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A B S T R A C T

Global decline of amphibian populations has been correlated with a range of endogenous and exogenous vari
ables including their unique physiology and ecology, exposure to chemicals, habitat reduction, climate change, 
as well as biological hazards such as emerging infectious diseases. The African clawed frog (Xenopus laevis) is an 
OECD test species used in toxicity testing as a specific proxy for humans and environmentally relevant species, 
for which acute toxicity data for a range of chemicals have been generated historically by industry, a number of 
public health agencies and academia. Of particular relevance are mechanistic effects of endocrine-active sub
stances on metamorphosis and the thyroid axis, resulting in developmental toxicity. From such toxicity data, no 
open-source quantitative structure-activity relationships (QSARs) have been developed as in silico tools to 
predict such toxicity for data-poor chemicals in X. laevis. Such QSAR models can provide a quantitative starting 
point for the hazard assessment of chemicals in other anuran amphibians. This manuscript provides a description 
of the data collection and curation from the largest historical databases including the US EPA ECOTOX 
knowledgebase and the Ortiz-Santaliestra databases available for Xenopus embryos as acute median lethal 
concentrations (LC50-12 h) for a total of 349 unique structures and 1978 individual entries. After data curation, 
the database contained 359 individual entries for a total of 175 compounds, and were computed using the 
negative logarithm of molar concentrations expressed as 12 h log 1/LC50 mmol/L. Subsequently, the database 
was then split into training set, test set and prediction set with 120, 40 and 13 compounds, respectively. These 
datasets were then used for the development and validation of two different QSAR models: 1. A k-Nearest 
Neighbours (k-NN) models using istKNN (in silico tools – KNN). 2. A multiple linear regression model (MLR) 
using the QSARINS (QSAR-INSUBRIA) software version 2.2.4. Overall, the QSAR models performed well for 
predicting acute toxicity of chemicals in Xenopus embryos and the MLR model performed slightly better than the 
k-NN model with correlation coefficients of 0.76 and 0.75 and root mean square errors of 0.63 and 0.67, 
respectively. However, underestimation of predictions for highly toxic compounds were observed and these 
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limitations are discussed for both the k-NN and multiple linear regression model in the light of mechanistic 
interpretation and expert knowledge. Variability in the experimental datasets as well as under-representation of 
the most toxic compounds in the database are highlighted as major drivers influencing such underpredictions. 
Future directions from the present work include the modelling of other endpoints and developmental stages as 
well as other amphibian species using the available, although limited, data. Overall, it can be foreseen in the near 
future that such databases and models will be important to develop more performant in silico models, and ul
timately to develop NAMs for ecotoxicity assessment of chemicals in anuran amphibians while reducing animal 
testing.

1. Introduction

Over the last three decades, efforts in computational toxicology 
research has been driving the development of in silico tools including 
(quantitative) structure-activity relationship ((Q)SAR), grouping ap
proaches for setting chemical categories, assessment groups, expert 
systems, and read-across techniques. Such tools provide a means to 
predict toxicity properties of untested chemicals in a range of species of 
relevance to environmental risk assessment (ERA) (Astuto et al., 2022; 
Carnesecchi et al., 2020; Cattaneo et al., 2023; Lavado et al., 2021; 
Raunio, 2011; Toma et al., 2021).

QSAR models provide statistical relationships between physico
chemical properties, structural characteristics, and toxicological effects 
of substances while supporting and depicting the mechanistic basis of 
toxicity and adverse outcomes in organisms (Cronin and Madden, 2010). 
Importantly, their development takes advantage of the availability of 
toxicological data stored in appropriate databases (e.g., the EFSA 
OpenFoodTox – Dorne et al., 2021).

Such approaches are central to the 21st century toxicology vision and 
next generation risk assessment approaches advocating the imple
mentation of the 3Rs principle, i.e., the resolution to avoid animal 
experimentation altogether (Replacement), limit the number of animals 
(Reduction) and their suffering (Refinement) in tests to an absolute 
minimum (Russell and Burch, 1992). This may be attained through the 
integration of information coming from testing and non-testing methods 
within a weight-of-evidence framework as part of New Approach 
Methodologies (NAMs) (Berg et al., 2011; Bhattacharya et al., 2011; 
Casati, 2018; Di Nicola et al., 2023; National Research Council, 2007).

Key applications of QSAR models include prioritisation of industrial 
chemicals from a hazard perspective, classification and labelling, hazard 
identification during the first stages of R&D process as well as hazard 
characterisation through the generation of quantitative hazard metrics 
for human health, animal health and ecological risk assessment or 
screening of large ecotoxicological datasets (Astuto et al., 2022; Raies 
and Bajic, 2016).

Amongst all computational methods, QSARs currently represent one 
method accepted and promoted by regulatory agencies, academia, and 
industry as long as these meet the Organisation for Economic and 
Cooperation Development (OECD) requirements, including assessment 
of prediction accuracy through comparison with experimental data 
(Gozalbes and Vicente De Julián-Ortiz, 2018; OECD, 2014). In this 
context, the recently published OECD (Q)SAR Assessment Framework 
(QAF) provides harmonised principles and checklists for the assessment 
of QSAR models, individual predictions and results based on multiple 
predictions, with a strong emphasis on transparency and fitness for 
regulatory applications (Gissi et al., 2024; OECD, 2024). Amongst those 
QSAR models used for toxicity prediction, k-Nearest Neighbours (k-NN) 
models as non-parametric classifiers or regression estimators for 
continuous endpoints are probably the simplest ones (Altman, 1992). 
Overall, k-NN algorithms compute the outcome of a sample within a 
dataset based on the k most similar samples (neighbours) in a training 
set for which the toxicological outcomes are known from experimental 
datasets (Como et al., 2017; Manganaro et al., 2016). In other words, 
k-NN models allow for the prediction of continuous endpoints (e.g., le
thal concentration (LC50)) as quantitative predictions of neighbours 

within a chemical space (Gadaleta et al., 2019; Gadaleta, 2014). A major 
advantage of k-NNs lies in the fact that they are easy to implement and 
often result in good predictive performance. In addition, the inspection 
of the selected neighbours allows one to apply a reasoning similar to the 
read-across approach. However, these require homogeneous features, 
are heavily dependent on k values and are sensitive to noisy data, 
missing values and outliers. Such k-NN models have been developed for 
a range of species relevant to ERA including rat, trout, honeybees and 
collembola to cite but a few (Como et al., 2017; Toropov et al., 2020).

Amongst organisms of interest to ERA, amphibians constitute an 
important taxonomical group and are recognised as the most threatened 
vertebrate taxa since they are declining in numbers and, over the last 
fifty years, hundreds of species have gone extinct. Such decline has been 
rationalised to be due to exposure to multiple stressors including habitat 
loss, climate change, chemicals and infectious diseases caused by fungi 
such as Batrachochytrium and viruses like Ranavirus (e.g., Campbell 
Grant et al., 2020; Falaschi et al., 2022; Fisher and Garner, 2020; Fisher 
et al., 2021; Green et al., 2020; Palomar et al., 2023; Rollins-Smith, 
2020). In addition, their unique ecology, physiology, and life cycle 
with a range of aquatic (i.e., egg, embryo, tadpole) and terrestrial life 
stages (i.e., juvenile and adult) makes them particularly sensitive to such 
multiple stressors (Toropova et al., 2021; Toropov et al., 2022). The 
scientific panel of plant protection products and their residues (PPR) of 
the European Food Safety Authority (EFSA) has recently published a 
scientific opinion aiming to address the scientific basis of the sensitivity 
of amphibians and reptiles as well as data gaps and recommendations to 
integrate these taxa within pesticide ERA. The PPR panel highlighted 
that limited experimental toxicity data are available for amphibians and 
that there are currently very limited requirements to include them in 
pesticide ERA. Hence, the use of NAMs including in silico models such as 
QSARs and toxicokinetic-toxicodynamic (TK-TD) models provide prac
tical tools to predict physicochemical properties, fate, and toxicity (see 
Di Nicola et al., 2023; Dorne et al., 2023; EFSA et al., 2018).

The development of QSAR models for tadpoles, as an aquatic phase 
of the amphibian life cycle, has been shown to be highly relevant since 
they may be particularly sensitive to chemical toxicity while undergoing 
metamorphosis (Gross et al., 2009; Zhang et al., 2019). Few QSAR 
models for tadpoles have been developed, so far, and these include 
models for a relatively limited number of alcohol compounds and spe
cies such as Rana temporaria, Rana chensinensis, and very recently for 
Rana japonica (Adhikari and Mishra, 2018; Agrawal et al., 2003; Huang 
et al., 2003; Jaiswal and Khadikar, 2004; Sahoo et al., 2016; Toropov 
et al., 2022; Toropov et al., 2023; Wang et al., 2018; Wang et al., 2019).

In this context, the recent regression-based R. japonica QSAR model 
(Toropov et al., 2022) highlighted the need to further develop QSAR 
models for other amphibian species for which some experimental data 
are available in public databases and the peer-reviewed literature 
(Toropov et al. 2022). Amongst amphibian species, the African clawed 
frog, Xenopus laevis (Daudin, 1802) (Fig. 1), an anuran amphibian from 
the Pipidae family, is of high relevance as it is a test species set by the 
OECD and much of the current knowledge of amphibian biology has 
been obtained using it as an experimental model. The reason why this 
species has been included as an OECD test species mostly lies in the fact 
that it is easy to keep in the laboratory being a sturdy and relatively 
small species with a life span as long as 30 years (compared to 5–15 
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years in the wild), and its breeding habits generates a large number of 
eggs (i.e., a thousand eggs up to 3–4 times a year) (Cannatella and De Sá, 
1993; Nikos, 2012; OECD, 2015; Reed, 2005). In addition, since mo
lecular and cellular pathways are highly conserved, X. laevis has been 
used in developmental studies particularly for endocrine active sub
stances, neurosciences, genetics and whole-organism-based drug dis
covery; indeed, in terms of evolution, it is closer to humans compared to 
other models, and its genome is well characterised, particularly in 
Xenbase (Blum and Ott, 2018; Dawid and Sargent, 1988; Straka and 
Simmers, 2012; Wheeler and Brändli, 2009). Finally, the ecotoxicolog
ical databases available in the peer-reviewed literature for X. laevis have 
been growing over the last few years, and these include the US EPA 
ECOTOX knowledgebase database and the recent Ortiz-Santaliestra 
et al. toxicological database submitted to EFSA (Ortiz-Santaliestra 
et al., 2017; 2018). It is particularly relevant to generate a predictive 
model accounting for general toxicity in amphibians particularly using 
Lethal Concentration (LC50) since such an in silico model is not currently 
available for ERA in anuran amphibians (Ortiz-Santaliestra et al., 2018). 
This differs from in silico models based on effective concentration (EC50) 
from the frog embryo teratogenesis assay in Xenopus (FETAX), which 
would address teratogenicity outcomes.

Acute toxicity in amphibian embryos arises from a range of molec
ular initiating events that impair essential physiological functions early 
in development. The most common MoA is baseline narcosis, a non- 
specific membrane perturbation caused by hydrophobic organic chem
icals that accumulate in lipid bilayers and disrupt cellular homeostasis 
(Escher and Hermens, 2002; Verhaar et al., 1992). In addition, ionor
egulation disruption is a well-recognised MoA in early amphibian 
development: ion-transporting cells in the embryonic and larval 
epidermis, together with Na+ /K+ -ATPase-dependent transport, 
contribute to osmotic balance; these processes can be impaired by 
metals and by surfactant-containing agrochemical formulations, leading 
to rapid mortality (Edginton et al., 2004; Freda, 1991; Quigley et al., 
2011). Mitochondrial dysfunction and oxidative stress can contribute to 
acute embryotoxicity, as several stressors cause mitochondrial injury 
and increased reactive oxygen species, with downstream impairment of 
cellular energy homeostasis and survival (Carotenuto et al., 2022; 
Lushchak, 2011). Neurotoxicity may also play a role even at early 
developmental stages, particularly for acetylcholinesterase-inhibiting 
insecticides, which can disrupt cholinergic signalling and locomotor 
function in amphibian larvae (Sparling and Fellers, 2007). 
Endocrine-mediated mechanisms can contribute to developmental 
toxicity as well; in amphibians, thyroid hormone signalling is a key 
regulatory system and there is evidence that thyroid hormone related 
processes are required before, and not only during, metamorphosis, 
making them a plausible target for thyroid-active contaminants (Carr 
and Patiño, 2011; Tindall et al., 2007). Together, these MoAs illustrate 
that acute lethality in X. laevis embryos may reflect both baseline 
toxicity and more specific, non-baseline mechanisms, which can influ
ence the structure-activity relationships captured by QSAR models.

Hence, the aim of the present study is to collect available LC50 values 
in X. laevis embryos from public databases and peer reviewed literature 
for a wide range of chemicals to develop QSAR models including k-NN 
and Multiple Linear Regression (MLR) models. In addition, one of the 
additional practical goals of the current study is to apply these QSAR 
models as valuable tools for assessing the association between structural 
and sub-structural features of chemicals and toxicological features in 
Xenopus to move towards the integration of NAM-based hazard identi
fication and characterisation for this species, in the light of the holistic 
“One health” principle, particularly for data poor chemicals 
(FAO-OIE-WHO, 2019). Finally, this manuscript concludes on future 
research perspectives.

2. Methods

2.1. Data collection and curation of acute toxicity data for chemicals in 
embryos of Xenopus laevis

Data collection was performed from the US EPA ECOTOX knowl
edgebase database (https://cfpub.epa.gov/ecotox/) and the Ortiz- 
Santaliestra et al. ecotoxicological database submitted to EFSA 
(Ortiz-Santaliestra et al., 2017; Ortiz-Santaliestra et al., 2018). Data for 
349 unique structures were initially retrieved and associated with a total 
of 1978 entries (see Table S1 for the types of information included in the 
database).

Most of the LC50 data were split according to major developmental 
stages (embryo, tadpole, hatchling, metamorphic, and juvenile). The 
most suitable stage to investigate was the embryo, approximately cor
responding to stages from 1 to 20 of the Gosner classification (Gosner, 
1960), since it is the most represented and because of its toxicological 
sensitivity to waterborne pollutants amongst amphibians across the 
different developmental stages (Gross et al., 2009; Zhang et al., 2019). 
Endpoint values associated to “> ” or “< ” qualifiers were excluded, as 
well as low-purity test substances such as plant protection products 
commercial formulations. The preliminary, non-stringent purity cut-off 
for including test substances in the database was set at 50 %. Among the 
substances above this threshold, very few had only moderate purity. For 
example, diazinon had 60 % purity and was placed in the prediction set, 
and only four other substances had purity below 90 %. The vast majority 
of substances showed a purity greater than 95 %.

Any entry presenting deviating data (duration of exposure, pH, and 
temperature parameters) with respect to the Standard Guide for Con
ducting the FETAX (ASTM, 1991) was excluded too.

The exposure route was dermal for all datasets. Exposure of embryos 
to waterborne contaminants is indeed typically simplified as dermal, as 
it occurs through a passive, surface-based uptake rather than an active 
ingestion. The experimental data was generated using de-jellied em
bryos, with a cysteine solution adjusted with NaOH, before putting them 
in contact with waterborne contaminants. Measurement units were 
standardised and endpoint values were converted from mg/L to mmol/ 
L, by dividing by the molecular weight of the tested substance. There
fore, Log10LC50 values were obtained and used.

For compounds associated with multiple values, a thorough assess
ment was performed to identify those with high experimental vari
ability. A factor of 4 was used, as proposed previously (Benfenati et al., 
2007). Overall, the basis for such a factor relies on the fact that, if the 
maximum value (in mg/L) among the replicates is up to 4-fold higher 
than the minimum value, the chemical can be included and the average 
LC50 across replicates can be calculated (see Figures S1 and S2). 
Conversely, if the ratio between the maximum and the minimum value is 
higher than 4-fold, the chemical is set aside to the “prediction set” 
(Figure S3). This approach was applied here to exclude the noisiest data 
and to ensure that consistent datasets were used for QSAR model 
development. Most importantly, the main objective of the prediction set 
was to probe the model’s performance under realistic and not 
overly-optimistic conditions, as well as to evaluate whether it could 

Fig. 1. Adult individual of African clawed frog, X. laevis (Daudin, 1802). Photo 
credit: Matteo R. Di Nicola.
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produce useful predictions when experimental reproducibility is low.
Each individual compound reporting unique experimental values 

and homogeneous replicates were included in the database and was 
associated with a dedicated ID and its mean LC50 value. Entries were 
sorted in ascending order according to the Log10LC50 or Log10LC50 
mean for compounds with reported multiple data points.

The final database (after the prediction set was excluded) was split 
into training and test sets in a 3:1 proportion (Figure S4). The split of the 
molecules in the two datasets was not guided by an a priori chemical 
similarity analysis but rather through a randomised approach. Indeed, 
the test set was randomly extracted while simultaneously ensuring that 
the compounds were similarly distributed in terms of toxicity values 
between the two sets. The two populations of substances in the training 
and test sets were assessed for their similarity. For this purpose, the 
distribution of the different classes of compounds in the two sets was 
checked by means of a Principal Components Analysis (PCA). The PCA 
on the molecular descriptors of the two datasets was performed with the 
purpose of clustering chemicals according to their distribution in the 
first two Principal Components (PC1 and PC2), and ultimately assessing 
that the chemical properties of the training set were well-represented in 
the randomly generated test set.

The molecular descriptors were calculated using the Dragon 7.0 
application (Kode Chemoinformatics). A total of 707 2D molecular de
scriptors were selected from the list while all 3D molecular descriptors 
were disregarded since no geometrical optimisation was performed.

After all calculations, the correlated molecular descriptors were 
pruned; so that all descriptors with a correlation coefficient equal or 
greater than the selected threshold value of 0.95 were excluded.

2.2. Development of QSAR models

2.2.1. istKNN
k-Nearest Neighbours (k-NN) models were built using the istKNN (in 

silico tools – KNN) 0.9.3 software developed by Kode srl based on 
Chemistry Developmental Kit (CDK) version 1.4.9 and VEGA core li
braries (https://www.vegahub.eu/) version 1.1.2. istKNN implements a 
k-NN algorithm, which adopts a similarity-based approach (Altman, 
1992; Como et al., 2017; Friel and Pettitt, 2011; Gadaleta et al., 2019; 
Gadaleta, 2014; Manganaro et al., 2016).

The similarity amongst chemicals has been described through an 
integrated similarity index (SI), developed inside the VEGA platform. 
The SI ranges from 1 (maximum similarity) to 0 (minimum similarity) 
and results from the weighted combination of fingerprints with non- 
binary structural keys based on constitutional molecular descriptors 
(Floris et al., 2014).

The istKNN in silico tool allows for refinement of the classical k-NN 
algorithm by setting additional conditions that a target chemical should 
fulfil to be considered reliably predicted. Indeed, the k nearest neigh
bours used for prediction should have a similarity value with the target 
greater than a given threshold (Tsim1), otherwise they would not be used 
for prediction. If no neighbour matches the threshold, the model does 
not provide any prediction for the target compound (missing value). If 
only one neighbour matches the threshold, the similarity should be 
higher than a second stricter threshold (specifically named “similarity 
threshold for single molecule”) to yield a prediction (which corresponds 
to the experimental value of this selected neighbour, in this case). If two 
or more neighbours fulfil the Tsim1, the range of experimental values of 
the identified neighbours is considered. If the difference between the 
maximum and minimum experimental values of the neighbours is lower 
than a threshold (Tmin–max), the target is predicted, otherwise the model 
does not provide predictions. To calculate the prediction when more 
than one neighbour is selected, the experimental values of the similar 
compounds are weighted differently based on their similarity with the 
target (by setting an enhancement factor that increases the weight of the 
most similar compounds in the prediction) (Gadaleta et al., 2019).

The robustness of each model is then assessed using Leave-One-Out 

(LOO) cross-validation (Gadaleta, 2014).
The Batch mode allows the user to explore several possible param

eter settings to automatically produce many models on the training set. 
Each model is defined by a special combination of values relative to the 
five customisable parameters, and the user can go through the output to 
select the optimal combination (Como et al., 2017).

k-NN was used as a regression estimator to develop batch models 
according to the parameters’ ranges and steps shown in Table 1.

The most suitable combination of variables for the model was 
selected with a view to balance R2 with the number of non-predictions, 
and ultimately to make a compromise between accuracy of the model 
and “inclusivity”.

To do so, a univariate analysis was performed on three parameters: 
the number of neighbours, the percentage of unpredicted compounds 
and the minimum similarity. Each value or range of values that they 
could take was singularly plotted against the best R2 value they were 
associated to (Figures S5-S7). The one related to the highest R2 or to a 
rapid R2 increase was selected. The model was fitted on the training set 
using the software’s Build mode so that the model run on the test set to 
assess its capacity to make predictions on an external dataset, and on the 
prediction set, for benchmark purposes. Statistical analyses were carried 
out for each of the model’s performances to identify the missing values 
and the outlier chemicals.

2.2.2. QSARINS
QSARINS (QSAR-INSUBRIA) software version 2.2.4 was used for the 

development and validation of Multiple Linear Regression (MLR) 
models. It includes tools for modelling datasets and exploring their 
chemical space by PCA, based on externally calculated descriptors 
(Gramatica et al., 2013; Gramatica et al., 2014; QSARINS, 2019).

A total of 1409 PaDEL molecular descriptors were calculated with 
PaDEL-Descriptor (version 2.21) (Yap, 2011) and imported into QSAR
INS as independent variables for the chemicals, which were already 
subdivided into training and test sets, while the experimental values 
were set as dependent variables. A pre-reduction of input molecular 
descriptors was performed to mitigate the redundancy of the 
inter-correlated ones giving similar structural information. Descriptors 
to disregard were automatically identified by calculating pairwise cor
relations so that the correlation amongst all pairs of descriptors was 
computed. As a consequence, when a pair was found to be highly 
correlated (correlation higher than the default cut-off value of 95 %, as 
in Dragon), the descriptor with the highest correlation compared to 
other descriptors was removed. The chemical space of the dataset was 
inspected by means of PCA and both the score and the loading plots were 
scrutinised to confirm the molecules’ clustering seen from the PCA 
performed in Dragon 7.0.

MLR models were then developed in QSARINS using the Ordinary 
Least Squares method (OLS). For variable selection, a Genetic Algorithm 
(GA) procedure was applied (Gramatica et al., 2013) to identify the 
optimal combination of descriptors in high dimension models, instead of 
exploring all combinations of small dimension ones.

Fine tuning of the GA was performed while setting the size of model 
populations equal to 700, and a total of 2000 generations (i.e., reiterated 
processes to isolate the best performing models). The algorithm was run 
twice, first introducing a 20 % mutation rate (i.e., rate of descriptor 
substitution) and then an 80 % one. Typically, if both times the 

Table 1 
Ranges of values and steps chosen for the five istKNN customisable parameters.

Parameter From To Step

Number of Neighbours (K) 2 5
Similarity Threshold 0.65 0.95 0.05
Similarity Threshold for single molecule 0.8 1 0.05
Enhancement factor for Weights 1 5
Experimental Range 0.5 4 0.5
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algorithm converges to the same output, the generated models can be 
reasonably considered an optimal solution.

A maximum number of possible variables was also set in order to 
avoid overfitting of the model (usually the number of variables must be 
1/5 or 1/7 of the total number of objects).

During GA selection, a big batch of models was obtained in around 
two days of computation.

QSARINS was used to check the calculated models’ validity by fitting 
and by both internally and externally validating them, as described in 
2.3. The best variables’ combination was selected from the list 

considering all criteria, but especially the external ones, as detailed in 
the Results section.

2.3. Statistical analysis

The performance of k-NN predictions was evaluated using fitness 
metrics expressed as a regression coefficient (R2) and RMSE, which are 
calculated on both the training predictions using LOO cross-validation 
and predictions of external datasets. k-NN models were further 
assessed for their predictive capacity using the ratio of compounds 

Fig. 2. Distribution of acute mortality values in X. laevis embryos expressed as Log10LC50 (mmol/L).

Fig. 3. Score scatter plot of the principal component analysis (PCA) model performed on acute LC50 values (LC50 12 h) in X. laevis embryos with the MATLAB PCA 
Toolbox (Ballabio, 2015). The two axes represent two Principal Components (PCs) and the corresponding percentage of explained variance (%EV). Compounds are 
distributed according to the correlation of the original variables with the PCs which can attribute a given %EV of the chemical data variability.
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correctly predicted compared to the total number of compounds in the 
database.

The fitting of MLR models was also evaluated using the R2, the RMSE 
and a modified R2 form, R2

adj. R2
adj also assesses the models’ degrees of 

freedom, namely the convenience of adding a new descriptor to it. The 
robustness of each model was evaluated by the Cross-Validated co
efficients of determination R2 and Q2, using LOO cross-validation.

Internal validation was also performed by the stronger LMO tech
nique (R2

LMO and Q2
LMO were calculated). Lastly, to demonstrate that the 

models were not the result of chance correlation, the Y-scrambling 
procedure was applied. Visual inspection for selecting the best MLR 
model took advantage of the creation of different plots within QSARINS, 
including the plot of the experimental vs. predicted activity (Fig. 6), the 
Williams plot (Figures 7 and S10), the Residuals (Fig. 8), the Leave- 
Many-Out (LMO) (Figure S8) and the Y-scramble plots (Figure S9).

3. Results

3.1. Xenopus embryo database

The Xenopus embryo database resulted in 430 individual LC50 values 
for a total of 175 compounds. The distribution of Log LC50 values from 
the Xenopus embryo database is illustrated in Fig. 2 and highlights the 
variability in the toxicity values of the database.

Amongst the 175 compounds, 122 provided a unique experimental 
value and used for the training set while 40 and 13 compounds were 
used for the test and prediction sets, respectively. To note that both the 
test and prediction sets contain multiple individual values (up to 23). 
The training and test sets were generated by splitting the LC50 values for 
the 122 and 40, respectively, and were associated with 359 unique 
experimental values or multiple consistent values (Figures S1-S4).

The results of the PCA analysis performed on Dragon descriptors are 
displayed in a Score plot (Fig. 3), showing that the samples of the 
training and test sets projected in a similar manner for the relevant PCs. 
Just a few outliers were noted as noted on Fig. 3 in the far left and 
bottom of the plot. These outliers were interpreted as not being of sta
tistical relevance since the training set is 3-fold larger than the test set.

As the two data clouds mostly overlapped in the orthogonal space, it 
was concluded that the randomly-generated test set was structurally 
similar to the training set, and therefore as a representative subset of 
data.

As discussed in the materials and methods section, the less reliable 

Table 2 
Settings of the k-NN model for predicting acute toxicity of chemicals in 
X. laevis embryos (LC50 12 h).

k (neighbors’ number) 4

Similarity threshold 0.65
Similarity threshold for single molecules 0.80
Enhancement factor 5
Experimental range 2.5

Fig. 4. Overlapping experimental vs. predicted training and test sets for acute toxicity in X. laevis embryos (LC50 12 h). Acute toxicity are expressed as Log10LC50 
(mmol/L). Training and test sets are represented in orange and blue, respectively, and trendline is drawn in grey.
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experimental data were included in the prediction set, while the training 
set contained more reproducible data. Among these, three chemicals 
were added to the prediction set for a different reason than data vari
ability including diazinon with low purity (60 %), and acetaldehyde and 
thioacetamide because of alleged incongruities in the units of measure 
from the reference studies. Indeed, the data points associated with these 
compounds are associated with a study (Fort et al., 2003) which in some 
cases showed important inconsistencies with other homologous studies 
(see Dawson and Bantle, 1987; Dawson et al., 1996; Dresser et al., 1992; 
Fort et al., 2004). Data curation resulted in excluding acetaldehyde and 
thioacetamide from the prediction set since units of measure were 
poorly reported and may have resulted from a switch between % w/v 
and mg/L and this is underlined by a 4 order of magnitude difference. 
Overall, the prediction set consisted of a set of 13 compounds.

3.2. k-NN model performance

The k-NN model output resulted in 5600 combinations for all values 
using the five parameters inherent to the model namely k, Min Simi
larity, Min Similarity for a single molecule, Enhancement factor and 
Experimental range as illustrated in Table 2. Each combination was 
associated with the number of valid predictions so that the model was 
able to provide both the number and percentage of unpredicted values.

As expected, the minimum similarity and the number of valid pre
dictions were inversely related; as the former increased, the latter 
decreased dramatically (from a maximum of 114 to a minimum of 16, 
corresponding to a percentage of change in unpredicted values change 
ranging from 7 % to 87 %. The higher the similarity value required to 
include neighbours, the higher the number of missing values so that no 
compounds were similar enough to produce a prediction. Parameters 
characterising the best model ensured an optimal balance between 
stringent conditions and coverage are summarised in Table 2.

3.2.1. Model performance
The k-NN model was built based on the training set and its predictive 

capability was tested as follows. From the 122 chemicals in the training 
set the model was able to perform 93 valid predictions in LOO mode 
(76.2 % of the dataset). The R2 was 0.746 and the RMSE was 0.63. 10 
outliers, out of 93 predictions, were noted. The outliers were defined as 
the chemicals whose predictions differed by more than 1 unit (in terms 
of Log10LC50 in mmol/L) from the experimental values. The remaining 
29 compounds (23.8 % of the dataset) were not predicted, due to two 
possible reasons: 1. For 21 out of 29 compounds, the experimental range 
of similar molecules exceeded the given threshold and all were associ
ated with 4 neighbours with an experimental variability of at least 2.5 
orders of magnitude. 2. For the remaining 8 missing values, none, or at 
best one similar molecule was found to able to provide a prediction 
(Fig. 4). Such statistics were also calculated while running the model on 
the test set. The algorithm was able to carry out a total of 32 valid 
predictions on the test set, representing 80 % of all values, with a co
efficient of determination of 0.74 and a RMSE of 0.67. Among the pre
dicted compounds, 3 response outliers were noted so that 20 % of the 
dataset representing 8 compounds remained unpredicted. Similarly, 
most of the missing values had 4 neighbours whose experimental vari
ability exceeded the cut-off value of 2.5. Only 1 compound was not 
predicted because of the total lack of suitable molecules (Fig. 4).

For both experimental and predicted datasets, most of missing pre
dictions were associated with group of compounds with the highest 
observed toxicity. Indeed, half of the unpredicted compounds, namely 
15 values in the training set and 4 in the test set, had an experimental 
Log10LC50 lower than − 1, even though compounds with such potency 
accounted for 25 % of the training set (30 out of 122) and 20 % of the 
test set (8out of 40). The model was also assessed while investigating its 
performance on the prediction set particularly the impact of the 
different exclusion criteria. Overall, the k-NN model performance was 
reliable since toxicity predictions provided sound results for 11 com
pounds out of a total of 13. Indeed, acetaldehyde and thioacetamide 

Fig. 5. Comparison of the predicted values (represented as brown points) for acute toxicity in X. laevis embryos (LC50 12 h) for the prediction set by the k-NN QSAR 
model as compared with box and whisker plots of experimental values (in yellow). Acute toxicity values are expressed as Log10LC50 (mmol/L). Exclusion criterion for 
the substances is reflected as high variability in experimental values, if not indicated otherwise.
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were disregarded (15.4 % of the dataset), due to the high experimental 
variability of the 4 identified neighbours.

In this case, predicted values were not set against the mean LC50 for 
each compound, but rather their box and whisker representations 
providing a graphical representation of predictions with respect to 
variability and uncertainty in the distribution of values. Most of the 
compounds in the prediction set were excluded from the main analysis 
because of their variability (Fig. 5).

This comparative analysis highlighted that almost all predictions 
were close to the range of experimental values with the exception of 
retinoic acid and sodium iodoacetate.

3.3. QSARINS model

3.3.1. Best model choice
Optimisation of the model with regard to the number of variables 

was performed to optimise the outcome between predictivity (low 
number of variables) and descriptiveness (high number of variables). 
The models with an optimised number of 6–7 variables were classified 
using their Q2 

F3 (Consonni et al., 2010). Such classification also took 
into account parameters of internal validation, such as Q2

loo. In addition, 
models with low squared-correlation coefficient values (Q2

loo < 0.7, ac
cording to Gramatica, 2007) indicated low robustness and low internal 
predictive ability and the fitting of parameters, such as R2

adj, were also 
considered. Table 3 provides the metrics of the best QSARIN model.

The predictivity of the QSARIN model was also assessed through an 
analysis of the changes in metrics following the chemicals’ distribution 
across the training and test sets. Given that no rearrangement led to 
significant variations in the model’s parameters, it was concluded that 
prediction performance was good and not associated with the random 
optimal allocation of the samples to the training or test sets (data not 
shown).

3.3.2. Model features
The experimental vs. predicted (obtained by model equation) scatter 

plot for both the training and test sets is displayed in Fig. 6.
Overall, each of the 162 compounds is associated with a predicted 

value while distribution of the data points indicates outlying predicted 

Table 3 
Fitting, internal and external criteria and associated parameters for the best 
QSARINS model predicting acute toxicity of chemicals in X. laevis embryos 
(Lethal Concentrations 12 h (LC50-12 h).

Fitting criteria R2 0.7637
R2

adj 0.7514

Internal validation criteria Q2
loo 0.7379

Q2
LMO 0.7269

External validation criteria RMSEext 0.6302
Q2-F3 0.7919

Fig. 6. Overlapping experimental vs. predicted training and test sets for acute toxicity in X. laevis embryos (LC50 12 h). Acute toxicity is expressed as Log10LC50 
(mmol/L). Training and test sets are represented in yellow and blue, respectively, and trendline is drawn in black. Model variables are listed below the x-axis.
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values with respect to the experimental values. Identification of such 
outliers was further validated via residuals analysis, as discussed below.

According to the tiered approach proposed by Hanser et al. (2016), 
the concept of decision domain of a predictive model must be based on 
three independent steps, namely the Applicability Domain (AD), the 
Reliability Domain (RD) and the Decidability Domain (DD). In the cur
rent assessment, particular attention was paid to the AD and RD. First, 
the AD was determined with a leverage approach by means of a Williams 
plot (Fig. 7). In this case, 8 molecules fell outside the AD (data points on 
the right of the critical leverage h* vertical line, in Fig. 7).

To define the RD, the same principle applied to the k-NN model was 
adopted for the QSARIN model for consistency. The prediction outliers 
from the k-NN model were associated with compounds for which pre
dicted values differed by more than 1 unit from the experimental values 
(in terms of Log10LC50 in mmol/L).

The Residuals plot supports visualisation of the outliers, with resid
ual values higher than one, and therefore the most distant from the 
central line (Fig. 8). Overall, a total of 20 predictions (out of 162) were 
identified as falling outside of the RD. In addition, the goodness of the 
residuals’ distribution was also assessed. Ideally, residual plots should 
be symmetrical with respect to the origin and should have a high density 
of points close to the origin and a low density of points away from it. 
Most importantly, their residuals should be independent and normally 
distributed, i.e., there should not be any clear pattern or trend in the 
residuals’ distribution, since this would mean that an unknown 

determining factor was not considered and that the model still requires 
improvement. In this case, the Residual plot met all these requirements 
(Fig. 8).

4. Discussion

4.1. k-NN model

The performance of the k-NN model for the prediction of acute 
toxicity of chemicals in Xenopus embryos has been described above and 
provided satisfactory results with R2 and RMSE of 0.75 and 0.63, 
respectively. Comparison between experimental and prediction results 
with regard to acute toxicity of chemicals in Xenopus embryos for both 
the training and test sets revealed the presence of patterns in the dis
tribution of the data points. First, the data cloud “flattened” in corre
lation to the intermediate values. For example, it is clear that points 
aligned themselves horizontally in the space between − 1 and 1 of the x- 
axis. In fact, in this case the model formulated the same prediction (same 
y-value) for chemicals with observed values differing by up to 3 orders of 
magnitude (Fig. 9).

Due to the tendency of the model to provide mean predictions predict 
in the middle”, it was observed that the lethality of the most potent 
compounds was often underestimated (data points on the left of the plot 
were above the trendline, Fig. 10); conversely, the ones associated with 
the least toxic compounds were usually overestimated (data points on 

Fig. 7. Williams plots describing overlapping experimental vs. predicted training and test sets for acute toxicity in X. laevis embryos (LC50 12 h). Training and test 
sets are represented in yellow and blue, respectively. The vertical line corresponds to the HAT threshold value of the structural domain (h*), while the dashed 
horizontal lines are the user-defined thresholds for Y-outliers. The model’s variables are listed below the x-axis.
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the right of the plot were below the trendline, Fig. 10).
Overall, underestimating toxicity can have consequences in hazard 

identification and characterisation, compared to overestimation which 
would be more conservative; thus, for such potent compounds, model 
performance is an issue to which particular attention should be paid. 
Variability and uncertainty in experimental data as well as reliability of 
such datasets is also an issue that should also be mentioned and a weight 
of evidence approach should be applied to provide a transparent 
assessment of both in silico and experimental results.

Overall, given the way the data cloud narrowed with increasing LC50 
values, it can be concluded that the k-NN model is less accurate at 
predicting highly acute toxic compounds. This situation may be related 
to the variability in the data distribution described at the beginning of 
the results section, particularly because the most potent compounds 
severely underrepresent the database when compared with most other 
compounds. Thus, the most potent substances were most likely not 
statistically significant and relied on similarly toxic compounds as called 
named “attractors” of the model and in the difficulty to form a consistent 
body of predictions. In most cases, the algorithm did not provide a 
prediction because of the high variability of the neighbours’ observed 
toxicity values. Thus, a consistent number of failed predictions are 
attributable to the stringent experimental range cut-off. Finally, it 
should also be taken into consideration that predictions are based on 4 
neighbours and that, as the number of similar compounds increases, so 
does the probability of the predicted endpoint values to diverge.

4.2. QSARINS modelling

The evaluation of the QSARINS prediction results mostly confirmed 
the prediction results from the k-NN models, even though the QSARINS 
model performed slightly better (R2 and RMSEext of the QSARINS model 
was equal to 0.76 and 0.63, respectively, as reported in Table 3, while R2 

and RMSE of the k-NN model on the test set was equal to 0.75 and 0.67, 
respectively).

The data point distribution for the QSARINS model’s as illustrated in 
the plot comparing experimental vs. predicted values (Fig. 6) also re
flected this conclusion from the results of the k-NN model (Fig. 4). A 
similar tendency of the data cloud to be more scattered in the region of 
the most potent endpoint values was observed, as well as the horizontal 
alignments in the middle of the distribution, and the overestimation of 
the toxicity of the compounds associated with the highest LC50 values. 
Most importantly, a correlation was found between the unpredicted and 
outlier compounds of the k-NN model and the chemicals excluded from 
the Applicability and Reliability Domain of the QSARINS model.

From the interpretation of the Williams plot, it is possible to rule out 
8 compounds from the Applicability Domain: Methotrexate, Remazol 
Turquoise Blue, Maneb, Acetone, Dimethyl sulfoxide, Alpha-chaconine, 
Alpha-solanine, and Pentachlorophenol, whose leverage values were so 
high that they could not be detected in the original graph (Figure S10). 
Most of the chemicals that were out of the Applicability Domain (6/8) 
were also not predicted by the k-NN model. Among them, 4 were not 

Fig. 8. Overlapping Residual plots describing overlapping experimental vs. predicted training and test sets for acute toxicity in X. laevis embryos (LC50 12 h). 
Training and test sets are represented in yellow and blue, respectively. Predicted acute toxicity values are expressed as Log10LC50 (mmol/L). The model’s variables 
are listed below the x-axis.
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predicted because of the lack of similar compounds in the database.
With regard to Y-outliers, compounds with highly-deviating stand

ardised residuals were derived from the Williams plot. To define the 
Reliability Domain more stringent conditions were applied, in order to 
be consistent with the k-NN model’s definition of outliers, as previously 
described, and resulted in raising the number of outliers to 20. Most of 
these 20 compounds were also not associated with valid k-NN pre
dictions with 11 molecules failing to predict namely 8 compounds due to 
high experimental variability of similar chemicals and 3 due to the 
absence of suitable neighbours as well as 3 outliers.

4.3. Chemical space coverage and models applicability

The present analysis demonstrates that the developed QSAR models 
for acute toxicity in Xenopus laevis embryos perform reliably within the 
chemical space represented by the curated dataset, providing robust 
predictions for a fairly broad range of compounds. An examination of 
the chemical space highlights that highly toxic, non-baseline toxicants, 
including highly electrophilic and reactive substances, strong acids and 
bases, and organometallic species, are currently underrepresented. 
These compounds act through specific molecular initiating events rather 
than baseline narcosis (Klüver et al., 2016). Hence, the compounds 
mechanistic diversity is not fully captured in the models, which is re
flected in higher uncertainty, occasional non-predictions, and underes
timation of toxicity for these chemotypes. Nevertheless, the models 
remain well-suited for hazard assessment of the majority of chemicals in 

the dataset. Expanding the database to include underrepresented che
motypes would further enhance structural coverage, improve repre
sentation of diverse modes of action, and strengthen the applicability 
and reliability domains, providing a path for future refinement without 
compromising the current models’ utility.

4.4. Relevance for regulatory assessment and alignment with the OECD 
(Q)SAR assessment framework

From a regulatory perspective, the present models were developed in 
line with the OECD (Q)SAR model validation principles that support the 
recent OECD QAF (OECD, 2024). The endpoint is clearly defined as 
LC50 at 12 h in X. laevis embryos under FETAX conditions, the modelling 
algorithms (k nearest neighbours regression in istKNN and multiple 
linear regression in QSARINS) are explicitly described, applicability and 
reliability domains are characterised for both models, and internal and 
external validation metrics are reported. In addition, mechanistic con
siderations are discussed for structurally related groups of chemicals. 
Taken together, these elements address several of the assessment ele
ments included in the QAF Model Checklist (OECD, 2024).

In addition, a full QAF evaluation, including completion of the Pre
diction and Result Checklists, was not carried out in this methodological 
study, because the models are not currently embedded in a specific 
regulatory context. In the future, inclusions of such QSARs in regulatory 
or weight of evidence assessments for amphibians, the QAF checklists 
and associated reporting formats (e.g., QSAR Model Reporting Format 

Fig. 9. Superimposed plots describing overlapping experimental vs. predicted training and test sets for acute toxicity in X. laevis embryos (LC50 12 h). Training and 
test sets are represented in orange and blue, respectively. The red lines highlight where data points align, due to the tendency of the algorithm to assign the same 
intermediate value to different predictions.
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and the emerging QSAR Result Reporting Format) should be completed 
to transparently document the accuracy of inputs, the applicability 
domain, the reliability of individual predictions and their fitness for 
purpose (Gissi et al., 2024; OECD, 2024). In this sense, the present work 
can be considered a first step towards QAF aligned amphibian QSARs, 
and highlights data and reporting needs that will facilitate their future 
integration into NAMs and weight of evidence frameworks for ecological 
risk assessment.

5. Conclusions

The present study addressed data curation of the largest database to 
date for acute developmental toxicity of chemicals on Xenopus laevis 
embryos and the development and validation of two QSAR models 
namely k-NN and QSARINS models for the hazard identification and 
characterisation of chemicals in Xenopus and as a proxy for other 
amphibian species. Predicting the impact of such environmental chem
icals is also of human relevance, according to the “one health” approach 
since these effects reflect potential neurodevelopmental toxicity 
particularly in relation to interference with the thyroid axis. In order to 
build the model, the datasets were curated, and chemical space was 
explored by means of a principal components analysis using Dragon 
descriptors. First, a molecular similarity-based approach was taken, by 
employing a k-NN algorithm.

The k-NN algorithm implemented in istKNN was shown to be a 
simple method ensuring relatively sound accuracy and prediction per
formance (R2 and RMSE of 0.75 and 0.67). Moreover, k-NN results were 
complemented by further expert mechanistic interpretation using expert 
knowledge particularly with regard to the scientific basis for under
predictions for highly toxic compounds. Overall, the algorithms were 
assessed analysed for their main features and limitations including their 
tendency to assign approximated average values with uncertain pre
dictions. A critical underestimation of the most toxic compounds’ bio
logical activity was highlighted, suggesting the need to increase 
representation of such molecules. A second method used a Genetic Al
gorithm for selection of variables in QSARINS. The selected PaDEL de
scriptors were used to develop the QSAR MLR models, which were then 

investigated in terms of their Applicability and Reliability Domains. 
Notably, QSARINS were shown to provide a useful application to 
perform a range of model validation and provided slightly better pre
dictions compared to those with the k-NN models ((R2 and RMSE of 0.76 
and 0.63). Both models had overall poorer performance with the most 
toxic compounds, which were underrepresented in the dataset.

Future directions from the present work include the modelling of 
other endpoints (e.g., EC50, associated with teratogenicity) and the 
extension of this analysis to other data sources (e.g., other amphibian 
species) to further strengthen the predictiveness of the model. Moreover, 
it has been discussed how integration of more highly-toxic compounds 
may benefit the chemical space coverage and overall performance. 
Eventually, the database may be expanded to include other develop
mental stages rather than just the embryonic one. This has been high
lighted in a previous work describing the development of a QSAR model 
for R. japonica which proposed the consideration of a taxonomic 
framework for “true frogs” to identify species as representative of the 
whole genus and sub-genus for different geographical locations and the 
relevance of R. japonica for the Eurasian species of the subgenus Rana 
"brown frogs" as well as the north American species such as the Northern 
leopard frog (Rana pipiens) and the American bullfrog (Lithobates cat
esbeianus) within their aquatic and terrestrial phase (egg, embryo, 
tadpole, juvenile and adult). The paper further highlighted that major 
data gaps in amphibians included lack of chronic toxicity in anuran 
amphibians and complete lack of toxicity data in other amphibian orders 
such as Caudata (salamanders and newts) and Gymnophiona (caecilians 
and relatives). Finally, the limited kinetic information in amphibians 
was also highlighted for all amphibian taxa particularly to investigate 
persistence of chemicals. A proposed option to fill in such data gaps was 
to use fish data as a proxy for amphibians to perform cross-species read- 
across as a first step. As more data are generated and integrated with 
quantitative physiological and life cycle data, physiologically-based ki
netic models can be developed to estimate bioactive concentrations in 
amphibians for acute and chronic toxicity and these can also provide 
opportunities to calibrate, validate and apply dynamic energy budget 
models for hazard assessment of chemicals at both individual and pop
ulation level (Baas et al., 2018; Grech et al., 2017; Toropov et al., 2022).

Fig. 10. Superimposed plots describing overlapping experimental vs. predicted training and test sets for acute toxicity in X. laevis embryos (LC50 12 h). Training and 
test sets are represented in orange and blue, respectively. The clusters of datapoints typically subjected to toxicity underestimation (more toxic compounds, on the 
left) or overestimation (less toxic compounds, on the right) are highlighted in red circles.

C. Novello et al.                                                                                                                                                                                                                                 Toxicology Letters 416 (2026) 111813 

12 



Overall, further research in this field of cheminformatics is promising 
and it can be foreseen in the near future that the development of further 
insights on the mechanisms of toxicity and populating public databases 
will be important to obtain more performant QSAR and in silico models, 
and ultimately to develop NAMs for ecotoxicity assessment while 
reducing animal testing.
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dédiée à B.G.E.L. Lacépède. De l'Imprimerie de Bertrandet, Paris, p. 85. https://doi. 
org/10.5962/bhl.title.5054.

Dawid, I.B., Sargent, T.D., 1988. Xenopus laevis in developmental and molecular biology. 
Science 240, 1443–1448. https://doi.org/10.1126/science.3287620.

Dawson, D.A., Bantle, J.A., 1987. Development of a reconstituted water medium and 
preliminary validation of the Frog Embryo Teratogenesis Assay— Xenopus (FETAX). 
J. Appl. Toxicol. 7, 237–244. https://doi.org/10.1002/jat.2550070403.

Dawson, D.A., Schultz, T.W., Hunter, R.S., 1996. Developmental toxicity of carboxylic 
acids to Xenopus embryos: A quantitative structure-activity relationship and 
computer-automated structure evaluation. Teratog. Carcinog. Mutagen 16, 109–124. 

C. Novello et al.                                                                                                                                                                                                                                 Toxicology Letters 416 (2026) 111813 

13 

https://doi.org/10.1016/j.toxlet.2025.111813
https://doi.org/10.2174/1573409913666170711130304
https://doi.org/10.2174/1573409913666170711130304
https://doi.org/10.1016/S0968-0896(03)00446-2
https://doi.org/10.1016/S0968-0896(03)00446-2
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1007/978-1-0716-1960-5_23
https://doi.org/10.1016/j.scitotenv.2018.02.058
http://refhub.elsevier.com/S0378-4274(25)02759-6/sbref6
http://refhub.elsevier.com/S0378-4274(25)02759-6/sbref6
https://doi.org/10.1016/B978-044452710-3/50004-5
https://doi.org/10.1016/B978-044452710-3/50004-5
https://doi.org/10.1016/j.tiv.2011.02.008
https://doi.org/10.1371/journal.pone.0020887
https://doi.org/10.1371/journal.pone.0020887
https://doi.org/10.1159/000490898
https://doi.org/10.1159/000490898
https://doi.org/10.1655/0018-0831-76.2.101
https://doi.org/10.1655/0018-0831-76.2.101
http://refhub.elsevier.com/S0378-4274(25)02759-6/sbref12
http://refhub.elsevier.com/S0378-4274(25)02759-6/sbref12
https://doi.org/10.1016/j.scitotenv.2020.139243
https://doi.org/10.1016/j.scitotenv.2020.139243
https://doi.org/10.1016/j.chemosphere.2021.133233
https://doi.org/10.1016/j.ygcen.2010.06.001
https://doi.org/10.1111/bcpt.13018
https://doi.org/10.3390/toxins15010040
https://doi.org/10.1016/j.chemosphere.2016.09.092
https://doi.org/10.1016/j.chemosphere.2016.09.092
https://doi.org/10.1002/cem.1290
https://doi.org/10.1002/cem.1290
https://doi.org/10.1039/9781849732093-00001
https://doi.org/10.5962/bhl.title.5054
https://doi.org/10.5962/bhl.title.5054
https://doi.org/10.1126/science.3287620
https://doi.org/10.1002/jat.2550070403


https://doi.org/10.1002/(SICI)1520-6866(1996)16:2<109::AID-TCM5>3.0.CO;2- 
M.

Di Nicola, M.R., Cattaneo, I., Nathanail, A.V., Carnesecchi, E., Astuto, M.C., 
Steinbach, M., Williams, A.J., Charles, S., Gestin, O., Lopes, C., Lamonica, D., 
Tarazona, J.V., Dorne, J.L.C.M., 2023. The use of new approach methodologies for 
the environmental risk assessment of food and feed chemicals. Curr. Opin. Environ. 
Sci. Health 31, 100416. https://doi.org/10.1016/j.coesh.2022.100416.
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