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A B S T R A C T

Remote sensing technologies offer a promising approach for detection of plant diseases, enabling timely in
terventions to prevent the spread and minimise financial losses. However, a major gap exists in understanding 
how cultivar and growth stage variations might influence the stress responses captured by different modalities, 
and subsequently affect disease detection capabilities. This study aimed to bridge this gap by exploring the 
variation in plant-level responses to blackleg onset (caused by Dickeya and Pectobacterium species) in six cultivars 
with varying susceptibility levels through investigation of metrics extracted from UAV hyperspectral, LiDAR, 
thermal data.

Whilst we found clear responses to infection in all modalities, substantial cultivar-based variations were 
present due to different levels of symptom expression. Hyperspectral data emerged as the most crucial for 
blackleg detection, with specific feature importance varying over the season. Early-season responses were most 
strongly reflected in PRI, while later in the season, PSRI became more informative. Thermal and structural 
metrics, while showing promise, exhibited varying sensitivity to infection across cultivars and growth stages, 
with significant variability observed even among healthy plants of different cultivars.

Combining modalities in SVM detection models offered small improvement in disease detection capabilities, 
though the use of hyperspectral and LiDAR data together yielded the most consistent performance across the 
investigated dates (balanced accuracy of 90–94 %). Still, models’ performance was substantially affected by 
cultivar variations. These findings highlight the critical need to account for cultivar-specific responses and the 
dynamic nature of disease symptom expression when developing remote sensing-based disease detection models 
for arable crops.

1. Introduction

Plant diseases are becoming ever more destructive due to climate 
change, already causing up to 40 % losses in global production (IPPC 
Secretariat, 2021). At the same time intensive agricultural practices 
have caused substantial ecosystem degradation (Kopittke et al., 2019; 
Sánchez-Bayo and Wyckhuys, 2019), necessitating a shift towards more 
sustainable methods to reduce the pressure and mitigate the ongoing 
biodiversity loss. This urgent need is being increasingly recognised and 
implemented in national and international strategic plans. For example, 
in the EU this commitment is reflected in a number of initiatives like the 
European Green Deal, the Farm to Fork Strategy, and the Integrated Pest 

Management directive (Commission, 2020; Cuadros-Casanova et al., 
2023; European Commission, 2019). These aim to promote practices 
favouring biodiversity within the agricultural landscape, sustainable 
food production methods, and reduced chemical reliance, which in
cludes the dependence on fertilisers and pesticides.

Meeting these sustainability goals whilst ensuring optimal agricul
tural production requires development of effective ways for monitoring 
crop status to enable targeted interventions. This is crucial for curbing 
outbreaks, minimising yield losses and improving crop quality. In 
particular, prompt and accurate identification of biotic stress agents is 
key since different diseases may require different interventions, ranging 
from complete removal of affected plants to the application of 
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pesticides. However, disease identification through the traditionally 
employed visual assessment of stress symptoms on the plants is labour- 
intensive and requires a high level of expertise. Remote sensing ap
proaches are often suggested as more efficient alternatives. Their po
tential for precision agriculture has long been demonstrated (Mulla, 
2013; Weiss et al., 2020) and so has their capability for capturing 
physiological responses to stress onset (Berger et al., 2022).

The different modalities of available sensors offer glimpses into 
different physiological responses of affected plants. Spectroscopy is 
primarily sensitive to changes in leaf biochemical properties, thermog
raphy can provide information on alterations in transpiration, LiDAR 
can capture plant structural changes (e.g. defoliation), whilst fluores
cence imaging can capture variations in photosynthesis (Berger et al., 
2022). Although the focus for a long time remained on the analysis of 
spectral responses, development of miniature sensors that can be 
mounted on Uncrewed Aerial Vehicles (UAVs) opened the possibility for 
concurrent exploration of these modalities. Their combination allows 
obtaining a more comprehensive picture of physiological responses, 
which can potentially help improve remote identification of ailing plants 
and allow matching these responses to specific stress agents.

Although multimodal approaches are being increasingly advocated 
for (Berger et al., 2022), UAV-borne and airborne studies on crop disease 
detection typically focus on the use of multispectral/hyperspectral data. 
Promising investigations into sensor synergies in disease identification 
context have largely been restricted to laboratory and proximal set-ups 
(Berger et al., 2022). The few existing UAV-borne/airborne in
vestigations similarly highlighted the value of multimodal data for 
capturing different disease symptoms in non-woody crops (Franceschini 
et al., 2024; Maimaitijiang et al., 2020; Zhang et al., 2019), orchards 
(Poblete et al., 2023; Zarco-Tejada et al., 2018, 2021) and forests 
(Hornero et al., 2024; Smigaj et al., 2019a, 2019b; Yu et al., 2021; Zhang 
et al., 2023). However, previous multimodal studies, especially those 
utilising UAVs, were often restricted to a single stress agent, time point, 
and/or plant cultivar. This inevitably presents a simplified version of 
reality, ignoring the interdependence between cultivar-specific plant 
traits, differing resistance levels, plant growth stage, and resultant 
remote sensing metrics that are used as inputs for detection models, 
likely hindering transferability of the developed approaches to other 
cultivars, regions and growing seasons.

The physiological responses following disease onset are particularly 
complex and variable in nature, as they involve a continuous interplay 
between plant’s resistance that depends on the utilised cultivar, the 
specific pathogen strain, and the prevailing environmental conditions 
that can affect plant’s susceptibility to infection (Eastburn et al., 2011; 
Singh et al., 2023). Furthermore, disease symptoms can evolve over 
time, with the plant exhibiting a range of responses depending on the 
stage of infection. This dynamic differs from the more singular stress 
events typical of many abiotic factors. Understanding how these varia
tions affect remote sensing metrics used in disease detection algorithms 
and how these metrics link to actual physiological responses is crucial 
for developing more robust and generalisable disease detection models 
that can be applied more widely. Yet, such investigations are largely 
missing outside of controlled indoor environments, partially due to the 
logistical challenges associated with establishing large-scale and diverse 
field trials.

This study aims to address this knowledge gap by exploring the 
impact of varying cultivars and plant growth stages on the remote 
sensing signatures of seed potato plants subjected to blackleg disease. To 
achieve this, we utilised six seed potato cultivars with varying suscep
tibility levels and employed three different sensor modalities (hyper
spectral, LiDAR and thermal) to assess their potential for identification 
of diseased plants. Based on this analysis, we will provide recommen
dations on the development of multimodal remote sensing strategies for 
disease monitoring in arable crops.

2. Methodology

2.1. Blackleg causal agents and characteristics

Blackleg is an economically important disease caused by species 
within the genera Dickeya and Pectobacterium that affects potato crop
ping worldwide. In the Netherlands the predominant causal agent has 
undergone a temporal shift. Prior to 2000, D. dianthicola, P. atrosepticum 
and P. parmentieri were the most frequently isolated species. D. solani 
then emerged as the dominant causing strain between 2000 and 2010. 
Presently, specific haplotypes of P. brasiliense are typically associated 
with blackleg outbreaks.

The most dominant source of infection is the (latently-infected) seed 
tuber, which spreads the bacteria to the soil and neighbouring plants as 
the disease progresses. Inadvertent transmission can also occur during 
cutting and planting operations when contaminated tools come into 
contact with healthy tubers. The most characteristic disease symptom is 
a black soft rot, appearing at the stem base (see Fig. 1). The disease often 
starts with a darkening of the top leaves, followed by wilting, chlorosis 
and desiccation of leaves. Though, its virulence can vary substantially 
both across the species and individual strains. Aerial stem rot may also 
occur following dissemination of the bacteria to aboveground stems via 
insect vectors, heavy precipitation events, or hail damage. Additionally, 
early in the growing season, low oxygen conditions caused by compac
tion of soil and/or a high level of precipitation can lead to decay of 
infected tubers and non-emergence.

2.2. Study area

The study focused on a seed potato field experiment located in 
Lelystad, the Netherlands, where six different seed potato cultivars, 
known to exhibit variation in traits (including the growth rate), were 
sown at the end of May 2022 (week 21, Fig. 2 and Table 1) at the 
planting distance of 0.5 m. Prior to sowing, blackleg, a bacterial disease 
that causes soft rot and blackening of potato stems, was introduced to 
tubers through vacuum-infiltration with D. solani (IPO2222), 
P. atrosepticum (IPO1007) and P. brasiliense (IPO3649) suspended in 
water (van der Wolf et al., 2017). Two concentrations of inoculum were 
used depending on the level of susceptibility of a given cultivar we 
observed in past field experiments (Table 1). Specifically, higher con
centrations were applied to Kuros and Kuroda cultivars since the lower 
inoculum concentration in previous trials resulted in few successful in
fections. This ensured a more realistic evaluation of disease response 
across cultivars, preventing uncharacteristically strong expression of 
symptoms and excessive mortality in susceptible cultivars should the 
concentration be increased uniformly whilst achieving higher infection 
rates in the more resistant cultivars. The growing season was charac
terised by warm weather with limited rainfall events (a weather chart is 
available in the Supplementary Material) that were supplemented with 
irrigation following standard management practices for clay soil present 
in the study area.

Following the plant emergence, visual health inspections of all plants 
were performed by a crop disease expert from the Dutch General In
spection Service (NAK); these were conducted prior to each data 
acquisition on 13.06.2022, 28.06.2022, 04.07.2022, and 11.07.2022. 
All plants with visual symptoms were physically labelled in the field and 
had their locations measured with RTK GNSS positioning. Plants, which 
had developed visual symptoms within the subsequent week were sub
sequently classed as presymptomatic. In the case of an infection-induced 
die-off, an annotation was only retained if plant material was still 
remaining aboveground. The breakdown of disease prevalence in each 
of the varieties is shown in Table 2.
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Fig. 1. Examples of blackleg disease symptoms in potato plants including initial leaf wilting and chlorosis, stem die-off, and whole plant die-off.

Fig. 2. (a) Layout of the experimental field used in the study with six seed potato cultivars sown across four rows and three blocks each. (b-d) Example subsets of 
UAV LiDAR (b), hyperspectral (false colour composite, c) and thermal data (d) collected on 30.06 with individual plant segmentation results. (e-f) Average spectral 
signatures of healthy (blue), presymptomatic (orange) and symptomatic (red) plants affected by blackleg based on samples from all cultivars (e) combined and (f) 
separated where the mean for each cultivar is represented by a single line; graph insets highlight changes in the 500–700 nm regions, whilst colour shading in (e) 
represents one standard deviation.
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2.3. UAV data acquisition and preprocessing

Three different sensor modalities (hyperspectral, LiDAR, thermal) 
expected to be sensitive to physiological responses to blackleg infection 
were explored in this study. For this purpose, UAV multimodal data was 
acquired on four occasions across the growing season in weeks 24, 26, 
27 and 28 (on 15.06.2022, 30.06.2022, 06.07.2022 and 14.07.2022), 
covering plant establishment, tuber initiation and tuber bulking growth 
stages. Hyperspectral and LiDAR data were acquired with a co-aligned 
Headwall Nano Hyperspec VNIR imager and a Velodyne VLP-16 
LiDAR sensor onboard a DJI M300 RTK platform flown within 2 h of 
the solar noon in sunny and dry conditions, whereas thermal imagery 
was acquired shortly afterwards with the use of FLIR Tau 2 camera 
onboard a DJI M210 RTK platform that was coaligned with a Hi-phen 
multispectral camera to aid photogrammetric reconstruction of ther
mal orthomosaics within Agisoft Metashape. A full breakdown of all 
sensors and flight parameters is provided in Table 3 whilst representa
tive snippets of the acquired data are shown in Fig. 2.

All data was radiometrically calibrated and georeferenced following 
procedures most appropriate for a given sensor. Hyperspectral imagery 
was corrected with the use of a 3 × 3 m calibration target with three 
reflectance levels (11 %, 30 % and 56 %) deployed in the field, spatially 
down sampled by a factor of 2, and spectrally smoothed with a Savitzky- 

Golay filter (1st order polynomial with a window size of 11) from the 
‘hsdar’ package in R. The thermal orthomosaics were empirically cor
rected based on field measurements of four 60×60 cm wooden targets 
painted in different shades to create thermal contrast; field reference 
measurements were obtained with the use of a handheld infrared radi
ometer (Raytek Raynger ST) immediately after the thermal UAV over
flight. Direct georefering relying on flight trajectory and platform 
movements information from an Applanix APX-15 GNSS/IMU was 
applied to hyperspectral and LiDAR data, whereas for thermal and RGB 
imagery 5–7 Ground Control Points (GCPs) were used.

In addition to the multimodal data, high spatial resolution UAV RGB 
imagery was acquired early in the season following plant emergence (on 
15.06 in week 24) and processed into a point cloud within Agisoft 
Metashape to allow identification of exact locations of each individual 
potato plant and extraction of ridges onto which the seed potatoes were 
sown. To achieve this, points belonging to vegetation and ridges were 
separated using Support Vector Machine (SVM) classification based on 
RGB digital numbers. The ridge point cloud was used as a reference for 
registration of subsequent LiDAR data utilising the 3D iterative closest 
point (ICP) surface matching algorithm employed within CloudCom
pare. Following the registration, all LiDAR point cloud heights were 
normalised based on a DTM derived from the RGB point cloud.

Table 1 
Background information on the utilised seed potato cultivars, including the level of susceptibility to blackleg as provided by Agrico seed potato distributor on a scale 
from 1 (highly susceptible) to 10 (highly resistant) and average successful infection rates achieved in past experiments based on inoculation of 5400 tubers with 
D. solani (IPO2222), P. atrosepticum (IPO1007-IPO1012) and P. brasiliense (IPO3649- IPO3654).

Cultivar Crop type Blackleg susceptibility level Past inoculation  
success rate

Typical aboveground infection symptoms Inoculum concentration

Agria First early 5 – Susceptible 54.6 % Apparent: yellowing, wilting and desiccation of leaves and stems CFU 10E5 ml− 1

Esmee Second early 7 – Slightly susceptible 49.6 % Apparent: yellowing, wilting and desiccation of leaves and stems CFU 10E5 ml− 1

Fontane Mid-late 6 – Slightly susceptible 44.4 % Subtle: stem softening and striping, which may lead to dieback CFU 10E5 ml− 1

Kuras Maincrop 5 – Susceptible 2.9 % Subtle: stem softening and striping, which may lead to dieback CFU 10E6 ml− 1

Kuroda Mid-late 6 – Slightly susceptible 5.0 % Very subtle: dieback can be restricted to a single stem CFU 10E6 ml− 1

Riviera First early 5 – Susceptible 26.0 % Moderately apparent: stem softening and plant lodging CFU 10E5 ml− 1

Table 2 
Blackleg prevalence across investigated seed potato cultivars based on the NAK inspections, showing a breakdown of symptomatic (INF), presymptomatic (PRES) and 
healthy (HLT) plants for four UAV data acquisition dates. Note: the total number of plants across dates may differ due to die-off and late emergence.

Date 15.06.2022 30.06.2022 06.07.2022 14.07.2022

Cultivar INF PRES HLT INF PRES HLT INF PRES HLT INF PRES HLT

Agria 1 n/a 1227 105 19 1106 119 20 1086 129 n/a 1085
Esmee 4 n/a 1219 41 56 1111 102 59 1052 153 n/a 1052
Fontane 18 n/a 1189 174 35 991 201 28 963 213 n/a 963
Kuras 0 n/a 1193 56 13 1115 70 9 1115 76 n/a 1115
Kuroda 6 n/a 1158 41 28 1099 71 16 1083 85 n/a 1083
Riviera 4 n/a 1211 60 103 1053 161 78 975 228 n/a 975
All 33 n/a 7197 477 254 6475 724 210 6274 883 n/a 6273

Table 3 
Breakdown of sensors deployed in this study and key acquisition details.

Headwall Nano Hyperspec VNIR Velodyne VLP-16 FLIR Tau 2 Hi-phen Airphen DJI Zenmuse P1

Sensor type Pushbroom imaging spectrometer LiDAR Microbolometer thermal 
camera

Multispectral camera RGB camera

Focal length 12 mm n/a 19 mm 8 mm 24 mm
Spectral range 400–1000 nm 903 nm 7.5–13 um 450–850 nm RGB
Number of bands 270 n/a 1 5 3
Platform DJI M300 RTK DJI M300 RTK DJI M210 RTK DJI M210 RTK DJI M300 RTK
Flight height 30 m 30 m 30 m 30 m 20 m
Flight direction East-West East-West East-West East-West East-West
Number of 

flightlines
7 7 6 6 6

Ground sampling 
distance

1.3 cm n/a 2.7 cm 1.7 cm 0.25 cm

Acquisition days 15.06.2022, 30.06.2022, 
06.07.2022, 14.07.2022

15.06.2022, 30.06.2022, 
06.07.2022, 14.07.2022

30.06.2022, 06.07.2022, 
14.07.2022

30.06.2022, 06.07.2022, 
14.07.2022

15.06.2022
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2.4. Individual plant delineation and extraction of plant-level metrics

Individual plants were delineated on each acquisition day by 
applying Dalponte segmentation from ‘lidR’ package in R to Canopy 
Height Models (CHMs) obtained from normalised LiDAR point clouds 
with plant centroids used as initial seeds (Fig. 2b). Prior to CHM 
calculation, all ground points were removed from the datasets. Addi
tionally, to ensure no noisy points between ridges were retained, masks 
based on hyperspectral imagery were applied. The cut-off values were 
consistent across all datasets: an OSAVI value of 0.3, separating vege
tation from soil, and a reflectance value of 2 % at 800 nm eliminating 
shadows; the same masks were applied to both hyperspectral and ther
mal imagery. The resultant point clusters were converted into plant 
polygons by fitting a concave hull to their extents.

For each delineated plant, average spectral signatures and 131 
multimodal metrics were computed. In the case of hyperspectral imag
ery, these included a range of commonly applied vegetation indices 
sensitive to variations in pigment concentration and biomass. For 
LiDAR, the features were related to canopy structure, volume, or area. 
Whereas in the case of thermal imagery temperature-based metrics, 
including Crop Water Stress Index (CWSI), were computed. The full list 
of derived metrics and associated sources is available in the Supple
mentary Material. The CWSI was derived based on the image values, 
utilising the 2nd and the 98th percentile of canopy temperatures within 
the experimental field as fully-transpiring non-transpiring baselines.

2.5. Symptoms expression across diseases, cultivars and modalities

We explored the effect of infection on the acquired metrics across 
different cultivars by using Linear Discriminant Analysis (LDA), which 
aims to maximise the ratio of between-class variance to within-class 
variance, thereby enhancing class separability in a lower-dimensional 
space. Subsequently, Random Forest (RF) was employed to assess the 
relative importance of these metrics in differentiating infected from non- 
infected plants.

Application of LDA aimed to visually highlight the differences be
tween varieties, the separability of different infection stages, and the 
differentiation power of a given modality. For this purpose, three set-ups 
were employed for each modality separately, contrasting the healthy 
plants against symptomatic and presymptomatic blackleg cases. To 
provide generalised insights, data from acquisitions with all modalities 
(i.e. from 30.06, 06.07 and 14.07) were utilised following pareto scaling 
normalisation that was applied to each day. Additionally, Principal 
Component Analysis (PCA) transformation was applied to each of the 
modalities due to the large number of metrics, many of which were 
highly correlated. LDA was then performed on PCA-transformed inputs: 
30 principal components (PCs) for hyperspectral and LiDAR metrics and 
3 for thermal metrics, explaining >99.9 % of variation within the data.

To gain deeper insights into the relative importance of metrics across 
all modalities, we employed RF analysis. Separate RF models were built 
for each acquisition day (30.06, 06.07 and 14.07) by combining data 
from all modalities (hyperspectral, LiDAR, thermal). Feature importance 
scores were then extracted for each metric to quantify its contribution in 
differentiating infected from healthy plants. To mitigate potential biases 
introduced by highly correlated metrics, a pre-processing step involved 
removing features exhibiting Pearson correlation coefficients exceeding 
a threshold of 0.9. The RF models were built with 500 trees, where each 
tree considered a random subset of 9–15 features (depending on the 
tuning outcome) at each split during its construction. The importance of 
a metric was assessed based on the decrease in Gini impurity it caused 
when used to split a node. The final importance score for each metric 
was obtained by averaging its importance across all trees in the forest. 
This approach provides a robust assessment of which metrics, after 
addressing collinearity, contribute most significantly to differentiating 
infected from healthy plants within the combined modalities, for each 
acquisition day.

2.6. Infection detection capabilities and model transferability

We implemented linear Support Vector Machine (SVM) classification 
algorithms to identify diseased plants on different acquisition days, and 
subsequently evaluated how their performance varies across potato 
cultivars and different combinations of modalities under the assumption 
that incorporating information from different modalities would provide 
an advantage in disease incidence identification. Separate models were 
developed for each of the acquisition days (30.06, 06.07 and 14.07) 
according to four modality set-ups, respectively containing: (i) H - 
hyperspectral, (ii) HL - hyperspectral and LiDAR, (iii) HT - hyperspectral 
and thermal, (iv) HLT - hyperspectral, LiDAR and thermal metrics. Data 
from all cultivars were used for this purpose, with an 80:20 split for 
training and testing - the split was applied to each cultivar separately to 
ensure equal representation; presymptomatic infections were included 
in the healthy class for modelling purposes. Class weighting was applied 
to account for the severe imbalance between the healthy and infected 
classes.

We fitted each model on the training sample using the ‘e1071’ 
package in R following hyperparameter tuning performed on each input 
dataset, and subsequently assessed classification accuracy for each 
cultivar separately and collectively for all cultivars. Two separate ap
proaches for confusion matrix derivation were used with detected pre
symptomatic cases either treated as (i) healthy specimens to test the 
reproducibility of the inspector’s assessment (false positives) or as (ii) 
true infection detections allowing early plant removal (true positives). 
The developed models were also tested on other available acquisition 
days to assess their robustness and transferability across the growing 
season; the accuracy metrics were similarly calculated collectively for all 
cultivars, and for each cultivar separately.

3. Results

3.1. Potential of different modalities for blackleg detection

Principal Component Linear Discriminant Analysis (PC-LDA) 
allowed exploring the overall identification power that each of the uti
lised modalities might offer, highlighting hyperspectral domain as most 
important for late blackleg identification throughout the growing season 
(Fig. 3). Spectral metrics not only offered clear separation between the 
healthy and infected plants, but also allowed capturing changes in the 
presymptomatic stage of infection. However, the level of separability for 
presymptomatic infections varied depending on the day of data acqui
sition, with the strongest responses observed on 30.06 (see Supple
mentary Material for PC-LDA biplots for separate acquisitions).

Whilst hyperspectral domain offered clear separation between the 
healthy and infected plants, the response in the structural and thermal 
metrics was not as pronounced; this is evident by the substantial overlap 
between classes along both axes of the PC-LDA (Fig. 3). Thermal imag
ing, although showing least discrimination power among the investi
gated modalities, was able to capture presymptomatic infection 
responses. However, similarly to the hyperspectral domain, large vari
ations in the level of separability occurred across the season. PC-LDA 
performed on thermal metrics from 06.07 showed no separation from 
healthy plants (see Supplementary Material). In contrast, earlier in the 
season (on 30.06), clear differences in thermal responses were present. 
Since presymptomatic infection was also evident in structural metrics on 
this date, the observed increase in canopy temperature could be partly 
due to the smaller plant size caused by stunted growth, resulting in less 
transpiring plant material.

RF feature importance analysis similarly highlighted the hyper
spectral domain as key for identification of infected plants (Fig. 4a). In 
particular, indices sensitive to the carotenoid concentration in the leaf, i. 
e. Photochemical Reflectance Index (PRI) and Plant Senescence Reflec
tance Index (PSRI), were consistently highly ranked throughout the 
season (Fig. 4a). PRI is a narrow-band index that targets xanthophyll 

M. Smigaj et al.                                                                                                                                                                                                                                 Plant Stress 19 (2026) 101120 

5 



pigments, which play a crucial role in light absorption and dissipation 
during photosynthesis, therefore being indicative of a plant’s photo
synthetic efficiency. In contrast, PSRI primarily detects the shift in the 
ratio between chlorophyll and carotenoid pigments as leaves undergo 
senescence. We observed a clear response in the PSRI value on each 
acquisition date upon the onset of visual symptoms, with index values 
converging following prolonged (>1 week) disease manifestation 
(Fig. 4b). The structural index, WDVI, also showed clear responses 
following the development of visual symptoms (Fig. 4c). Its importance 
increased throughout the season as plants developed, likely reflecting 
both the changes in vitality and structure resulting from stunted growth 
and/or wilting, which were also captured by LiDAR metrics (Fig. 4d).

3.2. Spectral changes in response to infection across cultivars

A closer inspection of spectral responses after infection revealed 
substantial variation between investigated cultivars. The most promi
nent response was a significant drop in reflectance throughout the NIR 
region, observed in plants at all growth stages (Fig. 2e). However, the 
magnitude of this decrease varied between cultivars (Fig. 2f), with 
Kuroda and Riviera showing the weakest response. The variation be
tween infected plants of different cultivars was most pronounced early 
in the season, gradually converging as plants matured (Fig. 2f). This 
likely reflects differences in developmental rates among the cultivars. A 
decrease in reflectance in the NIR region, though subtle, was also pre
sent in presymptomatic infections (Fig. 2e–f). The Riviera cultivar was 
the sole exception, exhibiting no changes in the NIR region but instead 

Fig. 3. Principal Component (PC) Linear Discriminant Analysis (LDA) biplots 
(left) with corresponding density distributions (right), visualising the separation 
between healthy, presymptomatic and infected potato plants based on PC- 
transformation of 76 hyperspectral (top), 52 LiDAR (middle), and 3 thermal 
(bottom) metrics from30.06, 06.07 and 14.07. The biplots contain over 19.000 
data points, with graduated colours indicating the 50 %, 80 %, 95 % and 99 % 
density contours.

Fig. 4. (a) Normalised importance of metrics derived from hyperspectral, LiDAR and thermal data based on Random Forest’s decrease in Gini impurity across 
different acquisition days. Bar colours indicate metric’s primary sensitivity: anthocyanins – purple, chlorophylls – green, carotenoids – orange, chlorophyll to 
carotenoid ratio – blue, plant biomass/structure – grey, transpiration – red. For more details on the individual metrics refer to the Supplementary Material. (b-e) 
Impact of blackleg on selected plant-level metrics over the growing season, grouped according to the date of identification of first visible symptoms of infection; 
shaded connections between median values of each category provide a visual indication of the metric development trends.
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showing a minor reflectance decrease across the 550–650 nm range. 
Significant spectral changes in response to infection could also be 
observed in one of the chlorophyll absorption regions (550–680 nm), 
and, in some cultivars, in the carotenoid absorption region (500–550 
nm). This suggests that vegetation indices linked to photosynthetic ac
tivity, carotenoid content, and chlorophyll concentration could provide 
valuable diagnostic information.

While chlorophyll-based indices showed promise, their applicability 
in generalised models might be limited since the spectra lacked the 
typical responses observed in shorter wavelengths, typically used for 
these indices, that reflect changes in chlorophyll content. Additionally, 
inherent physiological differences between cultivars contributed to 
spectral variation even among healthy specimens, leading to occasional 
overlaps with infected plants from other cultivars; this overlap was most 
evident early in the growing season (Fig. 2f). The varying importance of 
indices targeting chlorophyll was reflected in the RF feature importance 
analysis, being highly important on 06.07 but contributing much less on 
the other two acquisition days (Fig. 4a). On 06.07, chlorophyll indices’ 
values were most consistent across different cultivars and showed sig
nificant differences between infected and healthy plants as shown on 
Fig. 5 with Ratio Analysis of Reflectance Spectra (RARS2) that combines 
reflectance values from the red and the red edge regions. The separa
bility between healthy, symptomatic and presymptomatic infection 
stages varied between the utilised cultivars, with latterly symptomatic 
plants showing little response in the case of Agria and Kuras and sub
stantial shifts for other cultivars. Similar patterns could be seen in other 
indices (see Fig. 5), with both the separability and the range of measured 
values substantially varying across cultivars. Whilst clear responses in 
the presymptomatic stage could be captured in some cultivars (e.g. 
WDVI in Agria), in others, even symptomatic stages did not initially 

manifest (e.g. WDVI in Kuras).
PCA-LDA analysis of vegetation indices derived from hyperspectral 

data (Fig. 6) confirmed the observed cultivar-specific differences in 
terms of both separability between the healthy and infected classes, and 
the strength of stress responses. The Riviera cultivar displayed a distinct 
pattern, but still achieved separation from healthy plants. Responses in 
other cultivars were more similar, with Fontane and Kuroda showing the 
least separation despite having vastly different susceptibility levels 
(Fontane – high, Kuroda – low). Although the analysis indicated limited 
to no separability between healthy and presymptomatic plants, we 
observed substantial shifts in LD1 values for most cultivars (except 
Kuras) on 30.06 (see Supplementary Material). This suggests presymp
tomatic detection might be more achievable at earlier plant growth 
stages.

3.3. Symptoms expression in thermal and LiDAR domains

Even though the response in thermal and LiDAR domains was not as 
pronounced, they provided valuable information on disease effects on 
plant development and functioning. Throughout the season we could 
observe clear reduction in plant volume following disease manifestation; 
the longer the visible symptoms were present, the higher the overall 
reduction in plant volume (Figs. 4d and 5), which can be attributed to 
both stunted growth and dieback. However, this reduction in symp
tomatic plants relative to the healthy population was inconsistent both 
across cultivars and over time. The clearest signal in newly infected 
plants was observed during the early growth stages, resulting in 33–45 
% median reduction in plant volume on 30.06 compared to 7–17 % 
reduction on 06.07 and none to 19 % reduction on 14.07 when only 
susceptible cultivars that were more likely to suffer from dieback were 

Fig. 5. Jitter plots illustrating the distribution and the median of selected plant-level metrics over the growing season for each investigated potato cultivar. Data 
points were grouped according to the date of identification of first visible symptoms of infection: red – observed on 13.06 or 28.06, yellow – observed on 04.07, grey – 
observed on 11.07, blue – healthy. Significant differences between the healthy and infected plants are indicated by a single star (*) based on Mann-Whitney U test, p 
< 0.01.
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affected (i.e. Agria, Esmee, Riviera, Fig. 5). Varying growth patterns, 
regardless of infection, further amplified differences between cultivars 
as the growing season progressed (Fig. 7). For example, the relative 
difference in healthy plant volume between two most different cultivars 
(Riviera and Agria) increased from 0 % to 40 % between 15.06 and 
14.07. The latter entered the flowering stage already on 06.07, whilst 
the former on 14.07 was yet to start flowering; the Esmee cultivar 
similarly developed more slowly and was still in the tuber initiation 
phase when the data collection ceased. While only plant volume is 
presented here for illustrative purposes, other structural metrics showed 
similar variability across cultivars.

We observed similar potential difficulties in utilisation of CWSI, even 

though significant canopy temperature, and consequently CWSI value, 
increase followed infection across all growth stages and cultivars (see 
Figs. 4e and 5). Significant canopy temperature increase in the pre
symptomatic plants could even be captured early in the season for most 
cultivars (except for Kuras that proved resistant to the employed 
blackleg strains), highlighting the applicability of utilising thermog
raphy for capturing early responses. Still, the importance of CWSI, based 
on the RF analysis, varied considerably throughout the season, showing 
relatively low importance on 30.06 and 06.07 and then becoming the 
second most important feature on 14.07 when the canopy temperature 
differences between healthy and infected plants were most pronounced 
(Fig. 4a). This could be attributed to large variability in the CWSI value 
across cultivars, restricting the usefulness of this metric for blackleg 
identification. For example, the median CWSI value ranged from 0.18 to 
0.38 for the healthy and from 0.40 to 0.64 for the infected plants (Fig. 7). 
In particular, the Kuroda cultivar significantly deviated from others, 
with its plant canopies being increasingly cooler over the season. This, 
akin to LiDAR metrics, highlights the difficulty in obtaining universally 
applicable metrics where absolute values, even from a single acquisition 
date, can provide sufficient interpretative power.

3.4. Disease detection capabilities across modalities

We proceeded to investigate whether robust disease detection 
models utilising obtained metrics could still be developed despite the 
challenges associated with variability in plant responses and the limi
tations of individual metrics highlighted in previous sections. The 
impact of utilising different modality combinations at different growth 
stages within SVM models is shown in Table 4. High detection rates 
could be achieved across all scenarios, ranging from 81 % to 89 %, with 
small variations between modality combinations. No consistent patterns 
emerged, though LiDAR inclusion proved beneficial during the early 
growth stage, leading to an increase in the detection rate of 4 %, 
reflective of the larger and more consistent impact on plant structure 
across cultivars. Similarly, additional modalities typically led to small 
improvements (1–4 %) on other days with HLT showing best perfor
mance. Although instances of falsely identified infections (false posi
tives) substantially exceeded those of missed infected plants (false 
negatives), a significant portion of the misclassified plants belonged to 
the presymptomatic infection stage. When considered to be True Posi
tives, precision ranges increased from 71–76 % to 83–86 % on 30.06 and 
from 72–81 % to 75–84 % on 06.07, demonstrating comparable values 
across different acquisition days.

Fig. 6. Principal Component (PC) Linear Discriminant Analysis (LDA) biplots 
for each investigated potato variety showing density distribution for healthy, 
presymptomatic and infected potato plants based on PC-transformation of 76 
hyperspectral metrics from 30.06, 06.07 and 14.07. The biplots contain over 
19.000 data points,with graduated colours indicating the 50 %, 80 %, 95 % and 
99 % density contours.

Fig. 7. Comparison of CWSI (top) and plant volume (bottom) values across different seed potato plants.
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Despite achieving a high collective disease detection rate, we 
observed significant discrepancies and inconsistencies across the 
investigated cultivars (Fig. 8), with only three (Agria, Fontane, and 
Riviera) showing comparable detection rates across all acquisition days. 
The inclusion of presymptomatic detections improved cultivar-specific 
precision rates (Fig. 8), most significantly in Esmee and Kuroda on 
30.06 when the trained models were able to identify up to 15 %/43 % of 
all presymptomatic infections (Esmee/Kuroda), leading to increases in 
precision from 60–71 % and 54–57 % to 86–100 % and 77–82 %, 
respectively. The weaker performance observed in the Kuroda cultivar 
aligns with previous investigations of individual domains, which 
revealed lower spectral separability, less pronounced canopy tempera
ture increases, and subtler structural changes compared to other culti
vars. Similarly to the collective analysis, no definitive patterns emerged 
regarding the optimal modality combination. Although the differences 
in performance tended to be small, the use of hyperspectral and LiDAR 
metrics appeared to offer the most consistent detection rates. This 
combination demonstrated the most promising results early in the sea
son when we observed significant improvements in detection rates of 
11–17 % over the sole use of hyperspectral metrics in cultivars with 
subtler symptoms (i.e. Kuras, Kuroda and Riviera).

3.5. Detection model transferability across the growing season

We further tested the robustness of the single day models through 
their application across the different acquisition days (Fig. 9), showing 
that models trained on early growing season data (30.06) could be 
directly transferred to later dates with success depending on the choice 
of modalities. The combination of hyperspectral and LiDAR (HL) data 
remained the most consistent, achieving recall rates of 82 % on 06.07 
and 75 % on 14.07. In contrast, models incorporating thermal infor
mation exhibited rapid decline in performance, with recall dropping 
from 83 % on June 30th to 70 % on July 6th and 66 % on 14.07. This 

Table 4 
Achieved blackleg detection rates of the developed models utilising metrics extracted hyperspectral (H), LiDAR (L) and/or thermal (T) data with presymptomatic 
detections treated as false positives/true positives (only available for 30.06 and 06.07). Best performing models are shown in bold.

30.06 06.07 14.07

Mode Recall Precision Bal. Acc. Recall Precision Bal. Acc. Recall Precision Bal. Acc.

H 83.8/84.8 72.0/84.0 90.3/91.8 85.0/85.5 81.2/84.4 91.4/91.8 80.8 81.3 89.1
HL 87.4/89.1 71.0/84.1 92.5/93.9 85.7/86.2 79.2/82.4 91.6/92.0 81.9 82.9 89.8
HT 81.6/83.3 76.3/86.0 90.0/91.2 85.0/85.5 79.6/82.8 91.3/91.7 73.3 91.7 86.4
HTL 81.6/83.2 74.7/83.2 89.9/90.1 87.1/87.6 71.9/75.3 91.6/92.1 84.7 81.1 91.0

Fig. 8. Achieved blackleg detection rates of the developed models for each variety utilising metrics extracted from hyperspectral (H), LiDAR (L) and/or thermal (T) 
data with presymptomatic detections treated as false positives (solid fill) and true positives (semi-transparent fill).

Fig. 9. Transferability of single-day SVM blackleg detection models, showing 
achieved recall (top), precision (middle) and balanced accuracy (bottom) on test 
datasets from different acquisitions. Four combinations of modalities were 
tested utilising metrics extracted from hyperspectral (H), LiDAR (L) and/or 
thermal (T) data. In all cases presymptomatic detections were treated as 
True Positives.
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decline was not present in 06.07 models that incorporated thermal in
formation, which can be attributed to its diminishing importance rela
tive to other metrics for classification since the thermal stress signal 
became weaker and more variable across the cultivars (see Figs. 4a, 5 
and 7).

All models developed on 14.07 transferred poorly to the earlier 
season. Although very high recall could be achieved (84–93 %), incor
porating samples from different cultivars that were at different growth 
stages significantly affected the overall performance leading to persis
tent misclassification of healthy plants (precision rates of 27–41 %). 
Some of the cultivars utilised in training were in the tuber initiation 
stage (Riviera and Esmee), while others were flowering (Agria, Kuras, 
and Kuroda) or already in the tuber bulking stage (Fontane), which 
affected the specificity of responses we observed in the derived metrics. 
The weakest performances were indeed recorded in cultivars, which 
experienced substantial shifts in the development between the acquisi
tion days (Fig. 10), i.e. Kuroda (from tuber initiation to end of flowering, 
10–12 % precision for HL modality), Fontane (flowering to tuber 

bulking, 45 % precision) and Agria (53 % precision on 06.07 at peak 
flowering and 29 % on 30.06 during the tuber initiation). Although only 
the HL mode is shown here, similar patterns could be observed for other 
modality combinations (see Supplementary Material).

Substantial differences between cultivars in the ease of transfer were 
also present in earlier models (see Fig. 10 and Supplementary Material). 
These performed worst for least susceptible cultivars with weakest 
symptoms (Kuras and Kuroda) with recall on 06.07 dropping by 25 % 
and 13 %, respectively (based on the 30.06 HL model), due to infections 
with subtle symptoms being missed or healthy plants, especially with 
delayed emergence, being misclassified. Nevertheless, for other cultivars 
the performances were more consistent, with detection rates often 
comparable to those of the same day models. This highlights the po
tential for using multi-modal data and machine learning models for 
disease detection but also demonstrates the importance of considering 
cultivar-specific characteristics, i.e. growth rates and symptoms 
expression, when developing and applying such models.

4. Discussion

Whilst the potential of remote sensing for disease detection in crops 
is relatively well-established, a gap exists in understanding how cultivar 
and growth stage variations might influence the responses captured by 
different modalities, and subsequently affect disease detection capabil
ities. This study addressed this knowledge gap by exploring the impact 
of these factors on multimodal remote sensing signatures at individual 
plant level. Although our focus here is on blackleg in seed potatoes, the 
findings on specificity of responses hold broader implications for disease 
detection across other crops and diseases.

4.1. Linking remote sensing metrics to disease responses

Establishing clear links between observed changes in derived metrics 
and the expected infection symptoms is crucial for development of 
robust detection models as it not only improves their explainability but 
also ensures the observed responses are indeed caused by the stress 
agent in question. Blackleg can induce a range of symptoms involving 
development of black rot lesions within the seed tuber that spread to 
stems. This typically disrupts nutrient and water uptake, and can lead to 
yellowing due to decreased chlorophyll content, wilting, maceration and 
desiccation of leaves and stems (van der Wolf and De Boer, 2007).

Although chlorophyll decrease due to chlorosis and necrosis is a well- 
known symptom (Steglińska et al., 2022), our analysis highlighted 
indices relating to the xanthophyll cycle activity and the 
carotenoid-to-chlorophyll ratio as most valuable. Though, the impor
tance of the derived plant-level metrics shifted throughout the season. 
Early on, PRI (sensitive to xanthophyll cycle activity) held the most 
weight, reflecting early plant stress responses. However, as the season 
progressed, PSRI (sensitive to the carotenoid-to-chlorophyll ratio) 
became more informative, indicating potential changes in pigment 
composition. Several studies support the link between derived metrics 
and photosynthesis inhibition following blackleg infection. For example, 
exposure of potato leaves to a culture filtrate of Pectobacterium car
otovorum resulted in a down-regulation of psaD, which is a key 
component of Photosystem I (PSI) (Montesano et al., 2004). PsaD was 
similarly found to be down-regulated by methyl jasmonate molecules 
created by plants upon infection with P. carotovorum (Hachoud et al., 
2019; Montesano et al., 2004). This down-regulation correlates with 
accumulation of hydrogen peroxide in chloroplast that, although being 
part of a plant defence response, negatively affects photosynthesis 
(Kovač and Ravnikar, 1994).

Whilst the connection between carotenoids (which assist with 
photosynthesis and light protection) and blackleg is unclear, a number 
of previous studies explored their role in plant pathogen interactions. 
Carotenoids are involved in the production of abscisic acid (ABA) by 
host plants, a hormone that plays a key role in plant’s responses to 

Fig. 10. Transferability of the HL SVM blackleg detection model utilising 
hyperspectral and LiDAR metrics, showing achieved recall (top), precision 
(middle) and balanced accuracy (bottom) on test datasets from different acqui
sitions. In all cases presymptomatic detections were treated as True Positives.
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infection (Ton et al., 2009). Following ABA synthesis plants can respond 
to invasion by closing stomata upon contact with microbes to increase 
their resistance, as have been shown for Pseudomonas syringae pv. to
mato. After penetration, the role of ABA is controversial. In Arabidopis 
thaliana, ABA repressed callose deposition, which resulted in an 
increased resistance to P. carotovorum, but it also decreased the resis
tance against abiotic stress conditions (Kariola et al., 2006). In contrast, 
Bagy et al. (2019) showed that P. atrosepticum may interfere with this 
defence mechanism after finding the total level of carotenoids to be 
lower in infected potato plants.

The relative importance of chlorophyll-sensitive indices, structural 
features and thermal metrics similarly varied over time. Structural 
changes affecting plant geometry, such as dieback, typically take longer 
to manifest as they require the disease to progress sufficiently. Conse
quently, the effect on structural metrics became more apparent later in 
the season. Though here, beyond dieback, we also observed evidence of 
stunted growth, which was most substantial early in the growing season. 
The need for sufficient dieback or growth stunting to occur explains why 
the investigation of metrics directly capturing structural information has 
so far been limited outside of a proximal or a laboratory set-up. Forestry 
studies utilising LiDAR point clouds to capture disease-induced defoli
ation are a notable exception (Smigaj et al., 2019b; Yu et al., 2021). So is 
a previous UAV study on blackleg that also reported shifts in 
LiDAR-derived metrics in infected potato plants (Franceschini et al., 
2024).

In contrast, thermal responses can often precede visual symptoms, 
being indicative of issues with temperature regulation through transpi
ration. Whilst breadth of literature exists on links between leaf/canopy 
temperature and plant water status (Maes and Steppe, 2012; Smigaj 
et al., 2024), the usefulness of thermal data for disease identification in 
the field remains uncertain due to stomatal closure being a non-specific 
response that can occur due to both biotic and abiotic stress factors. Still, 
previous airborne canopy-level studies, which focused on orchards and 
forests, observed clear temperature increases following infection as a 
result of disease-induced disruptions to the water transport and/or 
progressive defoliation (Poblete et al., 2023; Smigaj et al., 2019a; Zar
co-Tejada et al., 2018; Zhang et al., 2023). Blackleg similarly hinders 
water uptake and consequently affects transpiration by damaging the 
vascular system. This can lead to an increase in canopy temperature, as 
we were able to capture and confirm on all acquisition days. The 
strongest signal was observed during the last data acquisition (on 
14.07), which could be attributed to several factors: cumulative reduc
tion in leaf water content due to progressive vascular damage, wilting 
and desiccation of stems, stunted growth leading to less transpiring 
material, and the timing of the acquisition coinciding with a warm day 
following a dry period (2 mm of rain in the preceding 7 days with irri
gation only applied later in the day) which might have amplified the 
differences between healthy and infected plants.

Quantification of the severity of disease visual symptoms could allow 
more nuanced links with remote sensing metrics to be established, of
fering a clearer understanding of the level of infection required for 
manifestation in different modalities. Whilst this was not explored here 
due to our reliance on disease experts from NAK who used established 
inspection protocols to identify diseased plants for prompt removal, 
such an approach would allow for the development of more granular 
models capable of distinguishing between early and advanced stages of 
infection. This would be highly relevant for diseases where other man
agement interventions, such as targeted fungicide applications or 
biocontrol agents, are possible.

4.2. Specificity of disease symptoms manifestation in remote sensing 
metrics

While UAV-based disease detection is a promising avenue, the use of 
pre-selected remote sensing metrics for this purpose presents its own set 
of challenges. Symptom expression is a complex interplay between 

factors like cultivar resistance, strain virulence, and environmental 
conditions. The strain of pathogenic bacteria typically dictates disease 
spread and progression with those possessing a functional Type III 
Secretion System (T3SS) often being more virulent due to their ability to 
manipulate host defences (Büttner and He, 2009). Though, both the 
spread and symptoms development may be hindered or accelerated 
depending on the environmental conditions. For example, for Clavibacter 
michiganensis warm temperature and high relative humidity are most 
optimal, whilst in the case of blackleg, hot and dry weather typically 
prompts faster development of visible symptoms and higher plant 
mortality (Toth et al., 2011). These factors, together with 
cultivar-specific traits, can significantly impact the manifestation and 
severity of symptoms, making it challenging to rely on pre-established 
cues for definitive identification.

Cultivar-specific traits and development patterns may also affect the 
specificity of responses. We observed substantial differences both in 
spectral signatures and the extracted metrics for healthy plants of 
different cultivars. This aligns well with observations reported by others; 
Gold et al. (2020) similarly observed substantial differences in the leaf 
spectra of different potato cultivars. Attempts have even been made at 
utilising remote sensing data for in-field classification of crop or tree 
cultivars (Avola et al., 2019; Gava et al., 2022; Guimarães et al., 2023). 
This inherent variability even within a healthy population further 
complicates explicit symptom identification solely through remote 
sensing data.

Despite sufficient level of symptoms expression being key to suc
cessful identification of affected plants, field investigations into the 
impact of cultivar-specific traits on remote sensing signatures of 
diseased plants are lacking; previous investigations with multiple cul
tivars or varieties mainly focused on phenotyping cultivar resistance 
based on remote sensing metrics (Chivasa et al., 2020; Jay et al., 2020; 
Simões and Rios do Amaral, 2023). Indeed, in our study we observed 
large differences in disease symptom expression between the investi
gated cultivars, which consequently affected detection models’ perfor
mances. For susceptible cultivars with apparent symptoms (Agria and 
Riviera), same-day models were able to reach 84–92 % and 91–93 % 
recall rates across the growing season (HL modality). However, for less 
susceptible cultivars (e.g. Esmee and Kuroda), model performance var
ied considerably (recall rates of 67–100 % and 67–92 %, respectively). 
Similarly, model transfer across the growth stages was more successful 
for cultivars with symptoms that were expressed more strongly.

The manifestation of disease symptoms in some of the investigated 
metrics varied not only across cultivars but also throughout the growing 
season. For example, while we could identify clear reductions in plant 
size across all cultivars early in the season due to growth stunting and/or 
dieback, later in the season substantial structural changes in latterly 
infected plants were primarily present in susceptible cultivars more 
prone to dieback. This highlights that the usefulness of different metrics 
may considerably vary over the growing season depending on the uti
lised cultivar. Similarly, the strength of the thermal signal varied over 
time and was the strongest during the last data acquisition (on 14.07). 
This could be attributed to several factors: cumulative reduction in leaf 
water content due to progressive vascular damage, wilting and desic
cation of stems, stunted growth leading to less transpiring material, and 
the timing of the acquisition coinciding with a warm day following a dry 
period (2 mm of rain in the preceding 7 days with irrigation only applied 
later in the day) which might have amplified the differences between 
healthy and infected plants. Taking environmental conditions into ac
count should therefore also be a consideration since weather favouring 
increased transpiration rates will accentuate differences between 
healthy and diseased plants (Smigaj et al., 2024).

Further research investigating the underlying physiological and 
biochemical mechanisms that drive such cultivar-specific responses to 
disease onset and their impact on remote sensing signatures is crucial for 
improving and increasing the explainability of remote sensing-based 
disease detection approaches, especially in the growing era of 
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Artificial Intelligence-driven (AI) methods that leverage vast amounts of 
input data to extract relevant features (Jafar et al., 2024; Jung et al., 
2021). Whilst valuable insights can already be gained by focusing on 
remote sensing alone, explicitly linking these observations to physio
logical responses improves our understanding and allows critical 
assessment of the underlying decision-making processes, helps identify 
potential sources of error, can facilitate the development of broadly 
transferable disease detection models.

In this study we introduced multiple sources of variation, including 
seed potato cultivar diversity, data collection at multiple growth stages, 
and the introduction of various blackleg-causing strains, and subse
quently were able to capture broad variability in responses. Though, the 
experiment’s scope limited the investigation of whether different bac
terial strains differentially impacted the extracted metrics. Addressing 
this challenge of variations in symptoms expression is key for develop
ment of broadly transferable detection models. Potential solutions could 
involve incorporating plant growth stage information and considering 
potential environmental stressors, e.g. through coupling with crop 
growth models (Berger et al., 2022), further exploration of normal
isation techniques to account for inherent baseline differences between 
cultivars, or coupling remote sensing data with radiative transfer models 
(RTMs).

The use of RTMs would allow retrieval of functional plant traits for 
each cultivar, making detection models less dependent on raw metrics. 
The potential of using RTM-derived traits for detection of plant patho
gens has already been demonstrated in olive and almond orchards 
(Zarco-Tejada et al., 2018, 2021). This approach also allowed identi
fying divergent responses between different stress agents, which could 
then be utilised for their discrimination (Poblete et al., 2021; Zarco-
Tejada et al., 2021). Such differentiation is of high relevance for deter
mining crop health status and enabling targeted interventions. However, 
it is important to acknowledge that it is also inherently challenging since 
similar symptoms can be triggered by a range of stress agents. The few 
other studies exploring disentangling stress agents were typically 
restricted to laboratory/greenhouse set-ups (Fallon et al., 2020; Gold 
et al., 2020; Moshou et al., 2014). Further research on the potential of 
multimodal approaches is therefore necessary to fully evaluate their 
synergy. So is the exploration of how cultivar-specific variations in 
symptom expression might affect the identified divergent pathways.

4.3. The potential benefits of multimodal approaches for blackleg 
detection

Each of the investigated modalities provided information about 
different physiological responses to blackleg onset. Although the 
hyperspectral domain was consistently being highlighted as most crucial 
for differentiation between healthy and diseased plants, LiDAR and 
thermal domains also carried information indicative of infection. Still, 
our investigations into the synergistic use of different modalities showed 
that similarly high detection rates could be achieved with any of the 
investigated combinations in single day detection models (recall 81–89 
%, precision 75–86 %, balanced accuracy 89–94 %); combining hyper
spectral metrics with features from other modalities only led to small 
increases (up to 4 %) in the detection rates. This is in contrast to the 
previous UAV study on blackleg that reported an increase in recall of 11 
% (from 68 % to 79 %) after supplementing vegetation indices with 
LiDAR metrics (Franceschini et al., 2024). This discrepancy could 
potentially be caused by a substantially larger amount of inoculant 
applied to the tubers in that study, which caused more prominent 
manifestation of symptoms. Zhang et al. (2023) and Yu et al. (2021)
similarly reported an increase in overall accuracy of 7–9 % for detection 
of pine wilt disease when combining UAV-based vegetation indices with 
thermal data. Improvements in the range of 1–8 % in overall accuracy 
(reaching 79–91 %) were also reported in olive and almond trees for 
Verticillium dahliae and Xylella fastidiosa when combining airborne 
hyperspectral data with solar-induced chlorophyll fluorescence and 

CWSI (Poblete et al., 2023). Other multimodal studies focusing on dis
ease detection, although highlighting the significance of metrics 
capturing different responses (e.g. through feature importance analysis), 
rarely reported on the level of improvement compared to single mo
dality (Smigaj et al., 2019b; Xu et al., 2023; Zarco-Tejada et al., 2018, 
2021; Zhang et al., 2019).

In this study, the main differences in performance laid in the trans
ferability to other dates. The combination of hyperspectral and LiDAR 
features showed most consistent performance, with detection rates up to 
12 % higher compared to other modality combinations. Interestingly, 
sole inclusion of thermal metrics was in this case detrimental. Although 
feature importance analysis ranked CWSI as important, PC-LDA revealed 
that thermal domain offered the lowest distinction between different 
health classes. Inherent limitations of miniature UAV thermal cameras 
likely affected the strength and consistency of responses despite the data 
being acquired and processed in a way to ensure high quality as sug
gested in Smigaj et al. (2024). Miniature thermal cameras have low 
signal-to-noise ratio and are very sensitive to changing ambient condi
tions, leading to additional noise in the collected data (Kelly et al., 2019; 
Smigaj et al., 2017; Wan et al., 2021). Majority of other studies utilising 
thermal imagery for disease identification relied on more stable cameras 
and platforms. Still, we were able to capture consistent temperature 
increases in both infected and presymptomatic plants. Inclusion of the 
latter as healthy samples for model training might have introduced 
confusion, reducing models’ sensitivity to infections on other days.

Although we observed substantial decrease in performance when 
transferring developed models across the datasets, we showed that some 
of the models developed early in the season demonstrated a reasonable 
level of success when applied to later growth stages despite the vari
ability introduced by employing different cultivars. The HL SVM model 
developed on 30.06 was still able to identify 82 % of infections on 06.07 
and 75 % on 14.07, whilst retaining comparable balanced accuracy (89 
% and 86 %). This is an encouraging step towards operationalising the 
use of UAV-based sensing to support blackleg disease management. 
Currently, identification of blackleg in seed potatoes relies on visual 
assessments, which are time-consuming and labour-intensive, with main 
control measures involving the use of certified tubers, avoiding 
contamination and removal of affected plants. The timing of detection 
plays an important role since prompt removal of infected plants mini
mises the disease spread through the soil, insects and machinery. Early 
detection, at the very least prior to tuber development, is crucial to 
minimise chances of cross contamination upon harvest. In this regard, an 
integrated approach of combining visual assessments with UAV-based 
sensing to help fine-tune the sensitivity of detection models to the set 
of symptoms in cultivars at hand would pave a way towards a practical 
implementation of current approaches, helping reduce labour costs 
associated with detailed visual inspections and mitigate economic losses 
caused by blackleg.

5. Conclusions

This study aimed to explore the impact of cultivar and growth stage 
variations on remote sensing signatures of seed potato plants infected 
with blackleg disease. By utilising six cultivars with varying suscepti
bility levels and employing three sensor modalities (hyperspectral, 
LiDAR, and thermal), we demonstrated that the magnitude of stress 
responses captured in plant-level metrics varied across modalities and 
over time. Early-season responses were most strongly reflected in PRI 
(sensitive to xanthophyll cycle activity), while later in the season, PSRI 
(sensitive to the carotenoid-to-chlorophyll ratio and senescence) became 
more informative.

Cultivar-specific traits significantly influenced symptom expression 
and subsequent remote sensing signatures. Notably, growth stunting 
and/or dieback were successfully captured in all cultivars for plants 
infected early in the season, while later in the season, these structural 
changes were primarily observed in latterly infected plants of cultivars 

M. Smigaj et al.                                                                                                                                                                                                                                 Plant Stress 19 (2026) 101120 

12 



more prone to dieback. Similarly, thermal metrics, while showing 
promise, exhibited varying sensitivity to infection across cultivars and 
growth stages. Importantly, significant variability in thermal signatures 
was observed even among healthy plants of different cultivars, high
lighting the influence of cultivar-specific physiological and morpho
logical characteristics on remote sensing metrics.

While hyperspectral data provided the most valuable information, 
combining hyperspectral and LiDAR data in SVM detection models 
yielded the most consistent performance across the investigated dates 
(balanced accuracy of 90–94 %), showing the added benefit of 
combining modalities sensitive to different physiological responses. 
However, differences in growth patterns and symptom expression across 
cultivars still substantially affected the performance of the investigated 
SVM detection models. This emphasises the need for better under
standing of cultivar-specific responses and the need for further research 
to address the challenges posed by cultivar variability to ensure the 
robustness and broad operational applicability of UAV-based remote 
sensing approaches for disease detection in arable crops.
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Steglińska, A., Pielech-Przybylska, K., Janas, R., Grzesik, M., Borowski, S., Kręgiel, D., 
Gutarowska, B., 2022. Volatile organic compounds and physiological parameters as 
markers of potato (Solanum tuberosum L.) infection with phytopathogens. Molecules 
27 (12), 3708. https://www.mdpi.com/1420-3049/27/12/3708.

Ton, J., Flors, V., Mauch-Mani, B., 2009. The multifaceted role of ABA in disease 
resistance. Trends Plant Sci. 14 (6), 310–317. https://doi.org/10.1016/j. 
tplants.2009.03.006.

Toth, I.K., van der Wolf, J.M., Saddler, G., Lojkowska, E., Hélias, V., Pirhonen, M., 
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