (8.2%). In terms of spatial patterns, the most low-lying paddies in north-eastern and south-western Iloilo 
were still in the panicle-initiation or booting stage, whereas most of the mainlands were already at transplant and tillering. Because 
the depth–duration damage curve penalizes later stages more, the spatial pattern in crop stage depicts where large yield losses are 
possible. Baseline yield (t ha-1) (from the cropping season without or with minimal disaster event) confirms this as yields can exceed 
4 t ha-1 along the western area but drop below 3 t ha-1 in fragmented areas in the northern part. Flood depth (m) indicates that 
inundation reached 1.5–2 m while most of the rice domain remains dry (<0.5 m). The Flood-depth uncertainty 𝜎 (m) is largely 
<0.25 m and these coincide with areas with deeper inundation. The % yield loss converts depth, duration and crop stage into 
expected fractional loss. Damaged areas (⩾ 60%) appear over the deepest water in central Iloilo where crops were at sensitive 
reproductive stages, while peripheral paddies show only the minimum 40% prescribed by the damage curve. The % yield loss 
uncertainty mirrors yield loss spatial patterns but peaks where both the depth error and the curve’s slope are large. Overall, around 
9.3% of the rice areas were inundated based on the flood extent map and the total rice area derived from the crop stage map.

Fig.  4 presents the EO layers used to derive the 2024 dry season drought-yield loss calculation. The crop-stage maps reveal that, 
by early April, nearly the entire rice fields had advanced to dough or maturity and only several areas remained at booting and 
milking. The drought-damage table assigns its lowest sensitivity to these late stages, the stage alone suggests that potential yield 
loss can be moderate. The maturity stage occupied the majority of the cropped area (72.8%), with relatively low and stable damage 
(mean 15%), see Table S3. This is reinforced by the baseline-yield map whose values peak at 5 t ha-1. When severity is merged 
with the stage-specific drought curve, the resulting yield loss % map indicates losses of roughly 14%–18% concentrated in the same 
agricultural drought hotspots. Elsewhere, the predicted loss defaults to the damage curve’s stage minimum of  14%. The yield-loss 
uncertainty (𝜎) is mostly under 5%, rising to 10%–15% where VHI ambiguity coincides with steep damage curves. Around 37.6% 
of the rice areas had severe agricultural drought based on the severity index map and the total rice area derived from the crop stage 
map.
6 
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Fig. 3. Map inputs used to derive the spatial rice production losses (PHP) from the Typhoon Odette event.

Fig. 4. Map inputs used to derive the spatial rice production losses (PHP) from the 2024 drought event. Note that color scaling and bins differ 
from Fig.  3.
7 
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Fig. 5. Comparison between the EO-derived and national reports total losses (PHP) of a flood event at municipality level.

3.2. Comparison of our estimates with the local reports

Fig.  5 shows that EO-based loss estimates are generally lower than the values reported by municipalities. Most points are found 
above the 1:1 line and the coefficient of determination is modest (r=0.12), indicating limited alignment between the two sources. 
The bar graph confirm that, for the majority of municipalities, reported losses way exceed those derived from this study, while only 
a few localities (e.g. Pototan and Dumangas) display the reverse pattern. The two are located in the central part of the province, 
see Fig.  2. There are at least 7 municipalities that showed good agreement between EO-based and local reports i.e., the topmost 
municipalities in the comparison figure located in different parts of the province.

Fig.  6 compares EO-derived and municipality-reported drought losses. Agreement is r=0.21, yet the scatter is more balanced 
around the 1:1 line than for the flood case as several municipalities (e.g., Pototan, Dumangas and Barotac Viejo) show larger EO 
estimates, while others (such as Lambunao or Calinog) report markedly higher figures based on local reports. The figure emphasizes 
this mixed pattern and reflects the strong local variability in VHI-based drought severity and planting dates, as well as possible 
differences in how area-based reports accounted for harvests or late crop management.

The spatial interpretation in Fig.  7 shows that most municipalities report losses that differ from EO-based estimates by more than 
ś20%, with LGU-reported values more frequently exceeding EO-based estimates for both flood and drought events. Discrepancies 
are spatially heterogeneous, with fewer municipalities falling within the ś20% agreement range. Reporting coverage was lower for 
the drought event (32 of 44 municipalities; 72%) than for Typhoon Odette (40 municipalities; 90%). Only one municipality reported 
losses lower than the EO-based estimates for both flood and drought.

3.3. Estimates for an extreme flood scenario

Figs.  8 and 9 present a side-by-side comparison of the Typhoon Odette flood and an extreme flood event. The inundation 
of the extreme event covers the entire river network and adjacent lowlands, resulting in a much broader and more intense 
damage pattern and estimate than the flooding from Odette. Municipality level losses follow a linear trend between the two events 
(r=0.66). Interestingly, Odette’s flood damage is larger in several municipalities that are considered flood hotspots such as Pototan 
and Dumangas. The spatial overlap of the two flood events is found to be 64%, while the range of the farm-level damage is 
PHP 1,000–2,500 per 100 m2.

3.4. Total damages comparison and hotspot analysis

The EO–based estimates showed lower provincial totals than the locally reported loss figures and with low uncertainty estimates 
(Table  2). For Typhoon Odette, our estimate is only ∼ 271 M PHP, about 2.6 smaller than the 692 M PHP consolidated by the 
provincial office. A similar, though slightly narrower, gap appears for the 2024 drought (390 M PHP from EO versus 707 M PHP 
reported, a factor of ∼ 1.8). Within the EO results the 2024 drought caused ∼ 1.4 more monetary loss than the Odette flood (390 
M PHP vs 271 M PHP). Although drought affected far fewer hectares than the extreme flood extent, its timing coincided with the 
reproductive phase of a large portion of the crop and the damage curve assigns disproportionately high penalties to water stress at 
that stage. Provincial total suggests parity between the two estimates (707 M PHP drought vs 692 M PHP flood).
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Fig. 6. Comparison between the EO-derived and national reports total losses (PHP) of a drought event at municipality level.

Fig. 7. Maps showing whether municipalities estimated higher or lower than EO-based estimates. Light gray depicts < 20% discrepancy while 
darker gray means no data.

Table 2
Municipality-level losses (in MPHP) from this EO-based study versus provincial reports and an extreme flood scenario.
 Event This study Loss (MPHP) Comparison Loss (MPHP) 
 Typhoon Odette Flood EO-based 270.9 ± 0.8 Provincial report [29] 692.3  
 2024 Drought EO-based 390.0 ± 0.3 Provincial report [30] 706.6  
 Extreme flood event – – 1:100-year flood model [38] 1694.2 ± 1.8 

The extreme flood scenario delivers a province-wide loss of 1.69 B PHP roughly 3.5 more than the estimates from the Typhoon 
Odette. The multiplier is driven mostly by extent i.e., the extreme flood inundates almost every areas parallel to stream networks, 
whereas Odette’s footprint was confined to the Jalaur and Iloilo River basins.

The hotspot analysis in Fig.  10 identifies ten municipalities i.e., Pototan, Mina, Balasan, Banate, Oton, Sara, Dumangas, Barotac 
Viejo, Ajuy and Dingle that each have over 1000 ha of rice lands simultaneously exposed to severe flood and drought hazards. 
Pototan and Mina are most heavily impacted, with nearly 30% of their total rice area in the multi-hazard hotspot.
9 
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Fig. 8. Comparison between the flood extent maps (10 m) of a Typhoon Odette and an extreme flood event and the associated losses (PHP) at 
pixel level.

4. Discussion

4.1. Deriving the spatial % yield loss maps

Our spatial analysis demonstrated that crop phenology strongly influences rice yield losses in both the flood event (59% 
seedling stage) and drought event (73% maturity). Fields in reproductive stages particularly panicle initiation and heading showed 
disproportionately higher damage under moderate drought or flood stress. This aligns with findings by Shrestha et al. [39], who 
developed flood vulnerability curves for rice in Myanmar with significant losses during reproductive phases and Boschetti et al. 
[22] who showed that phenology-aware remote sensing and damage estimation is important for flood damage assessment accuracy. 
More studies suggest that short-duration flooding during early vegetative stages inflicts substantially less yield loss than similar 
stress applied during reproductive stages, as early-stage rice can often recover through tillering and vegetative regrowth e.g., Ismail 
[40]; Yu et al. [41].

Although fewer than 10% of rice-growing areas were inundated and classified as ‘‘severely affected’’ by Typhoon Odette or 
the 2024 drought when using Vegetation Health Index (VHI) thresholds respectively, these assumptions may also underestimate 
actual impact. In the 2019 El Niño–induced drought in the Philippines, Perez et al. [15] showed that while VHI and related indices 
10 
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Fig. 9. Comparison (scatter plot and bar graph) between the flood extent maps of a Typhoon Odette and an extreme flood event and the 
associated damage costs for all municipalities.

classified roughly half of agricultural land as stressed, rice yield losses still reached up to 20% in a western province during the 
first two quarters following the El Niño peak. Consistent with this pattern, earlier El Niño events in the 1990s were associated with 
national rice production declines of approximately 6% during moderate events and up to 22% during strong events [42]. These 
findings highlight that even areas classified under ‘‘moderate’’ or ‘‘mild’’ stress zones can experience substantial yield reductions, 
demonstrating that using only a strict ‘‘severe’’ threshold can underestimate agronomic loss. For instance, Villa et al. [43] reported 
that moderately severe drought can still cause 59% damage to crops.

Omission errors in flood extent maps can result in underestimation of affected areas especially when flooding is short-lived or 
recedes before next pass of Sentinel-1. This repeat cycle (typically 6 to 12 days) often misses transient inundation events especially in 
tropical areas with brief intense flooding followed by rapid drying. In Luzon, Philippines, an inter-comparison of Sentinel-1 change 
detection algorithms during a typhoon event revealed that single-date SAR scenes failed to capture several flood pulses, resulting 
in under-mapping unless multi-date temporal analysis was applied [24]. Similarly, a Bangladesh study reported that rapid flood 
recession substantially reduced backscatter signals before satellite acquisition, leading to omission of affected areas [44]. On the 
other hand, commission errors of 5–15% is also possible as fishponds, irrigation canals and saturated fallows often resemble open 
water in C-band SAR imagery [45]. These false positives may inflate water depth fields derived from terrain-fitting models like 
FwDET [32].
11 
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Fig. 10. Hotspot areas of a combined extreme agricultural drought scenario and the extreme flood events.

4.2. Comparison of loss estimates: EO-based and municipal reports

We found that the EO-based loss estimates were generally lower than the values reported in municipal summaries. Our results 
are consistent with van Rutten et al. [45], who demonstrated that using Sentinel-1 flood extent and FABDEM-derived depth values in 
combination with rice damage curves produced lower loss estimates than ground-based reports. One reason is the interplay of crop 
stages and hazard severity extent that directly affect recovery [46]. However, the damage curves used can still improve by further 
accounting other influential factors like rice variety which both incur different recovery properties and production costs [43,47].

The systematic higher estimates from local reports can be plausibly attributed to a combination of methodological and 
administrative factors. First, local reports may have included unharvested yet ultimately unaffected fields in their initial assessments, 
particularly when early forecasts were pessimistic and aimed at preemptive relief mobilization. Higuchi et al. [12] reported that 
administrative damage figures in the Philippines frequently overestimated actual losses when compared with satellite imagery and 
survey data, suggesting that unaffected areas were systematically incorporated into the damage estimates to secure faster relief 
disbursements. Second, there appears to be a widespread tendency to apply the highest allowable production-cost rates uniformly, 
regardless of the actual practices or input levels specific to a locality. Flyvbjerg et al. [48] argued that such behavior is often not 
due to error but to deliberate misrepresentation to maximize funding eligibility or political gain.

The loss estimates had narrow 95% confidence intervals (±0.8 M PHP for the flood event and ±0.3 M PHP for the drought event), 
indicating low uncertainty under the current assumptions considering the production costs and yield-loss parameters. Such error 
propagation can be expanded considering probabilistic nature of other damage model inputs (e.g., remote sensing maps, market 
price volatility) while checking their spatial dependencies to avoid underestimation of uncertainty [49].

On the other hand, we found that those municipalities that showed good agreement between EO-based and local estimates are 
located in different parts of the province i.e., no spatial pattern that can be associated with the agreement. Aside from technical 
capacity, socio-political issues and geophysical conditions may play a role on how effective they can enact DRRM [50].

4.3. Climate change extreme impact and hotspots

The extreme flood scenario analysis revealed an estimated province-wide loss of 1.69 B PHP roughly 3.5 more than the estimates 
from the Typhoon Odette. We find this surprising as we expected higher estimate from the extreme flood scenario. The extreme 
flood map comes from a hydrodynamic simulations that restrict flooding to hydraulically connected zones. This modeling approach 
may reduce commission errors over ambiguous surfaces but may also omit floodwater in hydraulically disconnected rice fields. 
Recall also that the two flood extent maps only overlaps by 64%. Our comparison with a flood scenario aligns with a vulnerability 
assessments study that linked flood return periods to stage-specific yield loss [51].

Three high-exposure municipalities (Mina, Balasan and Oton) highlighted the vulnerability to both flooding and drought. These 
overlapping hotspots should be prioritized in the Provincial DRRM Plan by targeting both structural flood defenses and drought-
resilient irrigation and storage in the highest-risk towns in line with the Philippine Disaster Risk Reduction and Management Act 
of 2010 (RA 10121).
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4.4. Implications and future work

While the method and analysis of this study are limited to rice and two major climate hazards, the framework and methodology 
are replicable and adaptable to other crops and provinces in the Philippines. The findings underscore the need for EO-supported 
verification mechanisms in the release of calamity funds under RA 10121 to enhance transparency and farmer trust. Mapping 
phenology-sensitive hotspots provides an evidence base for targeting flood- and drought-tolerant rice varieties (e.g., NSIC Rc 194, 
Rc 222, Rc 480), water-saving rice technologies (e.g., dry direct seeding, laser land leveling, Alternate Wetting and Drying or AWD) 
and other climate-smart approaches in high-risk municipalities. EO-based rapid assessments can also underpin index-based insurance 
and parametric payout schemes to ensure timely and equitable farmer compensation [52].

This study relied on official EO products from national agencies e.g., crop stage maps where delays in release and access may 
compromise the timeliness of rapid assessments. Such stage-specific damage functions applied are preliminary and can be updated 
as new empirical data on crop losses become available. In terms of the flood extent dependency, thanks to timely production and 
sharing of Philippine Space Agency, we already have L&D estimates from recent flood events on July 18 and September 22, 2025, 
which will be shared and visualized via our WebGIS platform www.digisaka.com (Fig.  S1). The mobile application of Digisaka also 
functions as a ground validation tool.

Looking ahead, our findings highlight the urgent need for an impact-based forecasting system that links real-time hazard mapping 
with DRR, relief operations and insurance mechanisms for rice farming communities e.g., [53,54]. This will indicate not only 
where and when floods or droughts will occur, but also how they will affect livelihoods and production, enabling anticipatory 
actions and risk financing such as index-based insurance [55]. Embedding this within digital agriculture platforms would facilitate 
transparent, public-facing dashboards that deliver tailored agro-advisories to farmers and local decision-makers [31,38]. Moreover, 
future flood and drought mapping efforts stand to benefit greatly from ultra-high-resolution UAV images, which can deliver near-
real-time inundation extents and depths [56]. For flood mapping, terrain-driven approaches such as the Height Above Nearest 
Drainage (HAND) model further refine these predictions by integrating catchment topography to estimate likely floodwater depths 
without requiring full hydrodynamic simulations [57]. Moreover, integrating IoT-enabled river-stage and discharge sensors provides 
continuous observational data streams that can automatically recalibrate and update flood extents as water levels change [58].

A spatially explicit risk framework should focus on multi-hazard hotspots i.e., areas prone to flooding, drought, wind damage 
and pest outbreaks so municipal governments can prioritize interventions. These can all have stand-alone and compounded 
damage curves and matrices estimated from actual updated data. Moreover, a comprehensive L&D accounting system in a WebGIS 
environment that integrates wind effects, pest and disease stressors, rice varieties, water management and stage-specific yield-
loss would support proactive DRR planning and more equitable budget allocation to the most-affected municipalities. In addition, 
forecasts of rice yield and prices can further inform preparedness and response decisions. We piloted such a platform that also 
functions as a Climate Information Service (CIS), integrating real-time weather information with crowdsourced inputs (Fig. S1). 
This platform provides a pathway for delivering near real-time estimates of loss and damage following disaster events. Lastly, this 
study should complement national government L&D reporting systems, improving efficiency and timeliness in capturing disaster 
impacts on rice.

5. Conclusion

This study demonstrates that integrating EO-derived hazard maps with hazard severity and crop phenology enables robust 
estimation of rice production losses beyond what is typically captured in conventional administrative reports. Typhoon Odette 
affected 9.3% of rice areas with losses of 270.9 ± 0.8 million PHP, while the 2024 drought stressed 37.6% of rice areas with losses of 
390 ± 0.3 million PHP, both considerably lower than local government reports. While discrepancies exist, they also underscore the 
complementary roles of EO-based and ground-based reporting systems, where administrative data provide institutional coverage and 
EO-based approaches help reveal spatially heterogeneous impacts and severity patterns that may otherwise be missed. Such areas 
are best to be validated from the ground e.g., crowdsourcing using digital tools. The identified damage hotspots align with multi-
hazard regions, underscoring the need for spatially targeted DRR and climate-smart interventions. Looking ahead, operationalizing 
rapid loss assessment within a Climate Information Service platform such as Digisaka, coupled with integration of actual farm-level 
production costs, will allow pixel-level losses to be expressed in direct economic terms for insurance, calamity funds and farmer 
compensation. Future work should also develop impact-based forecasting and farmer co-reporting mechanisms to enhance both the 
timeliness and reliability of disaster assessments.
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Appendix. Supplementary materials

See Tables  S.1–S.3 and Fig.  S1.

Table S.1
Gridded data sets used in the flood–depth workflow.
 Data set Brief description Nominal res. Reference  
 SRTM 1′′ Space-borne C-band DEM (v. 3, void–filled). 30m Farr et al. [59]  
 NASADEM 1′′ SRTM re-processing with ICESat 30m Crippen et al. [60]  
 MERIT DEM Multi-error-removed global DEM; hydrologically 

conditioned
90m Yamazaki et al. [61]  

 Phil. IfSAR Interferometric airborne SAR DEM for the 
Philippines

5m DOST LiDAR Program 
(2019)

 

 Composite DEM Error–weighted average of the four DEMs above 30m this study  
 FwDET depth map Floodwater depth raster for Typhoon Odette 

(2021); produced with FwDET v2.1
30m Ho and Hengl [62]  

Table S.2
Area distribution and yield loss statistics by crop stage for the flood event caused by Typhoon Odette.
 Stage Cells Area (ha) Mean Median Q25 Q75 Min Max % Area 
 Seedling 123,132 4896 42.1 40 40.0 40.0 40.0 72.3 59.2  
 Tillering 44,797 1781 41.7 40 40.0 40.0 40.0 70.1 21.5  
 Panicle initiation 17,126 681 41.5 40 40.0 40.0 40.0 69.0 8.23  
 Heading 12,840 511 59.4 60 58.0 60.0 45.2 80.0 6.17  
 Booting 10,124 403 42.8 40 40.0 40.0 40.0 74.6 4.87  

Table S.3
Area distribution and yield loss statistics by crop stage for the 2024 drought event.
 Stage Cells Area (ha) Mean Median Q25 Q75 Min Max % Area 
 Maturity 5949 23,653 15.1 15.0 15.0 15.0 13.3 21.0 72.8  
 Dough 941 3741 15.5 15.0 15.0 15.0 13.3 21.0 11.5  
 Soft dough 514 2044 17.9 18.7 15.0 20.6 13.3 21.0 6.29  
 Milking 456 1813 17.6 18.1 15.0 20.0 13.3 21.0 5.58  
 Booting 209 831 15.5 15.0 13.7 15.7 13.3 21.0 2.56  
 Tillering 104 414 15.5 15.0 15.0 15.0 13.3 21.0 1.27  
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Fig. S1. The interface of the Digisaka platform showing AI-derived forecast maps and functioning as a CIS: (1) Flood inundation of Typhoon 
Odette; (b) Sample farm-level agricultural drought indication from VHI; (c) embedded platform real-time weather forecasts and (d) forecasted 
monthly rice yield from Digisaka system.

Data availability

The data supporting this study are available upon reasonable request.
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