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ARTICLE INFO ABSTRACT

Keywords: Remote sensing technologies offer a promising approach for detection of plant diseases, enabling timely in-
UAV remote sensing terventions to prevent the spread and minimise financial losses. However, a major gap exists in understanding
Hyperspectral how cultivar and growth stage variations might influence the stress responses captured by different modalities,
Iﬁ;’j&al and subsequently affect disease detection capabilities. This study aimed to bridge this gap by exploring the

variation in plant-level responses to blackleg onset (caused by Dickeya and Pectobacterium species) in six cultivars
with varying susceptibility levels through investigation of metrics extracted from UAV hyperspectral, LiDAR,
thermal data.

Whilst we found clear responses to infection in all modalities, substantial cultivar-based variations were
present due to different levels of symptom expression. Hyperspectral data emerged as the most crucial for
blackleg detection, with specific feature importance varying over the season. Early-season responses were most
strongly reflected in PRI, while later in the season, PSRI became more informative. Thermal and structural
metrics, while showing promise, exhibited varying sensitivity to infection across cultivars and growth stages,
with significant variability observed even among healthy plants of different cultivars.

Combining modalities in SVM detection models offered small improvement in disease detection capabilities,
though the use of hyperspectral and LiDAR data together yielded the most consistent performance across the
investigated dates (balanced accuracy of 90-94 %). Still, models’ performance was substantially affected by
cultivar variations. These findings highlight the critical need to account for cultivar-specific responses and the
dynamic nature of disease symptom expression when developing remote sensing-based disease detection models
for arable crops.

Disease detection
Plant stress
Agriculture

1. Introduction

Plant diseases are becoming ever more destructive due to climate
change, already causing up to 40 % losses in global production (IPPC
Secretariat, 2021). At the same time intensive agricultural practices
have caused substantial ecosystem degradation (Kopittke et al., 2019;
Sanchez-Bayo and Wyckhuys, 2019), necessitating a shift towards more
sustainable methods to reduce the pressure and mitigate the ongoing
biodiversity loss. This urgent need is being increasingly recognised and
implemented in national and international strategic plans. For example,
in the EU this commitment is reflected in a number of initiatives like the
European Green Deal, the Farm to Fork Strategy, and the Integrated Pest
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Management directive (Commission, 2020; Cuadros-Casanova et al.,
2023; European Commission, 2019). These aim to promote practices
favouring biodiversity within the agricultural landscape, sustainable
food production methods, and reduced chemical reliance, which in-
cludes the dependence on fertilisers and pesticides.

Meeting these sustainability goals whilst ensuring optimal agricul-
tural production requires development of effective ways for monitoring
crop status to enable targeted interventions. This is crucial for curbing
outbreaks, minimising yield losses and improving crop quality. In
particular, prompt and accurate identification of biotic stress agents is
key since different diseases may require different interventions, ranging
from complete removal of affected plants to the application of
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pesticides. However, disease identification through the traditionally
employed visual assessment of stress symptoms on the plants is labour-
intensive and requires a high level of expertise. Remote sensing ap-
proaches are often suggested as more efficient alternatives. Their po-
tential for precision agriculture has long been demonstrated (Mulla,
2013; Weiss et al., 2020) and so has their capability for capturing
physiological responses to stress onset (Berger et al., 2022).

The different modalities of available sensors offer glimpses into
different physiological responses of affected plants. Spectroscopy is
primarily sensitive to changes in leaf biochemical properties, thermog-
raphy can provide information on alterations in transpiration, LiDAR
can capture plant structural changes (e.g. defoliation), whilst fluores-
cence imaging can capture variations in photosynthesis (Berger et al.,
2022). Although the focus for a long time remained on the analysis of
spectral responses, development of miniature sensors that can be
mounted on Uncrewed Aerial Vehicles (UAVs) opened the possibility for
concurrent exploration of these modalities. Their combination allows
obtaining a more comprehensive picture of physiological responses,
which can potentially help improve remote identification of ailing plants
and allow matching these responses to specific stress agents.

Although multimodal approaches are being increasingly advocated
for (Berger et al., 2022), UAV-borne and airborne studies on crop disease
detection typically focus on the use of multispectral/hyperspectral data.
Promising investigations into sensor synergies in disease identification
context have largely been restricted to laboratory and proximal set-ups
(Berger et al.,, 2022). The few existing UAV-borne/airborne in-
vestigations similarly highlighted the value of multimodal data for
capturing different disease symptoms in non-woody crops (Franceschini
et al., 2024; Maimaitijiang et al., 2020; Zhang et al., 2019), orchards
(Poblete et al., 2023; Zarco-Tejada et al., 2018, 2021) and forests
(Hornero et al., 2024; Smigaj et al., 2019a, 2019b; Yu et al., 2021; Zhang
et al., 2023). However, previous multimodal studies, especially those
utilising UAVs, were often restricted to a single stress agent, time point,
and/or plant cultivar. This inevitably presents a simplified version of
reality, ignoring the interdependence between cultivar-specific plant
traits, differing resistance levels, plant growth stage, and resultant
remote sensing metrics that are used as inputs for detection models,
likely hindering transferability of the developed approaches to other
cultivars, regions and growing seasons.

The physiological responses following disease onset are particularly
complex and variable in nature, as they involve a continuous interplay
between plant’s resistance that depends on the utilised cultivar, the
specific pathogen strain, and the prevailing environmental conditions
that can affect plant’s susceptibility to infection (Eastburn et al., 2011;
Singh et al., 2023). Furthermore, disease symptoms can evolve over
time, with the plant exhibiting a range of responses depending on the
stage of infection. This dynamic differs from the more singular stress
events typical of many abiotic factors. Understanding how these varia-
tions affect remote sensing metrics used in disease detection algorithms
and how these metrics link to actual physiological responses is crucial
for developing more robust and generalisable disease detection models
that can be applied more widely. Yet, such investigations are largely
missing outside of controlled indoor environments, partially due to the
logistical challenges associated with establishing large-scale and diverse
field trials.

This study aims to address this knowledge gap by exploring the
impact of varying cultivars and plant growth stages on the remote
sensing signatures of seed potato plants subjected to blackleg disease. To
achieve this, we utilised six seed potato cultivars with varying suscep-
tibility levels and employed three different sensor modalities (hyper-
spectral, LIDAR and thermal) to assess their potential for identification
of diseased plants. Based on this analysis, we will provide recommen-
dations on the development of multimodal remote sensing strategies for
disease monitoring in arable crops.
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2. Methodology
2.1. Blackleg causal agents and characteristics

Blackleg is an economically important disease caused by species
within the genera Dickeya and Pectobacterium that affects potato crop-
ping worldwide. In the Netherlands the predominant causal agent has
undergone a temporal shift. Prior to 2000, D. dianthicola, P. atrosepticum
and P. parmentieri were the most frequently isolated species. D. solani
then emerged as the dominant causing strain between 2000 and 2010.
Presently, specific haplotypes of P. brasiliense are typically associated
with blackleg outbreaks.

The most dominant source of infection is the (latently-infected) seed
tuber, which spreads the bacteria to the soil and neighbouring plants as
the disease progresses. Inadvertent transmission can also occur during
cutting and planting operations when contaminated tools come into
contact with healthy tubers. The most characteristic disease symptom is
a black soft rot, appearing at the stem base (see Fig. 1). The disease often
starts with a darkening of the top leaves, followed by wilting, chlorosis
and desiccation of leaves. Though, its virulence can vary substantially
both across the species and individual strains. Aerial stem rot may also
occur following dissemination of the bacteria to aboveground stems via
insect vectors, heavy precipitation events, or hail damage. Additionally,
early in the growing season, low oxygen conditions caused by compac-
tion of soil and/or a high level of precipitation can lead to decay of
infected tubers and non-emergence.

2.2. Study area

The study focused on a seed potato field experiment located in
Lelystad, the Netherlands, where six different seed potato cultivars,
known to exhibit variation in traits (including the growth rate), were
sown at the end of May 2022 (week 21, Fig. 2 and Table 1) at the
planting distance of 0.5 m. Prior to sowing, blackleg, a bacterial disease
that causes soft rot and blackening of potato stems, was introduced to
tubers through vacuum-infiltration with D. solani (IP02222),
P. atrosepticum (IPO1007) and P. brasiliense (IPO3649) suspended in
water (van der Wolf et al., 2017). Two concentrations of inoculum were
used depending on the level of susceptibility of a given cultivar we
observed in past field experiments (Table 1). Specifically, higher con-
centrations were applied to Kuros and Kuroda cultivars since the lower
inoculum concentration in previous trials resulted in few successful in-
fections. This ensured a more realistic evaluation of disease response
across cultivars, preventing uncharacteristically strong expression of
symptoms and excessive mortality in susceptible cultivars should the
concentration be increased uniformly whilst achieving higher infection
rates in the more resistant cultivars. The growing season was charac-
terised by warm weather with limited rainfall events (a weather chart is
available in the Supplementary Material) that were supplemented with
irrigation following standard management practices for clay soil present
in the study area.

Following the plant emergence, visual health inspections of all plants
were performed by a crop disease expert from the Dutch General In-
spection Service (NAK); these were conducted prior to each data
acquisition on 13.06.2022, 28.06.2022, 04.07.2022, and 11.07.2022.
All plants with visual symptoms were physically labelled in the field and
had their locations measured with RTK GNSS positioning. Plants, which
had developed visual symptoms within the subsequent week were sub-
sequently classed as presymptomatic. In the case of an infection-induced
die-off, an annotation was only retained if plant material was still
remaining aboveground. The breakdown of disease prevalence in each
of the varieties is shown in Table 2.
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Fig. 2. (a) Layout of the experimental field used in the study with six seed potato cultivars sown across four rows and three blocks each. (b-d) Example subsets of
UAV LiDAR (b), hyperspectral (false colour composite, ¢) and thermal data (d) collected on 30.06 with individual plant segmentation results. (e-f) Average spectral
signatures of healthy (blue), presymptomatic (orange) and symptomatic (red) plants affected by blackleg based on samples from all cultivars (e) combined and (f)
separated where the mean for each cultivar is represented by a single line; graph insets highlight changes in the 500-700 nm regions, whilst colour shading in (e)

represents one standard deviation.
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Table 1
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Background information on the utilised seed potato cultivars, including the level of susceptibility to blackleg as provided by Agrico seed potato distributor on a scale
from 1 (highly susceptible) to 10 (highly resistant) and average successful infection rates achieved in past experiments based on inoculation of 5400 tubers with
D. solani (IPO2222), P. atrosepticum (IPO1007-IPO1012) and P. brasiliense (IPO3649- IPO3654).

Cultivar Crop type Blackleg susceptibility level Past inoculation Typical aboveground infection symptoms Inoculum concentration
success rate
Agria First early 5 — Susceptible 54.6 % Apparent: yellowing, wilting and desiccation of leaves and stems CFU 10E° ml!
Esmee Second early 7 - Slightly susceptible 49.6 % Apparent: yellowing, wilting and desiccation of leaves and stems CFU 10E° m1™!
Fontane Mid-late 6 — Slightly susceptible 44.4 % Subtle: stem softening and striping, which may lead to dieback CFU 10E° mI~!
Kuras Maincrop 5 — Susceptible 2.9 % Subtle: stem softening and striping, which may lead to dieback CFU 10E® m1~!
Kuroda Mid-late 6 — Slightly susceptible 5.0 % Very subtle: dieback can be restricted to a single stem CFU 10E® m1™!
Riviera First early 5 — Susceptible 26.0 % Moderately apparent: stem softening and plant lodging CFU 10E° mI~!
Table 2

Blackleg prevalence across investigated seed potato cultivars based on the NAK inspections, showing a breakdown of symptomatic (INF), presymptomatic (PRES) and
healthy (HLT) plants for four UAV data acquisition dates. Note: the total number of plants across dates may differ due to die-off and late emergence.

Date 15.06.2022 30.06.2022 06.07.2022 14.07.2022

Cultivar INF PRES HLT INF PRES HLT INF PRES HLT INF PRES HLT
Agria 1 n/a 1227 105 19 1106 119 20 1086 129 n/a 1085
Esmee 4 n/a 1219 41 56 1111 102 59 1052 153 n/a 1052
Fontane 18 n/a 1189 174 35 991 201 28 963 213 n/a 963

Kuras 0 n/a 1193 56 13 1115 70 9 1115 76 n/a 1115
Kuroda 6 n/a 1158 41 28 1099 71 16 1083 85 n/a 1083
Riviera 4 n/a 1211 60 103 1053 161 78 975 228 n/a 975

All 33 n/a 7197 477 254 6475 724 210 6274 883 n/a 6273

2.3. UAV data acquisition and preprocessing

Three different sensor modalities (hyperspectral, LiDAR, thermal)
expected to be sensitive to physiological responses to blackleg infection
were explored in this study. For this purpose, UAV multimodal data was
acquired on four occasions across the growing season in weeks 24, 26,
27 and 28 (on 15.06.2022, 30.06.2022, 06.07.2022 and 14.07.2022),
covering plant establishment, tuber initiation and tuber bulking growth
stages. Hyperspectral and LiDAR data were acquired with a co-aligned
Headwall Nano Hyperspec VNIR imager and a Velodyne VLP-16
LiDAR sensor onboard a DJI M300 RTK platform flown within 2 h of
the solar noon in sunny and dry conditions, whereas thermal imagery
was acquired shortly afterwards with the use of FLIR Tau 2 camera
onboard a DJI M210 RTK platform that was coaligned with a Hi-phen
multispectral camera to aid photogrammetric reconstruction of ther-
mal orthomosaics within Agisoft Metashape. A full breakdown of all
sensors and flight parameters is provided in Table 3 whilst representa-
tive snippets of the acquired data are shown in Fig. 2.

All data was radiometrically calibrated and georeferenced following
procedures most appropriate for a given sensor. Hyperspectral imagery
was corrected with the use of a 3 x 3 m calibration target with three
reflectance levels (11 %, 30 % and 56 %) deployed in the field, spatially
down sampled by a factor of 2, and spectrally smoothed with a Savitzky-

Table 3
Breakdown of sensors deployed in this study and key acquisition details.

Golay filter (1st order polynomial with a window size of 11) from the
‘hsdar’ package in R. The thermal orthomosaics were empirically cor-
rected based on field measurements of four 60x60 cm wooden targets
painted in different shades to create thermal contrast; field reference
measurements were obtained with the use of a handheld infrared radi-
ometer (Raytek Raynger ST) immediately after the thermal UAV over-
flight. Direct georefering relying on flight trajectory and platform
movements information from an Applanix APX-15 GNSS/IMU was
applied to hyperspectral and LiDAR data, whereas for thermal and RGB
imagery 5-7 Ground Control Points (GCPs) were used.

In addition to the multimodal data, high spatial resolution UAV RGB
imagery was acquired early in the season following plant emergence (on
15.06 in week 24) and processed into a point cloud within Agisoft
Metashape to allow identification of exact locations of each individual
potato plant and extraction of ridges onto which the seed potatoes were
sown. To achieve this, points belonging to vegetation and ridges were
separated using Support Vector Machine (SVM) classification based on
RGB digital numbers. The ridge point cloud was used as a reference for
registration of subsequent LiDAR data utilising the 3D iterative closest
point (ICP) surface matching algorithm employed within CloudCom-
pare. Following the registration, all LiDAR point cloud heights were
normalised based on a DTM derived from the RGB point cloud.

Headwall Nano Hyperspec VNIR Velodyne VLP-16

FLIR Tau 2 Hi-phen Airphen DJI Zenmuse P1

Sensor type Pushbroom imaging spectrometer LiDAR
Focal length 12 mm n/a
Spectral range 400-1000 nm 903 nm
Number of bands 270 n/a
Platform DJI M300 RTK DJI M300 RTK
Flight height 30m 30 m
Flight direction East-West East-West
Number of 7 7
flightlines
Ground sampling 1.3 cm n/a
distance

Acquisition days 15.06.2022, 30.06.2022,

06.07.2022, 14.07.2022

15.06.2022, 30.06.2022,
06.07.2022, 14.07.2022

Microbolometer thermal Multispectral camera RGB camera

camera

19 mm 8 mm 24 mm

7.5-13 um 450-850 nm RGB

1 5 3

DJI M210 RTK DJI M210 RTK DJI M300 RTK
30 m 30 m 20 m
East-West East-West East-West

6 6 6

2.7 cm 1.7 cm 0.25 cm
30.06.2022, 06.07.2022, 30.06.2022, 06.07.2022, 15.06.2022

14.07.2022 14.07.2022
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2.4. Individual plant delineation and extraction of plant-level metrics

Individual plants were delineated on each acquisition day by
applying Dalponte segmentation from ‘lidR’ package in R to Canopy
Height Models (CHMs) obtained from normalised LiDAR point clouds
with plant centroids used as initial seeds (Fig. 2b). Prior to CHM
calculation, all ground points were removed from the datasets. Addi-
tionally, to ensure no noisy points between ridges were retained, masks
based on hyperspectral imagery were applied. The cut-off values were
consistent across all datasets: an OSAVI value of 0.3, separating vege-
tation from soil, and a reflectance value of 2 % at 800 nm eliminating
shadows; the same masks were applied to both hyperspectral and ther-
mal imagery. The resultant point clusters were converted into plant
polygons by fitting a concave hull to their extents.

For each delineated plant, average spectral signatures and 131
multimodal metrics were computed. In the case of hyperspectral imag-
ery, these included a range of commonly applied vegetation indices
sensitive to variations in pigment concentration and biomass. For
LiDAR, the features were related to canopy structure, volume, or area.
Whereas in the case of thermal imagery temperature-based metrics,
including Crop Water Stress Index (CWSI), were computed. The full list
of derived metrics and associated sources is available in the Supple-
mentary Material. The CWSI was derived based on the image values,
utilising the 2nd and the 98th percentile of canopy temperatures within
the experimental field as fully-transpiring non-transpiring baselines.

2.5. Symptoms expression across diseases, cultivars and modalities

We explored the effect of infection on the acquired metrics across
different cultivars by using Linear Discriminant Analysis (LDA), which
aims to maximise the ratio of between-class variance to within-class
variance, thereby enhancing class separability in a lower-dimensional
space. Subsequently, Random Forest (RF) was employed to assess the
relative importance of these metrics in differentiating infected from non-
infected plants.

Application of LDA aimed to visually highlight the differences be-
tween varieties, the separability of different infection stages, and the
differentiation power of a given modality. For this purpose, three set-ups
were employed for each modality separately, contrasting the healthy
plants against symptomatic and presymptomatic blackleg cases. To
provide generalised insights, data from acquisitions with all modalities
(i.e. from 30.06, 06.07 and 14.07) were utilised following pareto scaling
normalisation that was applied to each day. Additionally, Principal
Component Analysis (PCA) transformation was applied to each of the
modalities due to the large number of metrics, many of which were
highly correlated. LDA was then performed on PCA-transformed inputs:
30 principal components (PCs) for hyperspectral and LiDAR metrics and
3 for thermal metrics, explaining >99.9 % of variation within the data.

To gain deeper insights into the relative importance of metrics across
all modalities, we employed RF analysis. Separate RF models were built
for each acquisition day (30.06, 06.07 and 14.07) by combining data
from all modalities (hyperspectral, LiDAR, thermal). Feature importance
scores were then extracted for each metric to quantify its contribution in
differentiating infected from healthy plants. To mitigate potential biases
introduced by highly correlated metrics, a pre-processing step involved
removing features exhibiting Pearson correlation coefficients exceeding
a threshold of 0.9. The RF models were built with 500 trees, where each
tree considered a random subset of 9-15 features (depending on the
tuning outcome) at each split during its construction. The importance of
a metric was assessed based on the decrease in Gini impurity it caused
when used to split a node. The final importance score for each metric
was obtained by averaging its importance across all trees in the forest.
This approach provides a robust assessment of which metrics, after
addressing collinearity, contribute most significantly to differentiating
infected from healthy plants within the combined modalities, for each
acquisition day.
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2.6. Infection detection capabilities and model transferability

We implemented linear Support Vector Machine (SVM) classification
algorithms to identify diseased plants on different acquisition days, and
subsequently evaluated how their performance varies across potato
cultivars and different combinations of modalities under the assumption
that incorporating information from different modalities would provide
an advantage in disease incidence identification. Separate models were
developed for each of the acquisition days (30.06, 06.07 and 14.07)
according to four modality set-ups, respectively containing: (i) H -
hyperspectral, (ii) HL - hyperspectral and LiDAR, (iii) HT - hyperspectral
and thermal, (iv) HLT - hyperspectral, LiDAR and thermal metrics. Data
from all cultivars were used for this purpose, with an 80:20 split for
training and testing - the split was applied to each cultivar separately to
ensure equal representation; presymptomatic infections were included
in the healthy class for modelling purposes. Class weighting was applied
to account for the severe imbalance between the healthy and infected
classes.

We fitted each model on the training sample using the ‘1071
package in R following hyperparameter tuning performed on each input
dataset, and subsequently assessed classification accuracy for each
cultivar separately and collectively for all cultivars. Two separate ap-
proaches for confusion matrix derivation were used with detected pre-
symptomatic cases either treated as (i) healthy specimens to test the
reproducibility of the inspector’s assessment (false positives) or as (ii)
true infection detections allowing early plant removal (true positives).
The developed models were also tested on other available acquisition
days to assess their robustness and transferability across the growing
season; the accuracy metrics were similarly calculated collectively for all
cultivars, and for each cultivar separately.

3. Results
3.1. Potential of different modalities for blackleg detection

Principal Component Linear Discriminant Analysis (PC-LDA)
allowed exploring the overall identification power that each of the uti-
lised modalities might offer, highlighting hyperspectral domain as most
important for late blackleg identification throughout the growing season
(Fig. 3). Spectral metrics not only offered clear separation between the
healthy and infected plants, but also allowed capturing changes in the
presymptomatic stage of infection. However, the level of separability for
presymptomatic infections varied depending on the day of data acqui-
sition, with the strongest responses observed on 30.06 (see Supple-
mentary Material for PC-LDA biplots for separate acquisitions).

Whilst hyperspectral domain offered clear separation between the
healthy and infected plants, the response in the structural and thermal
metrics was not as pronounced; this is evident by the substantial overlap
between classes along both axes of the PC-LDA (Fig. 3). Thermal imag-
ing, although showing least discrimination power among the investi-
gated modalities, was able to capture presymptomatic infection
responses. However, similarly to the hyperspectral domain, large vari-
ations in the level of separability occurred across the season. PC-LDA
performed on thermal metrics from 06.07 showed no separation from
healthy plants (see Supplementary Material). In contrast, earlier in the
season (on 30.06), clear differences in thermal responses were present.
Since presymptomatic infection was also evident in structural metrics on
this date, the observed increase in canopy temperature could be partly
due to the smaller plant size caused by stunted growth, resulting in less
transpiring plant material.

RF feature importance analysis similarly highlighted the hyper-
spectral domain as key for identification of infected plants (Fig. 4a). In
particular, indices sensitive to the carotenoid concentration in the leaf, i.
e. Photochemical Reflectance Index (PRI) and Plant Senescence Reflec-
tance Index (PSRI), were consistently highly ranked throughout the
season (Fig. 4a). PRI is a narrow-band index that targets xanthophyll



M. Smigaj et al.

HEALTHY PRE-VISUAL INFECTED Hyperspectral
— 10+
S ol 4 -
N 5 L
= /)\
B e e s S B s s I S S S |
5 0 5 10155 0 5 10 15-5 0 5 10 15 -5 0 5 10 15 -10 5 0
LD1 (96.01%) LD1 LD2
HEALTHY PRE-VISUAL INFECTED LiDAR
—~ 104
S 0% -
N 54
= 2&5 /\
104 T T T T T T T T T T T 1T
5 0 5 10 15-5 0 5 10 15-5 0 5 10 15 10 15 -10 5 0 0
LD1 (99.21%) LD1 LD2
HEALTHY PRE-VISUAL INFECTED Thermal
g 104
g
S 0 @ -
8 5 /\
=10y |
-5 0 5 10 155 0 5 10 155 0 5 10 15 -5 0 5 10 15 -10 5 0 10
LD1 (99.998%) LD1 LD2

Fig. 3. Principal Component (PC) Linear Discriminant Analysis (LDA) biplots
(left) with corresponding density distributions (right), visualising the separation
between healthy, presymptomatic and infected potato plants based on PC-
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pigments, which play a crucial role in light absorption and dissipation
during photosynthesis, therefore being indicative of a plant’s photo-
synthetic efficiency. In contrast, PSRI primarily detects the shift in the
ratio between chlorophyll and carotenoid pigments as leaves undergo
senescence. We observed a clear response in the PSRI value on each
acquisition date upon the onset of visual symptoms, with index values
converging following prolonged (>1 week) disease manifestation
(Fig. 4b). The structural index, WDVI, also showed clear responses
following the development of visual symptoms (Fig. 4c). Its importance
increased throughout the season as plants developed, likely reflecting
both the changes in vitality and structure resulting from stunted growth
and/or wilting, which were also captured by LiDAR metrics (Fig. 4d).

3.2. Spectral changes in response to infection across cultivars

A closer inspection of spectral responses after infection revealed
substantial variation between investigated cultivars. The most promi-
nent response was a significant drop in reflectance throughout the NIR
region, observed in plants at all growth stages (Fig. 2e). However, the
magnitude of this decrease varied between cultivars (Fig. 2f), with
Kuroda and Riviera showing the weakest response. The variation be-
tween infected plants of different cultivars was most pronounced early
in the season, gradually converging as plants matured (Fig. 2f). This
likely reflects differences in developmental rates among the cultivars. A
decrease in reflectance in the NIR region, though subtle, was also pre-
sent in presymptomatic infections (Fig. 2e-f). The Riviera cultivar was
the sole exception, exhibiting no changes in the NIR region but instead
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Fig. 5. Jitter plots illustrating the distribution and the median of selected plant-level metrics over the growing season for each investigated potato cultivar. Data
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observed on 11.07, blue - healthy. Significant differences between the healthy and infected plants are indicated by a single star (*) based on Mann-Whitney U test, p

< 0.01.

showing a minor reflectance decrease across the 550-650 nm range.
Significant spectral changes in response to infection could also be
observed in one of the chlorophyll absorption regions (550-680 nm),
and, in some cultivars, in the carotenoid absorption region (500-550
nm). This suggests that vegetation indices linked to photosynthetic ac-
tivity, carotenoid content, and chlorophyll concentration could provide
valuable diagnostic information.

While chlorophyll-based indices showed promise, their applicability
in generalised models might be limited since the spectra lacked the
typical responses observed in shorter wavelengths, typically used for
these indices, that reflect changes in chlorophyll content. Additionally,
inherent physiological differences between cultivars contributed to
spectral variation even among healthy specimens, leading to occasional
overlaps with infected plants from other cultivars; this overlap was most
evident early in the growing season (Fig. 2f). The varying importance of
indices targeting chlorophyll was reflected in the RF feature importance
analysis, being highly important on 06.07 but contributing much less on
the other two acquisition days (Fig. 4a). On 06.07, chlorophyll indices’
values were most consistent across different cultivars and showed sig-
nificant differences between infected and healthy plants as shown on
Fig. 5 with Ratio Analysis of Reflectance Spectra (RARS2) that combines
reflectance values from the red and the red edge regions. The separa-
bility between healthy, symptomatic and presymptomatic infection
stages varied between the utilised cultivars, with latterly symptomatic
plants showing little response in the case of Agria and Kuras and sub-
stantial shifts for other cultivars. Similar patterns could be seen in other
indices (see Fig. 5), with both the separability and the range of measured
values substantially varying across cultivars. Whilst clear responses in
the presymptomatic stage could be captured in some cultivars (e.g.
WDVI in Agria), in others, even symptomatic stages did not initially

manifest (e.g. WDVI in Kuras).

PCA-LDA analysis of vegetation indices derived from hyperspectral
data (Fig. 6) confirmed the observed cultivar-specific differences in
terms of both separability between the healthy and infected classes, and
the strength of stress responses. The Riviera cultivar displayed a distinct
pattern, but still achieved separation from healthy plants. Responses in
other cultivars were more similar, with Fontane and Kuroda showing the
least separation despite having vastly different susceptibility levels
(Fontane — high, Kuroda — low). Although the analysis indicated limited
to no separability between healthy and presymptomatic plants, we
observed substantial shifts in LD1 values for most cultivars (except
Kuras) on 30.06 (see Supplementary Material). This suggests presymp-
tomatic detection might be more achievable at earlier plant growth
stages.

3.3. Symptoms expression in thermal and LiDAR domains

Even though the response in thermal and LiDAR domains was not as
pronounced, they provided valuable information on disease effects on
plant development and functioning. Throughout the season we could
observe clear reduction in plant volume following disease manifestation;
the longer the visible symptoms were present, the higher the overall
reduction in plant volume (Figs. 4d and 5), which can be attributed to
both stunted growth and dieback. However, this reduction in symp-
tomatic plants relative to the healthy population was inconsistent both
across cultivars and over time. The clearest signal in newly infected
plants was observed during the early growth stages, resulting in 33-45
% median reduction in plant volume on 30.06 compared to 7-17 %
reduction on 06.07 and none to 19 % reduction on 14.07 when only
susceptible cultivars that were more likely to suffer from dieback were
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Fig. 6. Principal Component (PC) Linear Discriminant Analysis (LDA) biplots
for each investigated potato variety showing density distribution for healthy,
presymptomatic and infected potato plants based on PC-transformation of 76
hyperspectral metrics from 30.06, 06.07 and 14.07. The biplots contain over
19.000 data points,with graduated colours indicating the 50 %, 80 %, 95 % and
99 % density contours.

affected (i.e. Agria, Esmee, Riviera, Fig. 5). Varying growth patterns,
regardless of infection, further amplified differences between cultivars
as the growing season progressed (Fig. 7). For example, the relative
difference in healthy plant volume between two most different cultivars
(Riviera and Agria) increased from 0 % to 40 % between 15.06 and
14.07. The latter entered the flowering stage already on 06.07, whilst
the former on 14.07 was yet to start flowering; the Esmee cultivar
similarly developed more slowly and was still in the tuber initiation
phase when the data collection ceased. While only plant volume is
presented here for illustrative purposes, other structural metrics showed
similar variability across cultivars.

We observed similar potential difficulties in utilisation of CWSI, even
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though significant canopy temperature, and consequently CWSI value,
increase followed infection across all growth stages and cultivars (see
Figs. 4e and 5). Significant canopy temperature increase in the pre-
symptomatic plants could even be captured early in the season for most
cultivars (except for Kuras that proved resistant to the employed
blackleg strains), highlighting the applicability of utilising thermog-
raphy for capturing early responses. Still, the importance of CWSI, based
on the RF analysis, varied considerably throughout the season, showing
relatively low importance on 30.06 and 06.07 and then becoming the
second most important feature on 14.07 when the canopy temperature
differences between healthy and infected plants were most pronounced
(Fig. 4a). This could be attributed to large variability in the CWSI value
across cultivars, restricting the usefulness of this metric for blackleg
identification. For example, the median CWSI value ranged from 0.18 to
0.38 for the healthy and from 0.40 to 0.64 for the infected plants (Fig. 7).
In particular, the Kuroda cultivar significantly deviated from others,
with its plant canopies being increasingly cooler over the season. This,
akin to LiDAR metrics, highlights the difficulty in obtaining universally
applicable metrics where absolute values, even from a single acquisition
date, can provide sufficient interpretative power.

3.4. Disease detection capabilities across modalities

We proceeded to investigate whether robust disease detection
models utilising obtained metrics could still be developed despite the
challenges associated with variability in plant responses and the limi-
tations of individual metrics highlighted in previous sections. The
impact of utilising different modality combinations at different growth
stages within SVM models is shown in Table 4. High detection rates
could be achieved across all scenarios, ranging from 81 % to 89 %, with
small variations between modality combinations. No consistent patterns
emerged, though LiDAR inclusion proved beneficial during the early
growth stage, leading to an increase in the detection rate of 4 %,
reflective of the larger and more consistent impact on plant structure
across cultivars. Similarly, additional modalities typically led to small
improvements (1-4 %) on other days with HLT showing best perfor-
mance. Although instances of falsely identified infections (false posi-
tives) substantially exceeded those of missed infected plants (false
negatives), a significant portion of the misclassified plants belonged to
the presymptomatic infection stage. When considered to be True Posi-
tives, precision ranges increased from 71-76 % to 83-86 % on 30.06 and
from 72-81 % to 75-84 % on 06.07, demonstrating comparable values
across different acquisition days.
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Table 4
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Achieved blackleg detection rates of the developed models utilising metrics extracted hyperspectral (H), LiDAR (L) and/or thermal (T) data with presymptomatic
detections treated as false positives/true positives (only available for 30.06 and 06.07). Best performing models are shown in bold.

30.06 06.07 14.07

Mode Recall Precision Bal. Acc. Recall Precision Bal. Acc. Recall Precision Bal. Acc.
H 83.8/84.8 72.0/84.0 90.3/91.8 85.0/85.5 81.2/84.4 91.4/91.8 80.8 81.3 89.1
HL 87.4/89.1 71.0/84.1 92.5/93.9 85.7/86.2 79.2/82.4 91.6/92.0 81.9 82.9 89.8
HT 81.6/83.3 76.3/86.0 90.0/91.2 85.0/85.5 79.6/82.8 91.3/91.7 73.3 91.7 86.4
HTL 81.6/83.2 74.7/83.2 89.9/90.1 87.1/87.6 71.9/75.3 91.6/92.1 84.7 81.1 91.0
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Fig. 8. Achieved blackleg detection rates of the developed models for each variety utilising metrics extracted from hyperspectral (H), LiDAR (L) and/or thermal (T)
data with presymptomatic detections treated as false positives (solid fill) and true positives (semi-transparent fill).
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Fig. 9. Transferability of single-day SVM blackleg detection models, showing
achieved recall (top), precision (middle) and balanced accuracy (bottom) on test
datasets from different acquisitions. Four combinations of modalities were
tested utilising metrics extracted from hyperspectral (H), LiDAR (L) and/or
thermal (T) data. In all cases presymptomatic detections were treated as
True Positives.
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Despite achieving a high collective disease detection rate, we
observed significant discrepancies and inconsistencies across the
investigated cultivars (Fig. 8), with only three (Agria, Fontane, and
Riviera) showing comparable detection rates across all acquisition days.
The inclusion of presymptomatic detections improved cultivar-specific
precision rates (Fig. 8), most significantly in Esmee and Kuroda on
30.06 when the trained models were able to identify up to 15 %/43 % of
all presymptomatic infections (Esmee/Kuroda), leading to increases in
precision from 60-71 % and 54-57 % to 86-100 % and 77-82 %,
respectively. The weaker performance observed in the Kuroda cultivar
aligns with previous investigations of individual domains, which
revealed lower spectral separability, less pronounced canopy tempera-
ture increases, and subtler structural changes compared to other culti-
vars. Similarly to the collective analysis, no definitive patterns emerged
regarding the optimal modality combination. Although the differences
in performance tended to be small, the use of hyperspectral and LiDAR
metrics appeared to offer the most consistent detection rates. This
combination demonstrated the most promising results early in the sea-
son when we observed significant improvements in detection rates of
11-17 % over the sole use of hyperspectral metrics in cultivars with
subtler symptoms (i.e. Kuras, Kuroda and Riviera).

3.5. Detection model transferability across the growing season

We further tested the robustness of the single day models through
their application across the different acquisition days (Fig. 9), showing
that models trained on early growing season data (30.06) could be
directly transferred to later dates with success depending on the choice
of modalities. The combination of hyperspectral and LiDAR (HL) data
remained the most consistent, achieving recall rates of 82 % on 06.07
and 75 % on 14.07. In contrast, models incorporating thermal infor-
mation exhibited rapid decline in performance, with recall dropping
from 83 % on June 30th to 70 % on July 6th and 66 % on 14.07. This
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Fig. 10. Transferability of the HL SVM blackleg detection model utilising
hyperspectral and LiDAR metrics, showing achieved recall (top), precision
(middle) and balanced accuracy (bottom) on test datasets from different acqui-
sitions. In all cases presymptomatic detections were treated as True Positives.

decline was not present in 06.07 models that incorporated thermal in-
formation, which can be attributed to its diminishing importance rela-
tive to other metrics for classification since the thermal stress signal
became weaker and more variable across the cultivars (see Figs. 4a, 5
and 7).

All models developed on 14.07 transferred poorly to the earlier
season. Although very high recall could be achieved (84-93 %), incor-
porating samples from different cultivars that were at different growth
stages significantly affected the overall performance leading to persis-
tent misclassification of healthy plants (precision rates of 27-41 %).
Some of the cultivars utilised in training were in the tuber initiation
stage (Riviera and Esmee), while others were flowering (Agria, Kuras,
and Kuroda) or already in the tuber bulking stage (Fontane), which
affected the specificity of responses we observed in the derived metrics.
The weakest performances were indeed recorded in cultivars, which
experienced substantial shifts in the development between the acquisi-
tion days (Fig. 10), i.e. Kuroda (from tuber initiation to end of flowering,
10-12 % precision for HL modality), Fontane (flowering to tuber
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bulking, 45 % precision) and Agria (53 % precision on 06.07 at peak
flowering and 29 % on 30.06 during the tuber initiation). Although only
the HL mode is shown here, similar patterns could be observed for other
modality combinations (see Supplementary Material).

Substantial differences between cultivars in the ease of transfer were
also present in earlier models (see Fig. 10 and Supplementary Material).
These performed worst for least susceptible cultivars with weakest
symptoms (Kuras and Kuroda) with recall on 06.07 dropping by 25 %
and 13 %, respectively (based on the 30.06 HL model), due to infections
with subtle symptoms being missed or healthy plants, especially with
delayed emergence, being misclassified. Nevertheless, for other cultivars
the performances were more consistent, with detection rates often
comparable to those of the same day models. This highlights the po-
tential for using multi-modal data and machine learning models for
disease detection but also demonstrates the importance of considering
cultivar-specific characteristics, i.e. growth rates and symptoms
expression, when developing and applying such models.

4. Discussion

Whilst the potential of remote sensing for disease detection in crops
is relatively well-established, a gap exists in understanding how cultivar
and growth stage variations might influence the responses captured by
different modalities, and subsequently affect disease detection capabil-
ities. This study addressed this knowledge gap by exploring the impact
of these factors on multimodal remote sensing signatures at individual
plant level. Although our focus here is on blackleg in seed potatoes, the
findings on specificity of responses hold broader implications for disease
detection across other crops and diseases.

4.1. Linking remote sensing metrics to disease responses

Establishing clear links between observed changes in derived metrics
and the expected infection symptoms is crucial for development of
robust detection models as it not only improves their explainability but
also ensures the observed responses are indeed caused by the stress
agent in question. Blackleg can induce a range of symptoms involving
development of black rot lesions within the seed tuber that spread to
stems. This typically disrupts nutrient and water uptake, and can lead to
yellowing due to decreased chlorophyll content, wilting, maceration and
desiccation of leaves and stems (van der Wolf and De Boer, 2007).

Although chlorophyll decrease due to chlorosis and necrosis is a well-
known symptom (Steglinska et al., 2022), our analysis highlighted
indices relating to the xanthophyll cycle activity and the
carotenoid-to-chlorophyll ratio as most valuable. Though, the impor-
tance of the derived plant-level metrics shifted throughout the season.
Early on, PRI (sensitive to xanthophyll cycle activity) held the most
weight, reflecting early plant stress responses. However, as the season
progressed, PSRI (sensitive to the carotenoid-to-chlorophyll ratio)
became more informative, indicating potential changes in pigment
composition. Several studies support the link between derived metrics
and photosynthesis inhibition following blackleg infection. For example,
exposure of potato leaves to a culture filtrate of Pectobacterium car-
otovorum resulted in a down-regulation of psaD, which is a key
component of Photosystem I (PSI) (Montesano et al., 2004). PsaD was
similarly found to be down-regulated by methyl jasmonate molecules
created by plants upon infection with P. carotovorum (Hachoud et al.,
2019; Montesano et al., 2004). This down-regulation correlates with
accumulation of hydrogen peroxide in chloroplast that, although being
part of a plant defence response, negatively affects photosynthesis
(Kovac and Ravnikar, 1994).

Whilst the connection between carotenoids (which assist with
photosynthesis and light protection) and blackleg is unclear, a number
of previous studies explored their role in plant pathogen interactions.
Carotenoids are involved in the production of abscisic acid (ABA) by
host plants, a hormone that plays a key role in plant’s responses to
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infection (Ton et al., 2009). Following ABA synthesis plants can respond
to invasion by closing stomata upon contact with microbes to increase
their resistance, as have been shown for Pseudomonas syringae pv. to-
mato. After penetration, the role of ABA is controversial. In Arabidopis
thaliana, ABA repressed callose deposition, which resulted in an
increased resistance to P. carotovorum, but it also decreased the resis-
tance against abiotic stress conditions (Kariola et al., 2006). In contrast,
Bagy et al. (2019) showed that P. atrosepticum may interfere with this
defence mechanism after finding the total level of carotenoids to be
lower in infected potato plants.

The relative importance of chlorophyll-sensitive indices, structural
features and thermal metrics similarly varied over time. Structural
changes affecting plant geometry, such as dieback, typically take longer
to manifest as they require the disease to progress sufficiently. Conse-
quently, the effect on structural metrics became more apparent later in
the season. Though here, beyond dieback, we also observed evidence of
stunted growth, which was most substantial early in the growing season.
The need for sufficient dieback or growth stunting to occur explains why
the investigation of metrics directly capturing structural information has
so far been limited outside of a proximal or a laboratory set-up. Forestry
studies utilising LiDAR point clouds to capture disease-induced defoli-
ation are a notable exception (Smigaj et al., 2019b; Yu et al., 2021). So is
a previous UAV study on blackleg that also reported shifts in
LiDAR-derived metrics in infected potato plants (Franceschini et al.,
2024).

In contrast, thermal responses can often precede visual symptoms,
being indicative of issues with temperature regulation through transpi-
ration. Whilst breadth of literature exists on links between leaf/canopy
temperature and plant water status (Maes and Steppe, 2012; Smigaj
et al., 2024), the usefulness of thermal data for disease identification in
the field remains uncertain due to stomatal closure being a non-specific
response that can occur due to both biotic and abiotic stress factors. Still,
previous airborne canopy-level studies, which focused on orchards and
forests, observed clear temperature increases following infection as a
result of disease-induced disruptions to the water transport and/or
progressive defoliation (Poblete et al., 2023; Smigaj et al., 2019a; Zar-
co-Tejada et al., 2018; Zhang et al., 2023). Blackleg similarly hinders
water uptake and consequently affects transpiration by damaging the
vascular system. This can lead to an increase in canopy temperature, as
we were able to capture and confirm on all acquisition days. The
strongest signal was observed during the last data acquisition (on
14.07), which could be attributed to several factors: cumulative reduc-
tion in leaf water content due to progressive vascular damage, wilting
and desiccation of stems, stunted growth leading to less transpiring
material, and the timing of the acquisition coinciding with a warm day
following a dry period (2 mm of rain in the preceding 7 days with irri-
gation only applied later in the day) which might have amplified the
differences between healthy and infected plants.

Quantification of the severity of disease visual symptoms could allow
more nuanced links with remote sensing metrics to be established, of-
fering a clearer understanding of the level of infection required for
manifestation in different modalities. Whilst this was not explored here
due to our reliance on disease experts from NAK who used established
inspection protocols to identify diseased plants for prompt removal,
such an approach would allow for the development of more granular
models capable of distinguishing between early and advanced stages of
infection. This would be highly relevant for diseases where other man-
agement interventions, such as targeted fungicide applications or
biocontrol agents, are possible.

4.2. Specificity of disease symptoms manifestation in remote sensing
metrics

While UAV-based disease detection is a promising avenue, the use of
pre-selected remote sensing metrics for this purpose presents its own set
of challenges. Symptom expression is a complex interplay between
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factors like cultivar resistance, strain virulence, and environmental
conditions. The strain of pathogenic bacteria typically dictates disease
spread and progression with those possessing a functional Type III
Secretion System (T3SS) often being more virulent due to their ability to
manipulate host defences (Biittner and He, 2009). Though, both the
spread and symptoms development may be hindered or accelerated
depending on the environmental conditions. For example, for Clavibacter
michiganensis warm temperature and high relative humidity are most
optimal, whilst in the case of blackleg, hot and dry weather typically
prompts faster development of visible symptoms and higher plant
mortality (Toth et al, 2011). These factors, together with
cultivar-specific traits, can significantly impact the manifestation and
severity of symptoms, making it challenging to rely on pre-established
cues for definitive identification.

Cultivar-specific traits and development patterns may also affect the
specificity of responses. We observed substantial differences both in
spectral signatures and the extracted metrics for healthy plants of
different cultivars. This aligns well with observations reported by others;
Gold et al. (2020) similarly observed substantial differences in the leaf
spectra of different potato cultivars. Attempts have even been made at
utilising remote sensing data for in-field classification of crop or tree
cultivars (Avola et al., 2019; Gava et al., 2022; Guimaraes et al., 2023).
This inherent variability even within a healthy population further
complicates explicit symptom identification solely through remote
sensing data.

Despite sufficient level of symptoms expression being key to suc-
cessful identification of affected plants, field investigations into the
impact of cultivar-specific traits on remote sensing signatures of
diseased plants are lacking; previous investigations with multiple cul-
tivars or varieties mainly focused on phenotyping cultivar resistance
based on remote sensing metrics (Chivasa et al., 2020; Jay et al., 2020;
Simoes and Rios do Amaral, 2023). Indeed, in our study we observed
large differences in disease symptom expression between the investi-
gated cultivars, which consequently affected detection models’ perfor-
mances. For susceptible cultivars with apparent symptoms (Agria and
Riviera), same-day models were able to reach 84-92 % and 91-93 %
recall rates across the growing season (HL modality). However, for less
susceptible cultivars (e.g. Esmee and Kuroda), model performance var-
ied considerably (recall rates of 67-100 % and 67-92 %, respectively).
Similarly, model transfer across the growth stages was more successful
for cultivars with symptoms that were expressed more strongly.

The manifestation of disease symptoms in some of the investigated
metrics varied not only across cultivars but also throughout the growing
season. For example, while we could identify clear reductions in plant
size across all cultivars early in the season due to growth stunting and/or
dieback, later in the season substantial structural changes in latterly
infected plants were primarily present in susceptible cultivars more
prone to dieback. This highlights that the usefulness of different metrics
may considerably vary over the growing season depending on the uti-
lised cultivar. Similarly, the strength of the thermal signal varied over
time and was the strongest during the last data acquisition (on 14.07).
This could be attributed to several factors: cumulative reduction in leaf
water content due to progressive vascular damage, wilting and desic-
cation of stems, stunted growth leading to less transpiring material, and
the timing of the acquisition coinciding with a warm day following a dry
period (2 mm of rain in the preceding 7 days with irrigation only applied
later in the day) which might have amplified the differences between
healthy and infected plants. Taking environmental conditions into ac-
count should therefore also be a consideration since weather favouring
increased transpiration rates will accentuate differences between
healthy and diseased plants (Smigaj et al., 2024).

Further research investigating the underlying physiological and
biochemical mechanisms that drive such cultivar-specific responses to
disease onset and their impact on remote sensing signatures is crucial for
improving and increasing the explainability of remote sensing-based
disease detection approaches, especially in the growing era of
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Artificial Intelligence-driven (AI) methods that leverage vast amounts of
input data to extract relevant features (Jafar et al., 2024; Jung et al.,
2021). Whilst valuable insights can already be gained by focusing on
remote sensing alone, explicitly linking these observations to physio-
logical responses improves our understanding and allows critical
assessment of the underlying decision-making processes, helps identify
potential sources of error, can facilitate the development of broadly
transferable disease detection models.

In this study we introduced multiple sources of variation, including
seed potato cultivar diversity, data collection at multiple growth stages,
and the introduction of various blackleg-causing strains, and subse-
quently were able to capture broad variability in responses. Though, the
experiment’s scope limited the investigation of whether different bac-
terial strains differentially impacted the extracted metrics. Addressing
this challenge of variations in symptoms expression is key for develop-
ment of broadly transferable detection models. Potential solutions could
involve incorporating plant growth stage information and considering
potential environmental stressors, e.g. through coupling with crop
growth models (Berger et al., 2022), further exploration of normal-
isation techniques to account for inherent baseline differences between
cultivars, or coupling remote sensing data with radiative transfer models
(RTMs).

The use of RTMs would allow retrieval of functional plant traits for
each cultivar, making detection models less dependent on raw metrics.
The potential of using RTM-derived traits for detection of plant patho-
gens has already been demonstrated in olive and almond orchards
(Zarco-Tejada et al., 2018, 2021). This approach also allowed identi-
fying divergent responses between different stress agents, which could
then be utilised for their discrimination (Poblete et al., 2021; Zarco--
Tejada et al., 2021). Such differentiation is of high relevance for deter-
mining crop health status and enabling targeted interventions. However,
it is important to acknowledge that it is also inherently challenging since
similar symptoms can be triggered by a range of stress agents. The few
other studies exploring disentangling stress agents were typically
restricted to laboratory/greenhouse set-ups (Fallon et al., 2020; Gold
et al., 2020; Moshou et al., 2014). Further research on the potential of
multimodal approaches is therefore necessary to fully evaluate their
synergy. So is the exploration of how cultivar-specific variations in
symptom expression might affect the identified divergent pathways.

4.3. The potential benefits of multimodal approaches for blackleg
detection

Each of the investigated modalities provided information about
different physiological responses to blackleg onset. Although the
hyperspectral domain was consistently being highlighted as most crucial
for differentiation between healthy and diseased plants, LiDAR and
thermal domains also carried information indicative of infection. Still,
our investigations into the synergistic use of different modalities showed
that similarly high detection rates could be achieved with any of the
investigated combinations in single day detection models (recall 81-89
%, precision 75-86 %, balanced accuracy 89-94 %); combining hyper-
spectral metrics with features from other modalities only led to small
increases (up to 4 %) in the detection rates. This is in contrast to the
previous UAV study on blackleg that reported an increase in recall of 11
% (from 68 % to 79 %) after supplementing vegetation indices with
LiDAR metrics (Franceschini et al., 2024). This discrepancy could
potentially be caused by a substantially larger amount of inoculant
applied to the tubers in that study, which caused more prominent
manifestation of symptoms. Zhang et al. (2023) and Yu et al. (2021)
similarly reported an increase in overall accuracy of 7-9 % for detection
of pine wilt disease when combining UAV-based vegetation indices with
thermal data. Improvements in the range of 1-8 % in overall accuracy
(reaching 79-91 %) were also reported in olive and almond trees for
Verticillium dahliae and Xylella fastidiosa when combining airborne
hyperspectral data with solar-induced chlorophyll fluorescence and
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CWSI (Poblete et al., 2023). Other multimodal studies focusing on dis-
ease detection, although highlighting the significance of metrics
capturing different responses (e.g. through feature importance analysis),
rarely reported on the level of improvement compared to single mo-
dality (Smigaj et al., 2019b; Xu et al., 2023; Zarco-Tejada et al., 2018,
2021; Zhang et al., 2019).

In this study, the main differences in performance laid in the trans-
ferability to other dates. The combination of hyperspectral and LiDAR
features showed most consistent performance, with detection rates up to
12 % higher compared to other modality combinations. Interestingly,
sole inclusion of thermal metrics was in this case detrimental. Although
feature importance analysis ranked CWSI as important, PC-LDA revealed
that thermal domain offered the lowest distinction between different
health classes. Inherent limitations of miniature UAV thermal cameras
likely affected the strength and consistency of responses despite the data
being acquired and processed in a way to ensure high quality as sug-
gested in Smigaj et al. (2024). Miniature thermal cameras have low
signal-to-noise ratio and are very sensitive to changing ambient condi-
tions, leading to additional noise in the collected data (Kelly et al., 2019;
Smigaj et al., 2017; Wan et al., 2021). Majority of other studies utilising
thermal imagery for disease identification relied on more stable cameras
and platforms. Still, we were able to capture consistent temperature
increases in both infected and presymptomatic plants. Inclusion of the
latter as healthy samples for model training might have introduced
confusion, reducing models’ sensitivity to infections on other days.

Although we observed substantial decrease in performance when
transferring developed models across the datasets, we showed that some
of the models developed early in the season demonstrated a reasonable
level of success when applied to later growth stages despite the vari-
ability introduced by employing different cultivars. The HL SVM model
developed on 30.06 was still able to identify 82 % of infections on 06.07
and 75 % on 14.07, whilst retaining comparable balanced accuracy (89
% and 86 %). This is an encouraging step towards operationalising the
use of UAV-based sensing to support blackleg disease management.
Currently, identification of blackleg in seed potatoes relies on visual
assessments, which are time-consuming and labour-intensive, with main
control measures involving the use of certified tubers, avoiding
contamination and removal of affected plants. The timing of detection
plays an important role since prompt removal of infected plants mini-
mises the disease spread through the soil, insects and machinery. Early
detection, at the very least prior to tuber development, is crucial to
minimise chances of cross contamination upon harvest. In this regard, an
integrated approach of combining visual assessments with UAV-based
sensing to help fine-tune the sensitivity of detection models to the set
of symptoms in cultivars at hand would pave a way towards a practical
implementation of current approaches, helping reduce labour costs
associated with detailed visual inspections and mitigate economic losses
caused by blackleg.

5. Conclusions

This study aimed to explore the impact of cultivar and growth stage
variations on remote sensing signatures of seed potato plants infected
with blackleg disease. By utilising six cultivars with varying suscepti-
bility levels and employing three sensor modalities (hyperspectral,
LiDAR, and thermal), we demonstrated that the magnitude of stress
responses captured in plant-level metrics varied across modalities and
over time. Early-season responses were most strongly reflected in PRI
(sensitive to xanthophyll cycle activity), while later in the season, PSRI
(sensitive to the carotenoid-to-chlorophyll ratio and senescence) became
more informative.

Cultivar-specific traits significantly influenced symptom expression
and subsequent remote sensing signatures. Notably, growth stunting
and/or dieback were successfully captured in all cultivars for plants
infected early in the season, while later in the season, these structural
changes were primarily observed in latterly infected plants of cultivars
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more prone to dieback. Similarly, thermal metrics, while showing
promise, exhibited varying sensitivity to infection across cultivars and
growth stages. Importantly, significant variability in thermal signatures
was observed even among healthy plants of different cultivars, high-
lighting the influence of cultivar-specific physiological and morpho-
logical characteristics on remote sensing metrics.

While hyperspectral data provided the most valuable information,
combining hyperspectral and LiDAR data in SVM detection models
yielded the most consistent performance across the investigated dates
(balanced accuracy of 90-94 %), showing the added benefit of
combining modalities sensitive to different physiological responses.
However, differences in growth patterns and symptom expression across
cultivars still substantially affected the performance of the investigated
SVM detection models. This emphasises the need for better under-
standing of cultivar-specific responses and the need for further research
to address the challenges posed by cultivar variability to ensure the
robustness and broad operational applicability of UAV-based remote
sensing approaches for disease detection in arable crops.
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