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ARTICLE INFO ABSTRACT

Editor: Angela Mally Global decline of amphibian populations has been correlated with a range of endogenous and exogenous vari-

ables including their unique physiology and ecology, exposure to chemicals, habitat reduction, climate change,

Keywords: as well as biological hazards such as emerging infectious diseases. The African clawed frog (Xenopus laevis) is an

Acute developmental toxicity, Xenopus laevis OECD test species used in toxicity testing as a specific proxy for humans and environmentally relevant species,

;I_III\];I;YOS for which acute toxicity data for a range of chemicals have been generated historically by industry, a number of

X . public health agencies and academia. Of particular relevance are mechanistic effects of endocrine-active sub-
Multiple regression models, QSAR i . A T T s

stances on metamorphosis and the thyroid axis, resulting in developmental toxicity. From such toxicity data, no

open-source quantitative structure-activity relationships (QSARs) have been developed as in silico tools to

predict such toxicity for data-poor chemicals in X. laevis. Such QSAR models can provide a quantitative starting

point for the hazard assessment of chemicals in other anuran amphibians. This manuscript provides a description

of the data collection and curation from the largest historical databases including the US EPA ECOTOX

knowledgebase and the Ortiz-Santaliestra databases available for Xenopus embryos as acute median lethal

concentrations (LCso-12h) for a total of 349 unique structures and 1978 individual entries. After data curation,

the database contained 359 individual entries for a total of 175 compounds, and were computed using the

negative logarithm of molar concentrations expressed as 12hlog 1/LC50 mmol/L. Subsequently, the database

was then split into training set, test set and prediction set with 120, 40 and 13 compounds, respectively. These

datasets were then used for the development and validation of two different QSAR models: 1. A k-Nearest

Neighbours (k-NN) models using istKNN (in silico tools — KNN). 2. A multiple linear regression model (MLR)

using the QSARINS (QSAR-INSUBRIA) software version 2.2.4. Overall, the QSAR models performed well for

predicting acute toxicity of chemicals in Xenopus embryos and the MLR model performed slightly better than the

k-NN model with correlation coefficients of 0.76 and 0.75 and root mean square errors of 0.63 and 0.67,

respectively. However, underestimation of predictions for highly toxic compounds were observed and these
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limitations are discussed for both the k-NN and multiple linear regression model in the light of mechanistic
interpretation and expert knowledge. Variability in the experimental datasets as well as under-representation of
the most toxic compounds in the database are highlighted as major drivers influencing such underpredictions.
Future directions from the present work include the modelling of other endpoints and developmental stages as
well as other amphibian species using the available, although limited, data. Overall, it can be foreseen in the near
future that such databases and models will be important to develop more performant in silico models, and ul-
timately to develop NAMs for ecotoxicity assessment of chemicals in anuran amphibians while reducing animal

testing.

1. Introduction

Over the last three decades, efforts in computational toxicology
research has been driving the development of in silico tools including
(quantitative) structure-activity relationship ((Q)SAR), grouping ap-
proaches for setting chemical categories, assessment groups, expert
systems, and read-across techniques. Such tools provide a means to
predict toxicity properties of untested chemicals in a range of species of
relevance to environmental risk assessment (ERA) (Astuto et al., 2022;
Carnesecchi et al., 2020; Cattaneo et al., 2023; Lavado et al., 2021;
Raunio, 2011; Toma et al., 2021).

QSAR models provide statistical relationships between physico-
chemical properties, structural characteristics, and toxicological effects
of substances while supporting and depicting the mechanistic basis of
toxicity and adverse outcomes in organisms (Cronin and Madden, 2010).
Importantly, their development takes advantage of the availability of
toxicological data stored in appropriate databases (e.g., the EFSA
OpenFoodTox — Dorne et al., 2021).

Such approaches are central to the 21st century toxicology vision and
next generation risk assessment approaches advocating the imple-
mentation of the 3Rs principle, i.e., the resolution to avoid animal
experimentation altogether (Replacement), limit the number of animals
(Reduction) and their suffering (Refinement) in tests to an absolute
minimum (Russell and Burch, 1992). This may be attained through the
integration of information coming from testing and non-testing methods
within a weight-of-evidence framework as part of New Approach
Methodologies (NAMs) (Berg et al., 2011; Bhattacharya et al., 2011,
Casati, 2018; Di Nicola et al., 2023; National Research Council, 2007).

Key applications of QSAR models include prioritisation of industrial
chemicals from a hazard perspective, classification and labelling, hazard
identification during the first stages of R&D process as well as hazard
characterisation through the generation of quantitative hazard metrics
for human health, animal health and ecological risk assessment or
screening of large ecotoxicological datasets (Astuto et al., 2022; Raies
and Bajic, 2016).

Amongst all computational methods, QSARs currently represent one
method accepted and promoted by regulatory agencies, academia, and
industry as long as these meet the Organisation for Economic and
Cooperation Development (OECD) requirements, including assessment
of prediction accuracy through comparison with experimental data
(Gozalbes and Vicente De Julian-Ortiz, 2018; OECD, 2014). In this
context, the recently published OECD (Q)SAR Assessment Framework
(QAF) provides harmonised principles and checklists for the assessment
of QSAR models, individual predictions and results based on multiple
predictions, with a strong emphasis on transparency and fitness for
regulatory applications (Gissi et al., 2024; OECD, 2024). Amongst those
QSAR models used for toxicity prediction, k-Nearest Neighbours (k-NN)
models as non-parametric classifiers or regression estimators for
continuous endpoints are probably the simplest ones (Altman, 1992).
Overall, k-NN algorithms compute the outcome of a sample within a
dataset based on the k most similar samples (neighbours) in a training
set for which the toxicological outcomes are known from experimental
datasets (Como et al., 2017; Manganaro et al., 2016). In other words,
k-NN models allow for the prediction of continuous endpoints (e.g., le-
thal concentration (LCsg)) as quantitative predictions of neighbours

within a chemical space (Gadaleta et al., 2019; Gadaleta, 2014). A major
advantage of k-NNs lies in the fact that they are easy to implement and
often result in good predictive performance. In addition, the inspection
of the selected neighbours allows one to apply a reasoning similar to the
read-across approach. However, these require homogeneous features,
are heavily dependent on k values and are sensitive to noisy data,
missing values and outliers. Such k-NN models have been developed for
a range of species relevant to ERA including rat, trout, honeybees and
collembola to cite but a few (Como et al., 2017; Toropov et al., 2020).

Amongst organisms of interest to ERA, amphibians constitute an
important taxonomical group and are recognised as the most threatened
vertebrate taxa since they are declining in numbers and, over the last
fifty years, hundreds of species have gone extinct. Such decline has been
rationalised to be due to exposure to multiple stressors including habitat
loss, climate change, chemicals and infectious diseases caused by fungi
such as Batrachochytrium and viruses like Ranavirus (e.g., Campbell
Grant et al., 2020; Falaschi et al., 2022; Fisher and Garner, 2020; Fisher
et al., 2021; Green et al., 2020; Palomar et al., 2023; Rollins-Smith,
2020). In addition, their unique ecology, physiology, and life cycle
with a range of aquatic (i.e., egg, embryo, tadpole) and terrestrial life
stages (i.e., juvenile and adult) makes them particularly sensitive to such
multiple stressors (Toropova et al., 2021; Toropov et al., 2022). The
scientific panel of plant protection products and their residues (PPR) of
the European Food Safety Authority (EFSA) has recently published a
scientific opinion aiming to address the scientific basis of the sensitivity
of amphibians and reptiles as well as data gaps and recommendations to
integrate these taxa within pesticide ERA. The PPR panel highlighted
that limited experimental toxicity data are available for amphibians and
that there are currently very limited requirements to include them in
pesticide ERA. Hence, the use of NAMs including in silico models such as
QSARs and toxicokinetic-toxicodynamic (TK-TD) models provide prac-
tical tools to predict physicochemical properties, fate, and toxicity (see
Di Nicola et al., 2023; Dorne et al., 2023; EFSA et al., 2018).

The development of QSAR models for tadpoles, as an aquatic phase
of the amphibian life cycle, has been shown to be highly relevant since
they may be particularly sensitive to chemical toxicity while undergoing
metamorphosis (Gross et al., 2009; Zhang et al., 2019). Few QSAR
models for tadpoles have been developed, so far, and these include
models for a relatively limited number of alcohol compounds and spe-
cies such as Rana temporaria, Rana chensinensis, and very recently for
Rana japonica (Adhikari and Mishra, 2018; Agrawal et al., 2003; Huang
et al., 2003; Jaiswal and Khadikar, 2004; Sahoo et al., 2016; Toropov
et al., 2022; Toropov et al., 2023; Wang et al., 2018; Wang et al., 2019).

In this context, the recent regression-based R. japonica QSAR model
(Toropov et al., 2022) highlighted the need to further develop QSAR
models for other amphibian species for which some experimental data
are available in public databases and the peer-reviewed literature
(Toropov et al. 2022). Amongst amphibian species, the African clawed
frog, Xenopus laevis (Daudin, 1802) (Fig. 1), an anuran amphibian from
the Pipidae family, is of high relevance as it is a test species set by the
OECD and much of the current knowledge of amphibian biology has
been obtained using it as an experimental model. The reason why this
species has been included as an OECD test species mostly lies in the fact
that it is easy to keep in the laboratory being a sturdy and relatively
small species with a life span as long as 30 years (compared to 5-15
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Fig. 1. Adult individual of African clawed frog, X. laevis (Daudin, 1802). Photo
credit: Matteo R. Di Nicola.

years in the wild), and its breeding habits generates a large number of
eggs (i.e., a thousand eggs up to 3—-4 times a year) (Cannatella and De Sa,
1993; Nikos, 2012; OECD, 2015; Reed, 2005). In addition, since mo-
lecular and cellular pathways are highly conserved, X. laevis has been
used in developmental studies particularly for endocrine active sub-
stances, neurosciences, genetics and whole-organism-based drug dis-
covery; indeed, in terms of evolution, it is closer to humans compared to
other models, and its genome is well characterised, particularly in
Xenbase (Blum and Ott, 2018; Dawid and Sargent, 1988; Straka and
Simmers, 2012; Wheeler and Brandli, 2009). Finally, the ecotoxicolog-
ical databases available in the peer-reviewed literature for X. laevis have
been growing over the last few years, and these include the US EPA
ECOTOX knowledgebase database and the recent Ortiz-Santaliestra
et al. toxicological database submitted to EFSA (Ortiz-Santaliestra
et al., 2017; 2018). It is particularly relevant to generate a predictive
model accounting for general toxicity in amphibians particularly using
Lethal Concentration (LCs) since such an in silico model is not currently
available for ERA in anuran amphibians (Ortiz-Santaliestra et al., 2018).
This differs from in silico models based on effective concentration (ECsg)
from the frog embryo teratogenesis assay in Xenopus (FETAX), which
would address teratogenicity outcomes.

Acute toxicity in amphibian embryos arises from a range of molec-
ular initiating events that impair essential physiological functions early
in development. The most common MoA is baseline narcosis, a non-
specific membrane perturbation caused by hydrophobic organic chem-
icals that accumulate in lipid bilayers and disrupt cellular homeostasis
(Escher and Hermens, 2002; Verhaar et al., 1992). In addition, ionor-
egulation disruption is a well-recognised MoA in early amphibian
development: ion-transporting cells in the embryonic and larval
epidermis, together with Na+ /K+ -ATPase-dependent transport,
contribute to osmotic balance; these processes can be impaired by
metals and by surfactant-containing agrochemical formulations, leading
to rapid mortality (Edginton et al., 2004; Freda, 1991; Quigley et al.,
2011). Mitochondrial dysfunction and oxidative stress can contribute to
acute embryotoxicity, as several stressors cause mitochondrial injury
and increased reactive oxygen species, with downstream impairment of
cellular energy homeostasis and survival (Carotenuto et al., 2022;
Lushchak, 2011). Neurotoxicity may also play a role even at early
developmental stages, particularly for acetylcholinesterase-inhibiting
insecticides, which can disrupt cholinergic signalling and locomotor
function in amphibian larvae (Sparling and Fellers, 2007).
Endocrine-mediated mechanisms can contribute to developmental
toxicity as well; in amphibians, thyroid hormone signalling is a key
regulatory system and there is evidence that thyroid hormone related
processes are required before, and not only during, metamorphosis,
making them a plausible target for thyroid-active contaminants (Carr
and Patino, 2011; Tindall et al., 2007). Together, these MoAs illustrate
that acute lethality in X. laevis embryos may reflect both baseline
toxicity and more specific, non-baseline mechanisms, which can influ-
ence the structure-activity relationships captured by QSAR models.
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Hence, the aim of the present study is to collect available LCs values
in X. laevis embryos from public databases and peer reviewed literature
for a wide range of chemicals to develop QSAR models including k-NN
and Multiple Linear Regression (MLR) models. In addition, one of the
additional practical goals of the current study is to apply these QSAR
models as valuable tools for assessing the association between structural
and sub-structural features of chemicals and toxicological features in
Xenopus to move towards the integration of NAM-based hazard identi-
fication and characterisation for this species, in the light of the holistic
“One health” principle, particularly for data poor chemicals
(FAO-OIE-WHO, 2019). Finally, this manuscript concludes on future
research perspectives.

2. Methods

2.1. Data collection and curation of acute toxicity data for chemicals in
embryos of Xenopus laevis

Data collection was performed from the US EPA ECOTOX knowl-
edgebase database (https://cfpub.epa.gov/ecotox/) and the Ortiz-
Santaliestra et al. ecotoxicological database submitted to EFSA
(Ortiz-Santaliestra et al., 2017; Ortiz-Santaliestra et al., 2018). Data for
349 unique structures were initially retrieved and associated with a total
of 1978 entries (see Table S1 for the types of information included in the
database).

Most of the LCs( data were split according to major developmental
stages (embryo, tadpole, hatchling, metamorphic, and juvenile). The
most suitable stage to investigate was the embryo, approximately cor-
responding to stages from 1 to 20 of the Gosner classification (Gosner,
1960), since it is the most represented and because of its toxicological
sensitivity to waterborne pollutants amongst amphibians across the
different developmental stages (Gross et al., 2009; Zhang et al., 2019).
Endpoint values associated to “> ” or “< ” qualifiers were excluded, as
well as low-purity test substances such as plant protection products
commercial formulations. The preliminary, non-stringent purity cut-off
for including test substances in the database was set at 50 %. Among the
substances above this threshold, very few had only moderate purity. For
example, diazinon had 60 % purity and was placed in the prediction set,
and only four other substances had purity below 90 %. The vast majority
of substances showed a purity greater than 95 %.

Any entry presenting deviating data (duration of exposure, pH, and
temperature parameters) with respect to the Standard Guide for Con-
ducting the FETAX (ASTM, 1991) was excluded too.

The exposure route was dermal for all datasets. Exposure of embryos
to waterborne contaminants is indeed typically simplified as dermal, as
it occurs through a passive, surface-based uptake rather than an active
ingestion. The experimental data was generated using de-jellied em-
bryos, with a cysteine solution adjusted with NaOH, before putting them
in contact with waterborne contaminants. Measurement units were
standardised and endpoint values were converted from mg/L to mmol/
L, by dividing by the molecular weight of the tested substance. There-
fore, Log10LCso values were obtained and used.

For compounds associated with multiple values, a thorough assess-
ment was performed to identify those with high experimental vari-
ability. A factor of 4 was used, as proposed previously (Benfenati et al.,
2007). Overall, the basis for such a factor relies on the fact that, if the
maximum value (in mg/L) among the replicates is up to 4-fold higher
than the minimum value, the chemical can be included and the average
LC50 across replicates can be calculated (see Figures S1 and S2).
Conversely, if the ratio between the maximum and the minimum value is
higher than 4-fold, the chemical is set aside to the “prediction set”
(Figure S3). This approach was applied here to exclude the noisiest data
and to ensure that consistent datasets were used for QSAR model
development. Most importantly, the main objective of the prediction set
was to probe the model’s performance under realistic and not
overly-optimistic conditions, as well as to evaluate whether it could
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produce useful predictions when experimental reproducibility is low.

Each individual compound reporting unique experimental values
and homogeneous replicates were included in the database and was
associated with a dedicated ID and its mean LC50 value. Entries were
sorted in ascending order according to the Log;oLC50 or LogioLC50
mean for compounds with reported multiple data points.

The final database (after the prediction set was excluded) was split
into training and test sets in a 3:1 proportion (Figure S4). The split of the
molecules in the two datasets was not guided by an a priori chemical
similarity analysis but rather through a randomised approach. Indeed,
the test set was randomly extracted while simultaneously ensuring that
the compounds were similarly distributed in terms of toxicity values
between the two sets. The two populations of substances in the training
and test sets were assessed for their similarity. For this purpose, the
distribution of the different classes of compounds in the two sets was
checked by means of a Principal Components Analysis (PCA). The PCA
on the molecular descriptors of the two datasets was performed with the
purpose of clustering chemicals according to their distribution in the
first two Principal Components (PC1 and PC2), and ultimately assessing
that the chemical properties of the training set were well-represented in
the randomly generated test set.

The molecular descriptors were calculated using the Dragon 7.0
application (Kode Chemoinformatics). A total of 707 2D molecular de-
scriptors were selected from the list while all 3D molecular descriptors
were disregarded since no geometrical optimisation was performed.

After all calculations, the correlated molecular descriptors were
pruned; so that all descriptors with a correlation coefficient equal or
greater than the selected threshold value of 0.95 were excluded.

2.2. Development of QSAR models

2.2.1. istKNN

k-Nearest Neighbours (k-NN) models were built using the istKNN (in
silico tools — KNN) 0.9.3 software developed by Kode srl based on
Chemistry Developmental Kit (CDK) version 1.4.9 and VEGA core li-
braries (https://www.vegahub.eu/) version 1.1.2. istKNN implements a
k-NN algorithm, which adopts a similarity-based approach (Altman,
1992; Como et al., 2017; Friel and Pettitt, 2011; Gadaleta et al., 2019;
Gadaleta, 2014; Manganaro et al., 2016).

The similarity amongst chemicals has been described through an
integrated similarity index (SI), developed inside the VEGA platform.
The SI ranges from 1 (maximum similarity) to 0 (minimum similarity)
and results from the weighted combination of fingerprints with non-
binary structural keys based on constitutional molecular descriptors
(Floris et al., 2014).

The istKNN in silico tool allows for refinement of the classical k-NN
algorithm by setting additional conditions that a target chemical should
fulfil to be considered reliably predicted. Indeed, the k nearest neigh-
bours used for prediction should have a similarity value with the target
greater than a given threshold (Tgn1), otherwise they would not be used
for prediction. If no neighbour matches the threshold, the model does
not provide any prediction for the target compound (missing value). If
only one neighbour matches the threshold, the similarity should be
higher than a second stricter threshold (specifically named “similarity
threshold for single molecule™) to yield a prediction (which corresponds
to the experimental value of this selected neighbour, in this case). If two
or more neighbours fulfil the Tgp,1, the range of experimental values of
the identified neighbours is considered. If the difference between the
maximum and minimum experimental values of the neighbours is lower
than a threshold (Tpin_max), the target is predicted, otherwise the model
does not provide predictions. To calculate the prediction when more
than one neighbour is selected, the experimental values of the similar
compounds are weighted differently based on their similarity with the
target (by setting an enhancement factor that increases the weight of the
most similar compounds in the prediction) (Gadaleta et al., 2019).

The robustness of each model is then assessed using Leave-One-Out
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Table 1

Ranges of values and steps chosen for the five istKNN customisable parameters.
Parameter From To Step
Number of Neighbours (K) 2 5
Similarity Threshold 0.65 0.95 0.05
Similarity Threshold for single molecule 0.8 1 0.05
Enhancement factor for Weights 1 5
Experimental Range 0.5 4 0.5

(LOO) cross-validation (Gadaleta, 2014).

The Batch mode allows the user to explore several possible param-
eter settings to automatically produce many models on the training set.
Each model is defined by a special combination of values relative to the
five customisable parameters, and the user can go through the output to
select the optimal combination (Como et al., 2017).

k-NN was used as a regression estimator to develop batch models
according to the parameters’ ranges and steps shown in Table 1.

The most suitable combination of variables for the model was
selected with a view to balance R2 with the number of non-predictions,
and ultimately to make a compromise between accuracy of the model
and “inclusivity”.

To do so, a univariate analysis was performed on three parameters:
the number of neighbours, the percentage of unpredicted compounds
and the minimum similarity. Each value or range of values that they
could take was singularly plotted against the best R? value they were
associated to (Figures S5-S7). The one related to the highest R2ortoa
rapid R? increase was selected. The model was fitted on the training set
using the software’s Build mode so that the model run on the test set to
assess its capacity to make predictions on an external dataset, and on the
prediction set, for benchmark purposes. Statistical analyses were carried
out for each of the model’s performances to identify the missing values
and the outlier chemicals.

2.2.2. QSARINS

QSARINS (QSAR-INSUBRIA) software version 2.2.4 was used for the
development and validation of Multiple Linear Regression (MLR)
models. It includes tools for modelling datasets and exploring their
chemical space by PCA, based on externally calculated descriptors
(Gramatica et al., 2013; Gramatica et al., 2014; QSARINS, 2019).

A total of 1409 PaDEL molecular descriptors were calculated with
PaDEL-Descriptor (version 2.21) (Yap, 2011) and imported into QSAR-
INS as independent variables for the chemicals, which were already
subdivided into training and test sets, while the experimental values
were set as dependent variables. A pre-reduction of input molecular
descriptors was performed to mitigate the redundancy of the
inter-correlated ones giving similar structural information. Descriptors
to disregard were automatically identified by calculating pairwise cor-
relations so that the correlation amongst all pairs of descriptors was
computed. As a consequence, when a pair was found to be highly
correlated (correlation higher than the default cut-off value of 95 %, as
in Dragon), the descriptor with the highest correlation compared to
other descriptors was removed. The chemical space of the dataset was
inspected by means of PCA and both the score and the loading plots were
scrutinised to confirm the molecules’ clustering seen from the PCA
performed in Dragon 7.0.

MLR models were then developed in QSARINS using the Ordinary
Least Squares method (OLS). For variable selection, a Genetic Algorithm
(GA) procedure was applied (Gramatica et al., 2013) to identify the
optimal combination of descriptors in high dimension models, instead of
exploring all combinations of small dimension ones.

Fine tuning of the GA was performed while setting the size of model
populations equal to 700, and a total of 2000 generations (i.e., reiterated
processes to isolate the best performing models). The algorithm was run
twice, first introducing a 20 % mutation rate (i.e., rate of descriptor
substitution) and then an 80 % one. Typically, if both times the
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Fig. 2. Distribution of acute mortality values in X. laevis embryos expressed as Log;oLC50 (mmol/L).

algorithm converges to the same output, the generated models can be
reasonably considered an optimal solution.

A maximum number of possible variables was also set in order to
avoid overfitting of the model (usually the number of variables must be
1/5 or 1/7 of the total number of objects).

During GA selection, a big batch of models was obtained in around
two days of computation.

QSARINS was used to check the calculated models’ validity by fitting
and by both internally and externally validating them, as described in
2.3. The best variables’ combination was selected from the list

considering all criteria, but especially the external ones, as detailed in
the Results section.

2.3. Statistical analysis

The performance of k-NN predictions was evaluated using fitness
metrics expressed as a regression coefficient (R2) and RMSE, which are
calculated on both the training predictions using LOO cross-validation
and predictions of external datasets. k-NN models were further
assessed for their predictive capacity using the ratio of compounds
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Toolbox (Ballabio, 2015). The two axes represent two Principal Components (PCs) and the corresponding percentage of explained variance (%EV). Compounds are
distributed according to the correlation of the original variables with the PCs which can attribute a given %EV of the chemical data variability.
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Table 2
Settings of the k-NN model for predicting acute toxicity of chemicals in
X. laevis embryos (LCsp 12 h).

k (neighbors’ number) 4
Similarity threshold 0.65
Similarity threshold for single molecules 0.80
Enhancement factor 5
Experimental range 2.5

correctly predicted compared to the total number of compounds in the
database.

The fitting of MLR models was also evaluated using the R%, the RMSE
and a modified R? form, Rgdj. Rgdj also assesses the models’ degrees of
freedom, namely the convenience of adding a new descriptor to it. The
robustness of each model was evaluated by the Cross-Validated co-
efficients of determination R? and Qz, using LOO cross-validation.

Internal validation was also performed by the stronger LMO tech-
nique (Rfwmo and Qo were calculated). Lastly, to demonstrate that the
models were not the result of chance correlation, the Y-scrambling
procedure was applied. Visual inspection for selecting the best MLR
model took advantage of the creation of different plots within QSARINS,
including the plot of the experimental vs. predicted activity (Fig. 6), the
Williams plot (Figures 7 and S10), the Residuals (Fig. 8), the Leave-
Many-Out (LMO) (Figure S8) and the Y-scramble plots (Figure S9).
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3. Results
3.1. Xenopus embryo database

The Xenopus embryo database resulted in 430 individual LCsq values
for a total of 175 compounds. The distribution of Log LCs( values from
the Xenopus embryo database is illustrated in Fig. 2 and highlights the
variability in the toxicity values of the database.

Amongst the 175 compounds, 122 provided a unique experimental
value and used for the training set while 40 and 13 compounds were
used for the test and prediction sets, respectively. To note that both the
test and prediction sets contain multiple individual values (up to 23).
The training and test sets were generated by splitting the LCs values for
the 122 and 40, respectively, and were associated with 359 unique
experimental values or multiple consistent values (Figures S1-54).

The results of the PCA analysis performed on Dragon descriptors are
displayed in a Score plot (Fig. 3), showing that the samples of the
training and test sets projected in a similar manner for the relevant PCs.
Just a few outliers were noted as noted on Fig. 3 in the far left and
bottom of the plot. These outliers were interpreted as not being of sta-
tistical relevance since the training set is 3-fold larger than the test set.

As the two data clouds mostly overlapped in the orthogonal space, it
was concluded that the randomly-generated test set was structurally
similar to the training set, and therefore as a representative subset of
data.

As discussed in the materials and methods section, the less reliable

YA
0 a /@
(Y] $
_ 7 o
o
°
® ® i
[ ® ®
® )
. ’ S
0 ® 1 2 3
°
——— Training set
—— Test set

EXP. log LC50 (mmol/I1)

Fig. 4. Overlapping experimental vs. predicted training and test sets for acute toxicity in X. laevis embryos (LCso 12 h). Acute toxicity are expressed as Log;oLC50
(mmol/L). Training and test sets are represented in orange and blue, respectively, and trendline is drawn in grey.
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experimental data were included in the prediction set, while the training
set contained more reproducible data. Among these, three chemicals
were added to the prediction set for a different reason than data vari-
ability including diazinon with low purity (60 %), and acetaldehyde and
thioacetamide because of alleged incongruities in the units of measure
from the reference studies. Indeed, the data points associated with these
compounds are associated with a study (Fort et al., 2003) which in some
cases showed important inconsistencies with other homologous studies
(see Dawson and Bantle, 1987; Dawson et al., 1996; Dresser et al., 1992;
Fort et al., 2004). Data curation resulted in excluding acetaldehyde and
thioacetamide from the prediction set since units of measure were
poorly reported and may have resulted from a switch between % w/v
and mg/L and this is underlined by a 4 order of magnitude difference.
Overall, the prediction set consisted of a set of 13 compounds.

3.2. k-NN model performance

The k-NN model output resulted in 5600 combinations for all values
using the five parameters inherent to the model namely k, Min Simi-
larity, Min Similarity for a single molecule, Enhancement factor and
Experimental range as illustrated in Table 2. Each combination was
associated with the number of valid predictions so that the model was
able to provide both the number and percentage of unpredicted values.

As expected, the minimum similarity and the number of valid pre-
dictions were inversely related; as the former increased, the latter
decreased dramatically (from a maximum of 114 to a minimum of 16,
corresponding to a percentage of change in unpredicted values change
ranging from 7 % to 87 %. The higher the similarity value required to
include neighbours, the higher the number of missing values so that no
compounds were similar enough to produce a prediction. Parameters
characterising the best model ensured an optimal balance between
stringent conditions and coverage are summarised in Table 2.

3.2.1. Model performance

The k-NN model was built based on the training set and its predictive
capability was tested as follows. From the 122 chemicals in the training
set the model was able to perform 93 valid predictions in LOO mode
(76.2 % of the dataset). The R? was 0.746 and the RMSE was 0.63. 10
outliers, out of 93 predictions, were noted. The outliers were defined as
the chemicals whose predictions differed by more than 1 unit (in terms
of Log10LC50 in mmol/L) from the experimental values. The remaining
29 compounds (23.8 % of the dataset) were not predicted, due to two
possible reasons: 1. For 21 out of 29 compounds, the experimental range
of similar molecules exceeded the given threshold and all were associ-
ated with 4 neighbours with an experimental variability of at least 2.5
orders of magnitude. 2. For the remaining 8 missing values, none, or at
best one similar molecule was found to able to provide a prediction
(Fig. 4). Such statistics were also calculated while running the model on
the test set. The algorithm was able to carry out a total of 32 valid
predictions on the test set, representing 80 % of all values, with a co-
efficient of determination of 0.74 and a RMSE of 0.67. Among the pre-
dicted compounds, 3 response outliers were noted so that 20 % of the
dataset representing 8 compounds remained unpredicted. Similarly,
most of the missing values had 4 neighbours whose experimental vari-
ability exceeded the cut-off value of 2.5. Only 1 compound was not
predicted because of the total lack of suitable molecules (Fig. 4).

For both experimental and predicted datasets, most of missing pre-
dictions were associated with group of compounds with the highest
observed toxicity. Indeed, half of the unpredicted compounds, namely
15 values in the training set and 4 in the test set, had an experimental
Log10LC50 lower than —1, even though compounds with such potency
accounted for 25 % of the training set (30 out of 122) and 20 % of the
test set (8out of 40). The model was also assessed while investigating its
performance on the prediction set particularly the impact of the
different exclusion criteria. Overall, the k-NN model performance was
reliable since toxicity predictions provided sound results for 11 com-
pounds out of a total of 13. Indeed, acetaldehyde and thioacetamide
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Table 3

Fitting, internal and external criteria and associated parameters for the best
QSARINS model predicting acute toxicity of chemicals in X. laevis embryos
(Lethal Concentrations 12 h (LCso-12 h).

Fitting criteria R? 0.7637
Ry 0.7514
Internal validation criteria Qo 0.7379
QMo 0.7269
External validation criteria RMSEex¢ 0.6302
Q%F3 0.7919

were disregarded (15.4 % of the dataset), due to the high experimental
variability of the 4 identified neighbours.

In this case, predicted values were not set against the mean LCsq for
each compound, but rather their box and whisker representations
providing a graphical representation of predictions with respect to
variability and uncertainty in the distribution of values. Most of the
compounds in the prediction set were excluded from the main analysis
because of their variability (Fig. 5).

This comparative analysis highlighted that almost all predictions
were close to the range of experimental values with the exception of
retinoic acid and sodium iodoacetate.

Exp. endpoint vs. Pred. by model eq.

Pred. by model eq.
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3.3. QSARINS model

3.3.1. Best model choice

Optimisation of the model with regard to the number of variables
was performed to optimise the outcome between predictivity (low
number of variables) and descriptiveness (high number of variables).
The models with an optimised number of 6-7 variables were classified
using their Q2 r3 (Consonni et al., 2010). Such classification also took
into account parameters of internal validation, such as leoo. In addition,
models with low squared-correlation coefficient values (Qb, < 0.7, ac-
cording to Gramatica, 2007) indicated low robustness and low internal
predictive ability and the fitting of parameters, such as dej, were also
considered. Table 3 provides the metrics of the best QSARIN model.

The predictivity of the QSARIN model was also assessed through an
analysis of the changes in metrics following the chemicals’ distribution
across the training and test sets. Given that no rearrangement led to
significant variations in the model’s parameters, it was concluded that
prediction performance was good and not associated with the random
optimal allocation of the samples to the training or test sets (data not
shown).

3.3.2. Model features

The experimental vs. predicted (obtained by model equation) scatter
plot for both the training and test sets is displayed in Fig. 6.

Overall, each of the 162 compounds is associated with a predicted
value while distribution of the data points indicates outlying predicted

O Training
® Test
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0.439 1.166 1.893 2.620

Exp. endpoint

Fig. 6. Overlapping experimental vs. predicted training and test sets for acute toxicity in X. laevis embryos (LCso 12 h). Acute toxicity is expressed as Log;oLC50
(mmol/L). Training and test sets are represented in yellow and blue, respectively, and trendline is drawn in black. Model variables are listed below the x-axis.
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values with respect to the experimental values. Identification of such
outliers was further validated via residuals analysis, as discussed below.

According to the tiered approach proposed by Hanser et al. (2016),
the concept of decision domain of a predictive model must be based on
three independent steps, namely the Applicability Domain (AD), the
Reliability Domain (RD) and the Decidability Domain (DD). In the cur-
rent assessment, particular attention was paid to the AD and RD. First,
the AD was determined with a leverage approach by means of a Williams
plot (Fig. 7). In this case, 8 molecules fell outside the AD (data points on
the right of the critical leverage h* vertical line, in Fig. 7).

To define the RD, the same principle applied to the k-NN model was
adopted for the QSARIN model for consistency. The prediction outliers
from the k-NN model were associated with compounds for which pre-
dicted values differed by more than 1 unit from the experimental values
(in terms of Log;pLC50 in mmol/L).

The Residuals plot supports visualisation of the outliers, with resid-
ual values higher than one, and therefore the most distant from the
central line (Fig. 8). Overall, a total of 20 predictions (out of 162) were
identified as falling outside of the RD. In addition, the goodness of the
residuals’ distribution was also assessed. Ideally, residual plots should
be symmetrical with respect to the origin and should have a high density
of points close to the origin and a low density of points away from it.
Most importantly, their residuals should be independent and normally
distributed, i.e., there should not be any clear pattern or trend in the
residuals’ distribution, since this would mean that an unknown

determining factor was not considered and that the model still requires
improvement. In this case, the Residual plot met all these requirements
(Fig. 8).

4. Discussion
4.1. k-NN model

The performance of the k-NN model for the prediction of acute
toxicity of chemicals in Xenopus embryos has been described above and
provided satisfactory results with R?> and RMSE of 0.75 and 0.63,
respectively. Comparison between experimental and prediction results
with regard to acute toxicity of chemicals in Xenopus embryos for both
the training and test sets revealed the presence of patterns in the dis-
tribution of the data points. First, the data cloud “flattened” in corre-
lation to the intermediate values. For example, it is clear that points
aligned themselves horizontally in the space between —1 and 1 of the x-
axis. In fact, in this case the model formulated the same prediction (same
y-value) for chemicals with observed values differing by up to 3 orders of
magnitude (Fig. 9).

Due to the tendency of the model to provide mean predictions predict
in the middle”, it was observed that the lethality of the most potent
compounds was often underestimated (data points on the left of the plot
were above the trendline, Fig. 10); conversely, the ones associated with
the least toxic compounds were usually overestimated (data points on



C. Novello et al.

Toxicology Letters 416 (2026) 111813

O Training
_ Pred. endpoint vs. Residuals Shlest
Residuals
3.000
2.250] o
] o
: o
] o
1.5003 o
. ° o
1{i— - — — | — 4= — —— 66— % —
0.7503 o2 0 % R o
3 o o8
: Ce o * %0 o >
: 00 o o °® ® oo s ¢
0,000 o P, o . O ® 00 6 O e ®
-0003 (o) T O 5
: e % o i o Pf? » *o8%
» o ® o Pg & g% o 2 oo
] e, 0 0. . o ®
0.750 &£ LR ? .
] o
A — T = e — T —— g% — — —
] o o
] o)
-1.500
E 0®
-2.250]
-3.000
-3.196 -2.4992 -1.789 -1.086 -0.382 0.321 1.024 1.728 2.431

nAcid GATS6p GATS8i VR2_Dzs CrippenLogP n6HeteroRing

Pred. endpoint

Fig. 8. Overlapping Residual plots describing overlapping experimental vs. predicted training and test sets for acute toxicity in X. laevis embryos (LCso 12 h).
Training and test sets are represented in yellow and blue, respectively. Predicted acute toxicity values are expressed as Log;oLC50 (mmol/L). The model’s variables

are listed below the x-axis.

the right of the plot were below the trendline, Fig. 10).

Overall, underestimating toxicity can have consequences in hazard
identification and characterisation, compared to overestimation which
would be more conservative; thus, for such potent compounds, model
performance is an issue to which particular attention should be paid.
Variability and uncertainty in experimental data as well as reliability of
such datasets is also an issue that should also be mentioned and a weight
of evidence approach should be applied to provide a transparent
assessment of both in silico and experimental results.

Overall, given the way the data cloud narrowed with increasing LC50
values, it can be concluded that the k-NN model is less accurate at
predicting highly acute toxic compounds. This situation may be related
to the variability in the data distribution described at the beginning of
the results section, particularly because the most potent compounds
severely underrepresent the database when compared with most other
compounds. Thus, the most potent substances were most likely not
statistically significant and relied on similarly toxic compounds as called
named “attractors” of the model and in the difficulty to form a consistent
body of predictions. In most cases, the algorithm did not provide a
prediction because of the high variability of the neighbours’ observed
toxicity values. Thus, a consistent number of failed predictions are
attributable to the stringent experimental range cut-off. Finally, it
should also be taken into consideration that predictions are based on 4
neighbours and that, as the number of similar compounds increases, so
does the probability of the predicted endpoint values to diverge.
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4.2. QSARINS modelling

The evaluation of the QSARINS prediction results mostly confirmed
the prediction results from the k-NN models, even though the QSARINS
model performed slightly better (R? and RMSEey; of the QSARINS model
was equal to 0.76 and 0.63, respectively, as reported in Table 3, while R?
and RMSE of the k-NN model on the test set was equal to 0.75 and 0.67,
respectively).

The data point distribution for the QSARINS model’s as illustrated in
the plot comparing experimental vs. predicted values (Fig. 6) also re-
flected this conclusion from the results of the k-NN model (Fig. 4). A
similar tendency of the data cloud to be more scattered in the region of
the most potent endpoint values was observed, as well as the horizontal
alignments in the middle of the distribution, and the overestimation of
the toxicity of the compounds associated with the highest LC50 values.
Most importantly, a correlation was found between the unpredicted and
outlier compounds of the k-NN model and the chemicals excluded from
the Applicability and Reliability Domain of the QSARINS model.

From the interpretation of the Williams plot, it is possible to rule out
8 compounds from the Applicability Domain: Methotrexate, Remazol
Turquoise Blue, Maneb, Acetone, Dimethyl sulfoxide, Alpha-chaconine,
Alpha-solanine, and Pentachlorophenol, whose leverage values were so
high that they could not be detected in the original graph (Figure S10).
Most of the chemicals that were out of the Applicability Domain (6/8)
were also not predicted by the k-NN model. Among them, 4 were not
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intermediate value to different predictions.

predicted because of the lack of similar compounds in the database.

With regard to Y-outliers, compounds with highly-deviating stand-
ardised residuals were derived from the Williams plot. To define the
Reliability Domain more stringent conditions were applied, in order to
be consistent with the k-NN model’s definition of outliers, as previously
described, and resulted in raising the number of outliers to 20. Most of
these 20 compounds were also not associated with valid k-NN pre-
dictions with 11 molecules failing to predict namely 8 compounds due to
high experimental variability of similar chemicals and 3 due to the
absence of suitable neighbours as well as 3 outliers.

4.3. Chemical space coverage and models applicability

The present analysis demonstrates that the developed QSAR models
for acute toxicity in Xenopus laevis embryos perform reliably within the
chemical space represented by the curated dataset, providing robust
predictions for a fairly broad range of compounds. An examination of
the chemical space highlights that highly toxic, non-baseline toxicants,
including highly electrophilic and reactive substances, strong acids and
bases, and organometallic species, are currently underrepresented.
These compounds act through specific molecular initiating events rather
than baseline narcosis (Kliiver et al., 2016). Hence, the compounds
mechanistic diversity is not fully captured in the models, which is re-
flected in higher uncertainty, occasional non-predictions, and underes-
timation of toxicity for these chemotypes. Nevertheless, the models
remain well-suited for hazard assessment of the majority of chemicals in
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the dataset. Expanding the database to include underrepresented che-
motypes would further enhance structural coverage, improve repre-
sentation of diverse modes of action, and strengthen the applicability
and reliability domains, providing a path for future refinement without
compromising the current models’ utility.

4.4. Relevance for regulatory assessment and alignment with the OECD
(Q)SAR assessment framework

From a regulatory perspective, the present models were developed in
line with the OECD (Q)SAR model validation principles that support the
recent OECD QAF (OECD, 2024). The endpoint is clearly defined as
LC50 at 12 hiin X. laevis embryos under FETAX conditions, the modelling
algorithms (k nearest neighbours regression in istKNN and multiple
linear regression in QSARINS) are explicitly described, applicability and
reliability domains are characterised for both models, and internal and
external validation metrics are reported. In addition, mechanistic con-
siderations are discussed for structurally related groups of chemicals.
Taken together, these elements address several of the assessment ele-
ments included in the QAF Model Checklist (OECD, 2024).

In addition, a full QAF evaluation, including completion of the Pre-
diction and Result Checklists, was not carried out in this methodological
study, because the models are not currently embedded in a specific
regulatory context. In the future, inclusions of such QSARs in regulatory
or weight of evidence assessments for amphibians, the QAF checklists
and associated reporting formats (e.g., QSAR Model Reporting Format
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and the emerging QSAR Result Reporting Format) should be completed
to transparently document the accuracy of inputs, the applicability
domain, the reliability of individual predictions and their fitness for
purpose (Gissi et al., 2024; OECD, 2024). In this sense, the present work
can be considered a first step towards QAF aligned amphibian QSARs,
and highlights data and reporting needs that will facilitate their future
integration into NAMs and weight of evidence frameworks for ecological
risk assessment.

5. Conclusions

The present study addressed data curation of the largest database to
date for acute developmental toxicity of chemicals on Xenopus laevis
embryos and the development and validation of two QSAR models
namely k-NN and QSARINS models for the hazard identification and
characterisation of chemicals in Xenopus and as a proxy for other
amphibian species. Predicting the impact of such environmental chem-
icals is also of human relevance, according to the “one health” approach
since these effects reflect potential neurodevelopmental toxicity
particularly in relation to interference with the thyroid axis. In order to
build the model, the datasets were curated, and chemical space was
explored by means of a principal components analysis using Dragon
descriptors. First, a molecular similarity-based approach was taken, by
employing a k-NN algorithm.

The k-NN algorithm implemented in istKNN was shown to be a
simple method ensuring relatively sound accuracy and prediction per-
formance (R2 and RMSE of 0.75 and 0.67). Moreover, k-NN results were
complemented by further expert mechanistic interpretation using expert
knowledge particularly with regard to the scientific basis for under-
predictions for highly toxic compounds. Overall, the algorithms were
assessed analysed for their main features and limitations including their
tendency to assign approximated average values with uncertain pre-
dictions. A critical underestimation of the most toxic compounds’ bio-
logical activity was highlighted, suggesting the need to increase
representation of such molecules. A second method used a Genetic Al-
gorithm for selection of variables in QSARINS. The selected PaDEL de-
scriptors were used to develop the QSAR MLR models, which were then
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investigated in terms of their Applicability and Reliability Domains.
Notably, QSARINS were shown to provide a useful application to
perform a range of model validation and provided slightly better pre-
dictions compared to those with the k-NN models ((R? and RMSE of 0.76
and 0.63). Both models had overall poorer performance with the most
toxic compounds, which were underrepresented in the dataset.

Future directions from the present work include the modelling of
other endpoints (e.g., ECso, associated with teratogenicity) and the
extension of this analysis to other data sources (e.g., other amphibian
species) to further strengthen the predictiveness of the model. Moreover,
it has been discussed how integration of more highly-toxic compounds
may benefit the chemical space coverage and overall performance.
Eventually, the database may be expanded to include other develop-
mental stages rather than just the embryonic one. This has been high-
lighted in a previous work describing the development of a QSAR model
for R. japonica which proposed the consideration of a taxonomic
framework for “true frogs” to identify species as representative of the
whole genus and sub-genus for different geographical locations and the
relevance of R. japonica for the Eurasian species of the subgenus Rana
"brown frogs" as well as the north American species such as the Northern
leopard frog (Rana pipiens) and the American bullfrog (Lithobates cat-
esbeianus) within their aquatic and terrestrial phase (egg, embryo,
tadpole, juvenile and adult). The paper further highlighted that major
data gaps in amphibians included lack of chronic toxicity in anuran
amphibians and complete lack of toxicity data in other amphibian orders
such as Caudata (salamanders and newts) and Gymnophiona (caecilians
and relatives). Finally, the limited kinetic information in amphibians
was also highlighted for all amphibian taxa particularly to investigate
persistence of chemicals. A proposed option to fill in such data gaps was
to use fish data as a proxy for amphibians to perform cross-species read-
across as a first step. As more data are generated and integrated with
quantitative physiological and life cycle data, physiologically-based ki-
netic models can be developed to estimate bioactive concentrations in
amphibians for acute and chronic toxicity and these can also provide
opportunities to calibrate, validate and apply dynamic energy budget
models for hazard assessment of chemicals at both individual and pop-
ulation level (Baas et al., 2018; Grech et al., 2017; Toropov et al., 2022).
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Overall, further research in this field of cheminformatics is promising
and it can be foreseen in the near future that the development of further
insights on the mechanisms of toxicity and populating public databases
will be important to obtain more performant QSAR and in silico models,
and ultimately to develop NAMs for ecotoxicity assessment while
reducing animal testing.
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