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Abstract 
Agroforestry systems are increasingly recognised for their potential to support climate resilient 
agriculture, biodiversity and carbon storage. While remote sensing techniques such as UAV 
imagery, satellite observations and AI based analysis are becoming more widely used in 
environmental monitoring, the application to food forests is limited. This study addressed this 
research gap by examining whether UAV-based hyperspectral imagery, combined with a LiDAR-
derived Canopy Height Model (CHM), can classify tree and shrub species within the highly 
diverse Dutch food forest Ketelbroek. This research has answered the question: To what extent 
can airborne hyperspectral data identify individual species, and how does a CHM improve this 
classification? 

Hyperspectral data were acquired over three rasters. Field samples from the 2.4ha food forest 
provided training and validation samples. After evaluating systematic reflectance differences, 
within the rasters, species spectral separability (via Jeffries Matusita distance), in six spatial 
resolutions, species classification was performed using Random Forest (RF) models with and 
without CHM. Four Principal Components, derived from a Principal Component Analysis (PCA), 
were used as spectral predictors. 

Species separability ranged from 1.0 to 1.4 and improved when the pixel size was coarsened 
from 7 to 44cm. By simultaneously applying the CHM, the overall accuracy increased (0.68 to 
0.82) of the RF models with significance confirmed by McNemar tests (<0.01). Structurally 
distinct species were consistently better classified (Douglas Fir, European Linden), while 
species with similar leaf chemistry or strong understory mixing remained challenging (e.g. Sweet 
Chestnut, Chocolate vine). The CHM most strongly benefited species whose spectral signatures 
overlapped but differed in height (e.g. Hazel, European Spindle). 

The findings of this research show that integrating hyperspectral and structural data can 
meaningfully improve species mapping in complex forests, but performances are highly 
dependent on species and environment. Future research should prioritise balanced sampling, 
multi seasonal data, and spatially aware classifiers. 
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1. Introduction 
In the Netherlands, over half of the land surface is used for agricultural purposes, covering 2.2 
million hectares (CBS, n.d.). In 2021, the total economic value of the Dutch agricultural sector 
was estimated at around €57 billion, or 6.7% of the gross domestic product (Berkhout et al., 2023). 
Due to a long history of agriculture and research, the Netherlands produces food in an extremely 
efficient manner (van Grinsven et al., 2019). However, research indicates that conventional 
agricultural techniques can result in permanent damage to the soil, water, biodiversity, human 
health and other ecosystem services. This damage is primarily linked to anthropogenic causes 
such as soil de-surfacing/ploughing, indiscriminate use of agrochemicals and lack of soil 
conservation practices, over-extraction of groundwater, and the use of heavy machinery 
(Almusaed, 2016; Osman, 2014; Tudi et al., 2021). An agricultural approach that prioritises 
ecosystem services, soil health, and biodiversity is seen as essential for the protecting the future 
food supply and the current environment (AZ, 2018; Sanders et al., 2015).  

In 2024, the agricultural sector contributed around 17% of the total Dutch greenhouse gas 
emissions (LVVN, 2024). The Dutch Climate Agreement of 2019 states that the agricultural and 
land use sector must be climate-neutral by 2050. Actions necessary to reach climate neutrality 
will reduce (cattle) emission, artificial fertilisers, tillage and chemical use, and increase carbon 
sequestration (EZ&K, 2019).  

Agroforestry is a form of agriculture that has the potential to achieve these targets while 
maintaining or in some cases even increasing the production potential of the land (Breidenbach 
et al., 2017; Hussain et al., 2021; Wendel et al., 2023). Agroforestry is an umbrella term for range 
of agricultural practices, where at least one woody species is incorporated to promote other 
(arable) species (Nair et al., 2021). There are many types of agroforestry - ranging from alley 
cropping to a highly mixed and layered food forests with over 200 woody species.  

While agroforestry is described as a relatively new concept within the contemporary European 
agricultural sector, it is an ancient practice adapted from the tropics. The term and frameworks 
are mostly based on the traditions from the tropics, where agroforestry has been an integral part 
of the livelihoods for centuries (Nair et al., 2021). However, forms of agroforestry have also existed 
in parts of Europe, such as Spain with the Dehesa system (Joffre et al., 1999). In a four-decade 
long study, researchers found that mixed agricultural systems strongly contribute to ecosystem 
services, such assoil fertility, carbon sequestration, biodiversity conservation and food security 
(Nair et al., 2021). There is a growing recognition and integration of agroforestry into conventional 
agriculture in the northern hemisphere and is gaining more popularity in as a more prominent 
technique of farming in North America and Europe. (Dupraz et al., 2018).   

In the Netherlands, the interest in agroforestry is also growing, with the establishment of over 100 
individual food forests in the past 15 years. Over 500 ha of land in the Netherlands is now farmed 
following the principles of agroforestry (Ballemans, 2022). To support the shift to sustainable 
agriculture and to learn more about the effects of agroforestry on the environment, extensive 
research on its impact on biodiversity and climate is essential (AZ, 2018). However, this type of 
research is often time-consuming and expensive as it requires manual labour with fieldwork and 
monitoring. This results in high costs, and in some cases can prevent research from being 
conducted altogether (Thomas et al., 2019).  

Fortunately, the increased accessibility of satellite and UAV data, and Artificial Intelligence (AI), 
has facilitated conducting large-scale and exact research in this field. These techniques play an 
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important role in geospatial research, exploration and monitoring. Remote Sensing allows for 
large-scale precise monitoring and sustainable managing of a forests. Over the past ten years, the 
amount of research done on UAV remote sensing and forests has increased significantly (Díaz-
Delgado & Mücher, 2019). It has become evident that Remote Sensing is an essential tool in forest 
monitoring and management. (Dainelli et al., 2021).  

However, there has been limited scientific research that uses these new techniques to study food 
forest, environmental impact and social impact on the Dutch environment (Wendel et al., 2023). 
This was picked up by organisations such as, Wageningen University and Research (WUR), the 
Dutch Food Forest Network (Netwerk Voedselbosbouw), and the National monitoring program for 
Food Forests (Nationaal Monitorings-programma Voedselbossen). These organisations are 
working to fill these research gaps.  Understanding agroforestry systems and their potential for 
biodiversity and ecosystem services, can further facilitate the transition towards more 
sustainable agricultural practices.  

An example of researchers’ efforts to explore knowledge on food forests is the development of the 
integrated innovative biodiversity monitoring (IBM) tool. In 2023, Wageningen Environmental 
Research (WEnR) established a new research project in collaboration with the Ministry of 
Agriculture, Fisheries, Food Security and Nature (LVVN), project number KB-36-010-001. This 
project started tests in both a young and an old food forest to develop a modular scheme for 
detailed, evidence-based bio- and environmental monitoring of agroforestry ecosystems. Next to 
modern techniques such as eDNA, camera traps, audio moths, techniques AI-based species 
recognition and Remote Sensing are explored for the development of the framework of this 
research (IBM, 2024). The results of this research lay the foundation for a biodiversity inventory.  

The old food forest Ketelbroek researched with the IBM is also the first official Dutch food forest 
(Veluw, 2013). Ketelbroek is located near Groesbeek close to the German border and started 
operating in 2009 when two entrepreneurs bought a former intensively cultivated corn field (Figure 
1). Years later this field transformed into a luscious mixed forest with over 200 woody species 
(Figures 2 & 3, Appendix 1). Due to the forest’s age, and the time it has had to develop, various 
plant and animal species have settled there. It makes it an excellent research location for 
observing measurable interactions and changes over time.  
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Figure 1: Aerial view of Ketelbroek in 2009, when the site was still a maize field in Groesbeek (NL). This image documents 
the start of the area before the agroforestry conversion. 

 

Figure 2: Early-stage food forest structure in Ketelbroek (2015), six years after planting. This image shows the first visible 
stratification and species, illustrating the transition from monoculture to permaculture. 



11 
 

 

Figure 3: Ketelbroek food forest in 2023, showing a mature, structured agroforestry system with > 200 species. The 
image highlights the dense canopy and structural diversity developed in over 14 years. (Source: WENR) 
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2. Research questions and challenges 
The aim of this MSc study is to evaluate how accurate airborne hyperspectral imagery, combined 
with a LiDAR-derived canopy height model, can classify/identify the individual (woody) plant 
species in the highly diverse Dutch food forest Ketelbroek, using Random Forest classifiers. To 
address this aim, the following central research question is posed: 

In a 2.4 ha food forest containing over 200 woody species, to what extent can species be 
classified using airborne hyperspectral data, and what is the added value of a Canopy Height 
Model in the classification process? 

To answer this question, this research is structured into three components.  

1. Inter-strip variation and linear regression 
a. How much do overlapping areas between adjacent flightlines differ in reflectance 

values, and is there a consistent trend between overlapping pairs? 
b. Can linear regression reduce between-strip spectral differences? 

2. Spectral separability of species 
a. What is the effect of the different spatial resolutions on species discrimination? 
b. Which species and species pairs are consistently confused, and which are well-

separated spectrally? 
3. Random forest classification and CHM integration. 

a. What are the overall accuracies (OA), and how does the inclusion of a CHM 
influence classification performance? 

3. To what extent does the CHM improve classification accuracy at the species level 
(Precision, Recall, F1 mean) 

This study explores to what extent UAV-based hyperspectral imagery (Nano Hyperspec with 270 
spectral bands), combined with a Canopy Height Model (CHM) and a Random Forest classifier, 
can be used to identify trees at the species level. This research uses data from a 2.4-hectare 
Dutch food forest (Ketelbroek) containing approximately 200 plant species. Both the research 
approach and the field of research present multiple challenges that must be considered.  

One important challenge is scale-dependent spectral variability (Fassnacht et al., 2016). 
Hyperspectral data with very high spatial resolution can increase within-crown spectral 
heterogeneity, adding considerable complexity to species classification. In contrast, coarser 
resolutions may lead to spectral mixing between adjacent species making it difficult to isolate 
individual spectral signatures. Therefore, determining the optimal spatial resolution is context-
dependent and requires a study specific calibration. Furthermore, spectral noise from understory 
vegetation, soil, shadows, and overlapping crowns is strongly influenced by spatial resolution. At 
a very high spatial resolution, these background signals become more prominent, requiring 
object-based classification methods or spectral unmixing techniques to mitigate their impact. 

Secondly, the high dimensionality of spectral data and the associated need for effective feature 
selection present another key challenge. When studying hundreds of bands, the dataset becomes 
high-dimensional, leading to increased computational demands and a higher risk of overfitting. A 
phenomenon known as the “Curse of dimensionality” (Taşkın et al., 2017). Dimensionality 
reduction techniques are therefore essential to simplify the data while retaining relevant 
information and variation. In addition, the large number of unique species in the study area 
increases the likelihood of overlapping spectral signatures, which can cause confusion during 
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classification. This makes the ratio between sample size and number of species an important 
factor in model performance.  

Finally, spatial and sample size bias poses a challenge due to over- and under-representation of 
certain areas or species. In the case of Ketelbroek, over 65% of the species have fewer than ten 
samples, which limits their utility for robust training and testing. An adequate number of 
representative samples is essential to ensure reliable model validation and accurate 
classification performance (Foody, 2009; Song & Wang, 2023). Moreover, when species are not 
evenly distributed across space, their spectral signatures may become spatially clustered or 
diluted, increasing the risk of class averaging and the loss of unique spectral characteristics (He 
et al., 2018). 
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3. Data and methods 
3.1 Study area 
This research was conducted using data gathered in the Ketelbroek food forest (Figure 4), located 
near Groesbeek in the Netherlands (51°46'08.8"N 5°58'01.8"E). The study area spans 
approximately 2.4 ha and has been managed as a multi-layered agroforestry system that started 
in 2009. Prior to its conversion, the land was used for intensive agriculture, primarily maize 
cultivation. 

The vegetation structure within Ketelbroek is highly diverse. The canopy layer reaches heights over 
15 metres, while midstory shrubs range from 1 to 5 metres. Groundcover vegetation typically 
remains around 30 centimetres. More than 200 tree and shrub species have been recorded within 
the forest, of which roughly two-thirds are fruit-bearing species. The remaining species function 
as support species.  

 

Figure 4: High resolution oblique image acquired with a DJI Zenmuse P1 on 31 May 2023. This image shows a landscape 
overview of canopy structure, local hydrology and the surrounding flat terrain. (made by Stan Los)  

Topographically, the terrain is flat, with an average elevation around 13m above sea level. The site 
lies in a basin formed by the push moraine of Nijmegen and Groesbeek. The subsoil consists of 
sandy loam, characteristic of the Pleistocene fluvial terraces found in this part of Gelderland 
(Bodemdata, n.d.).  

Hydrologically, a small permanent stream flows through the forest, supporting a resident 
population of Eurasian beavers (Castor Fiber). Their activities, such as the construction of small 
dams and foraging, have created localized clearings and water management features that 
contribute to heterogeneity in canopy cover and ground conditions. 

The climate in Groesbeek is classified as temperate maritime (Cfb). Long term meteorological 
data indicate a mean annual temperature of 10.8 °C and mean annual precipitation of 832 mm 
(Klimaat Gelderland, n.d.).   
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3.2 Data acquisition 
The data used in this research consists of hyperspectral imagery from airborne source and field 
reference data. An overview of the metadata is included in Appendix 1.  

3.2.1 UAV- Borne Remote Sensing 
Table 1: Technical overview of hyperspectral and LiDAR acquisition parameters collected on 31 May 2023 in Ketelbroek. 
Includes platform details, spectral ranges, resolutions and sensor specifications. 

PARAMETERS HYPERSPECTRAL LiDAR 
UAV platform DJI Matrice 300 RTK RIEGL VUX-SYS 
Trajectory Applanix APX-15 GNSS/IMU 
Flight altitude 80m Max 120m 
FOV V/H 30° / 360° 
CRS  RD NEW / EPSG:28992 
Sensors Headwall Nano Hyperspec VNIR 

pushbroom spectrometer 
Velodyne VLP-16 “Puck” LiDAR 

Acquisition time 31 May 2023 31 May 2023 
(Band) Range 400nm – 1000nm - 
Spectral 
resolution 

2.2nm - 

Spatial 
resolution 

0.074 m 0.1 m (after processing) 

Spatial bands 640 - 
Spectral bands 268 - 

 

The hyperspectral imagery (Figure 5) was taken along 15 parallel flightlines (Figure 6) by a drone. 
The flightlines are North-East / South-West orientated with each adjacent flightline having a width 
of approximately 20m. Each direction was flown once. The hyperspectral images from the 
flightlines have an overlap of approximately 5 - 10m on either side. The imagery survey took place 
on a clear-sky day within 2 hours of the solar noon. 

The raw and hyperspectral cubes of the imagery survey were processed in R (v 2024.12.0) as 
follows: 

1. Radiometric calibration using a 3 x 3 m field reflectance panel 
2. Spectral smoothing via a first-order Savitzky-Golay filter (window = 11 band) 
3. Spatial down-sampling by a factor of 2  
4. Reprojection to Amersfoort / RD New (EPSG:28992) using bilinear resampling – yielding a 

final GSD of 0.073995 m for both hyperspectral as RGB rasters. 
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Figure 5: Hyperspectral UAV image of Ketelbroek collected on 31 May 2023 using a Nano Hyperspec sensor (5 cm 
GSD). This dataset forms the spectral basis for all subsequent analysis. (Source: WENR) 

 

Figure 6: Overview of the 15 hyperspectral flightlines (NE – SW orientation) flown on 31 May 2023. The diagram illustrates 
overlap zones that are critical for evaluating radiometric differences.  

For the LiDAR campaigns the LiDAR RiCopter is used, with a Reigl VUX-SYS light weight campact 
laser scanner of 3.5kg. Up to 350.000 measurements per second are taken. To enhance the 
detection of the canopy height, the full vegetation is measured on 31 May 2023 and terrain on 6 
December 2023. 

LiDAR point clouds were processed in ArcGIS Pro 3.4.2 and used to generate a Digital Terrain 
Model (DTM) and Digital Surface Model (DSM). The Canopy Height Model (CHM) was computed 
as CHM = DSM – DTM, produced at a pixel size of 0.10 m (Figure 7). For further analysis, the CHM 
was resampled to match the spatial resolution of the hyperspectral rasters. 
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Figure 7: Digital Surface Model (Left) and Digital Terrain Model (right) derived from LiDAR scans (May and December 
2023). The subtraction forms the Canopy Height Model (CHM) used as structural input in the Random Forest classifier 
(Source: WENR)  

3.2.2 Resolution 
To evaluate scale effects on classification accuracy, rasters were aggregated by taking the mean 
of the aggregated pixels. In this report, I aggregated the data from 1 to 6, as you can see in table 2 
below. In this research, when aggregation 6 is mentioned, I reference to a resolution of 0.444m.  

Table 2: Spatial resolutions corresponding to six aggregation levels used in the study, ranging from 7 cm to 44cm. 
Showing how pixel size increases through aggregation. 

 
 

 

 

3.2.3 Field reference data 
A desktop analysis of the RGB orthomosaic was performed to label crowns in areas inaccessible 
on foot. These labels were transformed to a point dataset. In addition, I conducted two fieldwork 
days to gather information on the ground: 

- 28 May 2024 (leaf-on): accessible spring vegetation. 
- 29 January 2025 (leaf-off): improved understorey access. 

During each visit, the owner and a research team recorded species identity and precise locations 
using RTK-GNSS coordinates (horizontal accuracy of ± 0.03 m) for individual trees and shrubs. 
Where possible, the sampling strategy aimed for maximum taxonomic spread and replication. All 
sample points are merged into one dataset. In appendix 2 (figure 20), the distribution of samples 
is illustrated. Before cleaning, the point datasets consisted of 1003 samples. 

Aggregation Resolution (m) 
1 0.074 
2 0.148 
3 0.221 
4 0.300 
5 0.370 
6 0.444 
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3.3 Data preparation 
This section describes how the raw remote-sensing and field data were ingested, cleaned, and 
assembled into a pixel-level dataset used for classification model testing. A photographic 
description of the species that are included in the final dataset is included in Appendix 3 (Table 
16). 

3.3.1 Data cleaning and attribute augmentation 
For this study, only flightlines 1-3 were used. Other flightlines were either in shadow or did not 
have sufficient tree samples for the analysis. Pixel-level reflectance values were extracted at each 
point from the three rasters and six aggregation levels and subsequently merged into the attribute 
table. Any values larger than 10000 DN were treated as measurement errors and therefore 
removed. Records with NA height values were also removed. Canopy height at each point was 
retrieved from the CHM raster and stored as height. Each species was labelled as: “Tree”, “Shrub”, 
or “Vine”. Trees and a shrubs were separated using a three meter threshold (Allaby, 2012). After 
cleaning, 798 points remained in the dataset for this research, located in flightlines 1-3 (table 3).  

Table 3: Overview of sample count, unique species, and species with ≥ 10 samples across rasters 1 – 3. These 
thresholds determine which species are used for classification. 

Raster N 
total 

N 
species 

N species 
> 10 

Vine/shrub/tree 

1 234 17 10 23 / 7 / 204 
2 306 29 13 38 / 10 / 268 
3 258 43 8 0 / 132 / 126 

 

3.4 Spectral separability 

3.4.1 Raster calculation 
To identify inter-raster variability, the pixel-wise difference across each adjacent raster pair is 
computed. Raster 1 vs 2 → Pair 1, and Raster 2 vs 3 → Pair 2. For each pair the overlapping extent 
is determined with an intersect, and every second raster is resampled to the grid of the first raster. 
Within each band, the reflectance values are averaged, and the signed and relative difference is 
calculated (1 and 2).  

(1)    ∆𝑅 = 𝑅𝑖 − 𝑅𝑗
𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑑

(𝑥, 𝑦) 

(2)     ∆𝑅𝑟𝑒𝑙 =
∆𝑅

𝑅𝑖
∗ 100 

For this part, the spectral range is split into five groups to measure if the raster difference is the 
same over the wavelengths. Blue, Green and Red (in the visible spectrum) capture differences 
that can be seen with the eye, pigment related differences like chlorophyll in the leaves and 
carotenoids in flowers and fruits. The Red Edge bands can pick up even more detailed differences 
in chlorophyll content and gives a sharp reflectance increase on vegetation. These bands are 
generally seen as the most important for species discrimination. The NIR bands are mostly 
influenced by leaf and canopy structure and shows a strong plant/soil contrast (Hennessy et al., 
2020).  
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• Blue: 400–500 nm 

• Green: 500–590 nm 

• Red: 590–680 nm 

• Red Edge: 680–740 nm 

• NIR: 740–1000 nm 

 

3.4.2 Radiometric harmonization 
To test if a per-band linear correction can remove a bias, a random sampling of 1000 pixels from 
pair 1 and pair 2 is taken. From this, a simple linear regression model (3) is fitted and plotted: 

(3)      ŷ =  𝑏₀ +  𝑏₁𝑥 
The regression, intercept, slope, Root Mean Square Error (RMSE) and the coefficient of 
determination (R2) is extracted. To visualise the regression line, for each of the five spectral 
regions, the central wavelength is selected (table 4). 

Table 4: Five reference wavelengths selected for band-specific linear regression of reflectance bias. 

Region Blue Green Red Red Edge NIR 
Wavelength 
(nm) 

435.933 547.453 647.822 723.655 870.862 

 

Based on the magnitude of residual bias after correction—particularly in the Green and NIR 
bands—and the spatially structured errors linked to canopy height; we assessed whether a per-
band linear adjustment provided sufficient benefit. Where residuals remained large or spatially 
heterogeneous, strips were kept separate rather than merged into a harmonized mosaic. 

3.4.3 Dimensionality reduction 
To reduce dimensionality, a Principal Component Analysis (PCA) is applied for the Spectral 
Separability, and the Random Forest Classification (RF). For both methods, a PCA is performed 
on the full spectrum (~400nm – 1000nm), to reduce the spectral separability. Covariance PCA is 
used because all bands share the same reflectance units. This preserves the natural variance 
across wavelengths (Uddin et al., 2021). The first four PCs (explain over 99% of the spectral 
variance) are used both to compute the spectral separability and as inputs for the RF (with and 
without CHM). In Appendix 4 (figure 21), the cumulative eigenvalues and loadings are visualized. 

3.4.4 Spectral separability function 
To calculate the spectral separability, there are two common distance methods: the Jeffries 
Matusita (JM), and the Bhattacharyya distance. Both functions measure the overlap between two 
probability distributions, based on the class mean. The difference between the JM and the 
Bhattacharyya distance is JM is a non-linear transformation, and has a normalized range from 0 
to 2, whereas the Bhattacharyya distance has no range. It is therefore easier to interpret the JM 
(Sen et al., 2019). Studies show that a higher number of class pairs with JM separability above 1.0, 
especially above 1.9, leads to improvement of overall accuracy (OA) (Table 5). Class pairs with JM 
separability < 1.0 reduce OA (Rehman et al., 2024; Wicaksono & Aryaguna, 2020a). 
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Table 5: Classification of JM-distance thresholds indicating poor, moderate, and high separability. 

JM distance  Separability interpretation Impact on accuracy 
< 1.0 Poor Low OA 
1.0 – 1.9 Moderate Improved OA 
> 1.9  High High OA 

 

The separability analysis is based on the three cleaned point datasets and associated reflectance 
values from raster 1 – 3, over all 6 aggregations. Table 3 shows an overview of the samples used. 
Throughout this research, only species with N > 10 are used.  

3.5 Random Forest 
Random Forest (RF) is a machine learning method that combines many individual decision trees 
to perform classification. Each tree is trained on a bootstrap sample of the data, and at every tree 
split only a random subset of predictor variables is considered. This method reduces overfitting 
and makes RF well-suited for high dimensional and noisy datasets such as hyperspectral imagery 
(Belgiu & Drăguţ, 2016; Breiman, 2001).  

RF was chosen for this study because this hyperspectral dataset contains 270 correlated bands. 
As mentioned, RF can identify spectral dimensions without requiring strict assumptions about 
the data distributions. Secondly, the data contains strong within-class variability and overlapping 
spectral signatures. Thirdly, the addition of the CHM adds a structural variable that RF can model 
effectively. Finally, RF performs reliably with relatively small and imbalanced training sets, making 
it an appropriate method for the limited sample set in this research. 

3.5.1 Model setup and training  
The RF classifier was implemented separately for each raster. Only species with ≥ 10 samples 
were included and have been randomly split into 60% training and 40% testing data set. Stratified 
random sampling was used to consider for class imbalance. The coarsest pixel size (0.44cm, 
aggregation 6) is used, and a PCA is applied to reduce dimensionality. To assess the influence of 
the CHM on each Raster, a RF analysis was performed twice; once on the PCA-only set, and once 
on the PCA + CHM.  

For the Random Forest, the following metrics are used: 

• Trees     500 
• Mtry    p/3 
• Node size   1 
• Importance   Permutation based 
• Cross validation grid  5-fold 

3.5.2 Model evaluation 
The model accuracy is assessed with the Overall Accuracy and Kappa. Kappa is a metric that 
compares Observed Accuracy with Expected Accuracy (random chance). The classification 
accuracy reported in this study is based on the point-level validation dataset. To determine 
whether adding the CHM improves the RF model, the McNemar test was used. This analyses 
whether the overall accuracy of the RF model improved. This statistical test is used in the case 
of binary outcome. In this case, the outcome was either a correct or incorrect classification. The 
test then can compare the number of cases where the two models disagree. The paired 
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prediction on the same dataset allows the statistical test to calculate the significance of the 
addition of the CHM (Wang et al., 2021).  

It was expected that there will be an improvement in the overall accuracy of the model with the 
inclusion of the CHM as a 5th predictor. The null hypothesis (H0) is as follows:  

There is no significant difference in the classification performance between the model using only 
principal components (PCA-only), and the model using both principal components and the 
canopy height model (PCA + CHM). The number of test instances that are correctly classified by 
one model and misclassified by the other is symmetric. 

The alternative hypothesis (H1) states: 

There is a significant difference in the classification performance between the PCA-only model 
and the PCA + CHM model. The number of test instances for which model makes a correct 
prediction while the other makes an incorrect prediction is asymmetric. 

A significance level of α = 0.10 is applied, corresponding to a 90% confidence level. 

3.5.3 Performance Analysis 
To analyse the effect of the CHM on species level multiple metrics are used. The recall and 
precision, also referred to as Producer’s and User’s accuracy, were calculated from the confusion 
matrix. This analysis was necessary to quantify how including the CHM affects species-level 
discrimination and to characterize the types of errors the classifier made. Because species 
frequencies were imbalanced and several species were spectrally similar in the hyperspectral 
data, overall accuracy could be misleading. I therefore computed per-species Producer’s 
accuracy (recall), which measures omission error (the proportion of reference instances of a 
species correctly mapped, (4)). The User’s accuracy (precision) measures commission error (the 
reliability of the mapped level, (5)).  

(4)      𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

(5)    𝑈𝑠𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

 

I reported their harmonic mean (also known as F1, (6)) to summarize the trade-off between 
missing trees and falsely labelling them. Taken together, these confusion matrix metrics allowed 
a fair comparison of models with and without CHM and indicated whether CHM increased 
detectability, improved label reliability, or both. 

(6)    𝐹1 = 2 ∗  
𝑈𝑠𝑒𝑟′𝑠 ∗ 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠

𝑈𝑠𝑒𝑟′𝑠 + 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠
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4. Results 
The results section is organised around the three research questions. First, we test how strongly 
flightline position affects raw reflectance and whether a simple linear regression can harmonise 
each adjacent strip (RQ1). Next, we examine how spectral region and spatial aggregation 
influence species separability (RQ2). Finally, we quantify the added value of the canopy-height 
model (CHM) in a Random Forest classifier (RQ3). 

4.1 Inter-strip radiometric consistency 
The first research question investigates the consistency between adjacent UAV hyperspectral 
flightlines and evaluates whether a linear regression model can harmonize reflectance values 
across overlapping areas. This is an important step, as systematic differences between rasters 
may bias subsequent classification or spectral analyses. Therefore, this section first quantifies 
the difference in reflectance values between the adjacent strips for the spectral regions: Blue, 
Green, Red, Red Edge, NIR. Both absolute (∆𝑅) and relative (∆𝑅𝑟𝑒𝑙) differences are calculated 
(Table 6, Figure 8). Next, I assess whether per-band linear regression can reduce the difference in 
reflectance values by examining regression metrics such as slope, intercept, R2 and RMSE across 
the full spectrum (Figures 9– 12).  

4.1.1 Magnitude and pattern of the strip bias  
How much do overlapping areas between adjacent flight lines differ in reflectance values, and is there a 
consistent trend between overlapping pairs? 

Figure 8a shows that the  ∆𝑅 and ∆𝑅𝑟𝑒𝑙 is negative in every band, indicating that the second strip 
consistently returns higher reflectance values than the first. The magnitude of this absolute 
difference grows with wavelength, reaching its maximum in the Red Edge and NIR regions. This is 
to be expected since the reflectance values are higher in those spectral areas compared to the 
visible wavelengths (Fassnacht et al., 2016). Figure 8b presents the same comparison on a 
relative scale. Although bands show a decrease of R1, relative to R2, the largest percentage drops 
(-9% to -11%) occur in the visible red band, while the smallest change (-2% to -3%) is observed in 
the NIR. 

Spatially, the difference is heterogeneous and changes depending on the surroundings: ∆R is 
larger in areas where there is a higher variety in Canopy Height. Whereas ∆R decreases in areas 
where the CHM shows little to no height difference (Appendix 5, Table 17). 

Table 6: Mean absolute and relative reflectance differences for two overlapping strip pairs across five spectral regions.  

  Pair 1 Pair 2 
N pixels 175503 179000 
 Mean difference 

(DN) 
Relative diff. 
(%) 

Mean difference 
(DN) 

Relative 
diff. (%) 

BLUE  
(400 – 500nm) 

-15.59 -7.77 -14.72 -6.52 

GREEN  
(500 – 590nm) 

-43.35 -10.25 -44.90 -9.24 

RED 
(590 – 700nm)  

-34.52 -11.07 -31.69 -9.11 

RED EDGE 
(700 – 740nm) 

-73.55 -6.02 -93.44 -6.57 

NIR  
(740 – 1000nm) 

-62.32 -1.59 -153.85 -3.35 
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Figure 8: a) Mean absolute difference (left) and b) relative differences (right) between adjacent flightlines across five 
spectral regions. Higer discrepancies in Red Edge and NIR reveal wavelength dependent strip bias. 

4.1.2 Linear harmonisation test 
Can radiometric harmonization reduce this between-strip difference? 

One thousand random pixels from the overlapping area between raster 1 and 2, and raster 2 and 
3, were sampled. For every spectral region a representative wavelength (Table 4) was regressed 
(ordinary least squares) against its counterpart in the adjacent strip (Figures. 9 & 10). With a 
regression line (solid – red) and a 1:1 line (dashed – black). Both pairs follow a similar pattern. Pair 
1 is visualised in the figures below. The regression plots of pair 2 are shown in Appendix 6 (figures 
22 & 23). The regression diagnostics, including Intercept, Slope, R2 and RMSE of pair 2 are provided 
in Appendix 7 (figures 24 & 25).  

 

Figure 9: Linear regressions of Raster 1 vs Raster 2 reflectace for the Blue, Green and red bands. Deviations from the 
1:1 line indicate inconsistent radiometry between flightlines. 
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Figure 10: Linear regression of Raster 1 vs Raster 2 for Red Edge and NIR bands. Deviations from the 1:1 line indicate 
inconsistent radiometry between flightlines. 

The linear regression metrics are visualised in Figures 11 and 12 and cover the full spectral range 
(400 – 1000nm).  

The intercept is initially flat (~ 20) across 400 – 500 nm (blue), rises to a modest bump (250) around 
540nm, dips almost back to zero near 680 nm, then steeply rises to ~ 980 at 720 nm (Red Edge) 
and stays above 900 throughout most of the NIR before tapering slightly beyond 950 nm.  

The slope stays just around 0.90 in the blue, plunges to 0.75 at ~ 560 nm (green), and rises in until 
to a slope over 1.0 at ~ 590 nm. Plumets to ~ 0.71 around 730 nm and then climbs gradually to ~ 
0.80 by 1000 nm. 

 

 

Figure 11: Intercept and Slope parameters of per-band regression across 400 – 1000nm. Sharp changes in the Red Edge 
and NIR reveal wavelength dependent scaling effects between strips. 
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The R2 Shows two quality windows: ~0.72 in the Blue – Green (≈ 500 nm) and a stronger ~ 0.86 in 
the Red Edge (≈ 690 nm). R² slumps to ≈ 0.50 across 600 – 630 nm and again just beyond 720 nm, 
then levels out at ~0.55 – 0.60 from 800 nm to 1000 nm. 

The RMSE Mirrors the intercept: ~ 350 – 400 through most of the visible, a shoulder of 600 near 
540 nm, a local minimum (~ 300) at 700 nm, followed by a step-change to > 1100 from 760 nm 
onwards where errors plateau across the NIR. 

 

 

 

Figure 12: R2 and RMSE parameters of per band regression across 400 – 1000nm.  Goodness of fit metric emphasises 
inconsistent regression performance and large NIR errors that justify keeping flightlines separate. 

The intercept rise sharply in the Red Edge and remains high throughout the NIR. This vertical shift 
in reflectance between flightlines could be partially corrected by a linear regression. However, the 
slope values deviate from 1 which indicates wavelength dependent scaling inconsistencies. The 
slope drops below 0.8 and remains below 0.8 in the NIR. This implies that reflectance differences 
are not uniform and applying a linear correction could distort real spectral variation (Villaescusa-
Nadal et al., 2019). 

Furthermore, the R2 shows inconsistent fit quality. The strong agreement in the Red Edge contrasts 
with the poor R2 in the Green and the NIR and limits the confidence in regression-based 
harmonisation across the full spectral range. This is confirmed by the RMSE values, which exceed 
1100 in the NIR, indicating large structure/driven residuals even after correction (Ariza et al., 
2018). 

While a linear regression model can reduce systematic bias, it does not correct for multiple 
differences. Also, linear regression cannot resolve the non-linear, spatially structured residuals 
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that is visualised by the low R2 and high RMSE. For these reasons, and to avoid overfitting, I chose 
to keep the flightlines separated throughout this research rather than merge them into a 
radiometric harmonized mosaic (Kizel & Vidro, 2023). 

4.2 Spectral Separability 
The JM distance per class shows the distance values to cluster around 1.0 – 1.4, suggesting 
moderate separability among the species that have the highest values and a poor separability for 
all species below 1.0 (Table 8 & 9). The moderate separability suggests that there may be a 
significant distinction between mean spectral signatures. However, enough overlap remains in 
signatures that misclassifications can occur. Below (figure 13), the spectral signatures are 
visualised. This shows a substantial within-class variance and may explain why there are no 
species with a high spectral separability. 

4.2.1 Aggregation contribution 
Figure 13 summarises the mean Jeffries – Matusita (JM) distance for all “frequent samples” (≥ 10 
samples) across three rasters and six aggregation levels. From this the separability increases with 
a higher aggregation (lower resolution). Around aggregation 5 (spatial resolution: 37cm), the mean 
JM distance seems to flatten (Chen et al., 2023). Coarser pixels help with the spectral separability, 
but up to a certain point. Therefore, we use a resolution of 44cm (aggregation 6) for the rest of the 
study. As the pixel size increases, the difference between the rasters decreases.  

 

 

Figure 13: Mean Jeffries Matusita separability aggregation level for the three rasters. Separability increases as resolution 
becomes coarser, plateauing around aggregation 5 – 6. 
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4.2.2 Species level 
In this section, the separability scores per species are analysed. Table 7 shows the number of 
samples in each dataset, the number of unique species (with at least 10 samples), and the 
number of species pairs that can be made for the spectral separability matrix.  

Table 7: Overview of: number of samples, unique species, and resulting species pairs for spectral separability 
calculations for each raster. 

Raster N samples N Species N Pairs 
1 202 10 45 
2 258 13 78 
3 159 8 28 

 

In the figures below (fig 14, 15, 16), the mean JM distance per species is plotted over the six 
aggregations. Since the JM distance is based on a species pair, the mean is used to express the 
overall separability for each species. The mean is based on all pairs that is made per species and 
averaged. With the increase in resolution, the spectral separability increases. This is true for all 
three rasters. The mean JM distance stagnates around aggregation 5. However, since in most of 
the cases aggregation 6 results in the highest mean JM distance, aggregation 6 is seen as the most 
successful resolution. Interestingly in raster 3, Autumn Olive, Bollwiller Pear and Trifoliate Orange 
do not seem to be affected by the increase in aggregation. 

 

 

Figure 14: Species level mean JM distances for Raster 1, showing how aggregation reduces spectral noise and increases 
pairwise separability. Most species benefit form coarser resolution, with separability stabilising near 44cm. 
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Figure 15: Species level mean JM distances for Raster 2. Trends show a slow but consistent improvement with 
aggregation, though species differ in response. 

 

 

 

 

Figure 16: Species level mean JM distances for Raster 3. Showing generally a slight increase in JM values,  
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In the case of aggregation 6, table 8 highlight the species that have the highest and lowest mean 
JM distance. The difference between the highest and lowest performing species based on the 
mean is relatively small. By taking the average of all pairs per species, the gap gets very small. 
There are no species that are very distinctively having a low spectral separability. 

Table 9, on the other hand, shows that when looking at the pairs specifically, there are differences 
that are clearer. This table is also based on aggregation 6. Douglas fir, hazel, and Gooseberry are 
mentioned most frequently in the lowest JM distance category for raster 1, 2 and 3 respectively. 
These values are all around 1. The species pair with the highest JM distance do not have species 
that are frequently mentioned, besides the Bollwiller pear in raster 3. 

Table 8: Species with the highest (Left) and lowest (right) average JM separability at aggregation 6. Highlighting subtle 
separability differences within each raster. 

Raster Species MEAN JM  Species MEAN JM 
1 Black Locust 1.374 Common Ivy 1.290 

Chocolate Vine 1.364 Oak 1.305 
Grey Alder 1.356 Douglas Fir 1.307 

 
2 
  

European Linden 1.403  Hazel 1.289 
White Willow 1.401 Common Ivy 1.320 
Quacking Aspen 1.397 Grey Alder 1.321 

  
3 Bollwiller Pear 1.414  Gooseberry 1.362 

Trifoliate Orange 1.410 Beach Rose 1.371 
Autumn Olive 1.409 Black Elder 1.380 

 

Table 9: Pairwise JM distances showing the highest (left) and lowest (right) JM separability at aggregation 6. These 
extremes indicate which pairs are most and least spectrally distinct. 

Raster Pair JM Distance  Pair JM Distance 
1 Black Locust – Quaking Aspen 1.411 Common Ivy – Douglas Fir 1.133 

Common Ivy – Yew 1.409 Common Ivy – Quacking 
Aspen 

1.171 

Grey Alder – Quacking Aspen 1.408 Crack Willow – Douglas Fir 1.221 
 
2 Black Locust – Chocolate 

Vine 
1,414  Grey Alder – Hazel 1.033 

Douglas Fir – European 
Linden 

1,414 Crack Willow – Hazel 1.039 

Chocolate Vine – Crack 
Willow 

1,414 Common Ivy – Hazel 1.188 

 
3 Autumn Olive – Bollwiller Pear 1,414  Black Elder – Gooseberry 1.285 

Bollwiller Pear – Trifoliate 
Orange 

1,414 Beach Rose – Gooseberry 1.295 

Black Elder – Bollwiller Pear 1,414 Field Maple – Gooseberry 1.358 
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4.3 Random Forest classifier with Canopy Height Model 
In the following section, a Random Forest (RF) classifier is applied to the three raster datasets. Per 
raster, two RF classifiers are applied. One where the data is transformed with a Principal 
Component Analysis (PCA), and one with a PCA and the addition of a Canopy Height Model (CHM) 
as an extra predictor. Four Principal Components (PCs) are used for the RF. The overall accuracy 
is calculated and the difference between the two models are analysed. The significance is 
expressed with a McNemar test. In the second part, the influence of the CHM is analysed per 
species. The coarsest resolution of 44cm (aggregation 6) is used. 

4.3.1 Overall performance 
The overall accuracy explains what percentage of the labels our model got correct. Table 10 shows 
overall accuracy from the two models and the difference between the models. For all three 
rasters, the overall accuracy and kappa increases. Accuracy trends across all six aggregation 
levels for each raster are provided in Appendix 8 (Table 20 and Figure 26). 

Table 10: Overall accuracy and the corresponding Kappa values for two RF model variants (PCA – only and PCA + CHM) 
per raster. CHM improves accuracy in all cases, most strongly in Raster 3. 

Raster PCA - only 
OA  

 
Kappa 

PCA + CHM  
OA 

 
Kappa 

∆OA 
Absolute 

∆OA 
Relative 

1 0.69 0.64 0.70 0.66 + 0.01 + 1.4% 
2 0.60 0.56 0.65 0.63 + 0.05 + 8,3% 
3 0.68 0.62 0.86 0.87 + 0.18 + 26,5% 

 

To analyse whether the addition of the CHM is increasing the prediction performance of the RF 
model, a McNemar test used on all three rasters. McNemar tests how many times the PCA +CHM 
was correct, and how many times the PCA was correct. From this the χ2 is calculated, and the p-
value expresses whether the difference is significant at a confidence interval of 90% and 95%. In 
table 11 below, the results of the McNemar tests are depicted. Both raster 2 and 3 are significantly 
improved after the addition of the CHM. However, this is not the case for raster 1. From the 
incorrect predicted classes, only class 1 was improved by the CHM. This difference is not enough 
to express significance and not enough to have a chi squared value. The H0 is rejected for raster 2 
and 3. The H0 cannot be rejected for raster 1. 

Because the Kappa considers the chance of agreement, based on what is observed, it is a stricter 
test than OA. Kappa, in table 10, increases slightly for Raster 1 (0.64 – 0.66), significantly more for 
Raster 2 (0.56 – 0.63) and the most in Raster 3 (0.62 – 0.86). Indicating that the CHM improved 
beyond-chance agreement for two of the three rasters. These findings are consistent with the 
McNemar tests (table 11). 

Table 11: McNemar test results assessing whether CHM significantly improves RF prediction accuracy. Improvements 
are significant in Rasters 2 and 3. 

Raster χ2 p-value Significant at 90% Significant at 95% 
1 0 1 NO NO 
2 12,5 <0.01 YES YES 
3 4,9 0.027 YES YES 

 



31 
 

4.3.2 Class-specific performance 
To assess the per-class performance of the classification models, three metrics were computed 
for each species: precision, recall, and F1-score. These metrics were compared between models 
trained with four principal components (PCA-only) and models augmented with canopy height 
information (PCA + CHM). Tables 12, 13 and 14 visualise the resulting confusion matrices and 
performance metrics. In these tables, columns represent the true species labels, while rows 
represent the species predicted by the RF model. When a cell contains two values, the left value 
corresponds to the PCA-only model, and the right value corresponds to the PCA + CHM model. 
Allowing both results to be displayed in a single matrix. The rightmost columns report the per-
class precision for both methods, while the bottom rows present the recall and F1 scores for each 
species.  

Across all three rasters, species such as Douglas Fir, Trifoliate Orange, Bollwiller Pear, and 
European Linden consistently scored high across all three metrics (F1 ≥ 0.90), indicating strong 
spectral distinctiveness and effective classification. Their performance remained stable 
regardless of the inclusion of CHM, suggesting that spectral information alone was sufficient. 

In contrast, species like Common Beech, Common Ivy, and Thorny Olive showed persistently low 
values across all metrics (F1 ≤ 0.50), indicating that they are either spectrally confused with other 
species or poorly represented in the training data. For these classes, the addition of CHM only 
marginally improved classification. 

Importantly, several species demonstrated a significant improvement with the addition of CHM. 
Hazel showed the most dramatic gain, with its precision increasing from 0.25 to 0.75, and F1-
score from 0.18 to 0.55. Similarly, Gooseberry improved from 0.50 to 0.90 in F1-score, and 
European Spindletree from 0.33 to 0.67. These results suggest that canopy height adds important 
structural information that helps distinguish species with similar spectral profiles. 

However, the CHM was not uniformly beneficial. Chocolate Vine, for instance, showed a decrease 
in recall (0.75 to 0.5) and F1-score (0.86 to 0.67). A similar drop was observed for Sweet Chestnut. 
These declines may reflect the structural ambiguity of these species (e.g., low-stature vines or 
multi-layered crowns), which can confuse the height-based model input. 

Overall, the results demonstrate that CHM enhances the classifier's ability to distinguish certain 
species, especially those with vertical structure not captured in the spectral data. Yet, the effect 
is species-specific: while some species benefit substantially from the added predictor, others 
may experience performance losses due to increased confusion or structural noise. 

In addition to overall performance improvements, class-specific metrics reveal clear patterns of 
over- and underestimation. Species such as Thorny Olive, Common Beech, and Crack Willow 
exhibited low precision scores, suggesting they were frequently predicted even when incorrect—
an indication of overestimation. For example, Thorny Olive showed a large precision increase from 
0.00 to 0.50 after the inclusion of the CHM, while recall remained low, indicating continued false 
positives. Conversely, several species showed signs of underestimation, characterized by low 
recall but moderate-to-high precision. Common Alder and European Spindletree were rarely 
detected in the PCA-only model, with recall scores of 0.00 and 0.25, respectively, but improved 
with the inclusion of CHM. Common Ivy consistently had low recall (0.33) despite a perfect 
precision score (1.00), indicating the model rarely identified it correctly, though it was highly 
confident when it did. These patterns highlight the differential response of species to the 
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classification process, with some consistently misclassified due to confusion with other classes 
or insufficient spectral or structural distinctiveness. 

The results of the random forest classification are visualised in figures 17, 18 and 19. The legend 
shows each species and the percentage of pixels that belong to each species. 
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Table 12: Confusion matrix of Raster 1, summarizing classification accuracy for eleven tree species. Rows represent the true species and columns represent the predicted species. To 
allow direct comparison between the two RF models within one table, each matrix cell is split into two sub-columns: the left sub-cell shows the number of pixels predicted by the PCA 
model, while the right sub-cell shows predictions from the PCA + CHM model. Precision (right) and Recall (bottom) values are calculated separately for both models. Colors in precision 
and recall indicate performance, with higher values reflecting better agreement between true and predicted labels. 

True → 
Predicted 
↓ 

Chocolate 
Vine 

Hazel Grey Alder Common 
Ivy 

Douglas 
Fir 

Quacking 
Aspen 

Oak Black Locust Crack Willow Yew Total Precision 

PCA PCA+CHM 

Chocolate 
Vine 3 2 0 0 0 0 0 0 0 0 0 

3 2 1 
1 

Hazel 0 1 3 4 2 1 0 1 0 0 0 0 0 0 5 7 0,6 0,57 
Grey 
Alder 0 0 2 3 0 0 0 0 0 0 1 

3 4 0,67 
0,75 

Common 
Ivy 0 0 0 2 0 1 1 1 0 0 0 

5 4 0,4 
0,5 

Douglas 
Fir 0 0 0 2 8 0 0 2 2 4 0 

14 16 0,57 
0,5 

Quacking 
Aspen 0 0 0 1 0 10 9 1 0 0 0 

12 11 0,83 
0,82 

Oak 1 0 1 0 0 1 0 0 0 1 15 0 0 2 1 0 19 18 0,79 0,83 
Black 

Locust 0 0 0 0 0 0 0 1 2 3 0 0 
4 2 0,25 

1 
Crack 

Willow 0 0 0 0 0 0 1 0 5 4 0 
6 5 0,83 

0,8 
Yew 0 1 0 0 0 2 0 0 0 0 4 5 6 8 0,67 0,63 
Total 4 4 4 6 10 11 18 4 10 6 60   

Recall 
PCA 

0.75 0.75 0.5 0.333 0.8 0.909 0.833 0.25 0.5 0.667    

Recall 
PCA+CHM 

0.5 1 0.75 0.333 0.8 0.818 0.833 0.5 0.4 0.833    

F1 
PCA 

0.86 0.67 0.57 0.36 0.67 0.87 0.81 0.25 0.63 0.67    

F1 
PCA+CHM 

0.67 0.73 0.75 0.40 0.62 0.82 0.83 0.67 0.53 0.71    
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Table 13: Confusion matrix of Raster 2, summarizing classification accuracy for eleven tree species. Rows represent the true species and columns represent the predicted species. To 
allow direct comparison between the two RF models within one table, each matrix cell is split into two sub-columns: the left sub-cell shows the number of pixels predicted by the PCA 
model, while the right sub-cell shows predictions from the PCA + CHM model. Precision (right) and Recall (bottom) values are calculated separately for both models. Colors in precision 
and recall indicate performance, with higher values reflecting better agreement between true and predicted labels. 

True → 
Predicted 
↓ 

C. 
Vine 

S. 
Chestnut 

 
Hazel 

T. 
Olive 

E. 
Linden 

C. 
Alder 

G. Alder E. 
Spindle 

C. 
Beech 

C. Ivy D. 
Fir 

Q. 
Aspen 

B. 
Locust 

W. 
Willow 

C. 
Willow 

Yew Total Precision 

PCA PCA+CHM 

C. Vine 6 0 0 1 0 0 0 1 0 2 0 0 0 0 0 1 11 0.55 0.55 
S. 

Chestnut 0 4 0 0 0 0 0 0 1 3 0 0 0 2 0 0 0 0 
5 9 0.8 0.44 

Hazel 0 0 1 3 0 0 0 0 0 1 0 0 0 0 0 0 3 0 0 4 0.25 0.75 
T. Olive 0 0 0 0 1 0 0 3 0 0 0 1 0 0 0 0 0 0 0 1 4 2 0 0.5 

E. Linden 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 5 1 1 
C. Alder 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1* 1 
G. Alder 0 0 2 0 0 1 0 3 1 0 0 0 0 0 0 0 0 2 0 7 6 0.43 0.5 

E. Spindle 0 0 0 0 0 1 0 0 1 2 0 0 0 0 0 0 0 0 2 0.5 1 
C. Beech 0 0 0 2 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 5 4 0.2 0.25 

C. Ivy 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 2 1 1 
D. Fir 1 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 8 7 0.88 1 

Q. Aspen 0 0 0 1 0 0 0 0 0 2 0 1 0 4 3 0 0 0 0 8 4 0.5 0.75 
B. Locust 0 0 1 0 0 0 0 2 0 0 0 1 0 0 4 0 0 0 7 7 0.57 0.57 

W. 
Willow 1 2 0 0 0 0 0 0 0 0 0 0 1 0 15 0 0 

17 18 0.88 0.83 

C. Willow 0 0 3 4 0 0 3 0 0 0 1 0 0 0 0 0 3 4 1 0 11 13 0.27 0.31 
Yew 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 1 1 
Total 8 4 7 4 6 4 8 4 4 6 7 6 4 15 6 6 69  

Recall 
PCA 0,75 1 0.143 0 0.833 0 
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0.25 

 
0.25 

 
0.167 
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0.667 

 
1 

 
1 

 
0.5 

 
0.667 

  

Recall 
PCA+CHM 0.75 1 0.429 0.25 0.833 0.25 

 
0.375 

 
0.5 

 
0.25 

 
0.333 

 
1 

 
0.5 

 
1 

 
1 

 
0.667 

 
0.667 

F1 
PCA 0.63 0.89 0.18 0 0.91 0 

0.40 0.33 0.22 0.29 0.93 0.57 0.73 0.94 0.35 0.80   

F1 
PCA+CHM 063 0.62 0.55 0.33 0.91 0.40 

0.43 0.67 0.25 0.50 1 0.6 0.73 0.91 0.42 0.8   
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Table 14: Confusion matrix of Raster 3, summarizing classification accuracy for eleven tree species. Rows represent the true species and columns represent the predicted species. To 
allow direct comparison between the two RF models within one table, each matrix cell is split into two sub-columns: the left sub-cell shows the number of pixels predicted by the PCA 
model, while the right sub-cell shows predictions from the PCA + CHM model. Precision (right) and Recall (bottom) values are calculated separately for both models. Colors in precision 
and recall indicate performance, with higher values reflecting better agreement between true and predicted labels. 

True → 
Predicted ↓ 

Trifoliate 
Orange 

Thorny 
Olive 

Autumn 
Olive 

Gooseberry Beach 
Rose 

Black Elder Bollwiller 
Pear 

Field 
Maple 

Total Precision 

PCA PCA+CHM 

Trifoliate 
Orange 4 0 0 0 0 0 0 0 

4 1 1 

Thorny Olive 0 1 2 1 0 1 0 1 0 0 0 3 0.33 0.5 
Autumn 

Olive 0 1 3 0 0 0 0 0 
4 0.75 0.75 

Gooseberry 0 0 0 5 9 4 1 0 0 1 0 10 0.5 0.9 
Beach Rose 0 2 1 0 3 0 9 12 0 0 1 0 15 0.6 1 
Black Elder 0 0 0 1 0 1 2 9 10 0 0 11 0.82 0.83 
Bollwiller 

Pear 0 0 0 1 0 0 0 4 0 
5 0.8 1 

Field Maple 0 0 1 0 0 1 0 1 0 6 8 8 0.75 0.8 
Total 4 4 4 10 15 11 4 8 49   

Recall 
PCA (4PCs) 

1 0.25 0.75 0.5 0.6 0.818 1 0.75    

Recall 
PCA+CHM 

1 0.5 0.75 0.9 0.8 0.909 1 1    

F1 
PCA 

1 0.29 0.75 0.50 0.60 0.82 0.89 0.75    

F1 
PCA+CHM 

1 0.5 0.75 0.9 0.89 0.87 1 0.89    
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4.3.3 RF Visualisation 
Raster 1 
Using the reduced dataset at a resolution of 44cm with 4 PCs + CHM, the raster 1 classification 
visual shows a very sparse class inventory relative to the training set. Only three of the ten species 
are represented in the map. Among the missing species are: 

- Chocolate vine 
- Hazel 
- Grey Alder 
- Douglas Fir 
- Black locust 
- Crack willow 
- Yew 

 The legend indicates that Quaking Aspen and Oak together account for around 99% of all 
classified pixels, with Common Ivy only 0.2%. Visually, the predictions organise in contiguous 
blocks that follow tree crown shapes rather than producing a salt-and-pepper effect. Seven 
trained classes are absent in the visual, which means the map is effectively dominated by two 
broadleaf tree categories with the rare occurrence of an understory climber. As a result, this figure 
shows that, under the chosen setting and variables, the RF produced a highly skewed class 
distribution in Raster 1 despite a broader training inventory, and that the spatial patterns do 
coincide with crown geometry. 

 

Figure 17: Random Forest species classification for Raster 1 (44cm, 4PCs + CHM). Only three of ten species appear, 
showing strong dominance by two broadleaf species, Quacking Aspen and Oak, and minimal representation of 
understory species. 
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Raster 2 
Under the same conditions (4 PCs + CHM, 44cm resolution), the second Raster map shows a 
richer legend compared to figure 18. Eight of the thirteen species trained on are reported in the 
classification. The missing species are:  

- Hazel 
- European Spindle 
- European linden 
- Yew 
- Black Locust  

Nonetheless, the distribution remains highly uneven, with Quaking Aspen reporting nearly 50% of 
all classified pixels, and White Willow around 30%. This leaves the remaining six mapped species 
to fill comparatively small and scattered patches. In contrast to Raster 1, the spatial pattern is 
more speckled and fragmented, with multiple small clusters and edge pixels rather than large, 
crown-filling blocks. As a result, Raster 2 shows that the RF model can express a higher diversity 
in classes, but the effective map still shows that there are still species that dominate the 
classification. The class distribution remains skewed. 

 

Figure 18: Random Forest species classification of Raster 2 (44cm, 4PCs + CHM). Eight of thirteen species identified, 
showing fragmented spatial patterns. The high amount of Quacking Aspen and White Willow reflects spectral 
dominance and class imbalance. 
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Raster 3 
For Raster 3, the RF model (4 PCs + CHM, 44cm) maps seven of the eight trained species. Only 
one trained class is not present in the output legend, which is the European Spindletree. 
Compared to Rasters 1 and 2, the mapped classes seem to be a little bit more evenly distributed, 
but there is still a skewedness in the model. The images show a grained mosaic of shrub and small 
trees with numerous small clusters and short runs of contiguous pixels. Just like Raster 2, this 
image seems more scattered than Raster 1, but there is still no excessive salt-and-pepper effect 
at the crown scale. As a result, Raster 3 shows that the classifier can produce a nearly complete 
class coverage (7 of 8 present) in this strip and the spatial distribution shows a heterogeneous, 
layered vegetation structure, which is expected of the area. 

 

Figure 19: Random Forest species classification of Raster 3 (44cm, 4PCs + CHM). Showing seven of eight species in a 
mosaic like pattern that reflects Ketelbroek mixed structure.  
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5. Discussion 
In this part, I evaluate the key findings of this research and will address the three research 
questions. First, there is an assessment of the quality and representativeness of the UAV-derived 
hyperspectral and canopy-height data, and the patterns and biases between flightlines. The 
spectral separability results, quantified by the Jeffries Matusita distance, are placed within the 
broader remote-sensing literature on spatial aggregation and band importance. Next, the effect 
of integrating a CHM into a PCA based RF classifier is discussed by examining overall accuracy 
gains and shifts in species specific performance. Finally, I will reflect on methodological 
considerations, acknowledge the study’s limitations in sampling and model generality, and 
outline recommendations for the improvement of species mapping in complex agroforestry 
environments. 

5.1 Data availability and quality 

5.1.1 Sampling 
In this study, I initially adopted a sampling strategy designed to capture as much of the variety in 
species present in Ketelbroek, which is around 200 species within 2.4 ha. Keeping in mind that 
much of the forest is inaccessible and that targeting known hotspots of diversity would maximize 
area coverage. In practice, however, this broad approach produced many unique species records 
but too few replicates per species to support a robust model training. As previously mentioned, 
over 65% of the recorded species in the first three rasters have less than 10 samples (see Table 
3). Studies show that, in diverse systems, estimates of richness and classification accuracy 
depend on having sufficient samples of each species (Gimaret-Carpentier et al., 1998; Jeliazkov 
et al., 2022). When most species occur only once or twice in the dataset, statistical power 
reduces and machine learning models struggle to distinguish class boundaries (Ahrens et al., 
2016).  

Therefore, in retrospect, a more balanced or stratified sampling design would tackle the class 
imbalance and resulted in a higher accuracy (Feng et al., 2019; Nguyen & Chen, 2024). A minimum 
count per species should be set for each targeted species. This makes the dataset more balanced 
and ensures enough samples per species. For this research, this is attempted by removing all 
species with a count below 10. This threshold was chosen because this resulted in approximately 
10 species to train on in per raster. If the threshold was higher, only three species per raster 
remained, which is not deemed enough. A threshold of 10 was in this case the trade-off between 
number of unique species and enough samples to train and test. Consequently, only a subset of 
the total recorded species could be included in the classification analysis. Depending on the 
raster, between eight and thirteen species met the minimum threshold of ten samples per class 
(table 3). While this subset represents the most abundant species, it does not cover the full range 
of diversity of Ketelbroek. 

Another method that captures class imbalance well is by augmenting data. By generating 
synthetic samples, it is possible to capture the essence of a species without having samples of it. 
Data augmentation can help increase the sample size and is therefore a useful tool. However, it 
requires careful implementation to avoid overfitting or introducing noise (Kumar et al., 2024; 
Shorten & Khoshgoftaar, 2019). Since there is already a lot of noise to deal with in the current data 
set, I chose not to work with augmented data. 
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5.1.2 Inter-strip consistency and linear regression 
When looking at the data strip by strip, the reflectance values have a range of values with a 
common trend. Adjacent strips show a consistent brightness shift (with each adjacent strip, the 
reflectance values increase), with the largest absolute differences in the red-edge and NIR (see 
Table 6, Figure 8). It is likely that is due to the rising sun and therefore increasing the angle at which 
the sunlight hits an object  (Hashimoto et al., 2019). The flight time of the UAV was on a clear day 
at noon. The sun is at its highest around 2 o’clock in the afternoon.  

When comparing overlapping areas from different flightlines, systematic differences in 
reflectance values are an issue that is found in various research. These systematic differences are 
often attributed to bidirectional reflectance distribution function (BRDF) effects, differences in 
solar illumination, and sensor viewing geometry. This can vary between flightlines and especially 
impact mosaicking and classification (Jia et al., 2024). The BDRF effect is inherent to UAV sensors 
and leads to variations in observed reflectance depending on the sun-target-sensor geometry. 
This effect can cause systematic differences between the overlapping areas of flightlines (Z. Wang 
& Liu, 2016). These differences in reflectance values are often most seen in the visible spectrum 
and less in the NIR (Perry et al., 2000). In addition, variations in atmospheric conditions and solar 
zenith angles between flightlines can further contribute to reflectance inconsistencies. However, 
this is corrected for prior to this research. 

The linear regression was applied as a quick approach to harmonize the individual raster bands 
(Figures 9 – 12 Appendix 8 and 9). The intention was to make the flightlines more comparable so 
that a full mosaic could be generated. However, the per-band regressions only partially reduced 
the differences, and inconsistently across wavelengths. This indicates that the approach is not 
robust for a harmonization method. This limitation shows a weakness of simple least-squares 
regression when pixels are spatial and/or spectral not perfectly aligned. As Liu and Scaglione 
(2025) demonstrate, standard linear regression methods become unreliable under such 
conditions because they assume a one-to-one correspondence between the in- and outputs. 
When those relationships are misaligned, the regression fails to capture the underlying structure 
of the data. Similarly, De Jager and Fox (2013) show that pixel-level regression methods are better 
suited to describe local or temporal trends across rasters than as a correction method. For this 
reason, the rasters in this research are treated individually, allowing underlying spectral trends to 
remain visible and interpretable, while also reducing computing time compared to a large-scale 
mosaic. 

5.2 Spectral separability 
The spectral separability of the species pairs located in the three rasters in Ketelbroek range 
between a low moderate to moderate separability (1.0 – 1.4). However, this range is typically 
accepted for highly diverse environments due to similar vegetation and mixed pixels. In studies of 
invasive species and wetland habitats, JM values for challenging pairs often fall within or just 
above this range, especially when using standard hyperspectral data in dense, mixed 
environments. For example, mangrove pairs showed JM values of 0.93 – 1.12 in green periods and 
1.18 – 1.34 in senescence periods, with higher values only achieved by combining phenological 
stages or advanced feature engineering (Tian et al., 2020). Similarly, benthic habitat mapping 
found that most class pairs had S < 1.9, and only a few exceed this threshold, directly impacting 
classification accuracy (Wicaksono & Aryaguna, 2020b).  
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5.2.1 Relevance of aggregation 
Increasing the pixel size (lowering the spatial resolution from 7cm to ~44cm) improved the mean 
JM separability and stabilized its variance up to a threshold (Figs. 13 – 16) (Chen et al., 2023). At 
7cm, pixels were so fine that they often sampled sub-crown elements and shadow, resulting in an 
increase in within-species variance and weakening the separability. Coarsening the resolution to 
~44cm averaged this within-crown variability while still sampling a single crown, producing 
spectral signatures that were more representative of each species (Peña et al., 2013). This noise 
reduction explains the observed gain in separability. There is, however, a maximum to this. Once 
pixels become large enough to span multiple crowns, mixed pixels reduce separability. The 
optimal pixel size is case specific. 

Dalponte et al. (2013) examined the effect of spatial resolution (range from 40cm to 1.5m) on tree 
species classification and class separability. They found that using a resolution of 40cm increased 
classification accuracy by about 20% relative to the coarser resolution of 1.5m. The results of my 
research show the same scale dependence, although I started much finer (7cm) aggregating to 
44cm. In agriculture studies, optimum resolutions near 10cm are reported, but those studies 
typically involve monocultures or homogeneous grasslands (Lu & and He, 2018; Zeng et al., 2024). 
Overall, the optimal pixel size depends on crown size and scene heterogeneity. Very coarse pixels 
mix multiple canopies and reduce accuracy, while extreme fine pixels over-resolve within crown 
variation. Intermediate pixels that roughly match crown dimensions perform best. In the case of 
my research, that optimum is ~44cm. 

Although the optimal mean JM separability occurs at 44cm, the variance of JM across species 
pairs decreases as pixel size is coarsened (lower spatial resolution). Aggregation averages within-
crown variability and reduces the influence of rare or outlying spectra, so pairwise spectral 
differences appear more uniform and JM values cluster more tightly pairs (D’Amico et al., 2024; 
Piiroinen et al., 2017). In my data, reducing the resolution from 7cm to 44cm increases the mean 
JM separability and reduces its variation across species pairs. This tighter range comes from noise 
being averaged out, not from weaker discrimination.  

5.2.2 Species 
Viewed across the three rasters, the separability is shaped by both the food-forest ecology and by 
the sensors. A possible explanation for the nine pairs with the lowest JM distances could be the 
similar biochemical and structural make-up at the time of the image acquisition (late-spring, full 
leaf-on). Grey alder – hazel illustrates this most clearly: both are two medium broadleaves and 
measured when chlorophyll and water content are near their seasonal maximum. In that state, 
red absorption, a steep red-edge and a bright NIR plateau converge, while LiDAR captures 
rounded crowns with overlapping heights. Adding the CHM helps only marginally because the 
crowns are alike (Hovi et al., 2017; Shi et al., 2021). Common Ivy (read Ivy) complicates the 
situation even further. As a climbing plant, Ivy is recorded not just as an understory but also as 
vegetation located high in host trees. Ivy – Douglas fir and Ivy – Quaking Aspen therefore mix vine 
and host signals within single pixels, and the evergreen status of Ivy erases phenological contrast 
in a summer scene. Two shrub – shrub comparisons: Black Elder – Gooseberry and Beach Rose – 
Gooseberry, show a similar compression. They are dense, 1–3 m mounds with many thin twigs 
and therefore read almost identically to LiDAR, while leaf-scale differences (pinnate vs. lobed; 
rugose vs. smooth) may be lost at 44 cm under mixed illumination. Even Field Maple – Gooseberry, 
seemingly a tree–shrub contrast, collapses along crown edges were overhanging maple leaves 
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and shrub foliage share pixels. In short, where leaf chemistry converges, crown architecture 
resembles, and vertical mixing is common, JM distances sink toward ~1.03–1.36 (Table 8 and 9). 

At the other end of the spectrum, the highest JM values (~ 1.41, Table 8 and 9) indicate very strong 
class separation. These cases can be explained by differences in both leaf properties and canopy 
structure. In Raster 1 for example, Black Locust and Quacking Aspen are both deciduous trees, 
but they are structurally and visually different. The Black Locust has compound leaves and open 
crowns, the Quacking Aspen has simple, fluttering leaves and a denser canopy. These differences 
affect both the wavelength signal and CHM distribution, resulting in a stronger separability. 
Similarly, Common Ivy and Yew show high separation for the opposite reason of Ivy’s usual 
confusion with other species. In this case, Ivy remains as a shaded vine in the understory, while 
Yew forms a dense, needle leaf canopy above it. This vertical layering reduces the spectral mixing 
and enhances the contrast between the needle and broad leaves (see Appendix 4). 

In Raster 2, the pairs Black Locust – Chocolate Vine and Chocolate Vine – Crack Willow represent 
clear vertical stratification that occupy different height zones. The LiDAR height data amplifies the 
differences that are already visible in the reflectance. Douglas Fir and European Linden form a 
conifer and broadleaf pair, where darker evergreen leaves and lighter deciduous phenology add 
to the structural and spectral contrast (see Appendix 4). 

Finally, Raster 3 contains three pairs where both phenology and structure differ. Autumn Olive and 
Bollwiller Pear contrast a silvery hairy leaved shrub with a smoother orchard canopy. Bollwiller 
Pear and Trifoliate Orange differ through the thick oily trifoliate leaves, which affect the absorption 
(see Appendix 4).  

The extremes in the JM distances show a pattern. The lowest JM values likely result from species 
that appear similar in summer, due to similar biochemistry, shrub layers that look alike and strong 
spectral mixing. The highest JM values occur when differences in leaf structure are picked up, and 
crown position are in different directions making them more unique. Improving separability will 
depend on data and methods that further reduce similarities. For example, adding seasonal 
variables, detailed 3D information on vegetation structure, and applying object-based analysis 
could improve the JM values.  

5.3 Random Forest 
The Random Forest (RF) experiments were designed to test whether adding the Canopy Height 
Model (CHM) to hyperspectral components improves species mapping in a layered (food) forest. 
At the raster level, the effect is clear in two of the three cases: overall accuracy (OA) and Kappa 
(Table 10) rise from 0.60 to 0.65 (raster 2) and 0.68 to 0.86 (raster 3), with McNemar tests 
significant at 95% confidence (Table 11). Raster 1 shows only a marginal OA gain and no 
significant difference. These results are consistent with the species level patterns visible in the 
confusion matrices (Tables 12 – 14). Together, these patterns indicate that a CHM can add 
information if there is vertical stratification, but also offering little benefit where classes already 
separate spectrally or where structures overlap (H. Wang et al., 2021). 

There are two design choices that shaped the magnitude of the RF metric gains. First, I trained 
and tested at a resolution of 44 cm because separability increases with aggregation and stabilizes 
near this scale. Larger pixels capture canopy reflectance and suppress within-crown noise 
without exceeding crown size. This decision increases mean JM and, and therefore, the ceiling for 
RF accuracy. Second, I kept the flightlines separate instead of mosaicking them, to avoid 
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radiometric differences and BRDF effects between rasters. This approach reduces variation that 
is unrelated to species and makes structural patterns in the data easier to detect. 

5.3.1 Species level 
At the species level, the RF is comparable to the separability analysis. Species that were 
spectrally distinctive generally achieved higher and more stable scores regardless of CHM (See 
Appendix 12 – 14). For example: Douglas Fir, European Linden, Trifoliate Orange and Bollwiller 
Pear scored F1 ≥ 0.90. While Common Beech, Common Ivy and Thorny Olive remain a weak F1 (≤ 
0.50), suggesting spectral confusion and/or understory mixing. Most importantly, several problem 
classes improved dramatically when CHM was added: Hazel (F1 ≈ 0.18→0.55), Gooseberry (F1 ≈ 
0.50→0.90), and European Spindletree (F1 ≈ 0.33→0.67). A possible explanation for this is that 
these species may tend to have overlapping spectral signatures but differ enough in height and/or 
crown density, and therefore the CHM resolves ambiguity. In contrast, Chocolate Vine and Sweet 
Chestnut decline in F1 after CHM is introduced, which is consistent with the structure of these 
species being liana and low crown layers, respectively. This causes height (CHM) to increase 
noise instead of reducing. 

5.3.2 Link to spectral separability 
By linking the outcomes of the RF to the spectral separability scores, I try to strengthen the 
interpretation of both results. The lowest-JM pairs such as, Grey Alder–Hazel (≈ 1.03), Crack 
Willow–Hazel (≈ 1.04), Common Ivy–Douglas Fir (≈ 1.13), and Common Ivy–Quaking Aspen (≈ 
1.17) (see Table 9), may be a result of a similarity in leaf chemistry at the time of measurement, 
and the mixing of pixels (climbers, understory). In addition, it is these species that show lower RF 
scores and/or are sensitive to CHM. On the other hand, the highest-JM pairs like, Douglas Fir – 
European Linden, Black Locust – Chocolate Vine, and Bollwiller Pear – Trifoliate Orange (≈ 1.414) 
are also among the easier to classify (see Table 9). The combination of divergent leaf structures 
(needle/broad leaf, single/compound leaf) and minimal/no overlapping canopy structures results 
in these higher results. The pairwise extreme of the spectral separability therefore can foreshadow 
RF behaviour at the species level. 

When comparing my results to available literature, in diverse, mixed canopies, JM values 
clustering around 0.8 – 1.4 are common. Furthermore, to acquire high accuracies the research 
typically requires either structural information (LiDAR) or multi-date acquisitions (leaf-off/leaf-
on), or both, for species differentiation (Hologa et al., 2021; Michałowska & Rapiński, 2021). My 
findings are consistent with that pattern: hyperspectral imagery and a CHM improve OA in two of 
three rasters, and the largest gains occur where shrub–tree mixtures are strongest. Prior research 
reports similar benefits from multi-sensor use and emphasizes the additional value of leaf-off 
data for separating deciduous species. 

In sum, the RF results are generally consistent with the separability analysis and broadly in line 
with prior studies: the addition of structure (CHM) to the RF model improves its performance 
where spectra alone are ambiguous. However, the benefit is species-specific and depends on the 
scene geometry. For (food) forest mapping, this could mean that reliable species classification is 
possible for structurally and optically distinct species, and for difficult understory pairs once 
temporal (leaf-off) and structural (richer LiDAR features) information are added. 
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5.3.3 Classification visualization 
The RF classification maps (Figures 13 – 15) visualise how the trained model translates spectral 
and structural inputs into spatial patterns across the three flightlines. These maps are not 
intended as literal depictions of the full species composition of Ketelbroek, but rather as a 
diagnostic view of model behaviour when applied to a filtered, class-imbalanced dataset. The 
uneven representation of species in the training data is clearly reflected in the spatial outputs. The 
dominant classes occupy large, contiguous patches, while rare or spectrally ambiguous are either 
underrepresented or absent. This skewed distribution highlights the sensitivity of the RF model to 
sample imbalance and spectral overlap (Feng et al., 2019). These are two factors that are intrinsic 
to species rich environments and complex canopy layering (Fassnacht et al., 2016). 

In Raster 1 (figure 17), only three of the ten trained species appear in the final classification, with 
Quacking Aspen and Oak collectively accounting for nearly all predicted pixels. Their dominance 
likely comes from the large crowns and distinctive spectral-structural signatures, which results in 
the model to generalise beyond limited samples (Hologa et al., 2021). The absence of the majority 
of the species indicates that, at the current resolution (44cm) and with the restricted training 
dataset, the classifier prioritises broader structural cues over finer spectral distinctions 
(Michałowska & Rapiński, 2021). In Raster 2 (figure 18), class richness is improved, where eight 
of the thirteen species are predicted. However, the pattern remains fragmented and uneven, with 
Quacking Aspen and White Willow dominating the area. The increased patchiness and noise 
suggests spectral confusion and overlapping canopies (He et al., 2018). On the other hand, Raster 
3 (figure 19) produces a more balanced image, mapping seven of the eight species reported in the 
area. Here, the model benefits from a better combination of canopy heterogeneity, CHM variation, 
and class representation (Michałowska & Rapiński, 2021).  

Together, these three maps illustrate the strengths and limitations of integrating hyperspectral 
and LiDAR derived canopy height information in a (food) forest. Where there is vertical 
stratification and distinct crown architecture, the CHM clearly improves species discrimination. 
However, where understory and overstory overlap or species share similar visual properties, 
confusion remains. The dominance of a few species also shows that pixel-based RF classification 
struggles to capture ecological complexity when class balance and sample density are low. 
Nevertheless, the fact that the RF classifier can produce crown-scale patterns rather than random 
noise demonstrates that the combined hyperspectral – CHM approach successfully shows 
meaningful ecological structures.  

5.4 Limitations 
This study was subject to several limitations, both technological and ecological, that influenced 
the scope and interpretation of the results. Methodologically, the most persistent constraint was 
the limited and uneven sampling across species. Although the sampling strategy aimed to capture 
the widest range of species in Ketelbroek, the resulting limited dataset contained a strong 
imbalance in samples. This limited dataset means that results primarily reflect the dominant 
species, and not the rarer species that make up most of the forest’s overall diversity (Foody, 2009; 
Gimaret-Carpentier et al., 1998). Approximately two-thirds (Table 3) of the recorded species had 
fewer than ten usable samples, reducing statistical robustness and constraining the RF model’s 
ability to learn class boundaries. This imbalance forced a trade-off between taxonomic diversity 
and model reliability, ultimately limiting the number of species that could be included in the 
classification. Class imbalance also increases over- and under prediction effects, which is 
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reflected in the uneven spatial patterns seen in the RF visualisations (Figure 17 – 19) (Feng et al., 
2019).   

From a data acquisition point, several technical limitations affected spectral quality and 
consistency. The hyperspectral results of all fifteen flightlines show high variation between each 
raster. This is probably caused by Bidirectional Reflectance Distribution (BDRF) effects, 
illumination differences, and sensor geometry (Jia et al., 2024; Z. Wang & Liu, 2016). Although a 
linear correction per band was tested, the residual errors remained, leading to local brightness 
changes between the rasters. Treating flightlines separately avoided the spread of these biases. 
However, it restricted the analysis to sections of the research area (rasters 1 – 3) and reduced the 
sample size. In addition, the high spatial resolution (7 – 44cm) shows a higher variation within 
individual tree crowns, especially where overlapping canopies and shadows occurred. These 
factors are to be expected to UAV-based imagery of complex forests and show the difficulty in 
achieving spectral uniformity and vertically layered vegetation (Banerjee et al., 2020). 

Algorithmic limitations further influenced the results. The RF classifier is well suited for high 
dimensional and nonlinear data, but it remains a pixel-based model without spatial awareness. 
As a result, it does not account for contextual information such as crown shape or neighbourhood 
texture, which can improve discrimination in heterogeneous areas. The model’s structure also 
makes it prone to overfitting when sample size per class is low or spectral variance is high (Feng 
et al., 2019). Alternative approaches, such as Support Vector Machines (SVM) for margin-based 
separation, or Convolutional Neural Networks (CNNs) and other deep learning methods capable 
of leveraging spatial context, could potentially overcome some of these constraints. However, 
these methods demand larger, more balanced datasets and more extensive computational 
resources than were available for this research (Hologa et al., 2021; Raczko & Zagajewski, 2017).  

Ecologically, several contextual factors shaped the limits of the analysis. Data was collected 
during late spring, in full leaf-on conditions. Meaning that chlorophyll and water content is at its 
peak across all species. This reduces spectral variability, making deciduous species less 
separable (Fassnacht et al., 2016; Tian et al., 2020). Furthermore, parts of the forest were 
inaccessible due to dense vegetation and wet terrain. This ultimately resulted in spatial sampling 
bias toward open or easily reachable areas. Even though the infield sampling is combined with a 
desktop analysis of an RGB image, the representation across the complete forest is limited. The 
CHM smoothed some of these effects by introducing structural diversity, but it could not fully 
capture fine scale vertical complexity. 

These technical and ecological limitations restrict the generalizability of the results beyond the 
specific conditions of Ketelbroek. While the research demonstrated that UAV hyperspectral 
imagery and LiDAR derived data can classify species in a highly diverse agroforestry system, the 
accuracies remain very context dependent. Nevertheless, by identifying these uncertainties, this 
research shows where the methods perform reliably and where future improvements are needed 
to go towards more promising results across sites and seasons.   

5.5 Recommendations 
During this research, several directions for future research emerged in both methodological 
design and practical monitoring of (agro) forestry systems. First, future research should aim for 
balanced sampling across species. Establishing a high enough minimum number of samples per 
species, or making use of augmented data, can help improve a class imbalance and stabilise the 
performances of the RF model (Feng et al., 2019; Foody, 2009; Jeliazkov et al., 2022). In addition, 
by linking field data to automatically detected tree crowns, more pixels can be labelled for each 
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known species, giving a better image on the composition of a tree (Piiroinen et al., 2017). 
Integrating these systematic protocols within national monitoring programs, such as the 
Nationaal Monitoringsprogramma Voedselbossen, could also help standardize data quality 
across sites in the Netherlands (Wendel et al., 2023). 

Secondly, a multi-temporal and -sensor approach is strongly recommended. Repeating 
acquisitions during different seasons (especially leaf-on and leaf-off phases) introduces a high 
contrast that could drastically improve discrimination among deciduous and evergreen species 
(Fassnacht et al., 2016; Tian et al., 2020). Other structural metrics such as crown density indices, 
gap fraction, and leaf shapes could further improve separability between shrubs, vines and trees. 
Also, the addition of vegetation indices could result in a better representation of canopy traits that 
are relevant to species classification (Hologa et al., 2021; Rehman et al., 2024). 

Thirdly, future research should explore object-based and more spatially aware classification 
methods. Transitioning from pixel-based RF models toward object-based image analysis, or 
convolutional neural networks (CNN) can reduce noise and incorporate spatial context such as 
crown geometry and patterns (He et al., 2018). However, these methods should be combined with 
careful feature selection to prevent overfitting and maintain interpretability (Michałowska & 
Rapiński, 2021). Considering feature selection, while PCA effectively reduced the dimensionality 
and noise in the data of this research, it remains an unsupervised method where class separability 
is not necessarily optimised. Therefore, combining PCA with supervised band selection 
techniques could improve interpretability and potentially increase the classification accuracy 
(Paul & Chaki, 2022; Taşkın et al., 2017). 

This research demonstrates that UAV sensors and open-source analytical tools can already 
produce meaningful insight in the structure of tree species biodiversity in Ketelbroek. To translate 
these methods in routine monitoring, future projects should develop systematic protocols that 
can be adapted to varying forest types, spectral sensors and data resolutions. This would enable 
people, from researcher to landowners, to evaluate biodiversity and structural change 
consistently across years and regions.  
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6. Conclusion 
This research aimed to evaluate how accurately airborne hyperspectral imagery, combined with 
the LiDAR derived Canopy Height Model can classify (woody) plant species in the highly diverse 
Dutch food forest Ketelbroek, using Random Forest classifiers. Working with over 200 species, 
strong structural layering, imbalance in samples, and large within crown spectral variation 
presented a challenging case. The findings show the potential and the limitations of this 
combined remote sensing approach. 

The first research question focussed on analysing the differences between the three flightlines, 
whether there is a linear trend present, and if linear regression could solve these between strip 
differences. The analysis showed that there is a systematic brightness difference between 
adjacent rasters with the next one always being brighter. This occurred especially in the Red Edge 
and the NIR. These differences are likely caused by BRDF effects and subtle illumination changes 
during the time of hyperspectral data acquisition. Although linear regression reduced a small part 
of the bias, inconsistencies remained too big across all wavelengths. Therefore, this is not a 
suitable solution to harmonise the different rasters into one mosaic. Treating flightlines separately 
was the most reliable approach in preserving spectral integrity in this case. 

The second research question investigated the effect of different spatial resolutions on species 
discrimination and focussed on species and species pairs that are either well spectrally 
separated or consistently confused. Across all rasters, Jeffries Matusita distances indicated (low) 
moderate separability. The introduction of coarser pixel size (from 7cm to ~44cm) significantly 
improved separability. At approximately 44cm, spectral signatures became more representative 
of whole crowns, capturing more of the characteristics of species. Species pairs with the lowest 
separability typically shared similar leaf traits, canopy forms or height. The most separable 
species pairs differed more strongly in either leaf structure or height. 

The third research question focussed on Random Forest classification and the integration of a 
Canopy Height Model. Across two of the three rasters, adding the CHM substantially improved the 
model’s accuracy, supported by the McNemar test. Height information was especially valuable 
for species that are spectrally similar, but structurally different, such as Hazel, Gooseberry and 
European Spindle. On the other hand, species with low or no structural height differences saw 
reduced performance. This shows that a Canopy Height Model is not always beneficial. The 
classification maps further showed that Random Forest can reproduce meaningful ecological 
patterns but remains sensitive to class imbalances and spectral mixing. 

Overall, this study shows that the use of airborne hyperspectral data is a promising method for 
biodiversity assessment in a complex agroforestry system. With the use of Random Forest, 
several woody species are distinguished. Hyperspectral data alone resulted in a classification 
that is somewhat reliable, and the addition of a Canopy Height Model significantly improved 
species prediction for two of the three rasters. However, both datasets were limited in the ability 
to separate species in the understory, and species that are similar in structure and spectrum. This 
indicates that airborne hyperspectral data can identify species only to a moderate extent in 
complex forest environments and that CHM provides improvements in some cases but does not 
fully resolve the classification challenges. Even within these constraints, the findings illustrate 
how UAV-based remote sensing can contribute to monitoring frameworks for (emerging) 
agroforestry systems in the Netherlands. To further improve the assessment of biodiversity it is 
advised to make use of balanced sampling strategies, multi seasonal acquisitions, richer 
structural metrics, and spatially aware classifiers.  
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7. Use of generative AI statement 
In this thesis, AI is used as a sparring partner and as a feedback tool to improve the quality of the 
texts. The scientific approach, methods, and content presented in this thesis is the work of the 
author, who takes full responsibility for the analysis and text.  



49 
 

8. References 
Ahrens, D., Fujisawa, T., Krammer, H.-J., Eberle, J., Fabrizi, S., & Vogler, A. P. (2016). Rarity and Incomplete 

Sampling in DNA-Based Species Delimitation. Systematic Biology, 65(3), 478–494. 

https://doi.org/10.1093/sysbio/syw002 

Allaby, M. (2012). A Dictionary of Plant Sciences. Oxford University Press. 

Almusaed, A. (2016). Landscape Ecology: The Influences of Land Use and Anthropogenic Impacts of 

Landscape Creation. BoD – Books on Demand. 

Ariza, A., Robredo Irizar ,Marina, & and Bayer, S. (2018). Empirical line model for the atmospheric 

correction of sentinel-2A MSI images in the Caribbean Islands. European Journal of Remote 

Sensing, 51(1), 765–776. https://doi.org/10.1080/22797254.2018.1482732 

AZ, M. van A. Z. (2018, September 8). Visie Landbouw, Natuur en Voedsel: Waardevol en Verbonden - 

Beleidsnota - Rijksoverheid.nl [Beleidsnota]. Ministerie van Algemene Zaken. 

https://www.rijksoverheid.nl/documenten/beleidsnota-s/2018/09/08/visie-landbouw-natuur-en-

voedsel-waardevol-en-verbonden 

Ballemans, M. (2022, April 5). Voedselbos kaart. Puur Permacultuur. 

https://puurpermacultuur.nl/voedselbos-kaart/ 

Banerjee, B. P., Raval, S., & Cullen, P. J. (2020). UAV-hyperspectral imaging of spectrally complex 

environments. International Journal of Remote Sensing, 41(11), 4136–4159. 

https://doi.org/10.1080/01431161.2020.1714771 

Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future 

directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. 

https://doi.org/10.1016/j.isprsjprs.2016.01.011 

Berkhout, P., Van Der Meulen, H., & Ramaekers, P. (2023). Staat van Landbouw, Natuur en Voedsel: Editie 

2023. Wageningen Economic Research. https://doi.org/10.18174/641747 

Breidenbach, J., Dijkgraaf, E., Nijpels-Cieremans, R., & Strijkstra. (2017, May). Voedselbossen van belang 

voor biodiverseit. De levende natuur, 3(118), 5. 

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. 

https://doi.org/10.1023/A:1010933404324 

CBS. (n.d.). Hoe wordt de Nederlandse bodem gebruikt? - Nederland in cijfers 2020 | CBS [Webpagina]. 

Hoe wordt de Nederlandse bodem gebruikt? - Nederland in cijfers 2020 | CBS. Retrieved 15 

October 2024, from https://longreads.cbs.nl/nederland-in-cijfers-2020/hoe-wordt-de-

nederlandse-bodem-gebruikt 

Chen, J., Chen, Z., Huang, R., You, H., Han, X., Yue, T., & Zhou, G. (2023). The Effects of Spatial Resolution 

and Resampling on the Classification Accuracy of Wetland Vegetation Species and Ground 

Objects: A Study Based on High Spatial Resolution UAV Images. Drones, 7(1), 61. 

https://doi.org/10.3390/drones7010061 



50 
 

Dainelli, R., Toscano, P., Di Gennaro, S. F., & Matese, A. (2021). Recent Advances in Unmanned Aerial 

Vehicles Forest Remote Sensing—A Systematic Review. Part II: Research Applications. Forests, 

12(4), Article 4. https://doi.org/10.3390/f12040397 

Dalponte, M., Ørka, H. O., Gobakken, T., Gianelle, D., & Næsset, E. (2013). Tree Species Classification in 

Boreal Forests With Hyperspectral Data. IEEE Transactions on Geoscience and Remote Sensing, 

51(5), 2632–2645. https://doi.org/10.1109/TGRS.2012.2216272 

D’Amico, G., Nilsson ,Mats, Axelsson ,Arvid, & and Chirici, G. (2024). Data homogeneity impact in tree 

species classification based on Sentinel-2 multitemporal data case study in central Sweden. 

International Journal of Remote Sensing, 45(15), 5050–5075. 

https://doi.org/10.1080/01431161.2024.2371082 

De Jager, N. R., & Fox, T. J. (2013). Curve Fit: A pixel-level raster regression tool for mapping spatial 

patterns. Methods in Ecology and Evolution, 4(8), 789–792. https://doi.org/10.1111/2041-

210X.12068 

Díaz-Delgado, R., & Mücher, S. (2019). Editorial of Special Issue “Drones for Biodiversity Conservation and 

Ecological Monitoring”. Drones, 3(2), 47. https://doi.org/10.3390/drones3020047 

Dupraz, C., Lawson, G. J., Lamersdorf, N., Papanastasis, V. P., Rosati, A., & Ruiz-Mirazo, J. (2018). 

Temperate agroforestry: The European way. Temperate Agroforestry Systems, 98–152. 

https://doi.org/10.1079/9781780644851.0098 

EZ&K, M. van E. Z. en. (2019a-06-28T14:10). Klimaatakkoord—Publicatie—Klimaatakkoord [Publicatie]. 

Ministerie van Economische Zaken en Klimaat. 

https://www.klimaatakkoord.nl/documenten/publicaties/2019/06/28/klimaatakkoord 

Fassnacht, F. E., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M., Waser, L. T., Straub, C., & Ghosh, 

A. (2016). Review of studies on tree species classification from remotely sensed data. Remote 

Sensing of Environment, 186, 64–87. https://doi.org/10.1016/j.rse.2016.08.013 

Feng, W., Huang, W., & Bao, W. (2019). Imbalanced Hyperspectral Image Classification With an Adaptive 

Ensemble Method Based on SMOTE and Rotation Forest With Differentiated Sampling Rates. IEEE 

Geoscience and Remote Sensing Letters, 16(12), 1879–1883. 

https://doi.org/10.1109/LGRS.2019.2913387 

Foody, G. M. (2009). Sample size determination for image classification accuracy assessment and 

comparison. International Journal of Remote Sensing, 30(20), 5273–5291. 

https://doi.org/10.1080/01431160903130937 

Gimaret-Carpentier, C., Pélissier, R., Pascal, J.-P., & Houllier, F. (1998). Sampling strategies for the 

assessment of tree species diversity. Journal of Vegetation Science, 9(2), 161–172. 

https://doi.org/10.2307/3237115 

Hashimoto, N., Saito, Y., Maki, M., & Homma, K. (2019). Simulation of Reflectance and Vegetation Indices 

for Unmanned Aerial Vehicle (UAV) Monitoring of Paddy Fields. Remote Sensing, 11(18), 2119. 

https://doi.org/10.3390/rs11182119 



51 
 

He, L., Li, J., Liu, C., & Li, S. (2018). Recent Advances on Spectral–Spatial Hyperspectral Image 

Classification: An Overview and New Guidelines. IEEE Transactions on Geoscience and Remote 

Sensing, 56(3), 1579–1597. https://doi.org/10.1109/TGRS.2017.2765364 

Hennessy, A., Clarke, K., & Lewis, M. (2020). Hyperspectral Classification of Plants: A Review of Waveband 

Selection Generalisability. Remote Sensing, 12(1), 113. https://doi.org/10.3390/rs12010113 

Hologa, R., Scheffczyk, K., Dreiser, C., & Gärtner, S. (2021). Tree Species Classification in a Temperate 

Mixed Mountain Forest Landscape Using Random Forest and Multiple Datasets. Remote Sensing, 

13(22), 4657. https://doi.org/10.3390/rs13224657 

Hovi, A., Raitio, P., & Rautiainen, M. (2017). A spectral analysis of 25 boreal tree species. Silva Fennica, 

51(4). https://doi.org/10.14214/sf.7753 

Hussain, K., Ilyas, A., Bibi, I., & Hilger, T. (2021). Sustainable Soil Loss Management in Tropical Uplands: 

Impact on Maize-Chili Cropping Systems. Sustainability, 13(11), Article 11. 

https://doi.org/10.3390/su13116477 

Jeliazkov, A., Gavish, Y., Marsh, C. J., Geschke, J., Brummitt, N., Rocchini, D., Haase, P., Kunin, W. E., & 

Henle, K. (2022). Sampling and modelling rare species: Conceptual guidelines for the neglected 

majority. Global Change Biology, 28(12), 3754–3777. https://doi.org/10.1111/gcb.16114 

Jia, W., Pang, Y., & Tortini, R. (2024). The influence of BRDF effects and representativeness of training data 

on tree species classification using multi-flightline airborne hyperspectral imagery. ISPRS Journal 

of Photogrammetry and Remote Sensing, 207, 245–263. 

https://doi.org/10.1016/j.isprsjprs.2023.11.025 

Joffre, R., Rambal, S., & Ratte, J. P. (1999). The dehesa system of southern Spain and Portugal as a natural 

ecosystem mimic. Agroforestry Systems, 45(1), 57–79. https://doi.org/10.1023/A:1006259402496 

Kizel, F., & Vidro, Y. (2023). An unmixing-based BRDF correction in spectral remote sensing data. 

International Journal of Applied Earth Observation and Geoinformation, 118, 103161. 

https://doi.org/10.1016/j.jag.2022.103161 

Kumar, T., Brennan, R., Mileo, A., & Bendechache, M. (2024). Image Data Augmentation Approaches: A 

Comprehensive Survey and Future Directions. IEEE Access, 12, 187536–187571. 

https://doi.org/10.1109/ACCESS.2024.3470122 

Liu, H., & Scaglione, A. (2025). Shuffled Linear Regression via Spectral Matching (No. arXiv:2410.00078). 

arXiv. https://doi.org/10.48550/arXiv.2410.00078 

Lu, B., & and He, Y. (2018). Optimal spatial resolution of Unmanned Aerial Vehicle (UAV)-acquired imagery 

for species classification in a heterogeneous grassland ecosystem. GIScience & Remote Sensing, 

55(2), 205–220. https://doi.org/10.1080/15481603.2017.1408930 

LVVN. (2024). Broeikasgasuitstoot landbouw. 

https://www.staatvanlandbouwnatuurenvoedsel.nl/kerncijfers/broeikasgasemissie-ipcc/ 

Michałowska, M., & Rapiński, J. (2021). A Review of Tree Species Classification Based on Airborne LiDAR 

Data and Applied Classifiers. Remote Sensing, 13(3), 353. https://doi.org/10.3390/rs13030353 



52 
 

Nair, P. K. R., Kumar, B. M., & Nair, V. D. (2021). An Introduction to Agroforestry: Four Decades of Scientific 

Developments. Springer International Publishing. https://doi.org/10.1007/978-3-030-75358-0 

Nguyen, K. A., & Chen, W. (2024). Enhancing Cover Management Factor Classification Through 

Imbalanced Data Resolution. Environments, 11(11), 250. 

https://doi.org/10.3390/environments11110250 

Osman, K. T. (2014). Soil Resources and Soil Degradation. In K. T. Osman (Ed.), Soil Degradation, 

Conservation and Remediation (pp. 1–43). Springer Netherlands. https://doi.org/10.1007/978-94-

007-7590-9_1 

Paul, A., & Chaki, N. (2022). Supervised data-driven approach for hyperspectral band selection using 

quantization. Geocarto International, 37(8), 2312–2322. 

https://doi.org/10.1080/10106049.2020.1822929 

Peña, M. A., Cruz ,Pablo, & and Roig, M. (2013). The effect of spectral and spatial degradation of 

hyperspectral imagery for the Sclerophyll tree species classification. International Journal of 

Remote Sensing, 34(20), 7113–7130. https://doi.org/10.1080/01431161.2013.817712 

Perry, E. M., Warner ,T., & and Foote, P. (2000). Comparison of atmospheric modelling versus empirical line 

fitting for mosaicking HYDICE imagery. International Journal of Remote Sensing, 21(4), 799–803. 

https://doi.org/10.1080/014311600210588 

Piiroinen, R., Heiskanen, J., Maeda, E., Viinikka, A., & Pellikka, P. (2017). Classification of Tree Species in a 

Diverse African Agroforestry Landscape Using Imaging Spectroscopy and Laser Scanning. 

Remote Sensing, 9(9), Article 9. https://doi.org/10.3390/rs9090875 

Raczko, E., & Zagajewski, B. (2017). Comparison of support vector machine, random forest and neural 

network classifiers for tree species classification on airborne hyperspectral APEX images. 

European Journal of Remote Sensing, 50(1), 144–154. 

https://doi.org/10.1080/22797254.2017.1299557 

Rehman, A. U., Zhang, L., Sajjad, M. M., & Raziq, A. (2024). Multi-Temporal Sentinel-1 and Sentinel-2 Data 

for Orchards Discrimination in Khairpur District, Pakistan Using Spectral Separability Analysis and 

Machine Learning Classification. Remote Sensing, 16(4), Article 4. 

https://doi.org/10.3390/rs16040686 

Sanders, M. E., Westerink, J., Migchels, G., Korevaar, H., Geerts, R. H. E. M., Bloem, J., Alebeek, F. A. N. 

van, Schotman, A. G. M., Melman, T. C. P., Plomp, M., Muskens, G. J. D. M., & Och, R. A. F. van. 

(2015). Op weg naar een natuurinclusieve duurzame landbouw (p. ). Alterra. 

https://library.wur.nl/WebQuery/wurpubs/492292 

Sen, R., Goswami, S., & Chakraborty, B. (2019). Jeffries-Matusita distance as a tool for feature selection. 

2019 International Conference on Data Science and Engineering (ICDSE), 15–20. 

https://doi.org/10.1109/ICDSE47409.2019.8971800 

Shi, Y., Wang, T., Skidmore, A. K., Holzwarth, S., Heiden, U., & Heurich, M. (2021). Mapping individual silver 

fir trees using hyperspectral and LiDAR data in a Central European mixed forest. International 



53 
 

Journal of Applied Earth Observation and Geoinformation, 98, 102311. 

https://doi.org/10.1016/j.jag.2021.102311 

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. 

Journal of Big Data, 6(1), 60. https://doi.org/10.1186/s40537-019-0197-0 

Song, G., & Wang, Q. (2023). Species classification from hyperspectral leaf information using machine 

learning approaches. Ecological Informatics, 76, 102141. 

https://doi.org/10.1016/j.ecoinf.2023.102141 

Taşkın, G., Kaya, H., & Bruzzone, L. (2017). Feature Selection Based on High Dimensional Model 

Representation for Hyperspectral Images. IEEE Transactions on Image Processing, 26(6), 2918–

2928. https://doi.org/10.1109/TIP.2017.2687128 

Thomas, F. M., Vesk, P. A., & Hauser, C. E. (2019). Field Data Collection Can Be Expensive, Time 

Consuming, and Difficult; Particularly in Remote or Hard To Get To Places Like ‘The Mallee’ in 

Semi-Arid Australia. The Bulletin of the Ecological Society of America, 100(1), e01473. 

https://doi.org/10.1002/bes2.1473 

Tian, J., Wang, L., Yin, D., Li, X., Diao, C., Gong, H., Shi, C., Menenti, M., Ge, Y., Nie, S., Ou, Y., Song, X., & 

Liu, X. (2020). Development of spectral-phenological features for deep learning to understand 

Spartina alterniflora invasion. Remote Sensing of Environment, 242, 111745. 

https://doi.org/10.1016/j.rse.2020.111745 

Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). 

Agriculture Development, Pesticide Application and Its Impact on the Environment. International 

Journal of Environmental Research and Public Health, 18(3), Article 3. 

https://doi.org/10.3390/ijerph18031112 

Uddin, Md. P., Mamun, Md. A., & Hossain, Md. A. (2021). PCA-based Feature Reduction for Hyperspectral 

Remote Sensing Image Classification. IETE Technical Review, 38(4), 377–396. 

https://doi.org/10.1080/02564602.2020.1740615 

van Grinsven, H. J. M., van Eerdt, M. M., Westhoek, H., & Kruitwagen, S. (2019). Benchmarking Eco-

Efficiency and Footprints of Dutch Agriculture in European Context and Implications for Policies 

for Climate and Environment. Frontiers in Sustainable Food Systems, 3. 

https://doi.org/10.3389/fsufs.2019.00013 

Veluw, K. van. (2013, September). eerste voedselbos in Nederland: Nieuw perspectief voor duurzame 

voedselproductie | Groenekennis. https://library.wur.nl/WebQuery/groenekennis/2101477 

Villaescusa-Nadal, J. L., Franch, B., Roger, J.-C., Vermote, E. F., Skakun, S., & Justice, C. (2019). Spectral 

Adjustment Model’s Analysis and Application to Remote Sensing Data. IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing, 12(3), 961–972. 

https://doi.org/10.1109/JSTARS.2018.2890068 

Wang, H., Seaborn, T., Wang, Z., Caudill, C. C., & Link, T. E. (2021). Modeling tree canopy height using 

machine learning over mixed vegetation landscapes. International Journal of Applied Earth 

Observation and Geoinformation, 101, 102353. https://doi.org/10.1016/j.jag.2021.102353 



54 
 

Wang, Z., & Liu, L. (2016). Correcting Bidirectional Effect for Multiple-Flightline Aerial Images Using a 

Semiempirical Kernel-Based Model. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 9(9), 4450–4463. 

https://doi.org/10.1109/JSTARS.2016.2597855 

Wendel, B., Rooduijn, B., & Disselhorst, E. (2023, June). Voedselbossen: Bodem, biodiversiteit, biomassa, 

business & beweging. Monitoringvoedselbossen. https://www.monitoringvoedselbossen.nl/ 

Wicaksono, P., & Aryaguna, P. A. (2020a). Analyses of inter-class spectral separability and classification 

accuracy of benthic habitat mapping using multispectral image. Remote Sensing Applications: 

Society and Environment, 19, 100335. https://doi.org/10.1016/j.rsase.2020.100335 

Wicaksono, P., & Aryaguna, P. A. (2020b). Analyses of inter-class spectral separability and classification 

accuracy of benthic habitat mapping using multispectral image. Remote Sensing Applications: 

Society and Environment, 19, 100335. https://doi.org/10.1016/j.rsase.2020.100335 

Zeng, T., Wang, Y., Yang, Y., Liang, Q., Fang, J., Li, Y., Zhang, H., Fu, W., Wang, J., & Zhang, X. (2024). Early 

detection of rubber tree powdery mildew using UAV-based hyperspectral imagery and deep 

learning. Computers and Electronics in Agriculture, 220, 108909. 

https://doi.org/10.1016/j.compag.2024.108909 

 

 



55 
 

Appendix 1: Woody species recorded in Ketelbroek. 
Table 15: Comprehensive list of all woody species recorded in Ketelbroek during fieldwork and desktop analysis. The 
table includes scientific and Dutch names, representing > 200 species. This list shows the ecological diversity 
underlying the classification challenge. 

Fruit bearing woody species 

  Scientific name  Dutch name  
1  Acer saccharum Suikeresdoorn 
2  Actinidia arguta Kiwibes 
3  Actinidia deliciosi Kiwi 
4  Actinidia kolomikta Straalstempelkiwi 
5   Akebia quinata Schijnaugurk  
6  Akebia trifoliata Driebladig schijnaugurk 
7  Amelanchier spp. Krentenboompje 
8  Arália elata Duivelswandelstok 
9  Araucaria araucana Slangenden 
10  Arbutus unedo Aardbeienboom 
11  Aronia prunifolia Appelbes 
12  Asimina triloba Pawpaw 
13  Atriplex canescens Struikzoutmelde 
14  Broussonetia kazinoki Japanse papierboom 
15  Broussonetia papyrifera Papiermoerbei 
16  Camelia sinensis Camelia sinensis 
17  Caragana arborescens Siberische erwtenstruik 
18  Carya illinoinensis Pecan 
19  Carya illinoinensis x laciniosa Hican 
20  Carya illinoinensis x ovata Hican 
21  Carya laciniosa Koningsnoot 
22  Carya ovata Hickory bitternoot 
23  Carya ovata x cordiformis Hickory hybride 
24  Carya ovata x laciniosa Hickory hybride 
25  Castanea henryi Parelkastanje 
26  Castanea mollissima Chinese tamme kastanje 
27  Castanea mollissima x sativa Tamme kastanje hybride 
28  Castanea sativa Tamme kastanje 
29  Castanea sativa x crenata Tamme kastanje hybride 
30  Celtis australis Europese netelboom 
31  Celtis occidentalis Zwepenboom 
32  Cephalotaxus harringtonia Knoptaxus 
33  Cercis siliquastrum Judasboom 
34  Citrus trifoliata Winterharde citroen 
35  Chaenomeles Japonica Japanse sierkwee 
36  Chaenomeles cathayensis Chinese kwee 
37  cornus alba Witte kornoelje 
38  Cornus kousa Chinese kornoelje 
39  Cornus kousa x capitata Porlock 
40  Cornus mas Gele kornoelje 
41  Cornus officinalis Japanse kornoelje 
42  Corylus avellana Hazelaar 
43  Corylus sieboldiana Japanse hazelnoot 
44  Corylus x colurnoides Trazel 
45  Crataegus azarolus azarooldoorn 
46  Crataegus ellwangeriana Amerikaanse vruchtmeidoorn 
47  Crataegus mexicana Mexicaanse vruchtmeidoorn 
48  Crataegus mollis Canadese vruchtmeidoorn 
49  Crataegus pinnatifida major Chinese vruchtmeidoorn 
50  Crataegus tanacetifolia Turkese vruchtmeidoorn 
51  Crataegomespilus dardarii d’Asnieresii Asnieresii meidoornmispel 
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(Crataegus laevigata x Mespilus germanica) 
52  Crataegomespilus grandiflora 

(Crataegus laevigata x Mespilus germanica) 
Grootbloemige meidoornmispel 

53  Cudrania Tricuspidata Che fruit 
54  Cydonia oblonga Kweepeer 
55  Decaisnea fargesii Augurkenstruik 
56  Diospyros kaki Kaki 
57  Diospyros spp (D. virginiana x kaki) Hybride kaki 
58  Diospyros virginiana Amerikaanse persimoen 
59  Elaeagnus pungens Stekelige olijfwilg 
60  Elaeagnus multiflora Langstelige olijfwilg 
61  Elaeagnus umbellata Schermbloemige olijfwilg 
62  Elaeagnus x ebbingei Zilverbes 
63  Elaeagnus x quicksilver (E. commutata x angustifolia) Quicksilver olijfwilg 
64  Ficus carica Vijg 
65  Ginkgo biloba Japanse notenboom 
66  Gleditsia triacanthos Valse christusboom 
67  Halesia carolina Sneeuwklokjesboom 
68  Hibiscus syriacus Hibiscus (Altheastruik) 
69  Hippophae rhamnoïdes Duindoorn 
70  Juglans ailanthifolia Japanse walnoot (hartnoot) 
71  Juglans cinerea Witte walnoot 
72  Juglans nigra Zwarte walnoot 
73  Juglans regia Walnoot 
74  Lonicera caerulea Honingbes 
75  Malus domestica Appel 
76  Mespilus germanica Mispel 
77  Morus alba x rubra ‘Capsrum’ Capsrum-moerbei 
78  Morus nigra Zwarte moerbei 
79  Myrica gale Wilde Gagel 
80  Myrica pensylvanica Wasgagel 
81  Oemleria cerasiformis Indianenpruim 
82  Paulownia tomentosa Anna Paulownaboom 
83  Phyllostachys spp  Reuzenbamboe 
84  Pinus koraiensis Koreaanse den 
85  Prunus armeniaca Abrikoos 
86  Prunus avium Zoete kers 
87  Prunus cerasifera Kroosjespruim 
88  Prunus cerasus Zure kers (morel) 
89  Prunus domestica Pruim 
90  Prunus dulcis Amandel 
91  Prunis persica Perzik 
92  Prunus salicina Japanse pruim 
93  Prunus spinosa Sleedoorn 
94  Prunus tomentosa Nanking cherry 
95  Prunus spp Complexe pruimen 
96  Pyrus communis Peer 
97  Pyrus communis x pyrifolia Champagnepeer 
98  Pyrus pyrifolia Aziatische zandpeer (nashi) 
99  Pyrus x Sinkiangensis (P. bretschneideri x communis) Xinjiangpeer 
100  Quercus ilex Steeneik 
101  Rhus aromotica Welriekende sumac 
102  Rhus glabra Fluweelboom 
103  Rhus typhina Fluweelboom 
104  Ribes divaricatum Worcesterbes 
105  Ribes nigrum Zwarte bes 
106  Ribes odoratum Buffelkrent 
107  Ribes rubrum Rode bes 
108  Ribes uva-crispa Kruisbes 
109  Ribes × nidigrolaria (R. nigrum × R. uva-crispa) Jostabes 
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110  Rosa rugosa Rimpelroos 
111  Rubus spp Braam 
112   Tayberrie 
113   Chinese klimbraam 
114   Framboos 
115  Rubus iraneus Moeraskruipframboos 
116  Rubus Nepalensis Himalya kruipframboos 
117  Rubus parviflorus x Rubus idaeus  Dorman Red 
118  Rubus phoenicolasius Japanse wijnbes 
119  Rubus sechuaensis Zsechuansisbraam 
120  Rubus tricolor Kruipframboos 
121  Sambucus canadensis Canadese vlier 
122  Sambucus nigra Vlier 
123  Sassafras albidum Sassafras 
124  Schisandra chinensis Vijfsmakenbes 
125  Shepherdia argentea Buffelbes 
126  Sorbocrataegus 'Ivan's Belle' 

(Sorbus aucuparia x Crataegus laevigata) 
Ivan's Belle 

127  Sorbopyrus auricularis Peerlijsterbes 
128  Sorbus aucuparia x Crataegus sanguinea Granatjana lijstebes 
129  Sorbus devoniensis Devon meelbes 
130  Sorbus domestica Peervormige lijsterbes 
131  Sorbus torminalis Elsbes 
132  Sorbus X ‘Burka’  Burka-lijsterbes 
133  Staphylea bumalda Japanse pimpernoot 
134  Staphylea colchica Kaukasische pimpernoot 
135  Staphylea pinnata Pimpernoot 
136  Stauntonia hexaphylla ‘aardappelpruim’ 
137  Tilia cordata Winterlinde 
138  Tilia platyphyllos Zomerlinde 
139  Tilia x europaea Hollandse Linde 
140  Toona sinensis Uiensoepboom 
141  Torreya californica Californische nootmuskaattaxus 
142  Torreya nucifera Kaya 
143  Ulmus laevis Fladderiep 
144  Viburnum dentatum Sneeuwbal dentatum 
145  Viburnum furcatum Sneeuwbal furcatum 
146  Viburnum lentago Schapenbes 
147  Viburnum nudum Sneeuwbal 
148  Viburnum plicatum Japanse sneeuwbal 
149  Viburnum prunifolium  Zwarte haagdoorn 
150  Vitis vinifera Druif 
151  Wisteria sinensis Blauwe regen 
152  Xanthoceras sorbifolium Chinese bloeiende kastanje 
153  X Pyrocydonia danielii  Pyrocydonia danielii 
154  X Pyronia veitchii Pyronia veitchii 
155  Zanthoxylum alatum Nepalese peper 
156  Zanthoxylum bungeanum Peperboom bungeanum 
157  Zanthoxylum giraldii Peperboom giraldii 
158  Zanthoxylum schinifolium Szechuanpeper schinifolium 
159  Zanthoxylum simulans Szechuanpeper 
160  Ziziphus jujuba Chinese dadelpruim 
    

Supporting wooden species 
161  Acer campestre Veldesdoorn 
162  Acer pseudoplatanus Gewone esdoorn 
163  Alnus cordata Italiaanse els 
164  Alnus glutinosa Zwarte els 
165  Alnus incana Witte els 
166  Alnus rubra Rode els 
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167  Betula pendula Ruwe berk 
168  Betula pubescens Zachte berk 
169  Carpinus betulus Haagbeuk 
170  Clematis vitalba Clematis vitalba 
171  Cornus sanguinea Rode kornoelje 
172  Crataegus laevigata Tweestijlige meidoorn 
173  Euonymus europaeus Kardinaalsmuts 
174  Fagus sylvatica Gewone beuk 
175  Fraxinus excelsior Gewone es 
176  Hedera helix Hedera helix 
177  Ligustrum vulgare Liguster 
178  Lonicera periclymenum Kamperfoelie 
179  Malus sylvestris Wilde appel 
180  Pseudotsuga menziesii Douglasspar 
181  Populus deltoides Balsempopulier 
182  Populus nigra Zwarte populier 
183  Populus × Canadensis Canadapopulier 
184  Populus tremula Ratelpopulier 
185  Prunus padus Vogelkers 
186  Pyrus pyraster Wilde peer 
187  Quercus petreae Wintereik 
188  Quercus robur Zomereik 
191  Rhamnus cathartica Wegedoorn 
192  Robinia pseudoacacia Acacia 
193  Rosa canina Hondsroos 
194  Rosa corymbifera Heggenroos 
195  Rosa rubiginosa Egelantier 
196  Rosa villosa Viltroos 
197  Salix alba Schietwilg 
198  Salix caprea Boswilg 
199  Salix fragilis Kraakwilg 
200  Salix spp Overige wilgen 
201  Sorbus aucuparia Lijsterbes 
202  Styrax officinalis Storax 
203  Taxus baccata Venijnboom 
204   Viburnum opulus Gelderse roos 
205  Pinus sylvestris Grove den 
206  Salix aurita Geoorde wild 
207   Prunus cerasifera Paarse kroosjespruim 
208   Craetegus viridus Groene meidoorn 
209   Prunus armeniaca x salicina Abrikoos met japanse pruim 
210  Berberis coreana Koreaanse zuurbes 
211  Maclura pomifera Osagedoorn 
212  Corylus avellana  Roodbladige hazelaar  
213  Elaegnus angustifolia Olijfwilg 
214  Rubus subg batohamnus Prachtbraam 
215  Urtica doica Grote brandnetel 
216  Berberis coreana Koreaanse zuurbes 
217  Maclura pomifera Osagedoorn 
219  Elaeagnus angustifolia Olijfwilg 
220    Rubus subg batothamnus Prachtbraam 
300  Urtica doica Grote brandnetel 

As noted on 28 May 2024 in food forest Ketelbroek. 
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Appendix 2: Spatial sampling distribution. 

 

Figure 20: Spatial distribution map of reference points collected during fieldwork and desktop analysis. This figure 
illustrates spatial coverage and sample density used for species classification. 

 

 

 

 

 

Appendix 3: Photographic species overview. 
Table 16: Photo-illustrated overview of representative species included in the study. Images highlight key phenological 
traits relevant for spectral interpretation and classification.  

Name Photo 
Chocolate vine - Akebia Quinata  

 
CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=120155 
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Sweet Chestnut - Castanae Sativa 

 
Flowering Sweet chestnut tree (Castanea sativa) by Evelyn Simak, CC BY-SA 2.0, 
https://commons.wikimedia.org/w/index.php?curid=144664100 

Trifoliate Orange - Citrus Trifoliata  

 
By Daderot - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=170444637 

Hazel - Corylus Avellana  

 
By AudreyMuratet - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=96537312 

Thorny Olive - Elaeagnus pungens  

 
By KENPEI - KENPEI's photo, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1308280 

Autumn Olive - Elaeagnus 
Umbellata 

 

 
By R. A. Nonenmacher - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=107094261 



61 
 

Gooseberry - Ribes Uva-Crispa  
 

 
By Rasbak - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=848387 

Beach Rose - Rosa Rugosa  

 
By Robert Flogaus-Faust - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=148153167 

Black Elder - Sambucus Nigra  
 

 
By Sambucus nigra by Bob Harvey, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=158447805 

Bollwiller Pear - Pyrus Communis 
‘Bollwiller’ 

 

 
By Abraham - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=149833344 

European Linden - Acer 
Europaeus 

 

https://commons.wikimedia.org/w/index.php?curid=149833344
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By Chris Light - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=84850391 

Common Alder - Alnus Glutinosa  

 
Own work assumed (based on copyright claims)., CC BY 2.5, 
https://commons.wikimedia.org/w/index.php?curid=430484 

Grey Alder - Alnus Incana  

 
By Sten Porse - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=459811 

European Spindle - Euonymus 
Europaeus 

 

 
By R. A. Nonenmacher - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=36481774 

Common Beech - Fagus Sylvatica  

 
By Tournasol7 - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=169787673 

Common Ivy - Hedera Helix  
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By chery - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=1282155 

Douglas Fir - Pseudotsuga 
Menziesii 

 

 
CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=907873 

Quacking Aspen - Populus 
Tremula 

 

 
By Rudolphous - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=91904378 

Oak - Quercus Robur  

 
By Rudolphous - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=91905062 

Black Locust - Robinia 
Pseudoacacia 
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By Mark14 - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=7207386 

White Willow - Salix Alba  

 
By Josep Gesti - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=116937189 

Crack Willow - Salix Fragilis  

 
By Krzysztof Ziarnek, Kenraiz - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=99427373 

Yew - Taxus Baccata ‘ 

 
By Original uploader was Kpjas at pl.wikipedia - CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=1394796 

 

 

 

 



65 
 

Appendix 4: PCA outputs. 

   

 

 

Figure 21: Principal Component Analysis results showing eigenvalues and loadings across all spectral bands. This figure 
illustrated how most spectral variance is captured by the first four PCs (top), and how the loadings is divided within the 
PCs (bottom). 

 

 

Appendix 5: CHM height statistics. 
Table 17: Mean canopy heights for species in Raster 1 based on CHM measurements. Values reflect varying crown 
structures and vertical stratification. 

Name Veg type Mean 
height (M) 

N 

Quacking Aspen tree 13.2 29 

Quercus robur Tree 13.1 45 

Grey Alder Tree 8.9 11 

Crack Willow Tree 8.8 25 

Douglas Fir Tree 7.8 26 

Common Ivy Vine 7.5 15 

Black Locust Tree 6.6 11 

Hazel Tree 6.5 12 

Chocolate Vine Vine 5.5 11 

Taxus baccata Shrub 3.3 11 
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Table 18: Mean canopy heights for species in Raster 2 based on CHM measurements. Values reflect varying crown 
structures and vertical stratification. 

Name Veg type Mean 
height (m) 

N 

White Willow Tree 12.7 28 

Quaking Aspen Tree 12.3 15 

Black Alder Tree 11.6 11 

Crack Willow Tree 9.9 16 

Common Beech Tree 9.8 10 

Grey Alder Tree 9.7 21 

Oak Tree 9.1 10 

European Linden Tree 7.7 15 

Douglas Fir Tree 7.6 18 

Hazel Tree 7.4 18 

Hedera helix Vine 7.3 15 

Chocolate Vine Vine 6.7 21 

Black Locust Tree 6.6 11 

European Spindle Tree 4.8 11 

Yew Shrub 3.4 11 

Thorny Olive Shrub 3.1 10 

  

Table 19: Mean canopy heights for species in Raster 3 based on CHM measurements. Values reflect varying crown 
structures and vertical stratification.  

Name Veg Type Mean 
height (m) 

N 

Bollwiller Pear Tree 8.0 12 

Field Maple Tree 5.6 21 

Black Elder Tree 3.8 28 

Autumn Olive Shrub 3.5 11 

Thorny Olive Shrub 3.4 10 

Gooseberry Shrub 2.4 27 

Trifoliate Orange shrub 2.5 12 

Beach Rose shrub 2.0 38 
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Appendix 6: Linear regression plots. Pair 2. 

 

Figure 22: Linear regressions of Raster 2 vs Raster 3 reflectace for the Blue, Green and red bands. Deviations from the 
1:1 line indicate inconsistent radiometry between flightlines. 

 

Figure 23: Linear regressions of Raster 2 vs Raster 3 reflectace for the Red Edge and NIR bands. Deviations from the 1:1 
line indicate inconsistent radiometry between flightlines. 
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Appendix 7: Intercept, Slope, R2 and RMSE. Pair 2. 

 

Figure 24: Intercept and Slope parameters for pair 2 of per-band regression across 400 – 1000nm. Sharp changes in the 
Red Edge and NIR reveal wavelength dependent scaling effects between strips.  
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Figure 25: R2 and RMSE parameters for pair 2 of per band regression across 400 – 1000nm.  Goodness of fit metric 
emphasises inconsistent regression performance and large NIR errors that justify keeping flightlines separate. 
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Appendix 8: Overall accuracy PCA vs PCA + CHM, for all 
aggregations and rasters. 
Table 20: Overall accuracy for PCA-only and PCA + CHM models across all six aggregation levels for each raster. 
Results demonstrate strong resolution dependence and CHM benefits. 

Raster Agg  Accuracy  Accuracy + CHM Abs. Diff Rel. Diff (%) 
1 1 0.430 0.608 0.177 41.18 

2 0.456 0.646 0.190 41.67 
3 0.506 0.650 0.114 22.50 
4 0.584 0.779 0195 33.33 
5 0.705 0.795 0.090 12.73 
6 0.662 0.779 0.117 17.65 

2 1 0.410 0.552 0.143 34.88 
2 0.514 0.648 0.133 25.93 
3 0.510 0.630 0.120 23.53 
4 0.556 0.657 0.101 18.18 
5 0.673 0.755 0.082 12.12 
6 0.687 0.697 0.010 1.47 

3 1 0.609 0.875 0.266 43.59 
2 0.656 0.891 0.234 35.71 
3 0.688 0.906 0.219 31.82 
4 0.734 0.891 0.156 21.28 
5 0.672 0.891 0.219 32.56 
6 0.683 0.817 0.133 19.51 

 

 

Figure 26: Visualisation of accuracy trends across all aggregation levels for all rasters. The figure shows improved 
performance when including CHM. 

 


