Thinking in higher dimensions and modes:
Addressing multivariate multimodal multiblock
data within framework of partial least-squares
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PAT sensor calibration

" Spectral measurements are performed alongside reference
measurement and calibrations are made

Sensor .
Destructive analysis
I




Partial least square regression

* A statistical method that models relationships between predictors
(X) and response (Y).

* Works well when predictors are highly correlated or when
#predictors > #samples.
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Different PLS algorithms to approach similar
solution

Research Article CHEMOMETRICS
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A comparison of nine PLS1 algorithms

Martin Andersson?*

Nine PLS1 algorithms were evaluated, primarily in terms of their numerical stability, and secondarily their speed.
There were six existing algorithms: (a) NIPALS by Wold; (b) the non-orthogonalized scores algorithm by Martens; (c)
Bidiag2 by Golub and Kahan; (d) SIMPLS by de Jong; (e) improved kernel PLS by Dayal; and (f) PLSF by Manne. Three
new algorithms were created: (g) direct-scores PLS1 based on a new recurrent formula for the calculation of basis
vectors yielding scores directly from X and y; (h) Krylov PLS1 with its regression vector defined explicitly, using only
the original X and y; (i) PLSPLS1 with its regression vector recursively defined from X and the regression vectors of its
previous recursions. Data from IR and NIR spectrometers applied to food, agricultural, and pharmaceutical products
were used to demonstrate the numerical stability. It was found that three methods (, f, h) create regression vectors
that do not well resemble the corresponding precise PLS1 regression vectors. Because of this, their loading and score
vectors were also concluded to be deviating, and their models of X and the corresponding residuals could be shown to
be numerically suboptimal in a least squares sense. Methods (a, b, e, g) were the most stable. Two of them (e, g) were not
only numerically stable but also much faster than methods (a, b). The fast method (d) and the moderately fast method
(i) showed a tendency to become unstable at high numbers of PLS factors. Copyright © 2009 John Wiley & Sons, Ltd.

Keywords: PLS; algorithms; comparison; regression vector; numerical; stability; speed
.
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NIPALS™ algorithm

1. Information search

2. Information extraction

3. Extracted information X
removal from data

4. Repeat

fori=1:a
v=Xxy (Step 1: Covariance estimation)
t=Xx*xv (Step?2: Scoreestimation)
T(i) = —

norm(t)
X=X-T(@{)*T() =X (Step 4 : Predictor deflation)
y=y—T(@{) *T(@{) *y (Step 5 : Response deflation) Y
end

(Step 3 : Score normalisaiton)

WAGENINGEN . . . .
NIVERS Ty & RESE AR *NIPALS : Nonlinear iterative partial least squares



Conventional use of PLS
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Data types encountered in PAT
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Types of data sets (The predictor X)
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nx1

V1

Univariate

E.g. : temperature, pH

S1
S2
S3

S4

nXp

V4
V3 V5

V2
V1 V6 V10

V9
V7 v

Multivariate

E.g. : spectra,
multiple univariates

V1V2V3V4V5Ve

S1 S1

S2

S3

sS4

nxpxXk

v2

V1

Multiway

E.g. : images,

Excitation emmision floroscence,
LC-GC, time series of
multvariate

S2 S3




Types of data sets (The predictor X cont.)

nxXpXkxl
L1 L2 L3
V3 V3 V3
v2 v2 V2
V1 V1 V1
Multiway Multiway Multiway

E.g. : video sequences,
Excitation emmision floroscence in times,
LC-GC in time, multiple batches of time series of multivariate signal
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Types of data sets (The predictor X cont.)

The Multimodal/Multisensor/Multiblock X = {X1,X2,X3..}

y3 V4 V?
V) V> V2
V1
Vi V6 V1o
" I V7 " + B + Cont.
V8
Univariate Multivariate Multiway
: E.g. : spectra, E.g. : images,
£9- ¢ temperature, pr multiplepunivariates Excitation emmision floroscence,

LC-GC, time series of
multvariate
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Types of data sets (The response Y cont.)

S1

S2

S3

sS4

E.g.: fat concentration
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E.g.: fat and protein
concentration

Y1

v2 Y3

E.g.: fat and protein
Concentration in time (maybe)
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Terminology

 Multivariate — Data with many variables (e.g., spectra, chromatograms, sensor
arrays) measured simultaneously for each sample.

 Multiway — Data with more than two modes (dimensions) (e.g., fluorescence
excitation—emission matrices, which have sample X emission x excitation).

 Multiblock — Data structured in separate but related blocks (e.g., combining

spectroscopy + chromatography + sensory data for the same samples).
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PLS algorithms depending on data types

" Single two way block : PLS

" Single two block and multiple responses (regression and
classification) : PLS2

" Multiple blocks : SO-PLS, PO-PLS, MB-PLS, ROSA etc.
" Multiway : N-PLS, N-CPLS
® Multiway Multiblock : SO-N-PLS, N-ROSA, SO-N-CPLS

WAGENINGEN 13
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How PLS handles multiway data

P
2D X T Loadings
Spectra Score
y T b
Reg.
Response Score coefficients

3D

PLS aims to decompose matrices or higher order array into a

set of scores and loadings.
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4D

P2

Score

P3

Score

Terminology : Multilinear modelling!




How PLS handles multiway response

y T b &
Reg.
Response Score coefficients

A response matrix or higher order array can also be
decomposed into scores and loadings.
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Milk multiway multiblock dataset

Table 1
A summary of the milk data set.
NIRONE 1.4 NIRONE 2.0 NIRONE 2.5 Protein (% wjw) Fat (% w/w)
Spectral range (nm) 1100—1350 1550—-1950 2000—2450 * *
Data shape 296 x 126 296 x 201 x 2 296 x 226 296 < 1 296 x 1
Reference range (Average + standard deviation) * * * 3.90 + 0.41 471 + 1.10
*not relevant.
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055

PLS analysis of single two-way data
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N-PLS analysis of multiway data
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How PLS handles multiblock data

The Multimodal/Multisensor/Multiblock X = {X1,X2,X3..}

X1

Univariate

Tl
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How PLS handles multiblock data

y T b @
Reg.
Response Score coefficients
Y T1||T2]|| T3 byos e
Reg.
Response Concatenated Score  coefficients
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Milk multiway multiblock dataset

Table 1
A summary of the milk data set.
NIRONE 1.4 NIRONE 2.0 NIRONE 2.5 Protein (% wjw) Fat (% w/w)
Spectral range (nm) 1100—1350 1550—-1950 2000—2450 * *
Data shape 296 x 126 296 x 201 x 2 296 x 226 296 < 1 296 x 1
Reference range (Average + standard deviation) * * * 3.90 + 0.41 471 + 1.10
*not relevant.
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Multiblock multiway
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How PLS models complementary information

The Multimodal/Multisensor/Multiblock X = {X1,X2,X3..}

X1 + X2

Univariate Multivariate
P
T1 T2 Loadings
Score
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X3

4.

+ Cont.

X1 =X1-
Multiway X2 = X2 —
P2
Loadings e

T3

Score

1.
2.
3.

Information search
Information extraction
Extracted information
removal from data
Repeat

T(i) « T(i)' * X1 (deflation)
T(i) « T(i)' * X2 (deflation)
T(i) « T(i)' * X3 (deflation)
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How to select features in
multiway, multiblock data
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Feature selection multiway data

13
2D X Loadings
Spectra Score
y T b
Reg.
Response Score coefficients
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Feature selection :

Multivariate
V3 V4
® V5
V2 V10
Vi1 ® V6
® V9
V7 V8

E.g. : spectra, multiple univariates

V1V2V3V4V5V6

S1

S2

S3

S4
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identifying important variables

V3

V2
V1

Multiway

E.g. : images,
Excitation emmision floroscence, LC-GC, time

series of multvariate
S3

S2

S1
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Intutive example for higher dimensional features

(A) 1-way feature: column X(:,j,k)

: K
400
|

300 «
2
2 200. J
9
= Ay ' (B) 2-way feature: slice X(:,j,:) (C) 2-way feature: slice X(:,:,k)
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0
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Emission /nm 250 240 Fxeitation /nm
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Fouroscenece excitation emission data
WAGENINGEN Biancolillo, Alessandra, Jean-Michel Roger, and Federico Marini. "N-CovSel, a new strategy for feature 7
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Intensity

Intuitive example for higher dimensional features
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“For any n-way data, features can be selected of type 1D to n-1 way”
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Multiway multiblock feature selection modelling
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TABLE 4 A summary of features selected for multiblock multiway data
Method First block Second block
ROCS 1296, 1350 (1666,2), (1722,1), (1608,1),
(1838,1), (1844,2)
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An example of pre-processing fusion

Orthogonalization

&
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Mishra, Puneet, et al. "New data preprocessing trends based on ensemble of multiple preprocessing
techniques." TrAC Trends in Analytical Chemistry 132 (2020): 116045.
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Two unified algorithms for multiway multiblock
modelling and feature selection

3@% Analytica Chimica Acta
SVIER

)
ELSE Volume 1206, 8 May 2022, 339786

Swiss knife partial least squares (SKPLS):
One tool for modelling single block,
multiblock, multiway, multiway multiblock
including multi-responses and meta
information under the ROSA framework

Puneet Mishra @ & X, Kristian Hovde Liland b

Pre-recorded CPACT webinars
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Swiss knife covariates selection: A unified algorithm for

covariates selection in single block, multiblock, multiway,

multiway multiblock cases including multiple responses
Puneet Mishra B, Kristian Hovde Liland, UIf Geir Indahl

First published: 02 September 2022 | https://doi.org/10.1002/cem.3441 | Citations: 2
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Conclusions

®* PLS is a versatile framework which allows handling wide variety of
data types in PAT.

® [ts unique property to perform multilinear modelling allows handling
1D to nD data.

* It allows a scale independent data fusion framework to model
complementary information.

®* Feature selection in multiway data is also possible within PLS
framework.

® Several uncommon extensions of PLS can benefit PAT data
processing.

WAGENINGEN

EEEEEEEEEEEEEEEEEEE

32



Free (Gratis) training

Topsector
Agri&
Food

e
(3= 1S\ TOPSECTOR

TUINBOUW - UITGANGSMATERIALEN
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Training

Chemometric Approaches for
Hyperspectral Image Processing

Date 19-21 November 2025,
each day from 9:00 to 17:00 hr
Location Phenomea, building number 125

on Wageningen Campus

Course leader Dr. P (Puneet) Mishra,
Wageningen Food & Biobased Research
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Day 2 & 3, Thu. 20 and Fri. 21 November 2025
Theme: Open-Source Python Tutorial Session
- Mastering Chemometrics

e Hyperspectral Image Loading, Pre-processing,
Object Detection/Segmentation
- Efficiently handle and prepare your hyperspectral cubes.
- Techniques for identifying and isolating regions of interest.
e Spectral Extraction, Spectral Pre-processing,
Outliers Removal, Chemometric Exploratory &
Predictive Modelling
- Extracting meaningful spectral signatures.

- Noise reduction, baseline correction, and scatter correction.

- Unveiling patterns with PCA, and building robust
prediction models (e.g., PLSR, PCR, deep learning).
e Variable Selection
- Identifying the most informative wavelengths for
model efficiency and interpretability.
e Robust Modelling
- Strategies for building models that perform reliably
across varying conditions.
e Fusion of Information from Different Sensors
- Integrating data from multiple sources for
comprehensive analysis.
e Model Transfer Between Sensors
- Techniques for applying models developed on one
sensor to another.
e Model Robustness
- Assessing and enhancing the stability and reliability
of your models.
e Model Maintenance and Correction Strategies
- Ensuring long-term performance and adaptability
of deployed models.
e Using pre-trained AI models for hyperspectral
image processing
- How to use already trained open-source Al models
to improve hyperspectral modelling
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