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Abstract

Agroforestry systems are increasingly recognised for their potential to support climate resilient
agriculture, biodiversity and carbon storage. While remote sensing techniques such as UAV
imagery, satellite observations and Al based analysis are becoming more widely used in
environmental monitoring, the application to food forests is limited. This study addressed this
research gap by examining whether UAV-based hyperspectral imagery, combined with a LiDAR-
derived Canopy Height Model (CHM), can classify tree and shrub species within the highly
diverse Dutch food forest Ketelbroek. This research has answered the question: To what extent
can airborne hyperspectral data identify individual species, and how does a CHM improve this
classification?

Hyperspectral data were acquired over three rasters. Field samples from the 2.4ha food forest
provided training and validation samples. After evaluating systematic reflectance differences,
within the rasters, species spectral separability (via Jeffries Matusita distance), in six spatial
resolutions, species classification was performed using Random Forest (RF) models with and
without CHM. Four Principal Components, derived from a Principal Component Analysis (PCA),
were used as spectral predictors.

Species separability ranged from 1.0 to 1.4 and improved when the pixel size was coarsened
from 7 to 44cm. By simultaneously applying the CHM, the overall accuracy increased (0.68 to
0.82) of the RF models with significance confirmed by McNemar tests (<0.01). Structurally
distinct species were consistently better classified (Douglas Fir, European Linden), while
species with similar leaf chemistry or strong understory mixing remained challenging (e.g. Sweet
Chestnut, Chocolate vine). The CHM most strongly benefited species whose spectral signatures
overlapped but differed in height (e.g. Hazel, European Spindle).

The findings of this research show that integrating hyperspectral and structural data can
meaningfully improve species mapping in complex forests, but performances are highly
dependent on species and environment. Future research should prioritise balanced sampling,
multi seasonal data, and spatially aware classifiers.
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1. Introduction

In the Netherlands, over half of the land surface is used for agricultural purposes, covering 2.2
million hectares (CBS, n.d.). In 2021, the total economic value of the Dutch agricultural sector
was estimated at around €57 billion, or 6.7% of the gross domestic product (Berkhout et al., 2023).
Due to a long history of agriculture and research, the Netherlands produces food in an extremely
efficient manner (van Grinsven et al., 2019). However, research indicates that conventional
agricultural techniques can result in permanent damage to the soil, water, biodiversity, human
health and other ecosystem services. This damage is primarily linked to anthropogenic causes
such as soil de-surfacing/ploughing, indiscriminate use of agrochemicals and lack of soil
conservation practices, over-extraction of groundwater, and the use of heavy machinery
(Almusaed, 2016; Osman, 2014; Tudi et al., 2021). An agricultural approach that prioritises
ecosystem services, soil health, and biodiversity is seen as essential for the protecting the future
food supply and the current environment (AZ, 2018; Sanders et al., 2015).

In 2024, the agricultural sector contributed around 17% of the total Dutch greenhouse gas
emissions (LVVN, 2024). The Dutch Climate Agreement of 2019 states that the agricultural and
land use sector must be climate-neutral by 2050. Actions necessary to reach climate neutrality
will reduce (cattle) emission, artificial fertilisers, tillage and chemical use, and increase carbon
sequestration (EZ&K, 2019).

Agroforestry is a form of agriculture that has the potential to achieve these targets while
maintaining or in some cases even increasing the production potential of the land (Breidenbach
etal., 2017; Hussain et al., 2021; Wendel et al., 2023). Agroforestry is an umbrella term for range
of agricultural practices, where at least one woody species is incorporated to promote other
(arable) species (Nair et al., 2021). There are many types of agroforestry - ranging from alley
cropping to a highly mixed and layered food forests with over 200 woody species.

While agroforestry is described as a relatively new concept within the contemporary European
agricultural sector, it is an ancient practice adapted from the tropics. The term and frameworks
are mostly based on the traditions from the tropics, where agroforestry has been an integral part
of the livelihoods for centuries (Nair et al., 2021). However, forms of agroforestry have also existed
in parts of Europe, such as Spain with the Dehesa system (Joffre et al., 1999). In a four-decade
long study, researchers found that mixed agricultural systems strongly contribute to ecosystem
services, such assoil fertility, carbon sequestration, biodiversity conservation and food security
(Nair et al., 2021). There is a growing recognition and integration of agroforestry into conventional
agriculture in the northern hemisphere and is gaining more popularity in as a more prominent
technique of farming in North America and Europe. (Dupraz et al., 2018).

In the Netherlands, the interest in agroforestry is also growing, with the establishment of over 100
individual food forests in the past 15 years. Over 500 ha of land in the Netherlands is now farmed
following the principles of agroforestry (Ballemans, 2022). To support the shift to sustainable
agriculture and to learn more about the effects of agroforestry on the environment, extensive
research on its impact on biodiversity and climate is essential (AZ, 2018). However, this type of
research is often time-consuming and expensive as it requires manual labour with fieldwork and
monitoring. This results in high costs, and in some cases can prevent research from being
conducted altogether (Thomas et al., 2019).

Fortunately, the increased accessibility of satellite and UAV data, and Artificial Intelligence (Al),
has facilitated conducting large-scale and exact research in this field. These techniques play an



important role in geospatial research, exploration and monitoring. Remote Sensing allows for
large-scale precise monitoring and sustainable managing of a forests. Over the past ten years, the
amount of research done on UAV remote sensing and forests has increased significantly (Diaz-
Delgado & Mucher, 2019). It has become evident that Remote Sensingis an essential toolin forest
monitoring and management. (Dainelli et al., 2021).

However, there has been limited scientific research that uses these new techniques to study food
forest, environmental impact and social impact on the Dutch environment (Wendel et al., 2023).
This was picked up by organisations such as, Wageningen University and Research (WUR), the
Dutch Food Forest Network (Netwerk Voedselbosbouw), and the National monitoring program for
Food Forests (Nationaal Monitorings-programma Voedselbossen). These organisations are
working to fill these research gaps. Understanding agroforestry systems and their potential for
biodiversity and ecosystem services, can further facilitate the transition towards more
sustainable agricultural practices.

An example of researchers’ efforts to explore knowledge on food forests is the development of the
integrated innovative biodiversity monitoring (IBM) tool. In 2023, Wageningen Environmental
Research (WENR) established a new research project in collaboration with the Ministry of
Agriculture, Fisheries, Food Security and Nature (LVVN), project number KB-36-010-001. This
project started tests in both a young and an old food forest to develop a modular scheme for
detailed, evidence-based bio- and environmental monitoring of agroforestry ecosystems. Next to
modern techniques such as eDNA, camera traps, audio moths, techniques Al-based species
recognition and Remote Sensing are explored for the development of the framework of this
research (IBM, 2024). The results of this research lay the foundation for a biodiversity inventory.

The old food forest Ketelbroek researched with the IBM is also the first official Dutch food forest
(Veluw, 2013). Ketelbroek is located near Groesbeek close to the German border and started
operating in 2009 when two entrepreneurs bought a former intensively cultivated corn field (Figure
1). Years later this field transformed into a luscious mixed forest with over 200 woody species
(Figures 2 & 3, Appendix 1). Due to the forest’s age, and the time it has had to develop, various
plant and animal species have settled there. It makes it an excellent research location for
observing measurable interactions and changes over time.



Figure 1: Aerial view of Ketelbroek in 2009, when the site was still a maize field in Groesbeek (NL). This image documents
the start of the area before the agroforestry conversion.

Figure 2: Early-stage food forest structure in Ketelbroek (2015), six years after planting. This image shows the first visible
stratification and species, illustrating the transition from monoculture to permaculture.
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Figure 3: Ketelbroek food forest in 2023, showing a mature, structured agroforestry system with > 200 species. The
image highlights the dense canopy and structural diversity developed in over 14 years. (Source: WENR)
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2.Research questions and challenges

The aim of this MSc study is to evaluate how accurate airborne hyperspectral imagery, combined
with a LiDAR-derived canopy height model, can classify/identify the individual (woody) plant
species in the highly diverse Dutch food forest Ketelbroek, using Random Forest classifiers. To
address this aim, the following central research question is posed:

In a 2.4 ha food forest containing over 200 woody species, to what extent can species be
classified using airborne hyperspectral data, and what is the added value of a Canopy Height
Model in the classification process?

To answer this question, this research is structured into three components.

1. Inter-strip variation and linear regression
a. How much do overlapping areas between adjacent flightlines differ in reflectance
values, and is there a consistent trend between overlapping pairs?
b. Can linear regression reduce between-strip spectral differences?
2. Spectral separability of species
a. Whatis the effect of the different spatial resolutions on species discrimination?
b. Which species and species pairs are consistently confused, and which are well-
separated spectrally?
3. Random forest classification and CHM integration.
a. What are the overall accuracies (OA), and how does the inclusion of a CHM
influence classification performance?
3. To what extent does the CHM improve classification accuracy at the species level
(Precision, Recall, F1 mean)

This study explores to what extent UAV-based hyperspectral imagery (Nano Hyperspec with 270
spectral bands), combined with a Canopy Height Model (CHM) and a Random Forest classifier,
can be used to identify trees at the species level. This research uses data from a 2.4-hectare
Dutch food forest (Ketelbroek) containing approximately 200 plant species. Both the research
approach and the field of research present multiple challenges that must be considered.

One important challenge is scale-dependent spectral variability (Fassnacht et al., 2016).
Hyperspectral data with very high spatial resolution can increase within-crown spectral
heterogeneity, adding considerable complexity to species classification. In contrast, coarser
resolutions may lead to spectral mixing between adjacent species making it difficult to isolate
individual spectral signatures. Therefore, determining the optimal spatial resolution is context-
dependent and requires a study specific calibration. Furthermore, spectral noise from understory
vegetation, soil, shadows, and overlapping crowns is strongly influenced by spatial resolution. At
a very high spatial resolution, these background signals become more prominent, requiring
object-based classification methods or spectral unmixing techniques to mitigate theirimpact.

Secondly, the high dimensionality of spectral data and the associated need for effective feature
selection present another key challenge. When studying hundreds of bands, the dataset becomes
high-dimensional, leading to increased computational demands and a higher risk of overfitting. A
phenomenon known as the “Curse of dimensionality” (Tagkin et al., 2017). Dimensionality
reduction techniques are therefore essential to simplify the data while retaining relevant
information and variation. In addition, the large humber of unique species in the study area
increases the likelihood of overlapping spectral signatures, which can cause confusion during
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classification. This makes the ratio between sample size and number of species an important
factor in model performance.

Finally, spatial and sample size bias poses a challenge due to over- and under-representation of
certain areas or species. In the case of Ketelbroek, over 65% of the species have fewer than ten
samples, which limits their utility for robust training and testing. An adequate number of
representative samples is essential to ensure reliable model validation and accurate
classification performance (Foody, 2009; Song & Wang, 2023). Moreover, when species are not
evenly distributed across space, their spectral signatures may become spatially clustered or
diluted, increasing the risk of class averaging and the loss of unique spectral characteristics (He
etal., 2018).
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3. Data and methods
3.1 Study area

This research was conducted using data gathered in the Ketelbroek food forest (Figure 4), located
near Groesbeek in the Netherlands (51°46'08.8"N 5°58'01.8"E). The study area spans
approximately 2.4 ha and has been managed as a multi-layered agroforestry system that started
in 2009. Prior to its conversion, the land was used for intensive agriculture, primarily maize
cultivation.

The vegetation structure within Ketelbroek is highly diverse. The canopy layer reaches heights over
15 metres, while midstory shrubs range from 1 to 5 metres. Groundcover vegetation typically
remains around 30 centimetres. More than 200 tree and shrub species have been recorded within
the forest, of which roughly two-thirds are fruit-bearing species. The remaining species function
as support species.

Figure 4: High resolution oblique image acquired with a DJI Zenmuse P1 on 31 May 2023. This image shows a landscape
overview of canopy structure, local hydrology and the surrounding flat terrain. (made by Stan Los)

Topographically, the terrain is flat, with an average elevation around 13m above sea level. The site
lies in a basin formed by the push moraine of Nijmegen and Groesbeek. The subsoil consists of
sandy loam, characteristic of the Pleistocene fluvial terraces found in this part of Gelderland
(Bodemdata, n.d.).

Hydrologically, a small permanent stream flows through the forest, supporting a resident
population of Eurasian beavers (Castor Fiber). Their activities, such as the construction of small
dams and foraging, have created localized clearings and water management features that
contribute to heterogeneity in canopy cover and ground conditions.

The climate in Groesbeek is classified as temperate maritime (Cfb). Long term meteorological
data indicate a mean annual temperature of 10.8 °C and mean annual precipitation of 832 mm
(Klimaat Gelderland, n.d.).
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3.2 Data acquisition

The data used in this research consists of hyperspectral imagery from airborne source and field
reference data. An overview of the metadata is included in Appendix 1.

3.2.1 UAV- Borne Remote Sensing

Table 1: Technical overview of hyperspectral and LiDAR acquisition parameters collected on 31 May 2023 in Ketelbroek.
Includes platform details, spectral ranges, resolutions and sensor specifications.

PARAMETERS HYPERSPECTRAL LiDAR

UAV platform DJI Matrice 300 RTK \ RIEGL VUX-SYS

Trajectory Applanix APX-15 GNSS/IMU

Flight altitude 80m | Max 120m

FOV VW/H 30°/360°

CRS RD NEW / EPSG:28992

Sensors Headwall Nano Hyperspec VNIR | Velodyne VLP-16 “Puck” LiDAR
pushbroom spectrometer

Acquisition time | 31 May 2023 31 May 2023

(Band) Range 400nm -1000nm -

Spectral 2.2nm -

resolution

Spatial 0.074 m 0.1 m (after processing)

resolution

Spatial bands 640 -

Spectral bands 268 -

The hyperspectral imagery (Figure 5) was taken along 15 parallel flightlines (Figure 6) by a drone.
The flightlines are North-East / South-West orientated with each adjacent flightline having a width
of approximately 20m. Each direction was flown once. The hyperspectral images from the
flightlines have an overlap of approximately 5 - 10m on either side. The imagery survey took place
on a clear-sky day within 2 hours of the solar noon.

The raw and hyperspectral cubes of the imagery survey were processed in R (v 2024.12.0) as
follows:

Radiometric calibration using a 3 x 3 m field reflectance panel

Spectral smoothing via a first-order Savitzky-Golay filter (window = 11 band)

Spatial down-sampling by a factor of 2

Reprojection to Amersfoort / RD New (EPSG:28992) using bilinear resampling —yielding a
final GSD of 0.073995 m for both hyperspectral as RGB rasters.

Pobd=
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Figure 5: Hyperspectral UAV image of Ketelbroek collected on 31 May 2023 using a Nano Hyperspec sensor (5 cm
GSD). This dataset forms the spectral basis for all subsequent analysis. (Source: WENR)

U R 07 XU

Figure 6: Overview of the 15 hyperspectral flightlines (NE —SW orientation) flown on 31 May 2023. The diagram illustrates
overlap zones that are critical for evaluating radiometric differences.

For the LiDAR campaigns the LiDAR RiCopter is used, with a Reigl VUX-SYS light weight campact
laser scanner of 3.5kg. Up to 350.000 measurements per second are taken. To enhance the
detection of the canopy height, the full vegetation is measured on 31 May 2023 and terrain on 6
December 2023.

LiDAR point clouds were processed in ArcGIS Pro 3.4.2 and used to generate a Digital Terrain
Model (DTM) and Digital Surface Model (DSM). The Canopy Height Model (CHM) was computed
as CHM = DSM - DTM, produced at a pixel size of 0.10 m (Figure 7). For further analysis, the CHM
was resampled to match the spatial resolution of the hyperspectral rasters.
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Canopy Height Model (DSMuay2023-DTMyec2023)

DSM 31 May 2023 DTM 6 Dec 2023

DSM (m +NAP)

DTM (m +NAP)

10 cm resolution

Figure 7: Digital Surface Model (Left) and Digital Terrain Model (right) derived from LiDAR scans (May and December
2023). The subtraction forms the Canopy Height Model (CHM) used as structural input in the Random Forest classifier
(Source: WENR)

3.2.2 Resolution

To evaluate scale effects on classification accuracy, rasters were aggregated by taking the mean
of the aggregated pixels. In this report, | aggregated the data from 1 to 6, as you can see in table 2
below. In this research, when aggregation 6 is mentioned, | reference to a resolution of 0.444m.

Table 2: Spatial resolutions corresponding to six aggregation levels used in the study, ranging from 7 cm to 44cm.
Showing how pixel size increases through aggregation.

Aggregation Resolution (m)
0.074
0.148
0.221
0.300
0.370
0.444

oA OWN=

3.2.3 Field reference data

A desktop analysis of the RGB orthomosaic was performed to label crowns in areas inaccessible
on foot. These labels were transformed to a point dataset. In addition, | conducted two fieldwork
days to gather information on the ground:

- 28 May 2024 (leaf-on): accessible spring vegetation.
- 29 January 2025 (leaf-off): improved understorey access.

During each visit, the owner and a research team recorded species identity and precise locations
using RTK-GNSS coordinates (horizontal accuracy of = 0.03 m) for individual trees and shrubs.
Where possible, the sampling strategy aimed for maximum taxonomic spread and replication. All
sample points are merged into one dataset. In appendix 2 (figure 20), the distribution of samples
is illustrated. Before cleaning, the point datasets consisted of 1003 samples.
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3.3 Data preparation

This section describes how the raw remote-sensing and field data were ingested, cleaned, and
assembled into a pixel-level dataset used for classification model testing. A photographic
description of the species that are included in the final dataset is included in Appendix 3 (Table
16).

3.3.1 Data cleaning and attribute augmentation

For this study, only flightlines 1-3 were used. Other flightlines were either in shadow or did not
have sufficient tree samples for the analysis. Pixel-level reflectance values were extracted at each
point from the three rasters and six aggregation levels and subsequently merged into the attribute
table. Any values larger than 10000 DN were treated as measurement errors and therefore
removed. Records with NA height values were also removed. Canopy height at each point was
retrieved from the CHM raster and stored as height. Each species was labelled as: “Tree”, “Shrub”,
or “Vine”. Trees and a shrubs were separated using a three meter threshold (Allaby, 2012). After
cleaning, 798 points remained in the dataset for this research, located in flightlines 1-3 (table 3).

Table 3: Overview of sample count, unique species, and species with 2 10 samples across rasters 1 — 3. These
thresholds determine which species are used for classification.

Raster N N N species Vine/shrub/tree
total species >10

1 234 17 10 23/7/204

2 306 29 13 38/10/268

3 258 43 8 0/132/126

3.4 Spectral separability

3.4.1 Raster calculation

To identify inter-raster variability, the pixel-wise difference across each adjacent raster pair is
computed. Raster 1 vs 2 2 Pair 1, and Raster 2 vs 3 2 Pair 2. For each pair the overlapping extent
is determined with an intersect, and every second raster is resampled to the grid of the first raster.
Within each band, the reflectance values are averaged, and the signed and relative difference is
calculated (1 and 2).

(1) AR =R; — R;esampled (x,y)

@ ARye ===+ 100

For this part, the spectral range is split into five groups to measure if the raster difference is the
same over the wavelengths. Blue, Green and Red (in the visible spectrum) capture differences
that can be seen with the eye, pigment related differences like chlorophyll in the leaves and
carotenoids in flowers and fruits. The Red Edge bands can pick up even more detailed differences
in chlorophyll content and gives a sharp reflectance increase on vegetation. These bands are
generally seen as the most important for species discrimination. The NIR bands are mostly
influenced by leaf and canopy structure and shows a strong plant/soil contrast (Hennessy et al.,
2020).
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e Blue: 400-500 nm

e Green:500-590 nm

e Red:590-680 nm

e Red Edge: 680-740 nm

¢ NIR:740-1000 nm

3.4.2 Radiometric harmonization

To test if a per-band linear correction can remove a bias, a random sampling of 1000 pixels from
pair 1 and pair 2 is taken. From this, a simple linear regression model (3) is fitted and plotted:

3) y = bg + bix

The regression, intercept, slope, Root Mean Square Error (RMSE) and the coefficient of
determination (R?) is extracted. To visualise the regression line, for each of the five spectral
regions, the central wavelength is selected (table 4).

Table 4: Five reference wavelengths selected for band-specific linear regression of reflectance bias.

Region Blue Green Red Red Edge | NIR
Wavelength 435.933 | 547.453 | 647.822 | 723.655 | 870.862
(nm)

Based on the magnitude of residual bias after correction—particularly in the Green and NIR
bands—and the spatially structured errors linked to canopy height; we assessed whether a per-
band linear adjustment provided sufficient benefit. Where residuals remained large or spatially
heterogeneous, strips were kept separate rather than merged into a harmonized mosaic.

3.4.3 Dimensionality reduction

To reduce dimensionality, a Principal Component Analysis (PCA) is applied for the Spectral
Separability, and the Random Forest Classification (RF). For both methods, a PCA is performed
on the full spectrum (~400nm - 1000nm), to reduce the spectral separability. Covariance PCA is
used because all bands share the same reflectance units. This preserves the natural variance
across wavelengths (Uddin et al., 2021). The first four PCs (explain over 99% of the spectral
variance) are used both to compute the spectral separability and as inputs for the RF (with and
without CHM). In Appendix 4 (figure 21), the cumulative eigenvalues and loadings are visualized.

3.4.4 Spectral separability function

To calculate the spectral separability, there are two common distance methods: the Jeffries
Matusita (JM), and the Bhattacharyya distance. Both functions measure the overlap between two
probability distributions, based on the class mean. The difference between the JM and the
Bhattacharyya distance is JM is a non-linear transformation, and has a normalized range from 0
to 2, whereas the Bhattacharyya distance has no range. It is therefore easier to interpret the JM
(Senetal., 2019). Studies show that a higher number of class pairs with JM separability above 1.0,
especially above 1.9, leads to improvement of overall accuracy (OA) (Table 5). Class pairs with JM
separability < 1.0 reduce OA (Rehman et al., 2024; Wicaksono & Aryaguna, 2020a).
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Table 5: Classification of JM-distance thresholds indicating poor, moderate, and high separability.

JM distance Separability interpretation Impact on accuracy
<1.0 Poor Low OA

1.0 -1.9 Moderate Improved OA

>1.9 High High OA

The separability analysis is based on the three cleaned point datasets and associated reflectance
values from raster 1 — 3, over all 6 aggregations. Table 3 shows an overview of the samples used.
Throughout this research, only species with N > 10 are used.

3.5 Random Forest

Random Forest (RF) is a machine learning method that combines many individual decision trees
to perform classification. Each tree is trained on a bootstrap sample of the data, and at every tree
split only a random subset of predictor variables is considered. This method reduces overfitting
and makes RF well-suited for high dimensional and noisy datasets such as hyperspectralimagery
(Belgiu & Dragut, 2016; Breiman, 2001).

RF was chosen for this study because this hyperspectral dataset contains 270 correlated bands.
As mentioned, RF can identify spectral dimensions without requiring strict assumptions about
the data distributions. Secondly, the data contains strong within-class variability and overlapping
spectral signatures. Thirdly, the addition of the CHM adds a structural variable that RF can model
effectively. Finally, RF performs reliably with relatively small and imbalanced training sets, making
it an appropriate method for the limited sample set in this research.

3.5.1 Model setup and training

The RF classifier was implemented separately for each raster. Only species with = 10 samples
were included and have been randomly split into 60% training and 40% testing data set. Stratified
random sampling was used to consider for class imbalance. The coarsest pixel size (0.44cm,
aggregation 6) is used, and a PCA is applied to reduce dimensionality. To assess the influence of
the CHM on each Raster, a RF analysis was performed twice; once on the PCA-only set, and once
on the PCA + CHM.

For the Random Forest, the following metrics are used:

o Trees 500

o Mtry p/3

o Node size 1

e |mportance Permutation based
e Cross validation grid 5-fold

3.5.2 Model evaluation

The model accuracy is assessed with the Overall Accuracy and Kappa. Kappa is a metric that
compares Observed Accuracy with Expected Accuracy (random chance). The classification
accuracy reported in this study is based on the point-level validation dataset. To determine
whether adding the CHM improves the RF model, the McNemar test was used. This analyses
whether the overall accuracy of the RF model improved. This statistical test is used in the case
of binary outcome. In this case, the outcome was either a correct or incorrect classification. The
test then can compare the number of cases where the two models disagree. The paired
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prediction on the same dataset allows the statistical test to calculate the significance of the
addition of the CHM (Wang et al., 2021).

It was expected that there will be an improvement in the overall accuracy of the model with the
inclusion of the CHM as a 5™ predictor. The null hypothesis (Ho) is as follows:

There is no significant difference in the classification performance between the model using only
principal components (PCA-only), and the model using both principal components and the
canopy height model (PCA + CHM). The number of test instances that are correctly classified by
one model and misclassified by the other is symmetric.

The alternative hypothesis (H,) states:

There is a significant difference in the classification performance between the PCA-only model
and the PCA + CHM model. The number of test instances for which model makes a correct
prediction while the other makes an incorrect prediction is asymmetric.

A significance level of a =0.10 is applied, corresponding to a 90% confidence level.

3.5.3 Performance Analysis

To analyse the effect of the CHM on species level multiple metrics are used. The recall and
precision, also referred to as Producer’s and User’s accuracy, were calculated from the confusion
matrix. This analysis was necessary to quantify how including the CHM affects species-level
discrimination and to characterize the types of errors the classifier made. Because species
frequencies were imbalanced and several species were spectrally similar in the hyperspectral
data, overall accuracy could be misleading. | therefore computed per-species Producer’s
accuracy (recall), which measures omission error (the proportion of reference instances of a
species correctly mapped, (4)). The User’s accuracy (precision) measures commission error (the
reliability of the mapped level, (5)).

True Positives

(4) Producer's accuracy = — —
True Positives + False Positives

True Positives

(5) User's accuracy = — .
True Positives + False Negatives

| reported their harmonic mean (also known as F1, (6)) to summarize the trade-off between
missing trees and falsely labelling them. Taken together, these confusion matrix metrics allowed
a fair comparison of models with and without CHM and indicated whether CHM increased
detectability, improved label reliability, or both.

User's x Producer’s

(6) F1=2+x

User's + Producer's
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4. Results

The results section is organised around the three research questions. First, we test how strongly
flightline position affects raw reflectance and whether a simple linear regression can harmonise
each adjacent strip (RQ1). Next, we examine how spectral region and spatial aggregation
influence species separability (RQ2). Finally, we quantify the added value of the canopy-height
model (CHM) in a Random Forest classifier (RQ3).

4.1 Inter-strip radiometric consistency

The first research question investigates the consistency between adjacent UAV hyperspectral
flightlines and evaluates whether a linear regression model can harmonize reflectance values
across overlapping areas. This is an important step, as systematic differences between rasters
may bias subsequent classification or spectral analyses. Therefore, this section first quantifies
the difference in reflectance values between the adjacent strips for the spectral regions: Blue,
Green, Red, Red Edge, NIR. Both absolute (AR) and relative (AR,.;) differences are calculated
(Table 6, Figure 8). Next, | assess whether per-band linear regression can reduce the difference in
reflectance values by examining regression metrics such as slope, intercept, R? and RMSE across
the full spectrum (Figures 9—-12).

4.1.1 Magnitude and pattern of the strip bias

How much do overlapping areas between adjacent flight lines differ in reflectance values, and is there a
consistent trend between overlapping pairs?

Figure 8a shows that the AR and AR, is negative in every band, indicating that the second strip
consistently returns higher reflectance values than the first. The magnitude of this absolute
difference grows with wavelength, reaching its maximum in the Red Edge and NIR regions. This is
to be expected since the reflectance values are higher in those spectral areas compared to the
visible wavelengths (Fassnacht et al., 2016). Figure 8b presents the same comparison on a
relative scale. Although bands show a decrease of Ry, relative to Rz, the largest percentage drops
(-9% to -11%) occur in the visible red band, while the smallest change (-2% to -3%) is observed in
the NIR.

Spatially, the difference is heterogeneous and changes depending on the surroundings: AR is
larger in areas where there is a higher variety in Canopy Height. Whereas AR decreases in areas
where the CHM shows little to no height difference (Appendix 5, Table 17).

Table 6: Mean absolute and relative reflectance differences for two overlapping strip pairs across five spectral regions.

Pair 1 Pair 2
N pixels 175503 179000
Mean difference Relative diff. | Mean difference Relative
(DN) (%) (DN) diff. (%)
BLUE -15.59 -7.77 -14.72 -6.52
(400 - 500nm)
GREEN -43.35 -10.25 -44.90 -9.24
(500 - 590nm)
RED -34.52 -11.07 -31.69 -9.11
(590 - 700nm)
RED EDGE -73.55 -6.02 -93.44 -6.57
(700 - 740nm)
NIR -62.32 -1.59 -153.85 -3.35
(740 - 1000nm)
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Mean Reflectance Difference by Spectral Region Relative Mean Reflectance Difference (Ra-Rb)

Region . Blue . Green . Red RedEdge - NIR Region . Blue . Green - Red RedEdge . NIR

-3 |
-50
6
-9
N

Strip-pair Strip-pair

% Difference

Mean Difference (ri -r2)
g

Figure 8: a) Mean absolute difference (left) and b) relative differences (right) between adjacent flightlines across five
spectral regions. Higer discrepancies in Red Edge and NIR reveal wavelength dependent strip bias.

4.1.2 Linear harmonisation test

Can radiometric harmonization reduce this between-strip difference?

One thousand random pixels from the overlapping area between raster 1 and 2, and raster 2 and
3, were sampled. For every spectral region a representative wavelength (Table 4) was regressed
(ordinary least squares) against its counterpart in the adjacent strip (Figures. 9 & 10). With a
regression line (solid —red) and a 1:1 line (dashed - black). Both pairs follow a similar pattern. Pair
1 isvisualised in the figures below. The regression plots of pair 2 are shown in Appendix 6 (figures
22 & 23). The regression diagnostics, including Intercept, Slope, R> and RMSE of pair 2 are provided
in Appendix 7 (figures 24 & 25).

Blue — 435.933nm Green — 547 453nm Red — 647.822nm

Raster 2
Raster 2
Raster 2

» '
Raster 1 Raster 1 Raster 1

Figure 9: Linear regressions of Raster 1 vs Raster 2 reflectace for the Blue, Green and red bands. Deviations from the
1:1 line indicate inconsistent radiometry between flightlines.
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RecEdge — 723.655nm NIR — 870.862nm

Figure 10: Linear regression of Raster 1 vs Raster 2 for Red Edge and NIR bands. Deviations from the 1:1 line indicate
inconsistent radiometry between flightlines.

The linear regression metrics are visualised in Figures 11 and 12 and cover the full spectral range
(400-1000nm).

The interceptisinitially flat (~20) across 400-500 nm (blue), rises to a modest bump (250) around
540nm, dips almost back to zero near 680 nm, then steeply rises to ~ 980 at 720 nm (Red Edge)
and stays above 900 throughout most of the NIR before tapering slightly beyond 950 nm.

The slope stays just around 0.90 in the blue, plunges to 0.75 at ~ 560 nm (green), and rises in until
to a slope over 1.0 at ~ 590 nm. Plumets to ~ 0.71 around 730 nm and then climbs gradually to ~
0.80 by 1000 nm.

Intercept vs Wavelength

Intercept

Wavelength {nm)

Slope vs Wavelength

Slope:

Wavelength (nm)

Figure 11: Intercept and Slope parameters of per-band regression across 400 - 1000nm. Sharp changes in the Red Edge
and NIR reveal wavelength dependent scaling effects between strips.
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The R? Shows two quality windows: ~0.72 in the Blue — Green (= 500 nm) and a stronger ~ 0.86 in
the Red Edge (~ 690 nm). R* slumps to ~ 0.50 across 600 — 630 nm and again just beyond 720 nm,
then levels out at ~0.55 — 0.60 from 800 nm to 1000 nm.

The RMSE Mirrors the intercept: ~ 350 — 400 through most of the visible, a shoulder of 600 near
540 nm, a local minimum (~ 300) at 700 nm, followed by a step-change to > 1100 from 760 nm
onwards where errors plateau across the NIR.

R? vs Wavelength

Wavelength (nm}

RMSE vs Wavelength

RMSE

Wavelength (nm)

Figure 12: R2and RMSE parameters of per band regression across 400 - 1000nm. Goodness of fit metric emphasises
inconsistent regression performance and large NIR errors that justify keeping flightlines separate.

The intercept rise sharply in the Red Edge and remains high throughout the NIR. This vertical shift
in reflectance between flightlines could be partially corrected by a linear regression. However, the
slope values deviate from 1 which indicates wavelength dependent scaling inconsistencies. The
slope drops below 0.8 and remains below 0.8 in the NIR. This implies that reflectance differences
are not uniform and applying a linear correction could distort real spectral variation (Villaescusa-
Nadal et al., 2019).

Furthermore, the R?shows inconsistent fit quality. The strong agreement in the Red Edge contrasts
with the poor R? in the Green and the NIR and limits the confidence in regression-based
harmonisation across the full spectral range. This is confirmed by the RMSE values, which exceed
1100 in the NIR, indicating large structure/driven residuals even after correction (Ariza et al.,
2018).

While a linear regression model can reduce systematic bias, it does not correct for multiple
differences. Also, linear regression cannot resolve the non-linear, spatially structured residuals
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that is visualised by the low R?and high RMSE. For these reasons, and to avoid overfitting, | chose
to keep the flightlines separated throughout this research rather than merge them into a
radiometric harmonized mosaic (Kizel & Vidro, 2023).

4.2 Spectral Separability

The JM distance per class shows the distance values to cluster around 1.0 — 1.4, suggesting
moderate separability among the species that have the highest values and a poor separability for
all species below 1.0 (Table 8 & 9). The moderate separability suggests that there may be a
significant distinction between mean spectral signatures. However, enough overlap remains in
signatures that misclassifications can occur. Below (figure 13), the spectral signatures are
visualised. This shows a substantial within-class variance and may explain why there are no
species with a high spectral separability.

4.2.1 Aggregation contribution

Figure 13 summarises the mean Jeffries — Matusita (JM) distance for all “frequent samples” (= 10
samples) across three rasters and six aggregation levels. From this the separability increases with
a higher aggregation (lower resolution). Around aggregation 5 (spatial resolution: 37cm), the mean
JM distance seems to flatten (Chen et al., 2023). Coarser pixels help with the spectral separability,
but up to a certain point. Therefore, we use a resolution of 44cm (aggregation 6) for the rest of the
study. As the pixel size increases, the difference between the rasters decreases.

Mean Jeffries—Matusita Separability
Grouped by Raster

1.40

1.35
[0}
2
5 Raster
0 ter1

raster

2 1.30
= == raster2
% raster3
[}
=

1.25

1.20

1 2 3 4 5 6
Aggregation Factor

Figure 13: Mean Jeffries Matusita separability aggregation level for the three rasters. Separability increases as resolution
becomes coarser, plateauing around aggregation 5 - 6.
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4.2.2 Species level

In this section, the separability scores per species are analysed. Table 7 shows the number of
samples in each dataset, the number of unique species (with at least 10 samples), and the
number of species pairs that can be made for the spectral separability matrix.

Table 7: Overview of: number of samples, unique species, and resulting species pairs for spectral separability
calculations for each raster.

Raster N samples N Species N Pairs

1 202 10 45
2 258 13 78
3 159 8 28

In the figures below (fig 14, 15, 16), the mean JM distance per species is plotted over the six
aggregations. Since the JM distance is based on a species pair, the mean is used to express the
overall separability for each species. The mean is based on all pairs that is made per species and
averaged. With the increase in resolution, the spectral separability increases. This is true for all
three rasters. The mean JM distance stagnates around aggregation 5. However, since in most of
the cases aggregation 6 results in the highest mean JM distance, aggregation 6 is seen as the most
successful resolution. Interestingly in raster 3, Autumn Olive, Bollwiller Pear and Trifoliate Orange
do not seem to be affected by the increase in aggregation.

Species Spectral Separability (Mean JM) - Raster1

1.4
/ i |

o Black Locust
m : Chocolate Yine
8 / =+ Common vy
[ - + Grack Willow
= 1.2 = Douglas Fir
- = Grey Alder
= + Hazel
P Oak
= Quaking Aspen

11 Yew

1.0

1 2 3 4 5 &
Aggregation Level

Figure 14: Species level mean JM distances for Raster 1, showing how aggregation reduces spectral noise and increases
pairwise separability. Most species benefit form coarser resolution, with separability stabilising near 44cm.

27



Species Spectral Separability (Mean JM) - Rasterz2

1.4

Species

Black Lacust
Chocolate Vine
Common Alder
Common vy
Crack Willow
Douglas Fir
Eurapaan Linden
European Spindletree
Grey Alder

Hazel

Quaking Aspen
White Willow
Yewr

1.3

1.2

Mean JM Distance

1.1

AR EEENEEENNEN

1.0

1 2 3 4 5 6
Aggregation Level

Figure 15: Species level mean JM distances for Raster 2. Trends show a slow but consistent improvement with
aggregation, though species differ in response.

Species Spectral Separability (Mean JM) - Raster3

14 — %
1.3 .
§ Species
oY = Autumn Olive
i< # Beach Rose
() # Black Elder
= 1.2 « Bollwiller Pear
= # European Spindletree
c # Field Maple
8 + Goose Berry
= < Trifoliate Orange
1.1
1.0

1 2 3 4 5 6
Aggregation Level

Figure 16: Species level mean JM distances for Raster 3. Showing generally a slight increase in JM values,
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In the case of aggregation 6, table 8 highlight the species that have the highest and lowest mean
JM distance. The difference between the highest and lowest performing species based on the
mean is relatively small. By taking the average of all pairs per species, the gap gets very small.
There are no species that are very distinctively having a low spectral separability.

Table 9, on the other hand, shows that when looking at the pairs specifically, there are differences
that are clearer. This table is also based on aggregation 6. Douglas fir, hazel, and Gooseberry are
mentioned most frequently in the lowest JM distance category for raster 1, 2 and 3 respectively.
These values are all around 1. The species pair with the highest JM distance do not have species
that are frequently mentioned, besides the Bollwiller pear in raster 3.

Table 8: Species with the highest (Left) and lowest (right) average JM separability at aggregation 6. Highlighting subtle
separability differences within each raster.

Raster | Species MEAN JM Species MEAN JM

1 Black Locust 1.374 Common lvy 1.290
Chocolate Vine 1.364 Oak 1.305
Grey Alder 1.356 Douglas Fir 1.307

2 European Linden 1.403 Hazel 1.289
White Willow 1.401 Common lvy 1.320
Quacking Aspen 1.397 Grey Alder 1.321

3 Bollwiller Pear 1.414 Gooseberry 1.362
Trifoliate Orange 1.410 Beach Rose 1.371
Autumn Olive 1.409 Black Elder 1.380

Table 9: Pairwise JM distances showing the highest (left) and lowest (right) JM separability at aggregation 6. These
extremes indicate which pairs are most and least spectrally distinct.

Raster | Pair JM Distance Pair JM Distance
1 Black Locust—Quaking Aspen | 1.411 Common Ivy - Douglas Fir 1.133
Common lvy - Yew 1.409 Common Ivy - Quacking | 1.171
Aspen
Grey Alder — Quacking Aspen | 1.408 Crack Willow — Douglas Fir 1.221
2 Black Locust - Chocolate | 1,414 Grey Alder — Hazel 1.033
Vine
Douglas Fir - European | 1,414 Crack Willow — Hazel 1.039
Linden
Chocolate Vine - Crack | 1,414 Common Ivy - Hazel 1.188
Willow
3 Autumn Olive - Bollwiller Pear | 1,414 Black Elder - Gooseberry 1.285
Bollwiller Pear - Trifoliate | 1,414 Beach Rose — Gooseberry 1.295
Orange
Black Elder - Bollwiller Pear 1,414 Field Maple — Gooseberry 1.358
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4.3 Random Forest classifier with Canopy Height Model

In the following section, a Random Forest (RF) classifier is applied to the three raster datasets. Per
raster, two RF classifiers are applied. One where the data is transformed with a Principal
Component Analysis (PCA), and one with a PCA and the addition of a Canopy Height Model (CHM)
as an extra predictor. Four Principal Components (PCs) are used for the RF. The overall accuracy
is calculated and the difference between the two models are analysed. The significance is
expressed with a McNemar test. In the second part, the influence of the CHM is analysed per
species. The coarsest resolution of 44cm (aggregation 6) is used.

4.3.1 Overall performance

The overall accuracy explains what percentage of the labels our model got correct. Table 10 shows
overall accuracy from the two models and the difference between the models. For all three
rasters, the overall accuracy and kappa increases. Accuracy trends across all six aggregation
levels for each raster are provided in Appendix 8 (Table 20 and Figure 26).

Table 10: Overall accuracy and the corresponding Kappa values for two RF model variants (PCA — only and PCA + CHM)
per raster. CHM improves accuracy in all cases, most strongly in Raster 3.

Raster PCA - only PCA + CHM AOA AOA
OA Kappa OA Kappa Absolute Relative
1 0.69 0.64 0.70 0.66 +0.01 +1.4%
2 0.60 0.56 0.65 0.63 +0.05 +8,3%
3 0.68 0.62 0.86 0.87 +0.18 +26,5%

To analyse whether the addition of the CHM is increasing the prediction performance of the RF
model, a McNemar test used on all three rasters. McNemar tests how many times the PCA +CHM
was correct, and how many times the PCA was correct. From this the x2is calculated, and the p-
value expresses whether the difference is significant at a confidence interval of 90% and 95%. In
table 11 below, the results of the McNemar tests are depicted. Both raster 2 and 3 are significantly
improved after the addition of the CHM. However, this is not the case for raster 1. From the
incorrect predicted classes, only class 1 was improved by the CHM. This difference is not enough
to express significance and not enough to have a chi squared value. The Hy is rejected for raster 2
and 3. The Ho cannot be rejected for raster 1.

Because the Kappa considers the chance of agreement, based on what is observed, it is a stricter
test than OA. Kappa, in table 10, increases slightly for Raster 1 (0.64 — 0.66), significantly more for
Raster 2 (0.56 — 0.63) and the most in Raster 3 (0.62 — 0.86). Indicating that the CHM improved
beyond-chance agreement for two of the three rasters. These findings are consistent with the
McNemar tests (table 11).

Table 11: McNemar test results assessing whether CHM significantly improves RF prediction accuracy. Improvements
are significant in Rasters 2 and 3.

Raster x° p-value Significant at 90% Significant at 95%
1 0 1 'NO NO
2 12,5  <0.01 YES YES
3 4,9 0027  YES YES
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4.3.2 Class-specific performance

To assess the per-class performance of the classification models, three metrics were computed
for each species: precision, recall, and F1-score. These metrics were compared between models
trained with four principal components (PCA-only) and models augmented with canopy height
information (PCA + CHM). Tables 12, 13 and 14 visualise the resulting confusion matrices and
performance metrics. In these tables, columns represent the true species labels, while rows
represent the species predicted by the RF model. When a cell contains two values, the left value
corresponds to the PCA-only model, and the right value corresponds to the PCA + CHM model.
Allowing both results to be displayed in a single matrix. The rightmost columns report the per-
class precision for both methods, while the bottom rows present the recall and F1 scores for each
species.

Across all three rasters, species such as Douglas Fir, Trifoliate Orange, Bollwiller Pear, and
European Linden consistently scored high across all three metrics (F1 = 0.90), indicating strong
spectral distinctiveness and effective classification. Their performance remained stable
regardless of the inclusion of CHM, suggesting that spectral information alone was sufficient.

In contrast, species like Common Beech, Common Ivy, and Thorny Olive showed persistently low
values across all metrics (F1 = 0.50), indicating that they are either spectrally confused with other
species or poorly represented in the training data. For these classes, the addition of CHM only
marginally improved classification.

Importantly, several species demonstrated a significant improvement with the addition of CHM.
Hazel showed the most dramatic gain, with its precision increasing from 0.25 to 0.75, and F1-
score from 0.18 to 0.55. Similarly, Gooseberry improved from 0.50 to 0.90 in F1-score, and
European Spindletree from 0.33 to 0.67. These results suggest that canopy height adds important
structural information that helps distinguish species with similar spectral profiles.

However, the CHM was not uniformly beneficial. Chocolate Vine, for instance, showed a decrease
inrecall (0.75t0 0.5) and F1-score (0.86 t0 0.67). A similar drop was observed for Sweet Chestnut.
These declines may reflect the structural ambiguity of these species (e.g., low-stature vines or
multi-layered crowns), which can confuse the height-based model input.

Overall, the results demonstrate that CHM enhances the classifier's ability to distinguish certain
species, especially those with vertical structure not captured in the spectral data. Yet, the effect
is species-specific: while some species benefit substantially from the added predictor, others
may experience performance losses due to increased confusion or structural noise.

In addition to overall performance improvements, class-specific metrics reveal clear patterns of
over- and underestimation. Species such as Thorny Olive, Common Beech, and Crack Willow
exhibited low precision scores, suggesting they were frequently predicted even when incorrect—
anindication of overestimation. For example, Thorny Olive showed a large precision increase from
0.00 to 0.50 after the inclusion of the CHM, while recall remained low, indicating continued false
positives. Conversely, several species showed signs of underestimation, characterized by low
recall but moderate-to-high precision. Common Alder and European Spindletree were rarely
detected in the PCA-only model, with recall scores of 0.00 and 0.25, respectively, but improved
with the inclusion of CHM. Common Ivy consistently had low recall (0.33) despite a perfect
precision score (1.00), indicating the model rarely identified it correctly, though it was highly
confident when it did. These patterns highlight the differential response of species to the
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classification process, with some consistently misclassified due to confusion with other classes
or insufficient spectral or structural distinctiveness.

The results of the random forest classification are visualised in figures 17, 18 and 19. The legend
shows each species and the percentage of pixels that belong to each species.
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Table 12: Confusion matrix of Raster 1, summarizing classification accuracy for eleven tree species. Rows represent the true species and columns represent the predicted species. To
allow direct comparison between the two RF models within one table, each matrix cell is split into two sub-columns: the left sub-cell shows the number of pixels predicted by the PCA
model, while the right sub-cell shows predictions from the PCA + CHM model. Precision (right) and Recall (bottom) values are calculated separately for both models. Colors in precision
and recall indicate performance, with higher values reflecting better agreement between true and predicted labels.
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o |O |O |o
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Table 13: Confusion matrix of Raster 2, summarizing classification accuracy for eleven tree species. Rows represent the true species and columns represent the predicted species. To
allow direct comparison between the two RF models within one table, each matrix cell is split into two sub-columns: the left sub-cell shows the number of pixels predicted by the PCA
model, while the right sub-cell shows predictions from the PCA + CHM model. Precision (right) and Recall (bottom) values are calculated separately for both models. Colors in precision
and recall indicate performance, with higher values reflecting better agreement between true and predicted labels.

True > C. S. T. E. C. G. Alder E. C. C. lvy D. Q. B. W. C. Yew Total Precision
Predicted Vine Chestnut Hazel Olive Linden Alder Spindle | Beech Fir Aspen | Locust | Willow | Willow
\Z PCA | PCA+CHM
C.vine | g 0 0 1 0 0 0 1 0 2 0 0 0 0 0 1 11 | 055| 0.55
chesnut | O 4 0 0 0 0 0 o [1]3] o 0o |ol2] o 0 0 o [2]°

Hazel | g o [1]3 o 0 0 o [oj1] o 0 0 0 0 o |[3]o] o 4

T.0live | 0 o loj1] o o |3/]0] o o |2/ 0 ]| o 0 0 0 o |of[1]4]2
E.linden | 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 5

C.Aider | 0 0 0 o loj1| o 0 0 0 0 0 0 0 0 o |01

G.Ader | o |2]0] o 1 0 3 |1/0]| o 0 0 o | o] o |oj2] o |7
E.Spindle | 0 0 0 o |1]fo] o J1]2 o 0 0 0 0 0 0 0 2

C.Beech | g 0 0 2 0 0 Jol1]1]0] 1 0 o [1]o] o | o 0 o |54

C. vy 0 0 0 0 0 0 0 0 o |a] 2 0 0 0 0 0 0 12

D.Fr 19 00| o0 0 0 0 0 0 0 0 7 0 0 0 0 0o | 8|7
Q Aspen | 0 o |1]o0] o 0 0 o |2]o o |a]3] o 0 0 o |8|4]|05]| 075
B.locust | o |1]o] o | o 0 2 o [ ool 1] o o | 4| o 0 0 | 7]7]057] 057
wilow [1]2] O 0 0 0 0 0 0 0 0 0 1 o | 15 0 o [t/ [18[088] 0.83
C.willow | @ o |3/4] o o |3 0 o | o Ji1fo] o[ o | o o [3][a]1]0]11]13

Yew 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4

Total 8 4 7 4 6 4 8 4 4 6 7 6 4 | 15 6 6 69

Recall

PCA 10,75 0.833 0.667 0.5 | 0.667

Recall
PCA+CHM | 5 ¢ 0.833 0.5 0.5 0.667 | 0.667

Al e | oso 0.57 | 0.73 0.80
PCAitHM 063 | 0.62 | 0.55 0.67 0-50 06 1073 08
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Table 14: Confusion matrix of Raster 3, summarizing classification accuracy for eleven tree species. Rows represent the true species and columns represent the predicted species. To
allow direct comparison between the two RF models within one table, each matrix cell is split into two sub-columns: the left sub-cell shows the number of pixels predicted by the PCA
model, while the right sub-cell shows predictions from the PCA + CHM model. Precision (right) and Recall (bottom) values are calculated separately for both models. Colors in precision

and recall indicate performance, with higher values reflecting better agreement between true and predicted labels.
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4.3.3 RF Visualisation

Raster 1

Using the reduced dataset at a resolution of 44cm with 4 PCs + CHM, the raster 1 classification
visual shows a very sparse class inventory relative to the training set. Only three of the ten species
are represented in the map. Among the missing species are:

- Chocolate vine
- Hazel

- GreyAlder

- Douglas Fir

- Blacklocust

- Crack willow

- Yew

The legend indicates that Quaking Aspen and Oak together account for around 99% of all
classified pixels, with Common lvy only 0.2%. Visually, the predictions organise in contiguous
blocks that follow tree crown shapes rather than producing a salt-and-pepper effect. Seven
trained classes are absent in the visual, which means the map is effectively dominated by two
broadleaf tree categories with the rare occurrence of an understory climber. As a result, this figure
shows that, under the chosen setting and variables, the RF produced a highly skewed class
distribution in Raster 1 despite a broader training inventory, and that the spatial patterns do
coincide with crown geometry.

RF Classification — Raster 1

@ Quaking Aspen (50.4% )
B Oak (49.4%)
B Common lvy (0.2% )

Figure 17: Random Forest species classification for Raster 1 (44cm, 4PCs + CHM). Only three of ten species appear,
showing strong dominance by two broadleaf species, Quacking Aspen and Oak, and minimal representation of
understory species.
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Raster 2

Under the same conditions (4 PCs + CHM, 44cm resolution), the second Raster map shows a
richer legend compared to figure 18. Eight of the thirteen species trained on are reported in the
classification. The missing species are:

- Hazel

- European Spindle
- Europeanlinden
- Yew

- Black Locust

Nonetheless, the distribution remains highly uneven, with Quaking Aspen reporting nearly 50% of
all classified pixels, and White Willow around 30%. This leaves the remaining six mapped species
to fill comparatively small and scattered patches. In contrast to Raster 1, the spatial pattern is
more speckled and fragmented, with multiple small clusters and edge pixels rather than large,
crown-filling blocks. As a result, Raster 2 shows that the RF model can express a higher diversity
in classes, but the effective map still shows that there are still species that dominate the
classification. The class distribution remains skewed.

RF Classification — Raster 2

Quaking Aspen (45.4% )
White Willow (29.5% )
Common Alder (9.9% )
Grey Alder (7% )
Chocolate Vine (5.4% )
Crack Willow (2.2% )
Common Ivy (0.3% )
Douglas Fir (0.2% )

Figure 18: Random Forest species classification of Raster 2 (44cm, 4PCs + CHM). Eight of thirteen species identified,
showing fragmented spatial patterns. The high amount of Quacking Aspen and White Willow reflects spectral
dominance and class imbalance.
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Raster 3

For Raster 3, the RF model (4 PCs + CHM, 44cm) maps seven of the eight trained species. Only
one trained class is not present in the output legend, which is the European Spindletree.
Compared to Rasters 1 and 2, the mapped classes seem to be a little bit more evenly distributed,
butthere is still a skewedness in the model. The images show a grained mosaic of shrub and small
trees with numerous small clusters and short runs of contiguous pixels. Just like Raster 2, this
image seems more scattered than Raster 1, but there is still no excessive salt-and-pepper effect
at the crown scale. As a result, Raster 3 shows that the classifier can produce a nearly complete
class coverage (7 of 8 present) in this strip and the spatial distribution shows a heterogeneous,
layered vegetation structure, which is expected of the area.

RF Classification — Raster 3

Bollwiller Pear (49.2% )
Field Maple (37.4% )
Autumn Olive (11.7% )
Trifoliate Orange (0.8% )
Black Elder (0.6% )
Thorny Olive (0.3% )
Goose Berry (0% )

Figure 19: Random Forest species classification of Raster 3 (44cm, 4PCs + CHM). Showing seven of eight species in a
mosaic like pattern that reflects Ketelbroek mixed structure.
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5. Discussion

In this part, | evaluate the key findings of this research and will address the three research
questions. First, there is an assessment of the quality and representativeness of the UAV-derived
hyperspectral and canopy-height data, and the patterns and biases between flightlines. The
spectral separability results, quantified by the Jeffries Matusita distance, are placed within the
broader remote-sensing literature on spatial aggregation and band importance. Next, the effect
of integrating a CHM into a PCA based RF classifier is discussed by examining overall accuracy
gains and shifts in species specific performance. Finally, | will reflect on methodological
considerations, acknowledge the study’s limitations in sampling and model generality, and
outline recommendations for the improvement of species mapping in complex agroforestry
environments.

5.1 Data availability and quality
5.1.1 Sampling

In this study, | initially adopted a sampling strategy designed to capture as much of the variety in
species present in Ketelbroek, which is around 200 species within 2.4 ha. Keeping in mind that
much of the forest is inaccessible and that targeting known hotspots of diversity would maximize
area coverage. In practice, however, this broad approach produced many unique species records
but too few replicates per species to support a robust model training. As previously mentioned,
over 65% of the recorded species in the first three rasters have less than 10 samples (see Table
3). Studies show that, in diverse systems, estimates of richness and classification accuracy
depend on having sufficient samples of each species (Gimaret-Carpentier et al., 1998; Jeliazkov
et al., 2022). When most species occur only once or twice in the dataset, statistical power
reduces and machine learning models struggle to distinguish class boundaries (Ahrens et al.,
2016).

Therefore, in retrospect, a more balanced or stratified sampling design would tackle the class
imbalance and resulted in a higher accuracy (Fenget al., 2019; Nguyen & Chen, 2024). Aminimum
count per species should be set for each targeted species. This makes the dataset more balanced
and ensures enough samples per species. For this research, this is attempted by removing all
species with a count below 10. This threshold was chosen because this resulted in approximately
10 species to train on in per raster. If the threshold was higher, only three species per raster
remained, which is not deemed enough. A threshold of 10 was in this case the trade-off between
number of unique species and enough samples to train and test. Consequently, only a subset of
the total recorded species could be included in the classification analysis. Depending on the
raster, between eight and thirteen species met the minimum threshold of ten samples per class
(table 3). While this subset represents the most abundant species, it does not cover the full range
of diversity of Ketelbroek.

Another method that captures class imbalance well is by augmenting data. By generating
synthetic samples, itis possible to capture the essence of a species without having samples of it.
Data augmentation can help increase the sample size and is therefore a useful tool. However, it
requires careful implementation to avoid overfitting or introducing noise (Kumar et al., 2024;
Shorten & Khoshgoftaar, 2019). Since there is already a lot of noise to deal with in the current data
set, | chose not to work with augmented data.
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5.1.2 Inter-strip consistency and linear regression

When looking at the data strip by strip, the reflectance values have a range of values with a
common trend. Adjacent strips show a consistent brightness shift (with each adjacent strip, the
reflectance values increase), with the largest absolute differences in the red-edge and NIR (see
Table 6, Figure 8). Itis likely that is due to the rising sun and therefore increasing the angle at which
the sunlight hits an object (Hashimoto et al., 2019). The flight time of the UAV was on a clear day
at noon. The sun is at its highest around 2 o’clock in the afternoon.

When comparing overlapping areas from different flightlines, systematic differences in
reflectance values are anissue that is found in various research. These systematic differences are
often attributed to bidirectional reflectance distribution function (BRDF) effects, differences in
solar illumination, and sensor viewing geometry. This can vary between flightlines and especially
impact mosaicking and classification (Jia et al., 2024). The BDRF effect is inherent to UAV sensors
and leads to variations in observed reflectance depending on the sun-target-sensor geometry.
This effect can cause systematic differences between the overlapping areas of flightlines (Z. Wang
& Liu, 2016). These differences in reflectance values are often most seen in the visible spectrum
and less in the NIR (Perry et al., 2000). In addition, variations in atmospheric conditions and solar
zenith angles between flightlines can further contribute to reflectance inconsistencies. However,
this is corrected for prior to this research.

The linear regression was applied as a quick approach to harmonize the individual raster bands
(Figures 9 — 12 Appendix 8 and 9). The intention was to make the flightlines more comparable so
that a full mosaic could be generated. However, the per-band regressions only partially reduced
the differences, and inconsistently across wavelengths. This indicates that the approach is not
robust for a harmonization method. This limitation shows a weakness of simple least-squares
regression when pixels are spatial and/or spectral not perfectly aligned. As Liu and Scaglione
(2025) demonstrate, standard linear regression methods become unreliable under such
conditions because they assume a one-to-one correspondence between the in- and outputs.
When those relationships are misaligned, the regression fails to capture the underlying structure
of the data. Similarly, De Jager and Fox (2013) show that pixel-level regression methods are better
suited to describe local or temporal trends across rasters than as a correction method. For this
reason, the rasters in this research are treated individually, allowing underlying spectral trends to
remain visible and interpretable, while also reducing computing time compared to a large-scale
mosaic.

5.2 Spectral separability

The spectral separability of the species pairs located in the three rasters in Ketelbroek range
between a low moderate to moderate separability (1.0 — 1.4). However, this range is typically
accepted for highly diverse environments due to similar vegetation and mixed pixels. In studies of
invasive species and wetland habitats, JM values for challenging pairs often fall within or just
above this range, especially when using standard hyperspectral data in dense, mixed
environments. For example, mangrove pairs showed JM values of 0.93 - 1.12 in green periods and
1.18 - 1.34 in senescence periods, with higher values only achieved by combining phenological
stages or advanced feature engineering (Tian et al., 2020). Similarly, benthic habitat mapping
found that most class pairs had S < 1.9, and only a few exceed this threshold, directly impacting
classification accuracy (Wicaksono & Aryaguna, 2020b).
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5.2.1 Relevance of aggregation

Increasing the pixel size (lowering the spatial resolution from 7cm to ~44cm) improved the mean
JM separability and stabilized its variance up to a threshold (Figs. 13 - 16) (Chen et al., 2023). At
7cm, pixels were so fine that they often sampled sub-crown elements and shadow, resulting in an
increase in within-species variance and weakening the separability. Coarsening the resolution to
~44cm averaged this within-crown variability while still sampling a single crown, producing
spectral signatures that were more representative of each species (Pefia et al., 2013). This noise
reduction explains the observed gain in separability. There is, however, a maximum to this. Once
pixels become large enough to span multiple crowns, mixed pixels reduce separability. The
optimal pixel size is case specific.

Dalponte et al. (2013) examined the effect of spatial resolution (range from 40cm to 1.5m) on tree
species classification and class separability. They found that using a resolution of 40cm increased
classification accuracy by about 20% relative to the coarser resolution of 1.5m. The results of my
research show the same scale dependence, although | started much finer (7cm) aggregating to
44cm. In agriculture studies, optimum resolutions near 10cm are reported, but those studies
typically involve monocultures or homogeneous grasslands (Lu & and He, 2018; Zeng et al., 2024).
Overall, the optimal pixel size depends on crown size and scene heterogeneity. Very coarse pixels
mix multiple canopies and reduce accuracy, while extreme fine pixels over-resolve within crown
variation. Intermediate pixels that roughly match crown dimensions perform best. In the case of
my research, that optimum is ~44cm.

Although the optimal mean JM separability occurs at 44cm, the variance of JM across species
pairs decreases as pixel size is coarsened (lower spatial resolution). Aggregation averages within-
crown variability and reduces the influence of rare or outlying spectra, so pairwise spectral
differences appear more uniform and JM values cluster more tightly pairs (D’Amico et al., 2024;
Piiroinen et al., 2017). In my data, reducing the resolution from 7cm to 44cm increases the mean
JM separability and reduces its variation across species pairs. This tighter range comes from noise
being averaged out, not from weaker discrimination.

5.2.2 Species

Viewed across the three rasters, the separability is shaped by both the food-forest ecology and by
the sensors. A possible explanation for the nine pairs with the lowest JM distances could be the
similar biochemical and structural make-up at the time of the image acquisition (late-spring, full
leaf-on). Grey alder — hazel illustrates this most clearly: both are two medium broadleaves and
measured when chlorophyll and water content are near their seasonal maximum. In that state,
red absorption, a steep red-edge and a bright NIR plateau converge, while LiDAR captures
rounded crowns with overlapping heights. Adding the CHM helps only marginally because the
crowns are alike (Hovi et al., 2017; Shi et al., 2021). Common lvy (read Ivy) complicates the
situation even further. As a climbing plant, lvy is recorded not just as an understory but also as
vegetation located high in host trees. Ivy — Douglas fir and lvy — Quaking Aspen therefore mix vine
and host signals within single pixels, and the evergreen status of lvy erases phenological contrast
in a summer scene. Two shrub — shrub comparisons: Black Elder — Gooseberry and Beach Rose -
Gooseberry, show a similar compression. They are dense, 1-3 m mounds with many thin twigs
and therefore read almost identically to LiDAR, while leaf-scale differences (pinnate vs. lobed;
rugose vs. smooth) may be lost at 44 cm under mixed illumination. Even Field Maple - Gooseberry,
seemingly a tree-shrub contrast, collapses along crown edges were overhanging maple leaves

41



and shrub foliage share pixels. In short, where leaf chemistry converges, crown architecture
resembles, and vertical mixing is common, JM distances sink toward ~1.03-1.36 (Table 8 and 9).

At the other end of the spectrum, the highest JM values (~ 1.41, Table 8 and 9) indicate very strong
class separation. These cases can be explained by differences in both leaf properties and canopy
structure. In Raster 1 for example, Black Locust and Quacking Aspen are both deciduous trees,
but they are structurally and visually different. The Black Locust has compound leaves and open
crowns, the Quacking Aspen has simple, fluttering leaves and a denser canopy. These differences
affect both the wavelength signal and CHM distribution, resulting in a stronger separability.
Similarly, Common lvy and Yew show high separation for the opposite reason of lvy’s usual
confusion with other species. In this case, lvy remains as a shaded vine in the understory, while
Yew forms a dense, needle leaf canopy above it. This vertical layering reduces the spectral mixing
and enhances the contrast between the needle and broad leaves (see Appendix 4).

In Raster 2, the pairs Black Locust— Chocolate Vine and Chocolate Vine — Crack Willow represent
clear vertical stratification that occupy different height zones. The LiDAR height data amplifies the
differences that are already visible in the reflectance. Douglas Fir and European Linden form a
conifer and broadleaf pair, where darker evergreen leaves and lighter deciduous phenology add
to the structural and spectral contrast (see Appendix 4).

Finally, Raster 3 contains three pairs where both phenology and structure differ. Autumn Olive and
Bollwiller Pear contrast a silvery hairy leaved shrub with a smoother orchard canopy. Bollwiller
Pear and Trifoliate Orange differ through the thick oily trifoliate leaves, which affect the absorption
(see Appendix 4).

The extremes in the JM distances show a pattern. The lowest JM values likely result from species
that appear similarin summer, due to similar biochemistry, shrub layers that look alike and strong
spectral mixing. The highest JM values occur when differences in leaf structure are picked up, and
crown position are in different directions making them more unique. Improving separability will
depend on data and methods that further reduce similarities. For example, adding seasonal
variables, detailed 3D information on vegetation structure, and applying object-based analysis
could improve the JM values.

5.3 Random Forest

The Random Forest (RF) experiments were designed to test whether adding the Canopy Height
Model (CHM) to hyperspectral components improves species mapping in a layered (food) forest.
At the raster level, the effect is clear in two of the three cases: overall accuracy (OA) and Kappa
(Table 10) rise from 0.60 to 0.65 (raster 2) and 0.68 to 0.86 (raster 3), with McNemar tests
significant at 95% confidence (Table 11). Raster 1 shows only a marginal OA gain and no
significant difference. These results are consistent with the species level patterns visible in the
confusion matrices (Tables 12 — 14). Together, these patterns indicate that a CHM can add
information if there is vertical stratification, but also offering little benefit where classes already
separate spectrally or where structures overlap (H. Wang et al., 2021).

There are two design choices that shaped the magnitude of the RF metric gains. First, | trained
and tested at a resolution of 44 cm because separability increases with aggregation and stabilizes
near this scale. Larger pixels capture canopy reflectance and suppress within-crown noise
without exceeding crown size. This decision increases mean JM and, and therefore, the ceiling for
RF accuracy. Second, | kept the flightlines separate instead of mosaicking them, to avoid
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radiometric differences and BRDF effects between rasters. This approach reduces variation that
is unrelated to species and makes structural patterns in the data easier to detect.

5.3.1 Species level

At the species level, the RF is comparable to the separability analysis. Species that were
spectrally distinctive generally achieved higher and more stable scores regardless of CHM (See
Appendix 12 — 14). For example: Douglas Fir, European Linden, Trifoliate Orange and Bollwiller
Pear scored F1 = 0.90. While Common Beech, Common Ivy and Thorny Olive remain a weak F1 (<
0.50), suggesting spectral confusion and/or understory mixing. Most importantly, several problem
classes improved dramatically when CHM was added: Hazel (F1 = 0.18~>0.55), Gooseberry (F1 =
0.50~0.90), and European Spindletree (F1 = 0.3320.67). A possible explanation for this is that
these species may tend to have overlapping spectral signatures but differ enough in height and/or
crown density, and therefore the CHM resolves ambiguity. In contrast, Chocolate Vine and Sweet
Chestnut decline in F1 after CHM is introduced, which is consistent with the structure of these
species being liana and low crown layers, respectively. This causes height (CHM) to increase
noise instead of reducing.

5.3.2 Link to spectral separability

By linking the outcomes of the RF to the spectral separability scores, | try to strengthen the
interpretation of both results. The lowest-JM pairs such as, Grey Alder-Hazel (= 1.03), Crack
Willow-Hazel (= 1.04), Common lvy-Douglas Fir (= 1.13), and Common lvy—Quaking Aspen (=
1.17) (see Table 9), may be a result of a similarity in leaf chemistry at the time of measurement,
and the mixing of pixels (climbers, understory). In addition, it is these species that show lower RF
scores and/or are sensitive to CHM. On the other hand, the highest-JM pairs like, Douglas Fir —
European Linden, Black Locust — Chocolate Vine, and Bollwiller Pear — Trifoliate Orange (= 1.414)
are also among the easier to classify (see Table 9). The combination of divergent leaf structures
(needle/broad leaf, single/compound leaf) and minimal/no overlapping canopy structures results
inthese higher results. The pairwise extreme of the spectral separability therefore can foreshadow
RF behaviour at the species level.

When comparing my results to available literature, in diverse, mixed canopies, JM values
clustering around 0.8 — 1.4 are common. Furthermore, to acquire high accuracies the research
typically requires either structural information (LiDAR) or multi-date acquisitions (leaf-off/leaf-
on), or both, for species differentiation (Hologa et al., 2021; Michatowska & Rapinski, 2021). My
findings are consistent with that pattern: hyperspectral imagery and a CHM improve OA in two of
three rasters, and the largest gains occur where shrub-tree mixtures are strongest. Prior research
reports similar benefits from multi-sensor use and emphasizes the additional value of leaf-off
data for separating deciduous species.

In sum, the RF results are generally consistent with the separability analysis and broadly in line
with prior studies: the addition of structure (CHM) to the RF model improves its performance
where spectra alone are ambiguous. However, the benefit is species-specific and depends on the
scene geometry. For (food) forest mapping, this could mean that reliable species classification is
possible for structurally and optically distinct species, and for difficult understory pairs once
temporal (leaf-off) and structural (richer LiDAR features) information are added.
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5.3.3 Classification visualization

The RF classification maps (Figures 13 — 15) visualise how the trained model translates spectral
and structural inputs into spatial patterns across the three flightlines. These maps are not
intended as literal depictions of the full species composition of Ketelbroek, but rather as a
diagnostic view of model behaviour when applied to a filtered, class-imbalanced dataset. The
uneven representation of species in the training data is clearly reflected in the spatial outputs. The
dominant classes occupy large, contiguous patches, while rare or spectrally ambiguous are either
underrepresented or absent. This skewed distribution highlights the sensitivity of the RF model to
sample imbalance and spectral overlap (Feng et al., 2019). These are two factors that are intrinsic
to species rich environments and complex canopy layering (Fassnhacht et al., 2016).

In Raster 1 (figure 17), only three of the ten trained species appear in the final classification, with
Quacking Aspen and Oak collectively accounting for nearly all predicted pixels. Their dominance
likely comes from the large crowns and distinctive spectral-structural signatures, which results in
the model to generalise beyond limited samples (Hologa et al., 2021). The absence of the majority
of the species indicates that, at the current resolution (44cm) and with the restricted training
dataset, the classifier prioritises broader structural cues over finer spectral distinctions
(Michatowska & Rapinski, 2021). In Raster 2 (figure 18), class richness is improved, where eight
of the thirteen species are predicted. However, the pattern remains fragmented and uneven, with
Quacking Aspen and White Willow dominating the area. The increased patchiness and noise
suggests spectral confusion and overlapping canopies (He et al., 2018). On the other hand, Raster
3 (figure 19) produces a more balanced image, mapping seven of the eight species reported in the
area. Here, the model benefits from a better combination of canopy heterogeneity, CHM variation,
and class representation (Michatowska & Rapinski, 2021).

Together, these three maps illustrate the strengths and limitations of integrating hyperspectral
and LiDAR derived canopy height information in a (food) forest. Where there is vertical
stratification and distinct crown architecture, the CHM clearly improves species discrimination.
However, where understory and overstory overlap or species share similar visual properties,
confusion remains. The dominance of a few species also shows that pixel-based RF classification
struggles to capture ecological complexity when class balance and sample density are low.
Nevertheless, the fact that the RF classifier can produce crown-scale patterns rather than random
noise demonstrates that the combined hyperspectral — CHM approach successfully shows
meaningful ecological structures.

5.4 Limitations

This study was subject to several limitations, both technological and ecological, that influenced
the scope and interpretation of the results. Methodologically, the most persistent constraint was
the limited and uneven sampling across species. Although the sampling strategy aimed to capture
the widest range of species in Ketelbroek, the resulting limited dataset contained a strong
imbalance in samples. This limited dataset means that results primarily reflect the dominant
species, and not the rarer species that make up most of the forest’s overall diversity (Foody, 2009;
Gimaret-Carpentier et al., 1998). Approximately two-thirds (Table 3) of the recorded species had
fewer than ten usable samples, reducing statistical robustness and constraining the RF model’s
ability to learn class boundaries. This imbalance forced a trade-off between taxonomic diversity
and model reliability, ultimately limiting the number of species that could be included in the
classification. Class imbalance also increases over- and under prediction effects, which is
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reflected in the uneven spatial patterns seen in the RF visualisations (Figure 17 — 19) (Feng et al.,
2019).

From a data acquisition point, several technical limitations affected spectral quality and
consistency. The hyperspectral results of all fifteen flightlines show high variation between each
raster. This is probably caused by Bidirectional Reflectance Distribution (BDRF) effects,
illumination differences, and sensor geometry (Jia et al., 2024; Z. Wang & Liu, 2016). Although a
linear correction per band was tested, the residual errors remained, leading to local brightness
changes between the rasters. Treating flightlines separately avoided the spread of these biases.
However, it restricted the analysis to sections of the research area (rasters 1 - 3) and reduced the
sample size. In addition, the high spatial resolution (7 — 44cm) shows a higher variation within
individual tree crowns, especially where overlapping canopies and shadows occurred. These
factors are to be expected to UAV-based imagery of complex forests and show the difficulty in
achieving spectral uniformity and vertically layered vegetation (Banerjee et al., 2020).

Algorithmic limitations further influenced the results. The RF classifier is well suited for high
dimensional and nonlinear data, but it remains a pixel-based model without spatial awareness.
As aresult, it does not account for contextual information such as crown shape or neighbourhood
texture, which can improve discrimination in heterogeneous areas. The model’s structure also
makes it prone to overfitting when sample size per class is low or spectral variance is high (Feng
et al., 2019). Alternative approaches, such as Support Vector Machines (SVM) for margin-based
separation, or Convolutional Neural Networks (CNNs) and other deep learning methods capable
of leveraging spatial context, could potentially overcome some of these constraints. However,
these methods demand larger, more balanced datasets and more extensive computational
resources than were available for this research (Hologa et al., 2021; Raczko & Zagajewski, 2017).

Ecologically, several contextual factors shaped the limits of the analysis. Data was collected
during late spring, in full leaf-on conditions. Meaning that chlorophyll and water content is at its
peak across all species. This reduces spectral variability, making deciduous species less
separable (Fassnacht et al., 2016; Tian et al., 2020). Furthermore, parts of the forest were
inaccessible due to dense vegetation and wet terrain. This ultimately resulted in spatial sampling
bias toward open or easily reachable areas. Even though the infield sampling is combined with a
desktop analysis of an RGB image, the representation across the complete forest is limited. The
CHM smoothed some of these effects by introducing structural diversity, but it could not fully
capture fine scale vertical complexity.

These technical and ecological limitations restrict the generalizability of the results beyond the
specific conditions of Ketelbroek. While the research demonstrated that UAV hyperspectral
imagery and LiDAR derived data can classify species in a highly diverse agroforestry system, the
accuracies remain very context dependent. Nevertheless, by identifying these uncertainties, this
research shows where the methods perform reliably and where future improvements are needed
to go towards more promising results across sites and seasons.

5.5 Recommendations

During this research, several directions for future research emerged in both methodological
design and practical monitoring of (agro) forestry systems. First, future research should aim for
balanced sampling across species. Establishing a high enough minimum number of samples per
species, or making use of augmented data, can help improve a class imbalance and stabilise the
performances of the RF model (Feng et al., 2019; Foody, 2009; Jeliazkov et al., 2022). In addition,
by linking field data to automatically detected tree crowns, more pixels can be labelled for each
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known species, giving a better image on the composition of a tree (Piiroinen et al., 2017).
Integrating these systematic protocols within national monitoring programs, such as the
Nationaal Monitoringsprogramma Voedselbossen, could also help standardize data quality
across sites in the Netherlands (Wendel et al., 2023).

Secondly, a multi-temporal and -sensor approach is strongly recommended. Repeating
acquisitions during different seasons (especially leaf-on and leaf-off phases) introduces a high
contrast that could drastically improve discrimination among deciduous and evergreen species
(Fassnacht et al., 2016; Tian et al., 2020). Other structural metrics such as crown density indices,
gap fraction, and leaf shapes could further improve separability between shrubs, vines and trees.
Also, the addition of vegetation indices could result in a better representation of canopy traits that
are relevant to species classification (Hologa et al., 2021; Rehman et al., 2024).

Thirdly, future research should explore object-based and more spatially aware classification
methods. Transitioning from pixel-based RF models toward object-based image analysis, or
convolutional neural networks (CNN) can reduce noise and incorporate spatial context such as
crown geometry and patterns (He et al., 2018). However, these methods should be combined with
careful feature selection to prevent overfitting and maintain interpretability (Michatowska &
Rapinski, 2021). Considering feature selection, while PCA effectively reduced the dimensionality
and noise inthe data of this research, itremains an unsupervised method where class separability
is not necessarily optimised. Therefore, combining PCA with supervised band selection
techniques could improve interpretability and potentially increase the classification accuracy
(Paul & Chaki, 2022; Tagkin et al., 2017).

This research demonstrates that UAV sensors and open-source analytical tools can already
produce meaningfulinsight in the structure of tree species biodiversity in Ketelbroek. To translate
these methods in routine monitoring, future projects should develop systematic protocols that
can be adapted to varying forest types, spectral sensors and data resolutions. This would enable
people, from researcher to landowners, to evaluate biodiversity and structural change
consistently across years and regions.
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6. Conclusion

This research aimed to evaluate how accurately airborne hyperspectral imagery, combined with
the LiDAR derived Canopy Height Model can classify (woody) plant species in the highly diverse
Dutch food forest Ketelbroek, using Random Forest classifiers. Working with over 200 species,
strong structural layering, imbalance in samples, and large within crown spectral variation
presented a challenging case. The findings show the potential and the limitations of this
combined remote sensing approach.

The first research question focussed on analysing the differences between the three flightlines,
whether there is a linear trend present, and if linear regression could solve these between strip
differences. The analysis showed that there is a systematic brightness difference between
adjacent rasters with the next one always being brighter. This occurred especially in the Red Edge
and the NIR. These differences are likely caused by BRDF effects and subtle illumination changes
during the time of hyperspectral data acquisition. Although linear regression reduced a small part
of the bias, inconsistencies remained too big across all wavelengths. Therefore, this is not a
suitable solution to harmonise the different rasters into one mosaic. Treating flightlines separately
was the most reliable approach in preserving spectral integrity in this case.

The second research question investigated the effect of different spatial resolutions on species
discrimination and focussed on species and species pairs that are either well spectrally
separated or consistently confused. Across all rasters, Jeffries Matusita distances indicated (low)
moderate separability. The introduction of coarser pixel size (from 7cm to ~44cm) significantly
improved separability. At approximately 44cm, spectral signatures became more representative
of whole crowns, capturing more of the characteristics of species. Species pairs with the lowest
separability typically shared similar leaf traits, canopy forms or height. The most separable
species pairs differed more strongly in either leaf structure or height.

The third research question focussed on Random Forest classification and the integration of a
Canopy Height Model. Across two of the three rasters, adding the CHM substantially improved the
model’s accuracy, supported by the McNemar test. Height information was especially valuable
for species that are spectrally similar, but structurally different, such as Hazel, Gooseberry and
European Spindle. On the other hand, species with low or no structural height differences saw
reduced performance. This shows that a Canopy Height Model is not always beneficial. The
classification maps further showed that Random Forest can reproduce meaningful ecological
patterns but remains sensitive to class imbalances and spectral mixing.

Overall, this study shows that the use of airborne hyperspectral data is a promising method for
biodiversity assessment in a complex agroforestry system. With the use of Random Forest,
several woody species are distinguished. Hyperspectral data alone resulted in a classification
that is somewhat reliable, and the addition of a Canopy Height Model significantly improved
species prediction for two of the three rasters. However, both datasets were limited in the ability
to separate species in the understory, and species that are similar in structure and spectrum. This
indicates that airborne hyperspectral data can identify species only to a moderate extent in
complex forest environments and that CHM provides improvements in some cases but does not
fully resolve the classification challenges. Even within these constraints, the findings illustrate
how UAV-based remote sensing can contribute to monitoring frameworks for (emerging)
agroforestry systems in the Netherlands. To further improve the assessment of biodiversity it is
advised to make use of balanced sampling strategies, multi seasonal acquisitions, richer
structural metrics, and spatially aware classifiers.
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7. Use of generative Al statement

In this thesis, Al is used as a sparring partner and as a feedback tool to improve the quality of the
texts. The scientific approach, methods, and content presented in this thesis is the work of the
author, who takes full responsibility for the analysis and text.
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Appendix 1: Woody species recorded in Ketelbroek.

Table 15: Comprehensive list of all woody species recorded in Ketelbroek during fieldwork and desktop analysis. The

table includes scientific and Dutch names, representing > 200 species. This list shows the ecological diversity

underlying the classification challenge.

Fruit bearing woody species

Scientific name Dutch name
1 Acer saccharum Suikeresdoorn
2 Actinidia arguta Kiwibes
3 Actinidia deliciosi Kiwi
4 Actinidia kolomikta Straalstempelkiwi
5 Akebia quinata Schijnaugurk
6 Akebia trifoliata Driebladig schijnaugurk
7 Amelanchier spp. Krentenboompje
8 Arélia elata Duivelswandelstok
9 Araucaria araucana Slangenden
10 Arbutus unedo Aardbeienboom
11 Aronia prunifolia Appelbes
12 Asimina triloba Pawpaw
13 Atriplex canescens Struikzoutmelde
14 Broussonetia kazinoki Japanse papierboom
15 Broussonetia papyrifera Papiermoerbei
16 Camelia sinensis Camelia sinensis
17 Caragana arborescens Siberische erwtenstruik
18 Caryaiillinoinensis Pecan
19 Caryaiillinoinensis x laciniosa Hican
20 Caryaiillinoinensis x ovata Hican
21 Carya laciniosa Koningsnoot
22 Carya ovata Hickory bitternoot
23 Carya ovata x cordiformis Hickory hybride
24 Carya ovata x laciniosa Hickory hybride
25 Castanea henryi Parelkastanje
26 Castanea mollissima Chinese tamme kastanje
27 Castanea mollissima x sativa Tamme kastanje hybride
28 Castanea sativa Tamme kastanje
29 Castanea sativa x crenata Tamme kastanje hybride
30 Celtis australis Europese netelboom
31 Celtis occidentalis Zwepenboom
32 Cephalotaxus harringtonia Knoptaxus
33 Cercis siliquastrum Judasboom
34 Citrus trifoliata Winterharde citroen
35 Chaenomeles Japonica Japanse sierkwee
36 Chaenomeles cathayensis Chinese kwee
37 cornus alba Witte kornoelje
38 Cornus kousa Chinese kornoelje
39 Cornus kousa x capitata Porlock
40 Cornus mas Gele kornoelje
41 Cornus officinalis Japanse kornoelje
42 Corylus avellana Hazelaar
43 Corylus sieboldiana Japanse hazelhoot
44 Corylus x colurnoides Trazel
45 Crataegus azarolus azarooldoorn
46 Crataegus ellwangeriana Amerikaanse vruchtmeidoorn
47 Crataegus mexicana Mexicaanse vruchtmeidoorn
48 Crataegus mollis Canadese vruchtmeidoorn
49 Crataegus pinnatifida major Chinese vruchtmeidoorn
50 Crataegus tanacetifolia Turkese vruchtmeidoorn
51 Crataegomespilus dardarii d’Asnieresii Asnieresii meidoornmispel
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(Crataegus laevigata x Mespilus germanica)

52 Crataegomespilus grandiflora Grootbloemige meidoornmispel
(Crataegus laevigata x Mespilus germanica)

53 Cudrania Tricuspidata Che fruit

54 Cydonia oblonga Kweepeer

55 Decaisnea fargesii Augurkenstruik

56 Diospyros kaki Kaki

57 Diospyros spp (D. virginiana x kaki) Hybride kaki

58 Diospyros virginiana Amerikaanse persimoen

59 Elaeagnus pungens Stekelige olijfwilg

60 Elaeagnus multiflora Langstelige olijfwilg

61 Elaeagnus umbellata Schermbloemige olijfwilg

62 Elaeagnus x ebbingei Zilverbes

63 Elaeagnus x quicksilver (E. commutata x angustifolia) Quicksilver olijfwilg

64 Ficus carica Vijg

65 Ginkgo biloba Japanse notenboom

66 Gleditsia triacanthos Valse christusboom

67 Halesia carolina Sneeuwklokjesboom

68 Hibiscus syriacus Hibiscus (Altheastruik)

69 Hippophae rhamnoides Duindoorn

70 Juglans ailanthifolia Japanse walnoot (hartnoot)

71 Juglans cinerea Witte walnoot

72 Juglans nigra Zwarte walnoot

73 Juglans regia Walnoot

74 Lonicera caerulea Honingbes

75 Malus domestica Appel

76 Mespilus germanica Mispel

77 Morus alba x rubra ‘Capsrum’ Capsrum-moerbei

78 Morus nigra Zwarte moerbei

79 Myrica gale Wilde Gagel

80 Myrica pensylvanica Wasgagel

81 Oemleria cerasiformis Indianenpruim

82 Paulownia tomentosa Anna Paulownaboom

83 Phyllostachys spp Reuzenbamboe

84 Pinus koraiensis Koreaanse den

85 Prunus armeniaca Abrikoos

86 Prunus avium Zoete kers

87 Prunus cerasifera Kroosjespruim

88 Prunus cerasus Zure kers (morel)

89 Prunus domestica Pruim

90 Prunus dulcis Amandel

91 Prunis persica Perzik

92 Prunus salicina Japanse pruim

93 Prunus spinosa Sleedoorn

94 Prunus tomentosa Nanking cherry

95 Prunus spp Complexe pruimen

96 Pyrus communis Peer

97 Pyrus communis x pyrifolia Champagnepeer

98 Pyrus pyrifolia Aziatische zandpeer (nashi)

99 Pyrus x Sinkiangensis (P. bretschneideri x communis) Xinjiangpeer

100 Quercus ilex Steeneik

101 Rhus aromotica Welriekende sumac

102 Rhus glabra Fluweelboom

103 Rhus typhina Fluweelboom

104 Ribes divaricatum Worcesterbes

105 Ribes nigrum Zwarte bes

106 Ribes odoratum Buffelkrent

107 Ribes rubrum Rode bes

108 Ribes uva-crispa Kruisbes

109 Ribes x nidigrolaria (R. nigrum x R. uva-crispa) Jostabes
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110 Rosa rugosa Rimpelroos
111 Rubus spp Braam
112 Tayberrie
113 Chinese klimbraam
114 Framboos
115 Rubus iraneus Moeraskruipframboos
116 Rubus Nepalensis Himalya kruipframboos
117 Rubus parviflorus x Rubus idaeus Dorman Red
118 Rubus phoenicolasius Japanse wijnbes
119 Rubus sechuaensis Zsechuansisbraam
120 Rubus tricolor Kruipframboos
121 Sambucus canadensis Canadese vlier
122 Sambucus nigra Vlier
123 Sassafras albidum Sassafras
124 Schisandra chinensis Vijfsmakenbes
125 Shepherdia argentea Buffelbes
126 Sorbocrataegus 'lvan's Belle' Ivan's Belle
(Sorbus aucuparia x Crataegus laevigata)
127 Sorbopyrus auricularis Peerlijsterbes
128 Sorbus aucuparia x Crataegus sanguinea Granatjana lijstebes
129 Sorbus devoniensis Devon meelbes
130 Sorbus domestica Peervormige lijsterbes
131 Sorbus torminalis Elsbes
132 Sorbus X ‘Burka’ Burka-lijsterbes
133 Staphylea bumalda Japanse pimpernoot
134 Staphylea colchica Kaukasische pimpernoot
135 Staphylea pinnata Pimpernoot
136 Stauntonia hexaphylla ‘aardappelpruim’
137 Tilia cordata Winterlinde
138 Tilia platyphyllos Zomerlinde
139 Tilia x europaea Hollandse Linde
140 Toona sinensis Uiensoepboom
141 Torreya californica Californische nootmuskaattaxus
142 Torreya nucifera Kaya
143 Ulmus laevis Fladderiep
144 Viburnum dentatum Sneeuwbal dentatum
145 Viburnum furcatum Sneeuwbal furcatum
146 Viburnum lentago Schapenbes
147 Viburnum nudum Sneeuwbal
148 Viburnum plicatum Japanse sneeuwbal
149 Viburnum prunifolium Zwarte haagdoorn
150 Vitis vinifera Druif
151 Wisteria sinensis Blauwe regen
152 Xanthoceras sorbifolium Chinese bloeiende kastanje
153 X Pyrocydonia danielii Pyrocydonia danielii
154 X Pyronia veitchii Pyronia veitchii
155 Zanthoxylum alatum Nepalese peper
156 Zanthoxylum bungeanum Peperboom bungeanum
157 Zanthoxylum giraldii Peperboom giraldii
158 Zanthoxylum schinifolium Szechuanpeper schinifolium
159 Zanthoxylum simulans Szechuanpeper
160 Ziziphus jujuba Chinese dadelpruim
Supporting wooden species
161 Acer campestre Veldesdoorn
162 Acer pseudoplatanus Gewone esdoorn
163 Alnus cordata Italiaanse els
164 Alnus glutinosa Zwarte els
165 Alnus incana Witte els
166 Alnus rubra Rode els
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167 Betula pendula Ruwe berk

168 Betula pubescens Zachte berk

169 Carpinus betulus Haagbeuk

170 Clematis vitalba Clematis vitalba
171 Cornus sanguinea Rode kornoelje
172 Crataegus laevigata Tweestijlige meidoorn
173 Euonymus europaeus Kardinaalsmuts
174 Fagus sylvatica Gewone beuk

175 Fraxinus excelsior Gewone es

176 Hedera helix Hedera helix

177 Ligustrum vulgare Liguster

178 Lonicera periclymenum Kamperfoelie

179 Malus sylvestris Wilde appel

180 Pseudotsuga menziesii Douglasspar

181 Populus deltoides Balsempopulier
182 Populus nigra Zwarte populier
183 Populus x Canadensis Canadapopulier
184 Populus tremula Ratelpopulier

185 Prunus padus Vogelkers

186 Pyrus pyraster Wilde peer

187 Quercus petreae Wintereik

188 Quercus robur Zomereik

191 Rhamnus cathartica Wegedoorn

192 Robinia pseudoacacia Acacia

193 Rosa canina Hondsroos

194 Rosa corymbifera Heggenroos

195 Rosa rubiginosa Egelantier

196 Rosa villosa Viltroos

197 Salix alba Schietwilg

198 Salix caprea Boswilg

199 Salix fragilis Kraakwilg

200 Salix spp Overige wilgen

201 Sorbus aucuparia Lijsterbes

202 Styrax officinalis Storax

203 Taxus baccata Venijnboom

204 Viburnum opulus Gelderse roos

205 Pinus sylvestris Grove den

206 Salix aurita Geoorde wild

207 Prunus cerasifera Paarse kroosjespruim
208 Craetegus viridus Groene meidoorn
209 Prunus armeniaca x salicina Abrikoos met japanse pruim
210 Berberis coreana Koreaanse zuurbes
211 Maclura pomifera Osagedoorn

212 Corylus avellana Roodbladige hazelaar
213 Elaegnus angustifolia Olijfwilg

214 Rubus subg batohamnus Prachtbraam

215 Urtica doica Grote brandnetel
216 Berberis coreana Koreaanse zuurbes
217 Maclura pomifera Osagedoorn

219 Elaeagnus angustifolia Olijfwilg

220 Rubus subg batothamnus Prachtbraam

300 Urtica doica Grote brandnetel

As noted on 28 May 2024 in food forest Ketelbroek.

58



Appendix 2: Spatial sampling distribution.

Figure 20: Spatial distribution map of reference points collected during fieldwork and desktop analysis. This figure
illustrates spatial coverage and sample density used for species classification.

Appendix 3: Photographic species overview.

Table 16: Photo-illustrated overview of representative species included in the study. Images highlight key phenological
traits relevant for spectral interpretation and classification.

Name Photo
Chocolate vine - Akebia Quinata

wikimedia.org/w/index.php?curid=120155

CC BY-SA 3.0, https://commons.
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Sweet Chestnut - Castanae Sativa

Flowering Sweet chestnut tree (Castanea sativa)
https://commons.wikimedia.org/w/index.php?curid=144664100

by Evelyn Simak, cc BY-SA 2.0,

Trifoliate Orange - Citrus Trifoliata

By Daderot - Own work, CCO, https:/commons.wikimedia.org/w/index.php?curid=170444637

Hazel - Corylus Avellana

By AudreyMuratet - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=96537312

Thorny Olive - Elaeagnus pungens

Autumn Olive - Elaeagnus
Umbellata

By R. A. Nonenmacher - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=107094261
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Gooseberry - Ribes Uva-Crispa

Beach Rose - Rosa Rugosa

By Robert Flogaus-Faust - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=148153167

Black Elder - Sambucus Nigra

By Sambucus nigra by Bob Harvey, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=158447805

Bollwiller Pear - Pyrus Communis
‘Bollwiller’

By Abraham - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=149833344

European Linden - Acer
Europaeus
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https://commons.wikimedia.org/w/index.php?curid=149833344

Common Alder - Alnus Glutinosa

A i e
Own work assumed (based on copyright claims)., CcC
https://commons.wikimedia.org/w/index.php?curid=430484

BY

2.5,

Grey Alder - Alnus Incana

European Spindle - Euonymus
Europaeus

Common Beech - Fagus Sylvatica

; , o
By Tournasol7 - Own work, CC BY 4.0, https://cmmons.wikimedia.org/w/index.php?curid=169787673

Common lvy - Hedera Helix
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Douglas Fir - Pseudotsuga
Menziesii

Quacking Aspen - Populus
Tremula

Oak - Quercus Robur

29 : i—i&_ -\
By Rudolphous - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=91905062

Black Locust - Robinia
Pseudoacacia
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White Willow - Salix Alba

Crack Willow - Salix Fragilis

By Krzysztof Ziarnek, Kenraiz - Own work, cCc BY-SA 4.0,

Yew - Taxus Baccata

https://commons.wikimedia.org/w/index.php?curid=99427373

By Original uploader Kpjas at pl.wikipedia - CcC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=1394796
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Appendix 4: PCA outputs.
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Figure 21: Principal Component Analysis results showing eigenvalues and loadings across all spectral bands. This figure
illustrated how most spectral variance is captured by the first four PCs (top), and how the loadings is divided within the
PCs (bottom).

Appendix 5: CHM height statistics.

Table 17: Mean canopy heights for species in Raster 1 based on CHM measurements. Values reflect varying crown
structures and vertical stratification.

Name Vegtype Mean N
height (M)

Quacking Aspen tree 13.2 29
Quercus robur Tree 13.1 45
Grey Alder Tree 8.9 11
Crack Willow Tree 8.8 25
Douglas Fir Tree 7.8 26
Common lvy Vine 7.5 15
Black Locust Tree 6.6 11
Hazel Tree 6.5 12
Chocolate Vine Vine 5.5 11
Taxus baccata Shrub 3.3 11
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Table 18: Mean canopy heights for species in Raster 2 based on CHM measurements. Values reflect varying crown
structures and vertical stratification.

Name Veg type Mean N
height (m)

White Willow Tree 12.7 28
Quaking Aspen Tree 12.3 15
Black Alder Tree 11.6 11
Crack Willow Tree 9.9 16
Common Beech Tree 9.8 10
Grey Alder Tree 9.7 21
Oak Tree 9.1 10
European Linden Tree 7.7 15
Douglas Fir Tree 7.6 18
Hazel Tree 7.4 18
Hedera helix Vine 7.3 15
Chocolate Vine Vine 6.7 21
Black Locust Tree 6.6 11
European Spindle Tree 4.8 11
Yew Shrub 3.4 11
Thorny Olive Shrub 3.1 10

Table 19: Mean canopy heights for species in Raster 3 based on CHM measurements. Values reflect varying crown
structures and vertical stratification.

Name Veg Type Mean N
height (m)

Bollwiller Pear Tree 8.0 12
Field Maple Tree 5.6 21
Black Elder Tree 3.8 28
Autumn Olive Shrub 3.5 11
Thorny Olive Shrub 3.4 10
Gooseberry Shrub 2.4 27
Trifoliate Orange | shrub 2.5 12
Beach Rose shrub 2.0 38
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Appendix 6: Linear regression plots. Pair 2.

Blue — 435.933nm Green — 547.453nm R =Ssrasdm

Raster 3
Raster 3
Raster 3

100 0 0 500 1500
Raster 2 Raster 2

Figure 22: Linear regressions of Raster 2 vs Raster 3 reflectace for the Blue, Green and red bands. Deviations from the
1:1 line indicate inconsistent radiometry between flightlines.

RedEdge — 723.655nm NIR — 870.862nm

Raster 3

5000
Raster 2

Figure 23: Linear regressions of Raster 2 vs Raster 3 reflectace for the Red Edge and NIR bands. Deviations from the 1:1
line indicate inconsistent radiometry between flightlines.
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Appendix 7: Intercept, Slope, R2 and RMSE. Pair 2.
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Figure 24: Intercept and Slope parameters for pair 2 of per-band regression across 400 — 1000nm. Sharp changes in the
Red Edge and NIR reveal wavelength dependent scaling effects between strips.
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RMSE vs Wavelength
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Figure 25: R?and RMSE parameters for pair 2 of per band regression across 400 — 1000nm. Goodness of fit metric
emphasises inconsistent regression performance and large NIR errors that justify keeping flightlines separate.
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Appendix 8: Overall accuracy PCA vs PCA + CHM, for all
aggregations and rasters.

Table 20: Overall accuracy for PCA-only and PCA + CHM models across all six aggregation levels for each raster.
Results demonstrate strong resolution dependence and CHM benefits.

Raster Agg Accuracy | Accuracy + CHM | Abs. Diff Rel. Diff (%)
1 1 0.430 0.608 0.177 41.18
2 0.456 0.646 0.190 41.67
3 0.506 0.650 0.114 22.50
4 0.584 0.779 0195 33.33
5 0.705 0.795 0.090 12.73
6 0.662 0.779 0.117 17.65
2 1 0.410 0.552 0.143 34.88
2 0.514 0.648 0.133 25.93
3 0.510 0.630 0.120 23.53
4 0.556 0.657 0.101 18.18
5 0.673 0.755 0.082 12.12
6 0.687 0.697 0.010 1.47
3 1 0.609 0.875 0.266 43.59
2 0.656 0.891 0.234 35.71
3 0.688 0.906 0.219 31.82
4 0.734 0.891 0.156 21.28
5 0.672 0.891 0.219 32.56
6 0.683 0.817 0.133 19.51

Accuracy by aggregation, data type, model level and raster
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Figure 26: Visualisation of accuracy trends across all aggregation levels for all rasters. The figure shows improved
performance when including CHM.
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