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PAT sensor calibration

▪ Spectral measurements are performed alongside reference 

measurement and calibrations are made
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Sensor

NIRS measurement Samples extraction Reference analysis Data Modelling

Destructive analysis



• A statistical method that models relationships between predictors 

(X) and response (Y).

• Works well when predictors are highly correlated or when 

#predictors > #samples.

Partial least square regression
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Different PLS algorithms to approach similar 

solution
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NIPALS* algorithm
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𝑓𝑜𝑟 𝑖 = 1: 𝑎
𝒗 = 𝑿′ ∗ 𝒚 (𝑆𝑡𝑒𝑝 1 ∶ 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛)
𝒕 = 𝑿 ∗ 𝒗 (𝑆𝑡𝑒𝑝 2 ∶ 𝑆𝑐𝑜𝑟𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛)

𝑻 𝑖 =
𝒕

𝑛𝑜𝑟𝑚 𝒕
(𝑆𝑡𝑒𝑝 3 ∶ 𝑆𝑐𝑜𝑟𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑖𝑡𝑜𝑛)

𝑿 = 𝑿− 𝑻 𝑖 ∗ 𝑻 𝑖 ′ ∗ 𝑿 (𝑆𝑡𝑒𝑝 4 ∶ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑑𝑒𝑓𝑙𝑎𝑡𝑖𝑜𝑛)
𝒚 = 𝒚 − 𝑻 𝑖 ∗ 𝑻 𝑖 ′ ∗ 𝒚 (𝑆𝑡𝑒𝑝 5 ∶ 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑑𝑒𝑓𝑙𝑎𝑡𝑖𝑜𝑛)

𝑒𝑛𝑑

𝑿

𝒚

*NIPALS : Nonlinear iterative partial least squares

1. Information search
2. Information extraction
3. Extracted information 

removal from data
4. Repeat 



Conventional use of PLS
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Sensor

Measurement

NIR, MIR, Raman etc.

Multivariate

E.g. : spectra, 

multiple univariates

S1

S2

S3

S4

V1 V2 V3 V4 V5 V6 

S1

S2

S3

S4

y1

E.g.: API concentration

PLS



Data types encountered in PAT 
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Types of data sets (The predictor 𝑋)
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Sensor

Measurement Univariate 

E.g. : temperature, pH

Multivariate

E.g. : spectra, 

multiple univariates

V1
V1

V2

V3
V4

V5

V6

V7 V8

V9

V10 V1
V2

V3

Multiway

E.g. : images, 

Excitation emmision floroscence,

LC-GC, time series of 

multvariate

S1

S2

S3

S4

S1

S2

S3

S4

V1 V1 V2 V3 V4 V5 V6 

S1
S2

S3

𝑛 × 1 𝑛 × 𝑝 𝑛 × 𝑝 × 𝑘



Types of data sets (The predictor 𝑋 cont.)
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V1
V2

V3

Multiway

V1
V2

V3

Multiway

𝑛 × 𝑝 × 𝑘 × 𝑙

V1
V2

V3

Multiway

L1 L2 L3

E.g. : video sequences, 

Excitation emmision floroscence in times,

LC-GC in time, multiple batches of time series of multivariate signal



Types of data sets (The predictor 𝑋 cont.)
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Univariate 

E.g. : temperature, pH

Multivariate

E.g. : spectra, 

multiple univariates

V1

V1
V2

V3 V4
V5

V6

V7 V8

V9

V10 V1
V2

V3

Multiway

E.g. : images, 

Excitation emmision floroscence,

LC-GC, time series of 

multvariate

𝑛 × 1 𝑛 × 𝑝 𝑛 × 𝑝 × 𝑘

The Multimodal/Multisensor/Multiblock 𝑋 = {𝑋1, 𝑋2, 𝑋3. . } 

Cont.



Types of data sets (The response 𝑌 cont.)
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S1

S2

S3

S4

S1

S2

S3

S4

y1 y1 y2 y3 y4 y5 y6 
Y1

Y2
Y3

E.g.: fat concentration E.g.: fat and protein 

concentration

E.g.:  fat and protein 

Concentration in time (maybe)



Terminology
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• Multivariate → Data with many variables (e.g., spectra, chromatograms, sensor 

arrays) measured simultaneously for each sample.

• Multiway → Data with more than two modes (dimensions) (e.g., fluorescence 

excitation–emission matrices, which have sample × emission × excitation).

• Multiblock → Data structured in separate but related blocks (e.g., combining 

spectroscopy + chromatography + sensory data for the same samples).



PLS algorithms depending on data types
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▪Single two way block : PLS

▪Single two block and multiple responses (regression and 
classification) : PLS2

▪Multiple blocks : SO-PLS, PO-PLS, MB-PLS, ROSA etc.

▪Multiway : N-PLS, N-CPLS

▪Multiway Multiblock : SO-N-PLS, N-ROSA, SO-N-CPLS



How PLS handles multiway data
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PLS aims to decompose matrices or higher order array into a 
set of scores and loadings.

Terminology : Multilinear modelling!



How PLS handles multiway response
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y T b e

Response Score

Reg. 

coefficients
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y

Score

Q2

e
Y3D

4D y

Score

Q3

e

A response matrix or higher order array can also be 
decomposed into scores and loadings.



Milk multiway multiblock dataset
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Block 1 Block 2 Block 3



PLS analysis of single two-way data
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N-PLS analysis of multiway data
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How PLS handles multiblock data

19

The Multimodal/Multisensor/Multiblock 𝑋 = {𝑋1, 𝑋2, 𝑋3. . } 

Cont.X2X1

X2
X2

X3

Univariate Multivariate Multiway

T2

P

e

Score

Loadings T3

P2

T1

Score

Loadings



How PLS handles multiblock data
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y T b e

Response Score

Reg. 

coefficients

y T1 b123
e

Response Concatenated Score
Reg. 

coefficients

T2 T3

Scale independent!



Milk multiway multiblock dataset
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Block 1 Block 2 Block 3



Multiblock multiway modelling
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Complementary information is 
learned from different data 

blocks.



How PLS models complementary information
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The Multimodal/Multisensor/Multiblock 𝑋 = {𝑋1, 𝑋2, 𝑋3. . } 

Cont.X2X1

X2
X2

X3

Univariate Multivariate Multiway

T2

P

e

Score

Loadings T3

P2

T1

Score

Loadings

1. Information search
2. Information extraction
3. Extracted information 

removal from data
4. Repeat 

𝑿𝟏 = 𝑿𝟏 − 𝑻 𝑖 ∗ 𝑻 𝑖 ′ ∗ 𝑿𝟏 (𝑑𝑒𝑓𝑙𝑎𝑡𝑖𝑜𝑛)

𝑿𝟐 = 𝑿𝟐 − 𝑻 𝑖 ∗ 𝑻 𝑖 ′ ∗ 𝑿𝟐 (𝑑𝑒𝑓𝑙𝑎𝑡𝑖𝑜𝑛)

𝑿𝟑 = 𝑿𝟑 − 𝑻 𝑖 ∗ 𝑻 𝑖 ′ ∗ 𝑿𝟑 (𝑑𝑒𝑓𝑙𝑎𝑡𝑖𝑜𝑛)



How to select features in 

multiway, multiblock data
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Feature selection multiway data
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Feature selection : identifying important variables
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Multivariate

E.g. : spectra, multiple univariates

V1
V2

V3 V4
V5

V6

V7 V8

V9

V10

V1
V2

V3

Multiway

E.g. : images, 

Excitation emmision floroscence, LC-GC, time 

series of multvariate

S1

S2

S3

S4

V1 V2 V3 V4 V5 V6 
S1

S2
S3



Intutive example for higher dimensional features
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Fouroscenece excitation emission data

Biancolillo, Alessandra, Jean-Michel Roger, and Federico Marini. "N-CovSel, a new strategy for feature 

selection in N-way data." Analytica Chimica Acta 1231 (2022): 340433.



Intuitive example for higher dimensional features
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Fouroscence excitation emission data

“For any n-way data, features can be selected of type 1D to n-1 way”



Multiway multiblock feature selection modelling

29



An example of pre-processing fusion
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Data pre-processed with different pre-
processing can be treated as multiblock data!

Mishra, Puneet, et al. "New data preprocessing trends based on ensemble of multiple preprocessing 

techniques." TrAC Trends in Analytical Chemistry 132 (2020): 116045.



Two unified algorithms for multiway multiblock 

modelling and feature selection
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Pre-recorded CPACT webinars



Conclusions
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• PLS is a versatile framework which allows handling wide variety of 
data types in PAT.

• Its unique property to perform multilinear modelling allows handling 
1D to nD data.

• It allows a scale independent data fusion framework to model 
complementary information.

• Feature selection in multiway data is also possible within PLS 
framework.

• Several uncommon extensions of PLS can benefit PAT data 
processing.



Free (Gratis) training

33
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