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 A B S T R A C T

To reduce food waste, many supermarkets discount food products that are close to their expiration date. In 
practice, this is done either by discount labels put on the product or by electronic shelf labels (or digital price 
tags) showing the price per expiration date. Digital price tags allow to easily change the price of products and to 
apply different discount rates to items with different expiration dates. An important question to practitioners is 
when and how much discount to offer. In this study, we use Stochastic Dynamic Programming (SDP) to derive 
optimal expiration-date-based discounting policies for a profit-maximizing retailer who sells a product with 𝑚
periods (e.g., days) of shelf life. We compare various discounting strategies, such as static last-day discounting, 
optimal dynamic last-day, and last-two-days discounting, against the no-discounting strategy.

The model allows products of different expiration dates to be in stock simultaneously, as replenishment 
happens every period. In the last-day discounting policies, two selling prices co-exist: the regular price and the 
discounted price. When applying a last-two-days discounting policy, three selling prices co-exist. Demand and 
product withdrawal depend on both price and product age (freshness). We consider different customer picking 
behavior, and divide customers into First-Expiry-First-Out (FEFO) and Last-Expiry-First-Out (LEFO) consumers 
(i.e, customers that pick the oldest items first and customers that take the freshest items available). For LEFO 
customers, we also consider that a fraction of these customers will pick discounted old items (depending on 
the size of discount). Finally, extra demand is attracted as long as discounted products are available.

Optimal policies are derived by SDP and evaluated by simulation to generate insights into the impact 
of discounting on profits, sales, fill rates, and waste. Various key factors, such as shelf life, customer 
picking behavior, and discount sensitivity are analyzed in detail. The results show that the last-two-days 
discounting policy performs well. Averaged over all experiments, this policy demonstrates a 3.8% increase 
in profits compared to no-discounting, and a waste reduction from 5.6% to 3.6%. Smaller, but still significant 
improvements are shown over simpler discounting policies.
1. Introduction

Perishable food products – such as dairy, meat, fruit, vegetables, 
and bakery products – are crucial for the profitability and store image 
of supermarkets (Ferguson and Ketzenberg, 2006; Tsiros and Heilman, 
2005). In the United Kingdom, these categories account for 52.4% of its 
unit sales (Dudlicek et al., 2019) and greatly contribute to supermar-
ket profitability (Tsiros and Heilman, 2005). Additionally, perishable 
products can be used to create a competitive advantage, as they play 
a significant role in attracting consumers to a particular supermarket 
over others (Ferguson and Ketzenberg, 2006). Product availability is 
thus key for many supermarkets.

As a result of the focus on product availability, a certain amount of 
fresh food expires before it is sold and consumed. At the supermarket 
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level, in 2020, around 1.7% of the food went to waste (Vollebregt, 
2020). This number is much higher for certain product categories: 7.7% 
for bread and pastry; 2.9% for fresh meat and fish; 2.7% for potatoes, 
vegetables, and fruit; and 1.4% for dairy, eggs, and chilled convenience 
products (Vollebregt, 2020, 2023). This not only has a negative impact 
on sustainability but also on the supermarkets’ profits (Scholz et al., 
2015). Their profits can increase by 15% when the waste of perishable 
goods is reduced (Tsiros and Heilman, 2005).

Currently, supermarkets are already practicing various strategies 
to minimize food waste, such as offering discounts for products that 
are near their expiration date, selling food boxes with near-to-expiry 
products (e.g., Too Good To Go), and donating surplus food to food 
banks. These measures help to prevent the food from going to waste. In 
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Fig. 1. Example of a digital price tag with two different expiration-based 
discounts.
Source: Taken from S&K Solutions GmbH (2025).

this study, we focus on the impact of expiration-date-based discounting. 
That is, the price of products depends on their expiration date. Prices 
can be adjusted by putting a discount label (sticker) on the product, or 
by using electronic shelf labels or digital price tags, like in Fig.  1 (taken 
from S&K Solutions GmbH (2025)).

The advent of new technology such as electronic shelf labels and 
digital price tags, see e.g. Herbon et al. (2014), place discounting at 
the center of attention of retailers as the new tools enable for smarter 
and more targeted discounting policies. For a recent report, Akkas 
(2024) interviewed 19 retailers globally to understand their practices 
in managing food surplus. It turned out that many retailers implement 
discounts on the same day or a day before expiration. For longer 
products with a longer shelf life, several retailers initiate discounts even 
earlier (e.g., 3–4 days prior to expiration).

Furthermore, a group of innovative retailers adopts a two-step 
discounting approach, such as starting discounting early at say 30% 
discount and when time pass increasing it to 60%–70%, if the product 
still remains unsold. Two retailers even used a three-step discounting 
strategy. Although smart discounting has the potential to increase 
sales and reduce waste, there is currently no consensus about the 
optimal strategy. As Akkas (2024) states, no retailer has fully resolved 
the discounting challenge. Even the most advanced retailers continue 
to experiment with various strategies to balance profit optimization 
and waste minimization. This state of continuous improvement in the 
discounting processes renders it timely to investigate optimal strategies 
for this challenge.

Next to the retailer, also consumers play a crucial role in generating 
food waste in supermarkets. Harcar and Karakaya (2005) found that 
many consumers inspect expiration dates when purchasing perishable 
products. They are aware of the expiry date and adjust their purchasing 
behavior accordingly. Stenmarck et al. (2011) showed that some con-
sumers tend to choose products with the longest best-before dates, even 
if they intend to consume them the same day. This results in increased 
waste levels, if older items remain unsold. This type of consumer 
picks items from the shelf in the order Last-Expiry-First-Out (LEFO). 
Therefore, in this paper, we call them LEFO consumers, as opposed to 
FEFO consumers who pick in order of First-Expiry-First-Out (FEFO), see 
Ostermeier et al. (2021) and Brandimarte and Gioia (2022). In well-
organized shops oldest products are at the front row on a shelf. FEFO 
consumers buy the oldest products, either for sustainability reasons, 
or because they grab an arbitrary item from the front of the display 
(where retailers tend to position the oldest items) . For a more in-depth 
discussion on customer behavior and sensitivity to product freshness, 
we refer to Herbon (2014) and Chang and Su (2022).

Discounting the oldest items in stock makes them more attractive. 
The higher the discount, the more LEFO consumers are expected to 
buy a discounted item instead of a fresher item. Although it has been 
found that not all LEFO consumers are price-sensitive. Aschemann-
Witzel (2018) and Hansen et al. (2024). As discounted items will 
also be picked by FEFO consumers, discounting can be detrimental to 
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profit. This loss in profit is partly compensated for by a decrease in 
waste and by an increase in total sales as discounted items generate 
extra sales. Whether to discount or not, and how much discount to 
offer are delicate decisions that should anticipate many aspects, such 
as consumer behavior, the number of items in stock, and their ages. 
As these numbers vary, dynamic discounting policies, i.e. strategies 
where the price of a product is adjusted dynamically over time based 
on factors such as the number of items left, the selling season, or 
the product expiration date, are more suitable than static or fixed 
discounting strategies.

According to a recent literature review (Riesenegger et al., 2023), 
many studies on dynamic pricing assume that one finds at most two 
different expiration dates. Consequently, most optimization studies are 
limited to two co-existing selling prices. In practice, consumers may 
find more than two different expiration dates on the shelf, as fresh 
products are often replenished every day. Using 2D codes and digital 
price tags, retailers can then also use more than two expiration-date-
based prices. At the start of every period, the prices, or discount rates, 
can be adjusted dynamically based on the actual number of items in 
stock and their ages.

Only a few studies so far focus on setting with more than two 
expiration dates on display, and more research is needed to reduce 
food waste and maintain profitability. Determining optimal prices, or 
discount rates, is rather complex in settings where customers may 
choose from items with three or more different expiration dates.

In this paper, we derive optimal dynamic expiration-date-based 
discounting policies for perishable inventory systems with possibly 
more than two co-existing expiration dates. We study the relevant 
but understudied setting of a non-monopolistic retailer that has items 
with more than two different expiration dates simultaneously on sale. 
Furthermore, we consider that a significant fraction of the consumers 
pick in FEFO order (i.e., they buy the oldest items in stock even when 
these are not discounted) and that LEFO customers might be convinced 
to buy older items when discounts are offered.

We formulate the dynamic optimization problem as a Markov deci-
sion process (MDP) that considers an order lead time of one period. We 
solve the problem by stochastic dynamic programming for a fixed shelf 
life of 𝑚 ∈ {3, 4, 5} periods. Without loss of generality, we assume a 
period to be a day, but one may also choose to set it to half a day, two 
days, or a week. Next to optimizing two discount rates in a dynamic 
last-two-days discounting policy, we also determine optimal dynamic 
discounting policies with a single discount rate.

This paper is further organized as follows. First, in Section 2 an 
overview of the current literature on pricing and discounting of per-
ishable products is provided with emphasis on multiple age classes. 
In Section 3 we formulate an MDP model. Sections 4 and 5 present 
a numerical study for comparing different discounting policies for a 
broad set of experiments that vary in maximal shelf life, mean demand, 
and consumer responses to freshness and discounts. Section 6 closes the 
paper with a discussion and conclusion.

2. Literature

Discounting is a well known approach to reduce food waste, es-
pecially for perishable products with a relatively short shelf life (Nijs 
et al., 2001). As the consumers’ willingness to pay declines with the 
age of the product, offering early discounts is effective in food waste 
reduction (Tsiros and Heilman, 2005). When the discount applies to all 
items with the same expiration date, this is referred to as expiration-
date-based discounting.

Expiration-date-based discounting belongs to the broader stream of 
literature on dynamic pricing. Dynamic pricing is a form of revenue 
management that is applied in various settings, ranging from the airline 
industry to e-commerce and food retailing. In this section, we discuss 
relevant literature on (dynamic) pricing and discounting of perishable 
food products with a short shelf life, such as packed fresh food.
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Table 1
Overview of relevant literature on multi-period pricing models.
 Paper Number of co-existing Product Multiple Methodb  
 Ages Prices picking restocksa  
 Single age class
 Chatwin (2000) 1 1 – No SDP  
 Liu et al. (2008) 1 1 – No SDP, Sim  
 Zhang et al. (2015) 1 1 – No PMP, Sim 
 Rabbani et al. (2016) 1 1 – No MA, Sim  
 Li and Teng (2018) 1 1 – No MA, Sim  
 Duan and Liu (2019) 1 1 – No PMP, Sim 
 Two age classes
 Chew et al. (2014) 2 2 DA Yes SDP  
 Fan et al. (2020) 2 2 U No SDP  
 Scholz and Kulko (2022) 2 2 U No Sim  
 Sanders (2024) 2 2 F No SDP, Sim  
 Three or more ages, ≤2 prices
 Chua et al. (2017) 𝑚 ∈ {2, 4} 2 LP Yes SDP  
 Kaya and Ghahroodi 

(2018)
𝑚 ∈ {1, 2, 3} 1 L, LP Yes SDP  

 Buisman et al. (2019) 𝑚 ∈ {5, 8, 10} 2 F, L, LP Yes Sim  
 Three or more ages, >2 prices
 Chung and Li (2014) 𝑚 ∈ {7, 11, 15} ≤𝑚 LP Yes Sim  
 Adenso-Díaz et al. (2017) 𝑚 = 10 ≤𝑚 DA No Sim  
 Yavuz and Kaya (2024) 𝑚 ∈ {2, 3, 4, 5} ≤𝑚 DA Yes SDP, RL  
 This paper 𝐦 ∈ {𝟑, 𝟒, 𝟓} 2–3 F, L, LP Yes SDP, Sim 
a F = FEFO = Oldest first; L = LEFO = Youngest first; LP = LEFO customers give priority to lowest priced items; U = by a utility function 
depending on price and/or age; DA = demand is for specific age class (or younger).
b SDP = Stochastic Dynamic Programming; Sim = Simulation; MA = Mathematical Analysis; PMP = Pontryagin’s Maximum Principle; RL =
Reinforcement Learning.
The literature on modeling and optimization of expiration-date-
based discounting can be categorized based on the number of age 
classes that are modeled and the number of selling prices that co-exist, 
i.e., the number of different prices and expiration dates one may find on 
the shelf simultaneously. Table  1 gives an overview of the most relevant 
papers, which we will briefly discuss in the remainder of this section.

2.1. Single age class

Typically, in models with only one age class, one (implicitly) as-
sumes that when new items arrive, the remaining old stock is disposed 
of in a secondary market, or wasted. The key questions are (i) when 
to adjust the price, and (ii) when to order new items (and thus to dis-
pose of the remaining items). Most studies assume a profit-maximizing 
monopolistic retailer who can freely set the price. In most studies, the 
demand function depends on the price and the age of the products in 
stock. As all items in stock are of the same age, one does not need to 
make assumptions about the picking order. The mathematical analysis 
is relatively simple by focusing on a single replenishment cycle. The 
problem can be solved by a finite horizon Stochastic Dynamic Program 
if the replenishment cycle is fixed. Alternatively, one may optimize 
the cycle length by disposing of any remaining stock at the end of 
the replenishment cycle. Next we discuss the relevant papers in this 
category.

Liu et al. (2008) study a single perishable product for which the 
demand is decreasing linearly in price and exponentially in product age. 
They maximize the expected profit over a sales cycle by dynamically 
adjusting the price and the order quantity. Similarly to the approach 
that we will follow in out paper, Stochastic Dynamic Programming 
(SDP) is used to derive analytical results and the numerical results are 
obtained by simulation.

Zhang et al. (2015) consider an initial inventory of a perishable 
product that can be sold in a sales cycle of 𝑇  periods. The product does 
not decay in the first 𝑡𝑑 periods, but thereafter it decays at a constant 
rate 𝜃. Inventory levels go down not only because of consumer demand 
but also as a result of product disposal. Consumer demand depends on 
the price as well as the quantity of product in stock, but not on the age 
of the products. Optimal control theory is used to maximize profit by 
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setting the sales cycle 𝑇 , and (dynamically) controlling the sales price 
in continuous time. Rabbani et al. (2016) also consider a deterioration-
free period of length 𝑡𝑑 , after which deterioration results in disposal and 
lost sales. Contrary to Zhang et al. (2015), the demand does depend on 
product age, price, and the change in price. Demand is deterministic, 
but deterioration is modeled by Weibull distributions.

Li and Teng (2018) integrate the demand models in the above 
two papers: demand is a function of price, reference price, age, and 
stock level. Both the demand and the deterioration are deterministic. 
The product has a fixed maximal shelf life of 𝑚 periods, and product 
freshness at age 𝑡, is set to 𝑓 (𝑡) = 𝑚−𝑡

𝑚 . The demand decreases linearly 
over time: at time 𝑡 = 𝑚 the demand will be zero. Structural results 
are derived for the optimal pricing strategy and illustrated by two 
numerical examples.

Duan and Liu (2019) study a finite-horizon problem of selling an 
initial inventory of some perishable products until it is sold out. No 
production and replenishment occur during the horizon. The demand 
function is a linear function of price, reference price, and product age. 
The reference price is determined by the weighted average historical 
price. Using Pontryagin’s maximum principle, optimal dynamic prices 
are determined.

Typically in the above studies, the profit is optimized by a monop-
olist by setting a single price and assuming a single product without 
age differences. As the price can be set freely and the demand volume 
depends on this price, it is necessary to simultaneously optimize the 
pricing and the ordering decisions.

2.2. Two age classes

Models with two age classes distinguish between ‘old’ and ‘new’ 
items in stock. In most studies, authors assume one single review period 
or a shelf life covering two review periods. SDP can be applied to 
determine the optimal prices of the old and new products. Below, we 
discuss the most relevant papers with two age classes in chronological 
order.

Chew et al. (2014) do not consider a food product but rather a 
generic product of which different versions are brought to the market 
over time. The analogy is that products of the same version are of the 
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same age class in our context. Rather than having a single total demand 
function, they model the demand for each specific age class that 
depends on the price level for that class and that of neighboring classes. 
Demand transfers from one age class to another are proportional to the 
price difference. In case of a stock out of one age class, demand for that 
age class is lost and not transferred to other age classes. In their study, 
the authors obtain optimal pricing decisions through SDP for products 
with two age classes, and for more age classes, they propose a heuristic 
based on the optimal solution to a single-period problem.

Chua et al. (2017) present three models on products with a shelf life 
of two periods. All consumers are assumed to pick in LEFO order, unless 
a discounted product is available. Depending on the size of the discount 
𝑥𝑡 at time 𝑡, a fraction 𝑎(𝑥𝑡) of the consumers picks the discounted 
products. In one of the models, extra demand is attracted as long 
as discounted products are available. The number of extra customers 
depends on the discount rate and on how many base-demand customers 
purchase a discounted product.

Fan et al. (2020) consider a monopolistic retailer who sells fresh 
food products with at most two different expiration dates in stock 
simultaneously. By means of SDP, an optimal pricing and ordering 
strategy is determined. The customer’s decision whether to buy, and if 
so, from which age class, is stochastic and follows a utility model, which 
is linear in product freshness and price. The SDP is solved with a finite 
horizon of two periods, during which only at the start a replenishment 
order is set which arrives instantaneously.

Scholz and Kulko (2022) consider a retailer that simultaneously 
offers fresh strawberries and strawberries that are three days old. The 
number of items demanded from an age class depends on their price as 
well as the price of products in the other age class. Product withdrawal 
and purchasing probabilities are derived from a utility function, which 
is fitted to willingness-to-pay data derived from online experiments. 
Dynamic pricing policies are evaluated using Monte Carlo Simulation.

Recently, Sanders (2024) applies a structural econometric model to 
study the extent to which dynamic pricing is a more effective way 
to reduce food waste than a ‘waste ban’. Therefore, counterfactual 
simulations are executed, using data from a US grocery chain. The sales 
transaction data for artisanal bread shows that demand depends on the 
time of the day and the day of the week. The optimal pricing problem 
is modeled as solved by a finite horizon SDP with a four-dimensional 
state: the day of the week, the time of the day, and the number of 
products in stock of the two vintages. An order is placed on at the 
first day, and stochastic demand is fulfilled in FEFO order. Sanders 
concludes that dynamic pricing could result in higher profits and lower 
waste.

2.3. Three or more co-existing age classes

Only a few papers allow for more than two co-existing age classes 
(𝑚 > 2), which give rise to an 𝑚-dimensional inventory state denoting 
the number of products in stock of each age. This category can be 
further divided in studies that optimize at most 2 prices, and studies 
that allow for three or more prices, as we will consider.

Chua et al. (2017) present three models for products with a shelf life 
of two periods, and one model with a longer shelf life of 𝑚 > 2 periods. 
The latter model studies for each of the 𝑚 age classes, the decision 
whether to set a fixed discount or not. In addition, one decides on an 
optimal order quantity. All consumers select in LEFO order, starting 
with the discounted products. The demand volume is insensitive to 
price and the ages of the products in stock. Numerical solutions are 
presented only for a shelf life of up to 3 periods. For 𝑚 = 4 age classes, 
the authors suggest an approximation based on a two-class model.

Kaya and Ghahroodi (2018) present a model for 𝑚 ∈ {2, 3}. They 
study the simultaneous optimization of order quantity and pricing. 
Demand is Poisson distributed with a mean that depends on the price 
and the age of the products. Consumers pick products in LEFO order, 
and optimal ordering and pricing policies are computed by SDP. When 
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new products are ordered, the old products are removed from stock and 
sold in a secondary market. The key question is thus when to order a 
new batch. Because the old products are removed, all products in stock 
are of the same age class, and the SDP state remains relatively low-
dimensional. In addition, they consider the case of two- or three-period 
shelf life (and thus two or three co-existing age classes).

Buisman et al. (2019) study the impact of optimal discounting of 
products with a dynamic shelf life and products with a maximum shelf 
life of 5 to 10 periods. Simulation is applied to mimic product quality 
decay in a supply chain consisting of a retailer distribution center, and 
a set of retail outlets. Product quality deteriorates exponentially due 
to the growth of microbes. Consumer demand is Poisson distributed 
with weekday-dependent means that do not depend on product age or 
discount level. Consumer demand is split into FEFO and LEFO demand. 
LEFO demand is met before meeting FEFO demand. For various scenar-
ios, optimal safety factors and last-day discount levels are computed by 
enumeration.

None of the studies discussed so far considers more than two co-
existing prices, which is a key part of our study. Only three papers 
consider multiple co-existing selling prices. Chung and Li (2014) model 
what they call ‘need-driven’ demand using simulation. Customers re-
quire products to have a minimum remaining shelf life, which is a 
stochastic number sampled for each consumer. In case multiple items in 
stock fulfill this criterion, consumers select first based on price (lowest 
first), and if prices are identical, they choose the product with the 
longest remaining shelf life. Hence, all consumers are LEFO consumers 
who pick an older item if the price is lower regardless of the size of 
the discount. The discount rate does also not influence the demand 
volume. Four pricing policies are defined ranging from no discounting 
and single discount levels to 𝑚−1 discount levels. Price levels are set by 
a fixed logic that distributes the aggregate discount over multiple age 
classes. Replenishment happens every period by a base stock policy. 
The authors use simulation to compare the profit and waste under the 
four pricing policies for different values of the base stock level. Their 
results show that the pricing policy does not affect which base stock 
level yields the highest profit.

Adenso-Díaz et al. (2017) study how the depletion of a given initial 
stock is influenced by dynamic pricing. In their work, they simulate 
the inventory dynamics over a short time horizon spanning the maxi-
mum shelf life 𝑚 during which no replenishment happens. Demand is 
modeled by 𝑚 deterministic demand functions that depend on the price 
and the product’s age. Whether dynamic pricing results in an increase 
in revenues is shown to depend on the age profile of the products in 
stock. 

In general, the pricing problem for settings with more than two 
co-existing age classes and prices can still be formulated as a Markov 
Decision Process (MDP), but hardly no paper applies an exact method 
like SDP due to the exponential growth in the number of states as 
the shelf life increases. Yavuz and Kaya (2024) apply SDP only for 
products with a shelf life of two periods. For products with a maximum 
shelf life of more than two periods, they find an approximate solution 
by reinforcement learning. RL is no exact method and the authors 
then also report an optimality gap of 5% (for the cases with a shelf 
life of 2 periods). Although reinforcement learning can be effective 
in optimizing the pricing decisions (even in combination with the 
ordering decision), the time needed for training can still be very large 
(a few hours). The decisions space studied by Yavuz and Kaya (2024) is 
therefore limited to simple parameterized ordering policies like (𝑅,𝑄).

2.4. Product withdrawal

Many studies on dynamic pricing of food products assume that 
consumers are rational and select the freshest item if prices are equal. 
This studies ignore that, in practice, many consumers pick an older 
product while a fresher item is available at the same price. Hansen 
et al. (2024) conclude, based on field experiments, that almost half of 
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the consumers choose an older item while an equally priced fresher 
one is available. Three possible explanations are: (i) consumers are 
uninformed because of choice frictions (i.e., executing a rational search 
for the item with the highest utility is too time-consuming), (ii) con-
sumers simply ignore expiration dates, or (iii) consumers choose to 
select to oldest items to prevent food waste. Uninformed consumers 
typically take an arbitrary item from the front of the shelf, which 
is the oldest item as many retailers position the oldest items at the 
front. Effectively, these consumers pick items in FEFO order even when 
these are not discounted. The existence of FEFO consumers should be 
included dynamic pricing models as it strongly affects the inventory 
dynamics. 

2.5. Number of re-stocks and optimization method

Expiration-date-based pricing problem are often studied by SDP, 
Simulation, mathematical analysis (MA) (calculus), or control theory 
(Pontryagins’s Maximum Principle, PMP). MA and PMP is primarily 
applied in settings with a single co-existing age class, and a single 
replenishment at the start of the horizon. In these studies one often 
determines the optimal length of a replenishment cycle given a demand 
function that depends on stock age (freshness) and price. Simulation 
can be applied to settings with any number of co-existing age classes 
and prices. Simulation is no optimization, as it takes input on which 
pricing strategies to evaluate and to compare. 

SDP can be used to find an optimal pricing strategy. In settings of 
a monopolistic retailer, one needs to align the prices with the ordering 
quantity, as the price strongly affects the demand. We focus on a setting 
of a non-monopolistic retailer, e.g. supermarket, who considers the 
regular selling price and the order quantity to be given. His focus is on 
the operational in-store decision on how to set discount rates for items 
that are about to expire. The impact of discounts on demand is then 
limited, as it applies only as long as discounted products are available, 
and discounts are not published but only visible to in-store customers. 
In infinite horizon SDP, multiple replenishment moments are modeled. 
In finite horizon SDP, one often limits to a single replenishment cycle. 

SDP methods are less applicable when 𝑚 gets large due to the large 
number of possible values of the state vector. Also, the number of 
action values needs to be limited to maintain tractable models. RL is a 
flexible methods to approximately solve a MDP that allows for multiple 
restocks, and more than 2 co-existing age classes, and prices. Training 
time of a RL model maybe very time consuming but RL scales well.

2.6. Research gap and contribution

New technologies allow retailers to differentiate prices for items 
of different expiration dates. However, determining optimal prices is 
an understudied research area, especially for the context of a non-
monopolistic retailer that sells to both FEFO and LEFO customers. For 
this practical context, we optimize two discount rates by SDP and we 
uniquely derive optimal discounting rates for products with a shelf life 
of up to 5 periods (e.g. days). As replenishment happens every period, 
one could thus have items in stock of 5 different expiration dates. Our 
results can serve as new benchmarks for future research that apply 
approximation methods, like reinforcement learning.

The results provide managerial insights in the added value of ap-
plying two discount rates over using just one. In previous studies that 
consider two (or more) discount rates, the discount rates are not subject 
to optimization but instead are fixed (e.g. by some formula that depends 
on the product age). This paper thus leverages insights in the value of 
differentiated discounting. It gives insights on how to set discount rates 
that both reduce food waste and maximize profit. These insights are 
particularly valuable, as many retailers still struggle to determine how 
deep their discounts should be, and whether to offer earlier but smaller 
discounts.

In the next section, we will describe our modeling approach in 
detail.
5 
3. Modeling expiration-date-based discounting

The key question we aim to answer is: What is the impact of 
different discounting policies on the profit, waste, and fill rate of the 
retailer? In particular, we are interested in the difference between 
last-day and last-two-days discounting, as well as how deep the dis-
count(s) should be (i.e., the size of the discount). These questions are 
answered by formulating and solving the problem as a Markov decision 
process (MDP) that optimizes the discounting levels of the last two 
age classes. By restricting the action space, the model is also used 
to derive an optimal dynamic last-day discounting policy. By further 
restricting the action space to a single discount value, the models boils 
down to a Markov chain to evaluate a fixed-discount policy and the 
no-discounting policy.

A description of the problem, including a graphical representation of 
the decisions over time and the notation we use, is given in Section 3.1. 
In Section 3.2, the mathematical model is presented in detail. When 
formulating the model, we use general terminology for time periods, 
which in practice would be days, as most fresh products can be ordered 
every day in a retail context. This also implies that modeling of shelf 
life in days, and that discounting decisions are made once per day. 
Other resolutions can also be dealt with in our model (for instance, 
by assuming that a period is half a day), but in the numerical analysis 
presented in Section 5, we work with days.

3.1. Problem formulation and notations

We consider a profit-maximizing grocery retailer (e.g., supermarket) 
that sells a perishable food product with a fixed shelf life of 𝑚 periods. 
Items whose expiration date has passed can no longer be sold and 
are disposed of at a unit disposal cost (𝑤). New items are ordered at 
the start of every period (i.e., the review period 𝑅 = 1) using a base 
stock policy and delivered at the end of the period (i.e., lead time 
𝐿 = 1). The (constant) base stock level 𝐵 is a strategic decision aiming 
at a sufficiently high product availability such that consumers will not 
switch to a competitor. We model a single non-monopolistic retailer 
and competing retailers are not modeled. An item is purchased at cost 
𝑐, and sold at its regular unit selling price 𝑟 if no discounts applies. 
Note, as the retailer is not a monopolist, the regular selling price 𝑟 is 
an exogenous parameter.

At the start of the period, the retailer can decide on two discount 
levels: 𝑥1 for items that expire at the end of the period (last-day 
discounting), and 𝑥2 for items with a remaining shelf life of two days, 
which will expire the next period (next-to-last day discounting).

Regular demand 𝑑 is uncertain and modeled by a stationary discrete 
probability distribution 𝑝(𝑑) with mean 𝜇 and standard deviation 𝜎. In 
our model, we split this demand (using stochastic rounding) between 
customer groups with different picking behavior and we generate addi-
tional demand in case there are discounted products to also incorporate 
possible price-sensitive customers.

Regarding picking behavior, some consumers prefer items with the 
longest expiration date over items with a shorter expiration date: these 
consumers pick items from the shelf in order of Last-Expired-First-Out 
(LEFO). Other consumers are insensitive to this and pick the items pre-
sented in front of the shelf, in the order First-Expired-First-Out (FEFO). 
Whenever discounted products are available, some price-sensitive LEFO 
consumers might pick a discounted product instead of picking the last-
expired items first. Thus, we need to distinguish between three types 
of consumers in our modeling: LEFO consumers who are price sensitive 
and pick discounted products whenever available, LEFO consumers 
who are not price sensitive, and FEFO consumers.

We add a fourth consumer type to model the possible extra demand 
that is generated by the price discount. This extra demand depends on 
the size of the discount and is limited by the number of discounted 
items. In this way, our model still considers the regular (exogenous) 
demand for the product at full price, but also considers price sensitivity 
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Fig. 2. Model diagram with states, actions, and events.
related to the discounted products. The possible extra demand is scaled 
with the regular demand for the product, but may also originate from 
consumers who intended to buy another (substitute) product. As dis-
counts are made available at the start of the period, the extra demand 
is happening at the start of the period while discounted items are still 
available. For easy notation, the extra demand is modeled and met 
before the regular demand for 𝑑 items is met.

3.2. MDP model

An MDP model is defined by the state space, action space, the events 
and state transitions, the rewards, and Bellman’s optimality equation. 
These concepts will be defined in the remainder of this section. In Fig. 
2, a timeline with the states, decisions, and events is given to illustrate 
the main structure of the model.

State and state space
At the start of every period, the retailer inspects the inventory of 

each of the 𝑚 age classes. Typically, such information may be available 
in enterprise resource planning systems. The number of items in stock 
of age 𝑖 is denoted by 𝑠𝑖. Thus, 𝑠0 is the number of ‘new’ products 
in stock, and 𝑠𝑚−1 is the number of the oldest items in stock, which 
will expire at the end of the period. The vector 𝑠 = (𝑠0, 𝑠1,… , 𝑠𝑚−1)
represents the state of the system at the start of a period. Let  denote 
the state space, which consists of all possible values of vector 𝑠. As 
we study a context in which discounted products are displayed on the 
same shelf as the not-discounted products, the state is represented as 
a single stock vector. Thereby we implicitly assume that these items 
are offered on the same shelf and are to some extent substitutes for 
customers (e.g. the LEFO customers that might be tempted to become 
FEFO customers if those items are discounted). In a different context 
with discounted products sold at a different locations, one may model 
the inventories separately by two vectors, and in that case one could 
also add a demand stream for customers that are solely interested in 
discounted products. 

Action and action space
At the start of a period, the discounting decisions (𝑥1, 𝑥2) ∈  are 

made, where  is the action space. We restrict the action space by 
setting 𝑥1 ≥ 𝑥2, i.e., fresher items do not get a higher discount than 
the oldest items in stock. Furthermore, a replenishment order is placed 
of size: 

𝑞𝑡 = 𝐵 −
𝑚−1
∑

𝑖=0
𝑠𝑖. (1)

These 𝑞𝑡 items will be delivered at the end of the period to ac-
knowledge a lead time of one period. Note that the replenishment order 
follows a typical base stock policy, which is not subject to optimization. 
This keeps the action space limited, but it is also a common approach 
in a context in which replenishment decisions are driven by a target 
service level.
6 
Stochastic state transitions and rewards
The state transitions and rewards are stochastic due to the uncer-

tainty in the demand. The regular demand is 𝑑 ∈  with probability 
𝑃 (𝑑).  is a discrete finite set of possible demand outcomes:  =
{0, 1, 2,… , 𝐷}. The availability of discounted items of age 𝑖 generates 
extra demand 𝑑𝐸𝑖 :
𝑑𝐸𝑖 = ⌈𝛿 ⋅ 𝑥𝑖 ⋅ 𝑑⌋,

where ⌈𝑦⌋ is a shortcut notation for the stochastic rounding of 𝑦:

⌈𝑦⌋ =

{

⌈𝑦⌉ with probability 𝑦 − ⌊𝑦⌋
⌊𝑦⌋ else.

Parameter 𝛿 indicates the price elasticity of demand. We assume 
that the extra demand occurs at the start of the day (while discounted 
items are still available), and that it is met before the regular demand. 
The number of items picked to meet the extra demand, 𝛥𝐸

𝑖 , cannot 
exceed 𝑠𝑖∶
𝛥𝐸
𝑖 = min{𝑑𝐸𝑖 , 𝑠𝑖}

The regular demand level 𝑑 is split into three demands, one for each 
of the three types of customers that we introduced earlier: demand 
by FEFO customers (𝑑𝐹 ), demand by price-sensitive LEFO customers 
(𝑑𝐿𝐹 ), and the other LEFO customers (𝑑𝐿𝐿).

The FEFO demand is for 𝑑𝐹 = ⌈𝑓 ⋅ 𝑑⌋ items, and is obtained 
by stochastic rounding of 𝑓 ⋅ 𝑑. Here, 𝑓 is the percentage of FEFO 
customers. The LEFO demand, 𝑑 − 𝑑𝐹 , is split into price-sensitive 
customers 𝑑𝐿𝐹  who are willing to pick a discounted product, and the 
rest. As we model two discount levels, 𝑥1 for items of age 𝑚− 1 and 𝑥2
for items of age 𝑚−2, we define 𝑑𝐿𝐹𝑚−𝑖 for the number of LEFO consumers 
that is willing to pick a product of age 𝑚 − 𝑖:

𝑑𝐿𝐹𝑚−𝑖 =

{

⌈𝛾 ⋅ 𝑥𝑖 ⋅ (𝑑 − 𝑑𝐹 )⌋ if 𝑖 ∈ {1, 2}
0 otherwise.

Here, 𝛾 is used to model the sensitivity of the customer to the discount 
level. Again, the quantity picked cannot exceed the number items left 
of age 𝑖 ∈ {0, 1,… , 𝑚 − 1}:

𝛥𝐿𝐹
𝑚−𝑖 = min{𝑑𝐿𝐹𝑖 , 𝑠𝑖 − 𝛥𝐸

𝑖 }.

The remaining LEFO demand is then 𝑑𝐿𝐿 = 𝑑 − 𝑑𝐹 − 𝑑𝐿𝐹𝑚−1 − 𝑑𝐿𝐹𝑚−2, 
leading to the following quantity picked:

𝛥𝐿𝐿
𝑖 =

{

min{ 𝑑𝐿𝐿, 𝑠𝑖 } if 𝑖 = 0 & 𝑚 > 2
min{ 𝑑𝐿𝐿 −

∑𝑖−1
𝑗=0 𝛥

𝐿𝐿
𝑗 , 𝑠𝑖 − 𝛥𝐸

𝑖 − 𝛥𝐿𝐹
𝑖 } else.

In the model, we thus sequence the demand as follows: the extra 
demand 𝑑𝐸 , the price-sensitive LEFO consumer (𝑑𝐿𝐹 ), the remaining 
LEFO consumers, and finally the FEFO consumers. The total number of 
items picked from age 𝑖 is: 
𝛥𝑖 = 𝛥𝐸

𝑖 + 𝛥𝐿𝐹
𝑖 + 𝛥𝐿𝐿

𝑖 + 𝛥𝐹
𝑖 . (2)



R. Haijema et al. International Journal of Production Economics 292 (2026) 109824 
The state transition from state 𝑠 in period 𝑡 to state 𝑠′ at period 𝑡+1, 
when demands in period 𝑡 are (𝑑𝐸 , 𝑑𝐿𝐹 , 𝑑𝐿𝐿, 𝑑𝐹 ), is 

𝑠′𝑖 =

{

𝑞 if 𝑖 = 0
𝑠𝑖−1 − 𝛥𝑖−1 else

(3)

and the resulting waste in that period is 
𝑊 = 𝑠𝑚−1 − 𝛥𝑚−1. (4)

Rewards
The reward in period 𝑡 is the profit that is earned, which depends 

on the reference price (𝑟), purchasing price (𝑐), disposal cost (𝑤), the 
discounts (𝑥1, 𝑥2), the order quantity 𝑞, and the number of sold items 
𝛥𝑖 for each age 𝑖. The reward when demand is (𝑑𝐸 , 𝑑𝐿𝐹 , 𝑑𝐿𝐿, 𝑑𝐹 ) is: 

𝑅(𝑠, 𝑥 ∣ 𝑑𝐸 , 𝑑𝐿𝐹 , 𝑑𝐿𝐿, 𝑑𝐹 ) = 𝑟⋅
𝑚−1
∑

𝑖=0
𝛥𝑖−𝑥1⋅𝑟⋅𝛥𝑚−1−𝑥2⋅𝑟⋅𝛥𝑚−2−𝑐⋅𝑞−𝑤⋅𝑊 (5)

The (unconditional) expected rewards 𝑟(𝑠, 𝑥) and state transition 
probabilities 𝑝(𝑠, 𝑠′ ∣ 𝑥) can be derived by iterating over all possible 
values of the regular demand 𝑑 ∈  and enumerating all possible 
related demand vectors (𝑑𝐸 , 𝑑𝐿𝐹 , 𝑑𝐿𝐿, 𝑑𝐹 ).

Bellman’s optimality equation and stochastic dynamic programming
Let 𝑉𝑛(𝑠) be the expected reward over 𝑛 periods when starting in 

state 𝑠 and optimal (state-dependent) actions (𝑥1, 𝑥2) are taken in each 
period. By this definition 𝑉0(𝑠) = 0, for all states 𝑠 ∈ , and 𝑉𝑛 can be 
defined recursively: 

∀𝑠 ∈ 𝑆 ∶ 𝑉𝑛(𝑠) = max
𝑥∈𝑋(𝑠)

{

𝑟(𝑠, 𝑥) +
∑

𝑠′∈
𝑝(𝑠, 𝑠′ ∣ 𝑥) ⋅ 𝑉𝑛−1(𝑠′)

}

(6)

An optimal policy 𝜋∗ is set by 

∀𝑠 ∈ 𝑆 ∶ 𝜋∗(𝑠) = lim
𝑛→∞

argmax
𝑥∈𝑋(𝑠)

{

𝑟(𝑠, 𝑥) +
∑

𝑠′∈
𝑝(𝑠, 𝑠′ ∣ 𝑥) ⋅ 𝑉𝑛(𝑠′)

}

(7)

The resulting infinite horizon MDP is solved by Stochastic Dynamic Pro-
gramming (using value iteration), see Puterman (2014). The difference 
𝑔𝑛 = 𝑉𝑛 − 𝑉𝑛−1 converges to a constant vector lim𝑛→∞ 𝑔𝑛, with each 
element equal to the optimal expected profit per period 𝑔. The iterative 
procedure of evaluating Eq. (6) for increasing values of 𝑛 stops as soon 
as max 𝑔𝑛 − min 𝑔𝑛 gets smaller than a pre-specified small value 𝜖. For 
more details, we refer to Puterman (2014).

4. Design of experiments

In this section, we present the design of 17 experiments by which 
we numerically compare the performance of four discounting policies. 
The result are presented in Section 5.

4.1. Parameter settings

The experiments relate to the context of a supermarket selling a 
fresh product with a short shelf life of 3–5 days, such as packed fresh-
cut vegetables, meat products, and ready-to-eat meals. Replenishment 
orders are placed daily by a base stock policy with base stock level 
𝐵 = 𝜇 ⋅ (𝑅+𝐿)+𝑧 ⋅𝜎 ⋅

√

𝑅 + 𝐿, where 𝑧 is the safety factor. Note that the 
base stock level 𝐵 does not account for any additional demand induced 
by the discounting strategy, as doing so would undermine the purpose 
of discounting – to sell surplus inventory – and could lead to a self-
reinforcing cycle of continued discounting. To test, for the robustness of 
the discounting policies, we evaluate the discounts rates also for lower 
and higher values of 𝐵, see Section 5.6. 

As demand is for a (small) discrete number of items (and depending 
on the number of customers visiting the store), in many similar studies 
demand is assumed to be Poisson distributed. Hence 𝜎 =

√

𝜇. This 
corresponds to a reasonable degree of demand uncertainty, especially 
7 
Table 2
Fixed values of parameters.
 Parameter Notation Value 
 Review period (days) 𝑅 1  
 Lead time (days) 𝐿 1  
 Reference price (euro) 𝑟 2.50  
 Purchase price (euro) 𝑐 1.75  
 Disposal cost (euro) 𝑤 0.10  

Table 3
Experimental values of parameters.
 Parameter Notation Experimental values  
 Shelf life (days) 𝑚 3, 4, 5  
 Mean consumer demand (days) 𝜇 2, 4, 6  
 Fraction FEFO consumer 𝑓 0, 0.25, 0.5, 0.75, 1.0 
 Discount sensitivity 𝛾 0, 1.0, 1.75, 2.5  
 Price elasticity of demand 𝛿 0, 0.3, 0.55, 0.8  
 Safety factor 𝑧 1.0, 1.5, 2.0  

for lower levels of demand. The Poisson distribution excludes negative 
values and resembles a right-skewed distribution (especially, for lower 
values of 𝜇), which often fits well with retail demands.

We set the economic parameters to the values reported in Table 
2. The (regular) profit margin is fixed at 30% of the regular selling 
price. The waste costs relate to the cost of disposing of an item, which 
may include handling costs as well as the economic costs of emptying 
a waste container.

The study comprises a base case and sixteen deviations from it 
by sequentially varying the shelf life (𝑚), the mean demand (𝜇), the 
price elasticity of demand (𝛿), the fraction of FEFO consumers (𝑓 ), the 
discount sensitivity of LEFO consumers 𝛾, and the safety factor 𝑧. These 
values are deterministic in our model, but reflect the context of the 
specific retailer or retail store studied (e.g., stores in different kind of 
neighborhoods would have different price sensitivities with regards to 
discounts and different fractions of LEFO and FEFO customers.)

Table  3 summarizes the value of the experimental factors, with the 
base case values highlighted in bold.

The shelf life parameter plays a crucial role in inventory manage-
ment and directly influences waste and shortages. In the context of 
this study, the product shelf life is set to 3, 4, or 5 days. The choice 
of a 4-day shelf life for the base case is supported by van Donselaar 
et al. (2006), wherein 4 days is identified as the median for the shelf 
life of days fresh products in a single supermarket. According to the 
same study, the average weekly sales of fresh products in supermarkets 
is 33.8 products, which implies an average of 4.8 products sold per 
day. Therefore, in this study we consider three mean demand levels 
𝜇 = {2, 4, 6}. For the base case, 𝜇 = 4 is used. In all experiments demand 
is modeled by a Poisson distribution with mean 𝜇.

The actual fraction of FEFO consumers (𝑓 ) depends on the type 
of product and differs per store. Therefore, this study will explore a 
wide range of values: 𝑓 ∈ {0, 0.25, 0.5, 0.75, 1.0}. In the base case, we 
assume an equal division of LEFO and FEFO consumers: 𝑓 = 0.5. The 
wide range of value of 𝑓 is supported by literature. Studies that apply 
mathematical analysis, assume either pure LEFO 𝑓 = 0 or pure FEFO 
𝑓 = 1. In contrast many numerical studies, consider a mix of FEFO 
and LEFO. Santos et al. (2022) suggests 𝑓 = 0.2, whereas Hübner et al. 
(2024) estimates that, if items on the shelves are sorted by expiration 
date with oldest items displayed at the front, 𝑓 is in the range 0.65 to 
0.75. Other studies assume 𝑓 = 0.45 (Tromp et al., 2012) and 𝑓 = 0.6
(Buisman et al., 2019).

The discount sensitivity of LEFO customers (𝛾) refers to the degree 
to which customers react to price reductions by transitioning from 
LEFO to FEFO behavior. A discount of 𝑥% makes 𝛾 ⋅ 𝑥% of the LEFO 
consumers willing to pick in FEFO order. In line with Buisman et al. 
(2019), for the base case we set 𝛾 = 1. When 𝛾 = 0, no LEFO consumers 
will prefer a discounted item over a fresher item, while with 𝛾 = 2.5, 
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a 40% discount will trigger all LEFO customers to buy a discounted 
product (whenever available).

The price elasticity of demand (𝛿) models the extra demand gener-
ated by price discounts. In the base case, we set 𝛿 = 0.55, which implies 
that for every one percent reduction in price, the demand increases by 
0.55%. A study conducted by Andreyeva et al. (2010) establishes the 
price elasticity of food within the range of 0.3 to 0.8, indicating an 
inherent inelasticity in the demand for perishable products, meaning 
that price variations only have a moderate impact on demand levels. 
Additionally, to show the effects of perfect inelasticity, 𝛿 = 0 is added 
to the experiments. This implies that demand is not affected by price 
changes. To study these effects, we set 𝛿 ∈ {0, 0.3, 0.55, 0.8}.

The safety factor (𝑧) determines the height of the base stock level 
𝐵 = 𝜇 ⋅(𝑅+𝐿)+𝑧⋅

√

𝜇 ⋅ (𝑅 + 𝐿). A high value of 𝐵 is needed to buffer for 
demand fluctuations, and thus to ensures a high on-shelf-availability 
of products. For the base case we set 𝑧 = 1.5, then about 94% of 
the demand can be met from stock. With a higher safety factor, the 
supermarket buffers for high realizations of demand volumes to ensure 
a high fill rate. A more high-end supermarket has a higher safety factor 
(𝑧 = 2.0), compared to a low-end supermarket (𝑧 = 1.0). As demand is 
Poisson distributed and a base stock policy is followed with target stock 
level 𝐵 = 𝜇⋅(𝑅+𝐿)+𝑧⋅

√

𝜇 ⋅ (𝑅 + 𝐿), we expect the fill rate to be between 
89% and 98%. The value of the base stock level in the base case is thus 
12, and varies from 11 (if 𝑧 = 1) to 14 (if 𝑧 = 2).

4.2. Four discounting policies

For each experiment, we compare the performance of four discount-
ing policies. We apply a grid of discount levels ranging from 0% to 
40% with a grid size of 5%:  = {0, 0.05, 0.1,… , 0.4}. To optimize and 
evaluate the expected profit for each discounting policy, we limit the 
action space  as follows:

• D2 = dynamic last-two-days discounting:  =
{

(𝑥1, 𝑥2) ∣ 𝑥1 ≥
𝑥2 ∧ 𝑥1, 𝑥2 ∈ 

}

• D2S = dynamic last-two-days discounting at same rate:  =
{

(𝑥1, 𝑥2) ∣ 𝑥1 = 𝑥2 ∧ 𝑥1, 𝑥2 ∈ 
}

• D1 = dynamic last-day discounting:  =
{

(𝑥1, 0) ∣ 𝑥1 ∈ 
} as 

𝑥2 ≡ 0,
• NO = no-discounting policy:  = {(0, 0)}.
• FO = fixed optimal last-day discount policy:  =

{

(𝑥∗1 , 0)
}

. 
The optimal (profit-maximizing) static discount level 𝑥∗1 ∈ , is 
determined by evaluating the expected profit for each 𝑥1 ∈ .

4.3. Computational accuracy and running times

To numerically solve the MDP models by value iteration, we trun-
cate the discrete demand distribution at the smallest level of 𝐷 for 
which:
∞
∑

𝑑=𝐷

𝜇𝑑

𝑑!
⋅ 𝑒−𝜇 ≤ 0.001.

Hence, the finite discrete demand distribution 𝑃 (𝑑) is

𝑃 (𝑑) =

⎧

⎪

⎨

⎪

⎩

𝜇𝑑

𝑑! if 𝑑 ∈ {0, 1,… , 𝐷 − 1}
1 −

∑𝐷−1
𝑑=0 𝑃 (𝑑) if 𝑑 = 𝐷

0 otherwise.

For 𝜇 = 2, 4, and 6 this implies 𝐷 is set to 8, 12, and 15 respectively.
The MDP model is coded in Python, and solved using MDPtoolbox 

(Chades et al., 2014). For all policies we stop value iteration by setting 
𝜖 = 0.001, hence the expected profit is accurate up to 0.001. The 
running time depends on the number of states, the number of actions, 
and the number of demand levels that may occur per day.

To evaluate the waste and fill rate of all discounting policies that 
are derived through value iteration on the described MDP, in the next 
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Table 4
Average profit, sales, fill rate, and waste for each discounting policy.
 NO FO D1 D2S D2  
 Profit (e) 2.50 2.54 2.56 2.57 2.58  
 # sold 3.88 3.94 3.95 3.96 3.97  
 % fill rate 97.27% 97.25% 97.25% 97.14% 97.15% 
 % waste 5.61% 4.23% 3.98% 3.74% 3.60%  

section, these policies are simulated. Although the truncation of the 
demand distribution is primarily needed for solving the MDP, we use 
the same truncated distribution in the simulation. The simulation lasts 
100,000 periods, which results in an accuracy similar to MDP: average 
profit levels are at most 0.001 off from the nearly-exact values reported 
by value iteration.

5. Results

In this section we present a sensitivity study based on the results 
for the design of experiments. In addition, we discuss the robustness of 
the discounting policies when applied to setting with higher a longer 
review period and/or lead time, and when the base stock level deviates.

5.1. Overview: average profit, sales, fill rate, and waste

Table  4 reports the performance of the four discounting policies 
averaged over all 17 experiments. Under the no-discounting policy 
(NO), sales are on average 3.88 per period, which implies a fill rate 
of 3.88

4 ⋅ 100% = 97%, and an average waste of 5.61%. The fill rate 
is evaluated in relation to the regular demand and excludes the extra 
demand, as the extra demand comes from non-planned purchases by 
consumers. FO reduces the waste to 4.23%, whereas the dynamic 
policies D1 and D2 reduce the waste to 3.98% and 3.6%, respectively. 
With waste at 3.74%, policy D2S performs in between policies D1 
and D2, as might be expected. For situations in which two co-existing 
discounting would be difficult to implement, this means that the D2S 
strategy would lead to about half the benefit of moving from last-day 
discounting to last-two-days discounting (assuming optimal discounting 
percentages).

In general, discounting results in more items sold, but the fill 
rate remains virtually the same. Apparently, the extra sold items are 
primarily realized by the extra demand, which in turn explains a great 
part of the profit increase.

5.2. Sensitivity analysis: profit and waste per experiment

Table  5 shows the relative waste and profit for each experiment. The 
profits of FO, D1, D2S, and D2 are the percentage increases over the no-
discounting policy (NO). In the top row, we read the averages: FO yields 
a 2.07% higher profit, and D1 and D2 improve by 2.88% and 3.83%, 
respectively. For D2S, the average improvement is 3.46%. Besides the 
increase in average profit, we observe a significant reduction in waste: 
NO results in 5.6% of the items turning into waste, whereas waste is 
only 3.6% for D2.

The largest increase in profit and reduction in waste is achieved in 
settings where the average waste is high, and/or where consumers are 
very price sensitive, like in experiment 2, 3, 7, 9, 10, 13, and 16. In 
Experiments 2 and 3 waste tends to be high in case of no discounting 
due to a low fraction of consumers accepting the oldest products (𝑓 = 0 
or 0.25). In experiment 7 the waste under no discounting is high due to 
a high safety stock (𝑧 = 2). In experiments 9 and 10, the profit increase 
and reduction in waste is high as LEFO consumers are more sensitive 
to discounts (𝛾 = 1.75, or 2.5). Similarly, in experiment 13, the profit is 
higher due to a higher price elasticity (𝛿 = 0.8), which generates more 
demand. In Experiment 16 the shelf life is shorter (𝑚 = 3), causing 
much more waste if no discounts would be offered.
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Table 5
Overview of daily profit and waste for each experiment and discounting policy.
 Experiment Profit % Profit gain over NO Waste

 NO FO D1 D2S D2 NO FO D1 D2S D2  
 Average e2.50 2.07% 2.88% 3.46% 3.83% 5.6% 4.2% 4.0% 3.7% 3.6%  
 1 Base case e2.59 0.13% 1.14% 1.28% 1.60% 4.4% 3.9% 3.3% 3.2% 3.0%  
 2 𝑓 = 0 e1.74 19.70% 21.02% 26.21% 27.79% 13.8% 6.9% 6.8% 5.1% 4.8%  
 3 𝑓 = 0.25 e2.15 7.86% 8.52% 9.87% 10.54% 9.6% 5.0% 5.0% 4.4% 4.1%  
 4 𝑓 = 0.75 e2.82 0.00% 0.06% 0.02% 0.07% 1.4% 1.4% 1.3% 1.4% 1.3%  
 5 𝑓 = 1 e2.88 0.00% 0.00% 0.00% 0.00% 0.6% 0.6% 0.6% 0.6% 0.6%  
 6 𝑧 = 1 e2.66 0.00% 0.50% 0.50% 0.67% 2.8% 2.8% 2.2% 2.2% 2.1%  
 7 𝑧 = 2 e2.26 1.95% 3.87% 5.04% 5.78% 8.9% 6.2% 5.9% 5.5% 5.2%  
 8 𝛾 = 0 e2.59 0.00% 0.45% 0.42% 0.73% 4.4% 4.4% 4.0% 3.9% 3.7%  
 9 𝛾 = 1.75 e2.59 0.83% 1.91% 2.08% 2.42% 4.4% 2.7% 2.8% 2.7% 2.6%  
 10 𝛾 = 2.5 e2.59 1.72% 2.65% 2.87% 3.21% 4.4% 2.4% 2.5% 2.3% 2.2%  
 11 𝛿 = 0 e2.59 0.00% 0.01% 0.00% 0.01% 4.4% 4.4% 4.4% 4.4% 4.4%  
 12 𝛿 = 0.3 e2.59 0.00% 0.24% 0.30% 0.43% 4.4% 4.4% 4.1% 4.0% 3.9%  
 13 𝛿 = 0.8 e2.59 1.69% 2.57% 2.89% 3.32% 4.4% 2.3% 2.6% 2.4% 2.3%  
 14 𝜇 = 2 e0.90 0.84% 2.01% 2.92% 3.06% 13.2% 11.9% 11.6% 11.2% 11.1% 
 15 𝜇 = 6 e4.17 0.15% 0.92% 0.90% 1.24% 2.1% 1.8% 1.4% 1.3% 1.2%  
 16 𝑚 = 3 e2.08 0.37% 2.69% 2.93% 3.79% 10.3% 9.2% 8.0% 8.0% 7.5%  
 17 𝑚 = 5 e2.80 0.00% 0.37% 0.51% 0.51% 1.6% 1.6% 1.2% 1.2% 1.1%  
Experiment 6 and 7 reveal that a higher profit level can be achieved 
by lowering the base stock level, but it results in a (much) lower 
product availability. By enumerating a range of values for 𝑧, one could 
determine a base stock level 𝐵 that maximizes the profit. However, 
in practice, consumers who get disappointed too often will choose to 
not return and to continue their grocery shopping at a competitor. 
Therefore, in this study the safety stock is a fixed strategic decision 
aiming at a sufficiently high product availability. If it would be open 
for optimization, one may consider to add the order quantity as an 
extra dimension to the action space of the MDP model. Note that the 
impact of discounting on the demand is small and only applies as long 
as discounted items are available.

The biggest profit gain (27.79%) is achieved by D2 when all con-
sumers pick the freshest items first (𝑓 = 0). In that setting, D2 reduces 
the average waste from 13.8% to 4.8%. Comparing D2S and D2, we see 
that the additional flexibility in using two different discount percent-
ages provides a significant profit gain and waste reduction. Including 
D1 in this comparison, we also see that in some cases, D2S performs 
worse than D1, implying that in those cases, discounting the items 
from the two last age classes leads to too many items being discounted. 
This is especially clear in experiments 4, 8, and 15, i.e., when there 
are many FEFO customers, when there is no discount sensitivity, and 
when there is higher demand. In those cases, it is more likely that older 
products are sold without discounting and also discounting the items in 
the next-to-last age class would not be beneficial.

Note that for 𝑚 = 3 FO hardly improves over NO, whereas D1, 
D2S, and D2 yield an increases in profit between 2.69% and 3.79%. 
We observe in 7 out of 17 experiments (namely experiments 4, 5, 6, 
8, 11, 12, and 17) that FO does not improve NO in terms of profit or 
waste. This means that the optimal fixed discount level 𝑥∗1 is 0%. In 
other words, applying a discount would result in a lower profit. In most 
of these experiments, dynamic discounting has a slightly positive effect 
on the average profit and waste.

Most notably, experiment 8 shows the results when LEFO consumers 
are not responsive to discounts at all (𝛾 = 0). Then the discount 
is installed only to attract some extra demand, which results in an 
increase in the average profit by 0.45% (D1) and by 0.73% (D2). As 
mentioned above, in this case, D2S would then lead to more items being 
discounted than necessary to achieve this effect.

When 𝛿 = 0, the price elasticity is zero, and thus the extra demand 
is zero, and any effect of discounting is then explained by LEFO 
consumers who accept an older discounted item over new items. Also, 
in the case of a longer shelf life (𝑚 = 5), FO has no positive effect on 
profit and waste, whereas dynamic discounting has a positive impact 
on both profit and waste.
9 
Discounting (by FO, D1, D2S, or D2) has only a minimal effect on 
profit and waste when many consumers pick the oldest first (𝑓 = 0.75, 
𝑓 = 1), or when the price elasticity is zero (𝛿 = 0). When 𝑓 = 0.75 and 
𝑓 = 1, many customers accept the oldest items even when they are not 
discounted. Providing a discount to FEFO consumers is pointless, as it 
results in a loss of profit. This loss in profit margin is not compensated 
for by extra sales or the very few, if any, LEFO customers who opt for 
the discounted products.

New information technology in the form of digital price tags allows 
for cost-effectively setting multiple expiration-date-based prices. It is 
therefore interesting to analyze in which cases last-two-days discount-
ing (D2) is much better than last-day discounting (FO or D1). This 
question is in many research papers unanswered, as their focus is 
on optimizing one price or at most two prices. Fig.  3 visualizes the 
profit gain of FO, D1, and D2 compared to NO discounting (we did 
not include D2S in this figure as it would mostly lie between D1 and 
D2 following the results in Table  5). It clearly demonstrates that last-
two-days discounting (D2) yields consistently more profit than last-day 
discounting (FO and D1). The difference is higher in settings with a 
higher price elasticity 𝛿, or when waste is relatively high, i.e., when 
more consumers pick in LEFO order, when the safety stock is high, and 
when shelf life is short.

5.3. Impact of discounting on sales

he profit increase from D2 is largely attributable to reduced waste 
and higher sales, as long as discounted items remain available. Fig.  4 
shows for FO, D1, and D2 the increase in sales compared to no discount-
ing (NO). Clearly, D2 generates more sales than D1 and FO. The extra 
sales are in most experiments around 2%. Much higher figures relate to 
experiments in which high discounting rates are optimal: i.e., in cases 
of a high average waste (i.e., low 𝑓 , high 𝑧, low 𝑀) or when the price 
elasticity 𝛿 is high.

Extra sales do not always imply a high profit. For example, the extra 
sales generated by FO is in some experiments (𝛾 = 1.75 or 2.5, 𝛿 = 0.8) 
more than that of D1, while levels of D1 are, by definition, greater than 
or equal to those of FO.

5.4. Size of discounts and frequencies

To inspect the average discount rate set by the three policies FO, 
D1, and D2, we calculate the weighted average last-day discount (𝑥1) 
per item in stock. Table  6 reports the results.

Averaged over all experiments, we observe that the average dis-
count rate of FO is 8.5%. For D1, this is 9.4%. For D2, the last-day 
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Fig. 3. Effect of parameters 𝑓, 𝑧, 𝑚, 𝜇, 𝛾, and 𝛿 on profit gain over no discounting.
discount rate (𝑥1) falls in between that of FO and D1. The next-to-last 
day discount rate (𝑥2) of D2 is significantly lower. When comparing 
with the results in Table  5, we observe higher discounts in experiments 
with high waste. The high discount rates of FO (25% or more) apply 
to experiments with no or few FEFO consumers (𝑓 = 0, or 0.25). 
A medium discount rate (15%–20%) is observed in four experiments, 
where waste figures are high as a result of a high safety stock, or a 
high price sensitivity (i.e., high value of 𝛿 and 𝛾). Overall, the average 
discount rates of all policies are higher.

Next, we zoom in on how many products in the base case receive a 
last-day discount and how often each discount level is selected. From 
Fig.  5 we read that under D1, 15% of the items ordered are still unsold 
on the last day before expiration. About 9% get a discount of 5% or 
more, and 6.5% get a discount of 10% or more. For D2, fewer items 
end up at the last age class (13.6% vs. 15%), and fewer products get a 
discount of 5% or more. Remarkably, the same fraction of products get 
a discount of 10% or more.

Fig.  6 shows for the items that are still unsold on the day of 
expiration, how often each discounting percentage applies. 38%–40% 
of these oldest items are not discounted. For items that are discounted, 
the discount rate is most often in the range 5%–15%.

These results trigger us to investigate in which states what dis-
counting rates apply, and whether the dynamic policies reveal a clear 
structure. We focus on the optimal policy D1 for the base case. The 
optimal discounting policy turns out to be rather complicated and not 
10 
Table 6
Overview of the average discount rate for each experiment and discounting 
policy.
 Experiment FO D1 D2 𝑥1 D2 𝑥2  
 Average 8.5% 9.4% 8.9% 2.8%  
 1 Base case 5% 8.6% 8.7% 2.1%  
 2 𝑓 = 0 30% 28.4% 23.1% 12.3% 
 3 𝑓 = 0.25 25% 23.5% 19.4% 7.0%  
 4 𝑓 = 0.75 0% 1.4% 1.5% 0.1%  
 5 𝑓 = 1 0% 0.1% 0.1% 0.0%  
 6 𝑧 = 1 0% 5.7% 5.8% 1.2%  
 7 𝑧 = 2 15% 14.3% 13.9% 4.8%  
 8 𝛾 = 0 0% 4.7% 6.6% 1.6%  
 9 𝛾 = 1.75 15% 9.8% 9.2% 2.2%  
 10 𝛾 = 2.5 15% 10.0% 9.5% 2.3%  
 11 𝛿 = 0 0% 0.3% 0.3% 0.0%  
 12 𝛿 = 0.3 0% 3.0% 3.7% 0.8%  
 13 𝛿 = 0.8 20% 14.1% 13.8% 4.0%  
 14 𝜇 = 2 10% 10.3% 9.9% 3.7%  
 15 𝜇 = 6 5% 8.6% 10.1% 2.2%  
 16 𝑚 = 3 5% 9.4% 9.2% 2.7%  
 17 𝑚 = 5 0% 6.9% 7.1% 1.5%  

easy to capture in a simple rule, so a heuristic dynamic policy, although 
outside the scope of this paper, can be interesting to explore.

In Fig.  7, we present a heat map of policy D1 for the base case. The 
table shows for each discount level 𝑥 , the weighted average number 
1
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Fig. 4. Effect of parameters 𝑓, 𝑧, 𝑚, 𝜇, 𝛾, and 𝛿 on extra sales.
Fig. 5. Fraction of ordered items that are discounted on the last day at rate 
𝑥1 or higher (base case).

of product in stock of age 𝑖 ∈ {0,… , 𝑚 − 1}:

∀𝑥 ∈  ∶ 𝑠𝑖(𝑥1) =

∑

𝑠∈(𝑥1) 𝑔(𝑠) ⋅ 𝑠𝑖
∑

𝑠∈(𝑥1) 𝑔(𝑠)
,

where (𝑥1) = {𝑠 ∈  ∶ 𝑠3 > 0 ∧ 𝜋∗(𝑠) = 𝑥1}, and 𝑔(𝑠) denotes 
the number of days state 𝑠 occurs in a simulation of 100,000 periods. 
11 
Fig. 6. Fraction of oldest items that are discounted on the last day at rate 𝑥1
(base case).

Note that states with 𝑠3 = 0 are excluded, as in that case there are no 
items to discount. This corresponds to 68,115 out of 100,000 simulated 
days. The last column ℎ(𝑥1) indicates how often the discount rate 𝑥1 is 
selected when products of age 3 are available (𝑠3 > 0).

Fig.  7 highlights that a low discount rate relates to a relatively large 
number of fresh products in stock. And, typically, high discount rates 
apply when relatively many products in stock are two days old (i,e, 
when 𝑠 (𝑥 ) is high). The highest discount rate is rarely set: at only 
2 1
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Fig. 7. Weighted average number of products in stock in each age class and 
discount level 𝑥1 for policy D1 (base case).

Table 7
Structure of D1: optimal discount 𝑥1 for a selection of states (base case).
 𝑠0 𝑠1 𝑠2 𝑠3 𝑥1  
 4 4 2 0 0%  
 4 3 2 1 20% 
 4 2 2 2 0%  
 4 1 2 3 10% 
 4 0 2 4 15% 

Table 8
Structure of D1: optimal discount 𝑥1 for a selection of states (base case).
 𝑠0 𝑠1 𝑠2 𝑠3 𝑥1  
 0 5 3 2 5%  
 1 4 3 2 15% 
 2 3 3 2 20% 
 3 2 3 2 15% 
 4 1 3 2 15% 
 5 0 3 2 10% 

0.3% of the days where 𝑠3 > 0. Most often, the discount rates are 0%, 
5%, or 15%.

Predicting the optimal discount level at individual states appears to 
be difficult, as discount levels vary significantly. For example, in Table 
7 the optimal discount levels of D1 are presented for a subset of five 
states. In all states, 10 items are in stock, of which four are new (zero 
days old), and two are two days old. The optimal discount levels vary 
from 0% to 20%, depending on the division of the other four items 
over 𝑠1 and 𝑠3. Zero discount applies when 0 or 2 items are old, when 
1 item is old 20% discount is optimal, and when 3 or 4 items are old, 
the optimal discount level is 10% and 15%, respectively.

In addition, the distinction between old stock and new stock does 
not explain the variation in discount levels. In Table  8 the optimal 
discount levels of D1 are presented for six states. In all states, 10 items 
are in stock, of which three are two days old and two are three days 
old. The optimal discount levels vary from 5% to 20%, depending on 
the division of the other five items over 𝑠0 and 𝑠1. A low discount level 
applies when no item is present in one of the age classes. Surprisingly, 
if all five other items are new, the discount is higher than in the case 
they are one day old. This is not due to the stopping criterion of VI, 
as we get the same optimal discount levels when VI is executed at a 
higher level of precision (𝜖 = 0.00001). Hence, in the long run, it must 
be (slightly) better to discount in the latter state at 10% than at a lower 
value. We conclude that the optimal policy is complex and difficult to 
capture in simple rules.

We explored predicting the discount levels of the base case, using 
a regression and classification study using weights 𝑔(𝑠) to predict 𝑥1
based on (𝑠0, 𝑠1, 𝑠2, 𝑠3). Simple models like weighted linear regression 
or weighted logistic regression did not fit well, nor did they after some 
feature engineering. Apparently, the variation between states that yield 
the same discount rate appears to be large. Tree-based predictions work 
12 
Fig. 8. Effect of sub-optimal fixed discounting on profit and waste (base case).

reasonably well but result in deep trees with a large number of nodes. 
Hence, determining a heuristic for setting discount rates is a relevant 
open research question.

5.5. Sub-optimal static discounting

Many retailers that apply a fixed discount rate often install much 
higher discount percentages than the optimal levels of FO that we find 
in this study. Fig.  8 demonstrates for the base case the optimization of 
FO and the impact of sub-optimal fixed last-day discount levels on the 
profit and waste. For the base case, the profit is maximal at a fixed 
discount level of 5%. No discounting (𝑥1 = 0) results in a slightly 
lower profit and higher waste (4.4% versus 3.9%). Higher discount 
rates result in lower profit and less waste. Note that the marginal effect 
of discounting on waste gets smaller, whereas the negative impact on 
profit gets larger.

Often, we observe in (Dutch) supermarkets fixed discount rates of 
35%. At 35% last-day discounting, the expected profit is about 2.5% 
lower than the optimal profit level (2.522 versus 2.588), whereas waste 
is reduced from 3.9% to 1.8%.

For the base case, a retailer who does not want to waste more 
than 2.5% should accept a profit that is 1% below optimal when he 
sticks to applying a fixed last-day discounting policy. Alternatively, he 
can choose to apply a more advanced discounting policy or adjust the 
ordering policy (e.g., lowering the safety stock).

5.6. Robustness to deviations in base stock level, review period and lead 
time

A practical question is whether the ranking of the policies will 
change when suboptimal discount rates apply. Specifically, we examine 
the policy ranking when the base stock level, review period, and/or 
lead time deviate from the value assumed in optimizing FO, D1, D2S, 
and D2.

Deviation from the base stock level 𝐵
To assess the robustness of the policy ranking to deviations from 

the base stock level, we simulate the policies with base stock level 𝐵𝑠𝑖𝑚
instead of 𝐵, which was used in the optimization of the discounting 
rates. We limit the analysis to the base case in which 𝐵 = 12. The 
optimal discount rates for 𝐵 = 12 are simulated with 𝐵𝑠𝑖𝑚 set to 11, 12, 
and 13. In Table  9, we report the profit gain of the policies compared 
to no discounting (NO) and the relative waste. We observe the ranking 
is the same but the difference in profit gain is larger for a larger value 
of 𝐵𝑠𝑖𝑚, as in that case more items risk to turn into waste and thus more 
items get discounted.

The profit gain can be higher when discount rates are optimized for 
𝐵 = 𝐵 , as shown in Experiment 6 and 7. In Experiment 6 and 7 in 
𝑠𝑖𝑚
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Table 9
Robustness of policy ranking in deviations in base stock level.
 𝐵𝑠𝑖𝑚 Profit % Profit gain over NO Waste

 NO FO D1 D2S D2 NO FO D1 D2S D2  
 𝐵 − 1 = 11 e2.66 0.00% 0.46% 0.46% 0.57% 2.8% 2.8% 2.2% 2.2% 2.1% 
 𝐵 = 12 (base case) e2.58 0.09% 1.10% 1.21% 1.58% 4.4% 3.9% 3.3% 3.2% 3.0% 
 𝐵 + 1 = 13 e2.44 0.85% 2.13% 2.53% 3.11% 6.5% 4.4% 4.6% 4.4% 4.2% 
Table 10
Robustness of policy ranking in deviations in review period and lead time. Discount rates are optimized for the base case 𝑅 = 𝐿 = 1
(For FO the rate is thus set to 5%.)
 𝑅 𝐿 Profit % Profit gain over NO Waste

 NO FO D1 D2S D2 NO FO D1 D2S D2  
 1 1 e2.58 0.13% 1.14% 1.28% 1.6% 4.4% 3.9% 3.3% 3.2% 3.0%  
 1 2 e2.36 0.56% 1.99% 2.60% 3.0% 7.1% 6.3% 5.3% 5.1% 4.9%  
 2 1 e1.97 0.33% 1.65% 1.69% 1.63% 11.5% 10.8% 10.2% 10.1% 10.1% 
 2 2 e1.78 0.68% 1.82% 1.75% 1.76% 13.7% 12.9% 12.4% 12.4% 12.4% 
Table  5, we have investigated optimal discount rates for 𝐵 = 11, and 14 
(by setting 𝑧 = 1 respectively 2). This shows the same policy ranking 
for different values of the base stock level.

Larger review period 𝑅 and lead time 𝐿
The review period is the number of periods between two successive 

decision moments (for discounting and ordering). We distinct between 
the review period for the discounting decision, which is 1 in all exper-
iments, and the order review period 𝑅 which we will set to 𝑅 = 1 or 
𝑅 = 2 in the analysis below. The lead time 𝐿 is the number of periods 
between the ordering and the receipt of new items. For many Dutch 
supermarkets holds 𝑅 = 𝐿 = 1. However, in case of smaller or more 
remote stores, the review period or lead time could be two rather than 
one. A lead time of two periods applies when more time is needed for 
the production and distribution planning and operations.

So far, the discount rates of FO, D1, D2S, and D2 are optimized 
assuming the review period 𝑅 and the lead time 𝐿 are both one day. 
We assess the robustness of the discount rates by applying them to a 
setting with 𝑅 = 2, and/or 𝐿 = 2. The review period 𝑅 relates to the 
ordering decision, and not to the discounting decision (which is taken 
every day). Therefore, in the simulation model we assume discount 
rates are still adjusted at the start of every day, but ordering happens 
every 𝑅 days and deliveries arrive 𝐿 days later. The inventory and 
ordering dynamics are adjusted accordingly. That is, orders are placed 
only on days 𝑡 for which hold 𝑡 mod 𝑅 = 0 (where mod  is the modulo 
operator that returns the remainder after integer division). The base 
stock level 𝐵𝑠𝑖𝑚 is set to 𝜇 ⋅ (𝑅 + 𝐿) + 𝑧 ⋅ 𝜎 ⋅

√

𝑅 + 𝐿, and rounded to 
the nearest integer. In the base case (𝑅 = 𝐿 = 1) this yields 𝐵𝑠𝑖𝑚 = 12. 
When 𝑅 or 𝐿 is two (but not both), 𝐵𝑠𝑖𝑚 is set to 17. And for 𝑅 = 𝐿 = 2
holds 𝐵𝑠𝑖𝑚 = 22.

Table  10 shows the impact of applying the optimal discount rates 
for 𝑅 = 𝐿 = 1 to settings where 𝑅 and 𝐿 are 1 or 2. When 𝑅 or 𝐿
(or both) are two than the profit decreases compared to the base case 
with 𝑅 = 𝐿 = 1, as the inventory system is less responsive to demand 
fluctuations. The ranking of the policies is hardly affected. When 𝑅 = 1
and 𝐿 = 2 the profit gain over NO is larger as the safety stock and waste 
is larger.

When the review period is two (𝑅 = 2), orders are placed only every 
other day (if 𝑡 mod 𝑅 = 0). The average order size is thus about twice 
as large than in case of 𝑅 = 1. The replenishment is thus less smooth 
and less responsive to demand fluctuations, which results in a higher 
waste percentage and a lower average profit. As the shelf life in the base 
case is four days, at most two different expiration dates are found on 
the shelf. Hence D2S and D2 hardly improve over D1. As the discount 
rates are optimal for 𝑅 = 𝐿 = 1, and likely sub-optimal for other values, 
it may happen that D1 is slightly better than D2S and D2, which we 
observe when 𝑅 = 𝐿 = 2. As the differences are very small, we conclude 
the policy ranking is robust to changes in 𝑅, and 𝐿.
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6. Discussion and conclusion

6.1. Scientific contribution

In this paper, we have formulated the expiration-date-based dis-
counting problem of a non-monopolistic, profit-maximizing retailer as 
a Markov decision problem (MDP), and solved it by stochastic dynamic 
programming (SDP). The resulting optimal policies are simulated to 
also evaluate their impact on product waste and fill rate.

Previous literature has been limited in terms of the number of co-
existing age classes and prices, as well as in how consumer picking 
behavior is included. In many studies, it is assumed that consumers 
behave rational, but in practice a large part of the consumers pick 
old products from the shelf even when they are not discounted. In 
this paper, we do include these so-called FEFO consumers next to 
LEFO consumers, which is important as it significantly influences the 
optimal discounting policy. Combined with our focus on more than one 
discount rate, the results provide insights in the value of differentiated 
discounting, and how this can be used to both maximize profits and 
reduce food waste.

We optimize two discount rates by SDP, and we uniquely derive 
optimal discounting rates for products with a shelf life of up to five 
periods (e.g. days). As replenishment happens every period, one could 
have items in stock of five different expiration dates. Our results can 
serve as new benchmarks for future research that applies approximation 
methods, like reinforcement learning. 

6.2. Practical implications

One of the main questions driving this research was whether it is 
useful to start discounting in an earlier stage, using the last-two-days 
discounting policy. Our results do confirm its usefulness: Dynamic last-
two-days discounting (D2) results in all 17 experiments in the highest 
profit and lowest waste level. The structure of the optimal discounting 
policy is unfortunately complex and difficult to capture in simple rules 
to use in practice. The numerical results generated some insights and 
guidelines for practitioners to further develop and experiment with 
their discounting policies. Furthermore, the optimal results obtained in 
this paper, are an important benchmark for heuristics and approxima-
tion methods such as a machine learning methods, like reinforcement 
learning (RL).

In practice, many retailers apply a fixed discount percentage of 
20% to 40% to items that are about to expire (e.g. at the last day). 
Remarkably, in our results, the average optimal discount percentage of 
all policies is much lower than the ones we see being used in practice. 
The optimal discount level of D2 is on average 8.9%, but it varies 
between 0 and 40% depending on the number of items in stock and 
their ages. Often, no discount is provided even when old products are 
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in stock. Under D2, 8.5% of all items ordered get eventually discounted, 
whereas under the optimal fixed discounting policy (FO) more than 
15% of the items get discounted (as discounts are installed every day 
to all items that are about to expire that day). Dynamic policies with 
fixed discount rates can also be studied with the MDP model after 
making some adjustments (e.g. to optimize when during the day to start 
applying a fixed discount), as we will discuss in the next subsection on 
future research.

Interviews with supply chain managers of a few large retailers re-
vealed that, in practice, little is known about what discount level is best. 
As a result, these practitioners also wonder whether the discounting 
percentages they use may be too high. High fixed discount levels are 
effective in reducing food waste, but could negatively impact profit. 
The effect on profit is less visible to store managers than the impact on 
food waste.

This study sheds a light on potential savings in waste and profit by a 
numerical comparison of different policies. On average the profit level 
of D2 is 3.8% higher than with no discounting (NO), 1.7% higher than 
the optimal fixed discount policy (FO), and 1% higher than the optimal 
dynamic last-day discount policy (D1). Applying identical dynamic 
discount rates to items with the last two expiration dates (as in policy 
D2S), yields a slightly lower profit gain over NO of 3.5%. The average 
waste is reduced from 5.6% in case of no discounting to 3.6% by 
last two days discounting. Last-day dynamic discounting (D1) yield 
an average waste of 4.0%. Lower levels of waste can be achieved by 
increasing the waste disposal cost.

Note that the profit gains and the savings in waste strongly depend 
on consumers preference for fresh items and sensitivity to discounts. 
We model the willingness of LEFO consumer to buy discounted items 
instead of the freshest items. This fits well to the case of displaying 
discounted items on the same shelf next to the fresher items. When 
discounted items are displayed in a separate section in the store, 
fewer LEFO consumers become aware of their availability. This can be 
captured by the model by parameter 𝛾, which controls the fraction of 
LEFO consumers that respond to a discount. We recommend to carefully 
estimate consumers picking behavior and their sensitivity to discounts 
and expiration dates. 

Although superior in both waste reduction and increasing profit, 
the dynamic last-two-days discounting policy (D2) is more difficult 
to implement without the technological possibilities (i.e., digital price 
tags) described in the introduction. In case stickers have to be put 
manually on the product, discounting different items with different 
discount percentages is labor-intensive and potentially prone to errors. 
Policy D2S is then easier as it puts the same discount label on items 
with different expiration dates. To reduce re-labeling every day, one 
may limit the number of discount levels to choose from to only a few. 
This would possibly simplify the process, but would also reduce the 
average profit gain.

In situations in which waste is relatively low, e.g. when older 
products are sold anyway (due to a higher share of FEFO customers, 
or the customer base has a low discount sensitivity), it could be better 
to only discount the items on the last day. Or in case of high labor cost, 
or high IT investment cost, to not discount at all.

6.3. Further research

This research shows that the effect of discounting policies strongly 
depends on how consumer trade off product shelf life (as a proxy to 
product quality) and price. An important stream of future research is to 
better understand how expiration dates and discounts affect consumer 
behavior: e.g., regarding the product withdrawal, the price elasticity, 
and the discount sensitivity of LEFO consumers. Consumers’ responses 
to discounts may strongly depend on where discounted items are lo-
cated. Whether discounted items should be stored in a separate section 
or on the same shelf remains an open research question. On the one 
hand, displaying discounted items at a separate central location makes 
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discounted items more visible to consumers in search for discounted 
items and thus potentially generating more demand. Furthermore, a 
central location may be more efficient to maintain, e.g., to adjust 
discount labels manually, and to remove expired items. On the other 
hand, it may encourage consumers buying less items at the full price 
by first shopping at the section of discounted items. When discounted 
items are less visible to LEFO consumers, fewer LEFO consumers may 
be triggered to change their undesired picking behavior. Another draw-
back of separate storage is the risk that consumers encounter stock-outs 
of full-priced products while discounted items remain available in the 
separate section. Hence more research is needed to determine when to 
display on the same shelf and when to store discounted items separate 
from the full-priced items.

Another line of future research may focus on other discounting 
policies. The MDP framework can fit other discounting policies than 
those considered in this paper. For example, in practice one may also 
apply a dynamic, fixed-rate discounting policy, which determines every 
day (based on the inventory state) whether a discount at a fixed 
percentage should be installed or not. This type of dynamic On–Off 
policy, can be optimized by limiting the action space to only two 
options: a fixed discount percentage or no discount (0%). Further, one 
may consider to optimize the timing of a discount (during the day) 
rather applying discounts from the start of a day. Therefore a day can 
be split into sub-period at which the discounting decision is reviewed. 
The state of the MDP model is then expanded by an index indicating 
the time slot during the day, and the MDP would then become periodic. 
Alternatively, the model can be adjusted to optimize the number of 
items to discount rather than the discounting percentage.

In our research we fixed the ordering policy to a base stock policy 
with a constant base stock level. This reflects practical situations where 
safety stock is a strategic decision aimed at ensuring sufficiently high 
product availability. When including the order quantity in a profit 
maximization model, stock-outs may occur too frequently, leading to 
disappointed consumers. Nevertheless, future research could focus on 
optimizing both the order quantity and the discount rates. This could 
be addressed in the MDP model by adding a penalty for missed demand 
to the objective function, and/or by imposing a (stock-dependent) 
minimum order quantity in the action space to limit stock-outs.

In this paper, we assumed the order review period and lead time are 
both one day. An interesting direction for future research is optimizing 
the discount rates for settings where the review period and lead time 
differ from one, as motivated in Section 5.6. The MDP model can be 
adjusted, but its solution process becomes more elaborate. When the 
review period is set to two or more periods, while keeping 𝐿 = 1, then 
the number of periods elapsed since the last order should be added to 
the state description, causing the MDP to become periodic. Similarly, 
a smaller lead time of say half a day, can be handled by splitting a 
period into two sub-periods and adding an index for the sub-period 
to the state space, A larger lead time of two or more, while keeping 
𝑅 = 1, requires extending the state with the outstanding order(s). 
Then the state space may become too large to determine an optimal 
solution using an (exact) dynamic-programming-based methods, like 
value iteration. In such cases, reinforcement learning (RL) approaches 
could be used to find approximate solutions.

As retailers like supermarkets sell many perishable products that 
are to some extend substitutes to each other, future research could 
investigate the interaction between discounting, product substitution, 
and waste. When one product is on discount the demand for another 
product may drop, which may cause more waste of that product. Thus 
discounting may reduce waste of the discounted product, but may 
result in more waste (and discounting) of other products. Depending 
on consumers’ picking behavior, their price elasticity, their sensitivity 
to discounts, and their willingness to substitute, it may even be better to 
not discount at all or even to donate nearly expired products to charity 
organization. The impact of discounting in a multi-product setting is 
understudied. It can be modeled as an MDP, but its optimal solution 
is intractable due to the explosion in the number of states. Again, 
a RL approach could be applied to determine dynamic discounting 
strategies.
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6.4. Conclusion

To conclude, the MDP framework provides a powerful approach to 
designing expiration-date-based discounting policies. We demonstrated 
when and how much profit can be gained and how much waste can 
be reduced by implementing such policies. In our analysis we model 
FEFO and LEFO consumers, and allow for more than two co-existing 
age classes, and two discount levels. 

The tractability of exact dynamic programming methods, as well as 
the complexity of resulting dynamic policies, motivates future research 
into heuristic approaches, such as reinforcement learning. Although 
these methods do not guarantee an optimal solution, they can poten-
tially provide good solutions reasonably fast, facilitating implementa-
tion, and experimentation in practice. The optimal solutions derived 
from our MDP approach could serve as useful benchmarks for these 
machine learning methods. The use of machine learning approaches 
provide opportunities to extend the model to multiple products, other 
discounting policies, a dynamic ordering policy, and a larger review 
periods and lead times.

Despite its limitations and opportunities for further research, this 
paper provides valuable insights for supermarkets aiming to optimize 
their profit and waste levels. The provided model can be tailored to 
specific product and store specifications. It demonstrates the added 
value of dynamic discounting over static approaches, as well as the 
benefits of applying two discount levels simultaneously instead of just 
one. Furthermore, it contributes to the ongoing discussion and future 
research on determining optimal discount levels in practice.
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