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Abstract: This paper introduces a cascaded climate control framework in which a primary
economic model predictive controller (EMPC) determines climate bounds for a secondary rule-
based controller, based on industrial practice. The proposed controller may therefore serve as
a blueprint for control design for existing greenhouse climate control systems while retaining
the reliability and safety of legacy systems. The framework’s performance is evaluated through
simulations of a lettuce greenhouse model and compared against a state-of-the-art EMPC that
controls all actuators directly. The results show that the proposed approach achieves comparable
performance to the ideal state-of-the-art EMPC, demonstrating negligible performance loss from
retaining rule-based control in the climate control system.
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1. INTRODUCTION

Since the early 1990s, several research directions have
been pursued to optimize greenhouse climate control.
One frequently studied approach involves model-based
optimal control methodologies based on crop growth.
Initially introduced by Challa and van Straten (1993)
and then further explored by van Henten (1994) and Tap
(2000), these methods share a common focus on economic
optimization, aiming to maximize net revenue, typically
defined as crop yield gains minus greenhouse operational
costs.

The integration of optimal control in controlled environ-
ment agriculture (CEA) has been widely explored in litera-
ture. For instance, Iddio et al. (2020) provides examples of
economic model predictive control (EMPC) in CEA. Fur-
thermore, EMPC has been applied to address parametric
uncertainties (Boersma et al., 2022) and weather forecast
errors in climate control (Kuijpers et al., 2022). Addi-
tionally, van Mourik et al. (2023) investigated economic
climate control through stochastic dynamic programming,
while Morcego et al. (2023) explored its integration within
a reinforcement learning framework. Another notable con-
tribution from van Henten and Bontsema (2009), is the
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introduction of economic climate control in hierarchical
control architectures that exploit temporal decomposition
of climate-crop dynamics.

These methodologies have consistently demonstrated their
potential to enhance energy efficiency and crop yield in
numerical simulations. However, they are not readily ap-
plicable at an industrial scale. As highlighted by van
Straten and van Henten (2010), real-world greenhouses
predominantly rely on complex, heuristically designed
Rule-Based Controllers (RBCs). RBCs receive climate
boundary signals that define the desired climate space.
Using the current greenhouse climate states, control inputs
are computed through switching rules and proportional
controllers, which adjust the system to maintain or steer
the climate within the specified climate bounds. RBCs are
expected to remain central due to their reliability, safety,
and the industry’s preference for incremental integration
over radical system overhauls (van Straten, 1999). State-
of-the-art research overlooks RBCs in greenhouse climate
control, posing a key barrier to industry adoption. There-
fore, a shift in perspective is needed to bridge the gap be-
tween optimal control strategies and practical greenhouse
applications.

In this study, we adopt an industry-oriented perspective
on greenhouse climate control. We propose designing au-
tomated climate control as a cascaded control system.
In this framework, a primary EMPC determines optimal
climate bounds while accounting for economic impact.
These bounds are then transmitted to a secondary con-
troller, the RBC, which directly regulates the greenhouse
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actuators, forming a closed-loop cascaded control system,
as illustrated in Figure 1. To assess the performance of the
proposed framework, we consider a state-of-the-art direct
EMPC scheme as a benchmark, representing ideal control
performance. In this initial study, we assume full-state
feeback for both control strategies.

This paper proposes an MPC approach for the cascaded
climate control loop and evaluates its performance using
a simulated experiment on a greenhouse lettuce model.
Section 2 introduces the lettuce greenhouse model. Sec-
tion 3 describes the RBC implemented in this study. Sec-
tion 4 details the proposed EMPC formulation. Section 5
presents the benchmark EMPC and the simulation results.
Section 6 discusses the findings and Section 7 concludes the
work.

Operational
Settings Y l
Economic s w
Predictive > RBC > Greenhouse
Controller

i i |

Fig. 1. Closed-loop cascaded climate control framework
integrating an economic predictive controller to deter-
mine the optimal climate bounds and an RBC for cli-
mate implementation. Here, d represents the weather
conditions, s indicates the climate bounds acting as
RBC’s input signals, u corresponds to greenhouse con-
trol inputs for heating, ventilation, and CO5 control,
and z represents the full-state feedback, including the
climate-crop measurements from the sensors.

2. LETTUCE GREENHOUSE MODEL

In this study, we employ a greenhouse lettuce model taken
from van Henten (1994). The model is discretized using
the fourth-order Runge-Kutta method with time step Ty =
15 min, formulated as:

w(k+1) = f(x(k), u(k), d(k)), (1)
y(k) = h(x(k)),

with discrete time k € Zso, f(-) : R* x R® x R* — R*
and h(-) : R* — R* are nonlinear functions. The model
states are x(k) € R*, outputs y(k) € R*, control inputs
u(k) € R3 and weather disturbances d(k) € R*. Their
vectors are defined as,

_ T _ T
T = (xdwv J;COQa T, xH) ) u = (UCO27 Uvyent 'U'heat) 9

Y = (Yaw, Yco.: yrs yru) , d=(di, dco,, dr, dH)?)

2
where x4, denotes the lettuce dry weight in kg -m™2,
rco, the indoor COy concentration in kg-m™3, T the
air temperature in °C, ry the humidity in kg-m™3,
uco, the supply rate of CO in mg - m~=2- 571 uyepn the
ventilation rate through the vents in L-m=2 - s~ (liters
per greenhouse area per second), Upeat the energy supply
by the heating system in W-m™2, yq,, the dry weight in
g-m~2, yco, the indoor CO, concentration in ppm-103,
yr air temperature in °C, ygry relative humidity in %, d;

the incoming radiation in W-m~2, dco, the outdoor CO,

concentration in kg-m™3, dr the outdoor temperature in

°C, du the outdoor humidity content in kg-m~=3.

3. RULE-BASED CLIMATE CONTROL

In practice, greenhouse temperature control typically op-
erates based on two boundary signals: the heating line
(Sheat) and the ventilation line (Syent). When the air tem-
perature drops below the heating line, heating is activated
and scales proportionally to the temperature difference.
Conversely, when the air temperature exceeds the ventila-
tion line, the ventilation rate scales proportionally to the
temperature difference. A dead-band is applied between
these two lines to prevent simultaneous heating and cool-
ing actions. Humidity control follows a similar principle;
when relative humidity exceeds the relative humidity line
(SrRHmax) the ventilation rate scales proportionally to the
humidity difference. In cases where both temperature and
humidity require regulation, the ventilation rate is de-
termined by the maximum of the two control demands.
The control logic governing temperature and humidity is
depicted in Figure 2. In addition, CO4 levels are regulated
using the COy line (sco,). When COy drops below the
COg4 line, COs injection is activated and scales propor-
tionally to the CO4 difference.
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Fig. 2. Control rules of heating and ventilation for tem-
perature and humidity control. Here x1 denotes the
indoor air temperature, speat 1S the heating line, syent
is the ventilation line, and Sgpmax represents the
maximum allowed relative humidity. Ventilation is
used to keep the indoor humidity below Sgrumax at
all times, regardless of xz1. Heating is activated when
T < Sheat, While ventilation provides cooling when
TT > Syent- FOT T > Syent, the ventilation is set to the
maximum value needed for either temperature control
or relative humidity control.

The RBC presented in this study is integrated into an
optimization problem that is solved using gradient-based
methods. Gradient-based methods require continuously
differentiable functions to guarantee reliable and stable
convergence. Therefore, all functions within the RBC are
smoothed to ensure continuous gradients.

The mathematical representation of the RBC is based on
the smoothed proportional controller as defined in Katzin
(2021). Specifically, the heating and COz control actions
are computed using the sigmoid-based formulation shown
in (3):
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90y (w(k), sy (k) =
3)
1+exp (—21“{5%‘”(—w(k)+s(.)(k)—o.5p(.)))

Here, w(k) is the measured value (i.e., temperature or
COs), s()(k) € {sneat(k), sco,(k)}, p) specifies the
proportional control bandwidth (P-band), and v .y denotes
the maximum control action. The heating and COg control
inputs are calculated as:

Uheat (k) = Gheat (xT(k); Sheat(k)) (4)
UCO, (k) = gco, (ICOQ (k)75002 (k)) (5)

To ensure the smooth implementation of the ventilation
rule, the modified log-sum-exp function:

uvent(k) =In (exp (gvent (iCT, Svent)) (6)
+ exp (9rH(YRH, SRHmax)) — 1) -
is used, where gyen; and gry are ventilation rates calcu-
lated for temperature and humidity, respectively, using a
sigmoid function similar to (3), with the term (—w(k) +
S(.)(k’) - 0.5p(.)) replaced by (w(k) — S(.)(k‘) — 0.5p(.)) to
reverse the direction.

The RBC tuning parameters are detailed in Table 1.
Table 1. RBC parameters

COs2 vent heat RHmax
V() 1.2mgm~2s7! 75Lm~2s7! 150Wm~2 7.5Lm 257!
pey | 1073kgm=3  5°C 6°C 15%

4. ECONOMIC NONLINEAR MPC WITH RBC
INTEGRATION

We propose an economic climate controller using MPC
that indirectly controls greenhouse actuators by optimiz-
ing climate boundary trajectories as inputs to an RBC.
These trajectories aim to achieve optimal climate con-
ditions that maximize net revenue. As with any MPC
framework, the key components are a predictive model, an
optimization problem, and constraints that define the fea-
sible solution space. Consistent with the receding horizon
principle, the proposed controller solves the optimization
problem at each time instant and applies only the first
optimal decision.

4.1 Prediction Model

The prediction model in this work relies on a detailed
understanding of the coupled RBC-greenhouse system dy-
namics. Integrating the RBC into the prediction model
is critical for accurately capturing system behavior. How-
ever, this integration introduces additional nonlinearities
into the MPC problem, which may impede convergence of
standard nonlinear solvers.

The prediction model is formulated as:
u(k) = g(s(k), z(k)),
z(k+1) = f(z(k), u(k),d(k)), (7)
y(k) = h(z(k)),

where f(-) and h(-) represent the greenhouse dynamics,
s € R* a vector containing the desired climate bounds,

and g : R* x R* — R? is the RBC model representing the
right hand side of (3) and (6).

For simplicity, the controller operates under nominal con-
ditions, assuming full-state feedback where z(k) is either
directly measured or perfectly estimated.

4.2 Optimization Problem

At each time instant kg, the following optimization prob-
lem is solved:

ko+N
min > LK), ulk), s())
k=ko

s.t. u(k) = g(s(k), z(k)),
2k +1) = fw(k), u(k), d(k)), s)
(k) = h(z(k)),
svent(k) - Sheat(k) § 307
s(k) <5,
ylk) <y, k=ko,....,ko+ N,
where s and 5 are the lower and upper limits of s =

(5C04> Svent, Sheats SRHmax )T, y and ¥ define greenhouse
output limits. The climate limits used reflect standard
practice and their values are:

s=(0, 0, 0, 65)", 5=(0.0035, 35, 35, 95)" o)

y = (0, 0.4, 10, 40)", 7= (o0, 1.6, 25, 80)"
The inequality constraint on syent (k) — Sheat (k) is imposed
to prevent concurrent activation of heating and cooling

for temperature control. Upper and lower limits are not
applied on u as they are enforced indirectly through g.).

—~

e 1o © <
INIAIA

4.8 Cost Function

The cost function of (8) has to reflect the maximization of
the plant growth and the minimization of the energy use.
These economic factors are accounted for via the stage
cost:

Co(z(k),u(k)) = —cawAzaw (k) + cLu(k) (10)
where cqy > 0, ¢l € R? are weights for the dry weight
change (Azq4yw), and actuation effort (u).

Due to the nature of the RBC, multiple climate bound
trajectories can generate identical control inputs. For ex-
ample, any heating line below the current greenhouse
temperature results in zero heating input. Thus, if the
optimal action is to avoid heating, any selection of Speat
below the current greenhouse temperature is equally opti-
mal. This behavior complicates the optimization problem,
potentially causing numerical instability in the solver. To
address this, a quadratic penalty is applied to As(k), fa-
cilitating convergence. This approach also prevents abrupt
changes in s(k), which would be impractical in real-world
operations. Thus, the stage cost £(-) in (8) is defined as:

Uz (k), u(k), s(k)) = Le(z(k), u(k))
(11)
+ As(k)TCyAs(k)

where Cy is a diagonal (positive semidefinite) weighting
matrix penalizing the climate bounds rate-of-change (As).

Simulation details and results, along with a comparison to
a benchmark algorithm are presented in the next section.
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5. SIMULATION RESULTS

The weather data d(k) used for the simulations are real-
world measurements from ASHRAE (2001), representing
weather conditions in Amsterdam, the Netherlands. The
dataset, originally sampled every 5 minutes, was resampled
to a Ty = 15 min sampling period to align with the
simulation requirements. The simulation spans a duration
of 28 days corresponding to Ny = 28-24-4 timesteps. A
prediction horizon of 6 hours, discretized into N = 6-
4 timesteps was chosen for consistency with other model
predictive climate control studies on the same lettuce
model (Boersma et al., 2022; Morcego et al., 2023).

The weighting factors for the objective function (11) were
selected to balance yield, energy consumption, and climate
bound fluctuations. Specifically, the parameters were set as

follows: cay = 16, ¢, = (378-107%, 0, 5715-10-)", and
C, = diag (0, 1072, 10-5, 1079).

For benchmarking, a direct EMPC was employed with
full access to greenhouse actuators and complete state
feedback, as typically assumed in the scientific literature.
Its purpose is to represent the achievable control perfor-
mance under ideal conditions, providing a reference for
evaluating the performance impact of introducing the RBC
in the climate control loop. The benchmark direct EMPC
is formulated as follows:

o+ N
min 3 £(e(k), u(h)
’ k=Fo
st alk+1) = F(a(k), u(k), d(k)) (12)
y(k) = h(z(k)),
u <u(k) <w,
y<yk) <y, k=ko....,ko+N,

where the input constraints are u = (0, 0, O)T and @ =
(1.2, 7.5, 150)" as specified in Boersma et al. (2022).

The optimization problems (8) and (12) were solved using
the open-source algorithm differentiation software CasADi
from Andersson et al. (2018) and the nonlinear optimiza-
tion solver IPOPT from Wichter and Biegler (2006) within
a Python environment. The implementation used direct
multi-shooting and leveraged the IPOPT warm-start op-
tion to improve computational efficiency. Additionally, an
initial guess based on shifted previous optimal decisions
was used to aid convergence. For these settings, the pro-
posed controller in (8) required 0.58 seconds, on average,
to compute new control signals, whereas the direct EMPC
required an average of 0.07 seconds per iteration.

Figure 3 illustrates the simulation results for day 26. The
top panel shows the simulated weather data d (black
lines), while the middle panel displays the greenhouse
control input trajectories u. The benchmark and proposed
controller inputs are represented by orange and purple
dashed lines, respectively. The bottom panel presents the
applied control signals s (red and cyan lines) alongside the
climate-crop outputs y.

Day 26 was selected for analysis due to the activation of
all control inputs s in response to high outdoor tempera-
tures (dr). During this day, ventilation was necessary to
maintain the greenhouse temperature yr below 25 °C. In

contrast, on cooler days, the controller avoids ventilation
for temperature control to prioritize energy savings.

The Python code used for both simulation and analysis is
publicly available at: https://github.com/ipanagopoul
os/Cascaded-EMPC-RBC-Lettuce-GH.

5.1 Performance Metrics

The comparison between the two control approaches (di-
rect EMPC and EMPC-RBC) focuses on three key met-
rics: final yield, CO5 consumption, and heating energy con-
sumption. Table 2 summarizes these quantities over the 28-
day simulation period, presenting absolute values, absolute
differences, and relative differences, with the benchmark
direct EMPC algorithm used as the reference. Table 2

Table 2. Simulation results in terms of final dry
yield, COy consumption, and heating energy

consumption.

Final Total CO2 Total Heating

Yield Use Use

Em2  [gm2 [kWh m~2]
Direct EMPC 291.43 901.78 22.86
EMPC with RBC | 286.89 891.12 22.56
Abs. Diff. 4.54 10.66 0.30
Rel. Diff. [%] -1.56 -1.18 -1.31

shows that the proposed control approach performs com-
parably to the benchmark algorithm. Interpreting these
results requires analyzing the relative differences in terms
of energy efficiency, defined as the final yield per unit of
energy cost, using EMPC as the baseline. The EMPC with
RBC exhibited a 0.38% reduction in COs efficiency and a
0.21% reduction in heat energy efficiency. The COy mass
exchange through the vents, shows that the EMPC-RBC
approach resulted in 0.6% more CO5 loss to the outdoor
environment compared to the pure EMPC. Conversely,
the difference on heating energy loss through the vents
between the two control approaches was negligible. The
slightly increased COg loss is likely an indirect conse-
quence of suboptimal ventilation decisions imposed by
the cascading control structure. Unlike the direct EMPC
approach, which directly controls ventilation, the RBC-
enforced ventilation rules restrict the climate controller’s
ability to optimize ventilation fully, leading to higher CO4
losses.

6. DISCUSSION

The exclusion of legacy RBC used in practical applications
from the greenhouse climate control loop is a common
assumption in the optimal greenhouse climate control lit-
erature. This paper challenges that convention by propos-
ing optimal control methods that better reflect practical
implementations. Specifically, we demonstrate that it is
possible to achieve results comparable to the ideal EMPC
of (12) with the cascaded control architecture in Figure 1,
albeit with nearly eight times the mean execution time
per iteration. This increased computational cost stems
from incorporating the nonlinear RBC logic into the opti-
mization problem. However, this remains computationally
acceptable, as the EMPC-RBC requires less than 1 second
per iteration, well within the 15-minute system time step.
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Fig. 3. Simulation results for Day 26: the top panel presents weather disturbances (d), the middle panel shows control
inputs (u) with orange and purple lines representing the direct EMPC and the EMPC with RBC, respectively, and
the bottom panel illustrates output measurements (y) using purple and orange lines, alongside control signals (s)

depicted in cyan and red.

Finally, solver stability and convergence were consistently
maintained throughout the simulated study.

A key advantage of the proposed approach is its alignment
with typical greenhouse practice where growers conven-
tionally manage greenhouse conditions by adjusting cli-
mate bounds. The proposed design enhances the inter-
pretability of control decisions, as the primary EMPC reg-
ulates climate through climate bounds rather than direct
greenhouse actuator control. In contrast, the benchmark
EMPC returns actuator trajectories, which are less intu-
itive for practitioners and thereby limiting its practical
adoption. Another advantage is that the RBC provides
a layer of operational safety by ensuring responsive green-
house actuation, even when the primary EMPC encounters
numerical problems or solver failures. Conversely, a solver
failure with direct EMPC can disrupt the entire control
loop.

Despite these benefits, certain limitations must be ac-
knowledged. The absence of performance degradation in
our results may be due to the simplified nature of the
RBC compared to a more complex industrial climate con-
trol system. Additionally, our approach assumes full-state
feedback and does not account for uncertainty. Future
work will focus on extending the framework to real-world
applications, with particular attention to the impact of

RBC integration in climate control loops. We plan to
leverage more sophisticated greenhouse simulators and
incorporate advanced RBC frameworks that include es-
sential greenhouse control features, such as thermal and
blackout screens, artificial lighting, and fogging systems.
To ensure realism, the model should closely mimic real-
world RBC behavior while being smooth to ensure contin-
uous gradients. These additions are expected to increase
the overall problem complexity, and the scalability of the
proposed approach under more complex RBCs remains to
be assessed. Moreover, to enhance robustness and bridge
the gap between simulation and real-world application,
we will address state estimation challenges and assess the
proposed approach under uncertainty.

In this study, we used an EMPC approach, a widely stud-
ied algorithm in the literature, as the benchmark. A major
challenge in greenhouse climate control research lies in the
lack of standardization, as studies often employ diverse
greenhouse models as ground truth or distinct parameteri-
zations. This inconsistency complicates the reproducibility
of the results and hinders comparison between studies.
Given its established role as a reference in the community
(Boersma et al., 2022), we adopt the algorithm in (12) as
a benchmark for studies using the lettuce model described
in van Henten (1994). To facilitate reproducibility and
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implementation, we provide the corresponding software
and data in a publicly available repository (Panagopoulos
et al., 2025), enabling future research to build upon a
standardized framework.

Finally, the proposed cascaded method is compared
against the ideal EMPC. However, greenhouse climate
control in practice is governed by climate bounds, and a
direct comparison with current industrial practices is miss-
ing. Establishing benchmarks based on standard growing
practices would allow for such a comparison.

7. CONCLUSION

This paper proposes a climate control framework aligned
with industrial practices by integrating a typical rep-
resentative legacy RBC into the climate control loop.
Specifically, a cascaded control architecture is employed,
where the primary EMPC controller optimizes the cli-
mate boundary trajectories passed to the secondary RBC.
The key challenges in designing the proposed EMPC con-
troller are ensuring a smooth representation of the RBC
model and formulating the economic objective function in
the presence of non-unique optimal solutions. The results
demonstrate that this approach achieves comparable per-
formance to the direct EMPC benchmark, with slightly re-
duced energy consumption at the cost of a minor decrease
in yield. The yield reduction is attributed to the restrictive
ventilation control imposed by the RBC. Nonetheless, the
findings suggest that integrating an RBC into the climate
control loop does not significantly degrade performance.
Whether this conclusion holds for other types or more
complex RBCs remains to be investigated. The study
further highlights the need for standardized benchmarks to
improve reproducibility and comparability in greenhouse
control research. Future work focuses on applying the pro-
posed framework to more complex greenhouse models with
advanced RBCs, while addressing state estimation chal-
lenges and uncertainty to enhance robustness and bridge
the gap between simulation and real-world application.
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