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Preface 

To obtain a successful shift towards sustainability one of the KB-themes at Wageningen University and 

Research is the primary production and processing of biobased raw materials and products. Carbohydrates are 

a component of biomass and are essential in our daily lives, found in food as well as in materials and chemicals. 

However, their complexity and variability make it challenging to fully understand and predict their functionality. 

This project aims to develop improved and advanced characterization technologies to obtain more knowledge 

of carbohydrate structures and their potential applications. By doing so, we can make better use of 

(underutilized) biomass, as we gain insights into carbohydrate quantities from diverse biomass sources and 

their functional potential of these carbohydrates in various applications such as food and biobased products. 
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1 The role of sugar in food 

Sugar is a critical component in shaping the sensory characteristics of food products, primarily due to its ability 

to impart sweetness, which is a key determinant of palatability. Beyond its sweet taste, sugar modulates other 

taste qualities through well-documented taste–taste interactions. For instance, sucrose has been shown to 

suppress bitterness in vegetables, independent of individual sensitivity to bitter compounds, indicating central 

neural mechanisms of taste suppression [1, 2]. Similarly, sugar reduces perceived sourness by elevating the 

sourness threshold of organic acids such as citric and lactic acid, a phenomenon attributed to central mixture 

suppression rather than peripheral interactions [1, 3]. In addition to attenuating undesirable tastes, sugar 

enhances overall flavour intensity via cross-modal interactions between taste and aroma. Aromas associated 

with sweetness, such as vanilla and fruit, have been shown to amplify perceived sweetness and flavour 

richness, even at reduced sugar concentrations [1]. Furthermore, sugar’s physicochemical properties facilitate 

controlled flavour release in emulsified systems, thereby intensifying taste perception [1]. Collectively, these 

mechanisms underscore sugar’s multifaceted role in improving the sensory profile of foods and beverages. 

 

Sugar contributes also significantly to the structural and textural properties of sweet bakery products, serving 

multiple functional roles throughout processing. Its influence spans the mixing, baking, and cooling stages of 

biscuit and cake production. During mixing, sugar modulates dough viscosity, thereby affecting air 

incorporation, which is critical for achieving the desired crumb structure in cakes and biscuits [4, 5]. Owing to 

its hygroscopic nature, sugar also governs the hydration of biopolymers, influencing the rheological behaviour 

of the food matrix. During baking, sugar impacts protein denaturation and network formation, which are 

essential for structural integrity [6]. Furthermore, sugar alters starch gelatinization and pasting behaviour, 

with its concentration and composition playing a decisive role in these transitions [7, 8]. These effects 

collectively determine the cellular architecture of baked products, including porosity, cell size distribution, and 

cell wall thickness, ultimately shaping texture. Post-baking, sugar influences glass transition phenomena, 

affecting crispness, and modulates starch retrogradation, which governs softness during storage. Additionally, 

sugar’s hygroscopicity enables control of water activity, a critical factor for shelf-life and microbial stability. 

 

Several principles underlying the functional role of sugar in influencing the structure and texture of bakery 

products are applicable to other food systems, including dairy desserts, cream fillings, ice creams, 

confectionery products such as candies and jellies, and beverages. In aqueous systems, such as fruit drinks 

and smoothies, sugar plays a key role in modulating viscosity. Additionally, due to its hygroscopic nature, 

sugar affects the hydration behaviour of proteins and hydrocolloids within these matrices. Through these 

mechanisms, sugar contributes to desirable sensory attributes such as mouthfeel and perceived thickness in 

beverages [9]. 
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2 Arabinoxylan 

Arabinoxylan (AX) is a major non-starch polysaccharide present in the cell walls of cereal grains, such as 

wheat, and in grasses. It belongs to the class of pentosans and constitutes a significant fraction of hemicellulose 

[10]. Structurally, AX consists of a backbone of β-(1→4)-linked D-xylopyranosyl residues, to which L-

arabinofuranosyl units are attached as side chains. These arabinose residues are typically linked to the xylose 

backbone at the O-2 and/or O-3 positions, forming mono- or di-substituted branches. The structural 

heterogeneity of AX is largely determined by the arabinose-to-xylose (A/X) ratio, which generally ranges from 

0.45 to 0.94, depending on botanical source and extraction conditions [11]. In addition, ferulic acid may be 

esterified to L-arabinose residues, while glucuronic acid can be linked to D-xylopyranosyl units [12]. In grasses, 

another additional substitution has been observed, here, L-arabinofuranosyl units can carry an additional 1,2-

linked L-arabinofuranose [13]. 

 

AX is among the most extensively characterized non-starch polysaccharides, recognized for its significant 

nutritional and technological roles in cereal-based food systems. Beyond its well-documented health-promoting 

properties, AX is widely utilized for its functional contributions to food processing [14], primarily governed by 

its solubility and molecular weight characteristics. AX is typically categorized into water-extractable 

arabinoxylan (WEAX) and water-unextractable arabinoxylan (WUAX) fractions [15]. WEAX has been shown to 

enhance gluten viscoelasticity, loaf volume, and crumb structure, whereas WUAX and low-molecular-weight 

AX fractions tend to disrupt gluten networks, reduce elasticity, and negatively impact bread quality [16]. 

Overall, the functional behaviour of AX in products such as bread, pasta, cookies, and cakes is strongly 

influenced by structural attributes, including molecular weight, degree of branching, and solubility [17]. For 

instance, low-molecular-weight, soluble AX fractions generally improve hydration, texture, and shelf-life, while 

high-molecular-weight AX can weaken gluten structure, resulting in denser crumb formation [14]. 
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3 Enzymatic degradation of arabinoxylan 

into arabinoxylan oligosaccharides 

AX can be enzymatically hydrolysed by xylanases to produce arabinoxylan-oligosaccharides (AXOS). These 

enzymes catalyse the cleavage of β-(1,4)-xylosidic linkages between two D-xylopyranosyl residues within the 

AX backbone. The yield and structural characteristics of AXOS are influenced by both the type of xylanase 

employed and the structural features of the AX substrate [18-23].  

These class of enzymes are categorized in the glycoside hydrolyse (GH) enzyme family. GH enzyme families 

exhibiting high amino acid sequence homology are classified within the same GH family [24]. Members of a 

GH family share a common catalytic mechanism, either retaining or inverting the anomeric configuration, yet 

may differ in substrate specificity and mode of action [25]. For instance, β-1,4-endoxylanases derived from 

fungi are primarily grouped into GH10 and GH11 families, which exhibit distinct substrate specificities. GH10 

in contrast to GH11 endoxylanases possess a broader substrate range compared to GH11 enzymes, making 

them particularly effective for the complete hydrolysis of highly substituted xylans such as AX [26]. While 

xylanases can be used to obtain AXOS, for the complete breakdown of these oligosaccharides to their 

monomeric monosaccharides also other enzymes are needed. For example, Bifidobacterium adolescentis has 

a whole set of enzymes to degrade AXOS to their monomeric units [27-29]. 

 

For the application of AXOS, such as their use as sugar replacers in food formulations, a standardized enzymatic 

hydrolysis process is essential/ required to ensure consistent oligosaccharide composition across production 

batches. In addition to chemical characterization of AXOS, it is necessary to evaluate key physical properties, 

including viscosity and hygroscopicity, as these parameters significantly influence their functional performance 

in food systems. A comprehensive understanding of both the molecular composition and physical 

characteristics is critical for tailoring arabinoxylan modifications to achieve the desired technological and 

nutritional functionalities of AXOS in specific food applications. 
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The mission of Wageningen University & Research is “To explore the potential 

of nature to improve the quality of life”. Under the banner Wageningen 

University & Research, Wageningen University and the specialised research 

institutes of the Wageningen Research Foundation have joined forces in 

contributing to finding solutions to important questions in the domain of 

healthy food and living environment. With its roughly 30 branches, 

7,900 employees (7,100 fte), 2,500 PhD and EngD candidates, 

12,700 students and 80,000 participants to WUR’s Life Long Learning, 

Wageningen University & Research is one of the leading organisations in its 

domain. The unique Wageningen approach lies in its integrated approach to 

issues and the collaboration between different disciplines.. 
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