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Abstract: Robots can address challenges in agriculture. However, agricultural environments are
complex, resulting in significant perception challenges due to occlusions. This paper evaluates
a semantic-aware next-best-view (NBV) planner designed to improve the detection of tomato
plant nodes for harvesting and deleafing tasks. The method actively selects viewpoints based
on expected information gain, utilizing a probabilistic Semantic OctoMap, integrating spatial
attention and semantic awareness. The method was evaluated in a real-world greenhouse,
analyzing its robustness against higher occlusion levels, uninformative viewpoints, and reduced
field-of-view. Experimental results demonstrated that the Semantic NBV planner outperformed
baseline planners, achieving a better reconstruction with fewer viewpoints.
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1. INTRODUCTION

Agriculture is facing big challenges, with the need to
increase production, while reducing the environmental
impact and dealing with labour shortages. Robots can
contribute to the mitigation of these challenges. However,
most agricultural robotic solutions are not commercially
available yet. One of the biggest reasons for this is that
current robots cannot deal well enough with the complex
agricultural environment, which is characterized by high
variability and clutter (Kootstra et al., 2020). Specifically,
for the robot’s perception system, this results in the chal-
lenges of variation and incomplete information (Kootstra,
2023). Many of the current agricultural robots perceive
the environment passively or using a pre-defined set of
viewpoints. In a complex agricultural environment, this
results in important information often being occluded,
hampering the task execution of the robot. This paper,
instead, focuses on the active capabilities of a robot to
change viewpoint, in order to get the required information
to execute the tasks at hand.

An occluded object is hidden from the camera view be-
cause another object is in front of it, or because of self
occlusion. In cluttered environments, such as orchards and
greenhouses, occlusions pose a significant challenge, as rel-
evant information is often not observable for the robot. For
a plant-phenotyping use-case, for instance, Boogaard et al.
(2020) showed that 36 viewpoints per plant were needed
to reliably observe the leaf and fruit nodes of cucumber
plants. Similarly, for a bell-pepper harvesting use-case,
Hemming et al. (2014) showed that at best 69% of the
fruits were visible in the images, even with a requirement
of only 50% visibility.
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Fig. 1. Overview of the semantic NBV planner.

Observing the scene from multiple viewpoints can form
a solution. By combining five viewpoints, the bell-pepper
detection rate, for instance, could be increased to 90%
(Hemming et al., 2014). In (Sa et al., 2017; Barth et al.,
2016) fixed scan paths were used to get a more complete
3D reconstruction of the to-be-harvested fruits. For fruit-
counting tasks, multi-object tracking methods have been
developed to combine information from multiple camera
images (Smitt et al., 2021; Halstead et al., 2021; Rapado-
Rincón et al., 2023, 2024). Although these multi-view
approaches alleviate the problem of occlusion, it is not
guaranteed that the required information is captured as
the sets of viewpoints were pre-defined.

Instead of relying on a pre-defined set of viewpoints, active
perception methods have been shown to better deal with
occlusions (e.g. Lehnert et al., 2019; Zapotezny-Anderson
and Lehnert, 2019). In particular, next-best-view (NBV)
methods show great opportunities, as they plan the next
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viewpoint based on the current reconstruction, in order to
optimize information gain (Zaenker et al., 2021; Burusa
et al., 2024b). Although also indirect, deep-learning-based
methods exist (e.g. Zeng et al., 2022; Ci et al., 2024),
typically, a three-dimensional (3D) voxel space is used to
represent the uncertainty in the 3D reconstruction of the
scene, with unobserved parts having the maximum uncer-
tainty. The next view that provides the most information,
calculated using ray tracing, is then selected.

In (Burusa et al., 2024a), we proposed a novel NBV
method, which includes spatial attention and semantic
awareness. Where earlier work dealt with e!cient re-
construction of the complete workspace, our Semantic-
Aware NBV planner focusses on the e!cient detection and
reconstruction of specific objects. The method is based
on a probabilistic representation of 3D space, including
the uncertainty on the classification of detected objects.
Initially, a large region of interest (RoI) is set to indicate
the area where the objects are expected, which becomes
more refined over time when more information about the
scene has been gathered, in order to guide attention to
the most likely locations to find objects of interest. The
uncertainty and RoIs are used in the NBV planning to
calculate the expected information gain (IG) for a set of
candidate viewpoints, to then select the candidate with
the highest IG as the next-best view. We showed that
this resulted in improved performance in the detection
of fruit and leaf nodes in tomato plants (Burusa et al.,
2024a). In that study, the proposed method was evaluated
thoroughly in simulation, with an additional real-world
experiment as proof-of-principle, leaving some questions
about the practical considerations to use NBV planning
in the real world.

In this paper, we provide an comprehensive evaluation of
the Semantic NBV method in the real world in a tomato-
harvesting and deleafing use-case. The task of the NBV
method is to detect, classify and localize the fruit and
leaf nodes of tomato plants, which can be used in down-
stream tasks to harvest the fruits and remove the leaves.
To provide insight in the functioning of the method, we
investigated a number of important aspects: (i) the di”er-
ence between fruit-node and leaf-node detection, (ii) how
the level of occlusion relates to the detection performance,
(iii) how important the selection of candidate viewpoints
is, and (iv) what the relationship is between the camera
field of view and the NBV performance.

2. MATERIALS AND METHODS

2.1 Semantic next-best-view planner

This subsection provides a high-level description of the
Semantic NBV Planner. For a detailed description, we
refer to (Burusa et al., 2024a).

Figure 1 gives an overview of the Semantic NBV Planner.
Every iteration, the planner gets an observation from the
RGB-D camera (Intel Realsense L515). The colour image
is processed using Mask R-CNN (He et al., 2017), which
was trained to detect the fruit and leaf nodes. Combined
with the depth information, this gives a semantic point
cloud, which is then used to update the probabilistic
3D scene reconstruction using the Semantic OctoMap

Object-of-interest
Bounding Box

Main-stem
Bounding Box

Fig. 2. Attention mechanism to guide view planning. Blue shows

the RoIs around the main stem, red indicates RoIs on the plant

nodes.

(Section 2.1.1). In the OctoMap, the objects of interest
(OOIs) – the fruit and leaf nodes in our use-case – are
detected by clustering the voxels using OPTICS (Ankerst
et al., 1999), with the minimum number of points set to
20 and the maximum distance to 40mm, based on the size
of a single node. These OOIs are then used to update the
set of RoIs (Section 2.1.2). Using the updated Semantic
OctoMap and RoIs, the information gain is then calculated
for a set of candidate viewpoints, resulting in the candidate
with the highest IG to be selected as the next viewpoint
(Section 2.1.3).

Semantic OctoMap: The 3D workspace is represented
using OctoMap (Hornung et al., 2013), a probabilistic
occupancy map. In our experiments, we used a resolution
of 3 mm for a voxel. Each voxel stores the occupancy
probability, with a value of po(x) = 0 for an empty
voxel x, po(x) = 1 for certainly occupied, and values in
between for uncertain reconstructions, with a maximum
uncertainty for po(x) = 0.5. Unobserved voxels are not
represented in the OctoMap, and are considered unknown
with po = 0.5. The occupancy probabilities are updated
when new sensor measurements are received. When a
sensor measurement indicates that a voxel is occupied, the
occupancy probability is increased by 0.7 in a Bayesian
manner, and reduced by 0.4 when a sensor measurement
indicates that a voxel is free (Hornung et al., 2013).

In addition to the occupancy information, the OctoMap
stores semantic information. Apart from the occupancy
probability, each voxel holds a semantic class label, cs(x)
and an associated confidence score, ps(x). For voxels
that are observed for the first time, the class label and
confidence are set based on the corresponding Mask R-
CNN output. If a voxel was already in the Semantic
OctoMap, the values were updated with the Mask R-
CNN output using the max-fusion method (for details, see
Burusa et al. (2024a)). Note that ps(x) is updated for all
points related to the objects detected by Mask R-CNN. All
other observed points are considered background, cs(x) =
→1, and get ps(x) = 1, to make sure that the information
gain for those is zero (see Eq. 2).

Regions of Interest: Figure 2 illustrates the RoIs that
guide the attention of the Semantic NBV Planner. The red
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scene, with unobserved parts having the maximum uncer-
tainty. The next view that provides the most information,
calculated using ray tracing, is then selected.

In (Burusa et al., 2024a), we proposed a novel NBV
method, which includes spatial attention and semantic
awareness. Where earlier work dealt with e!cient re-
construction of the complete workspace, our Semantic-
Aware NBV planner focusses on the e!cient detection and
reconstruction of specific objects. The method is based
on a probabilistic representation of 3D space, including
the uncertainty on the classification of detected objects.
Initially, a large region of interest (RoI) is set to indicate
the area where the objects are expected, which becomes
more refined over time when more information about the
scene has been gathered, in order to guide attention to
the most likely locations to find objects of interest. The
uncertainty and RoIs are used in the NBV planning to
calculate the expected information gain (IG) for a set of
candidate viewpoints, to then select the candidate with
the highest IG as the next-best view. We showed that
this resulted in improved performance in the detection
of fruit and leaf nodes in tomato plants (Burusa et al.,
2024a). In that study, the proposed method was evaluated
thoroughly in simulation, with an additional real-world
experiment as proof-of-principle, leaving some questions
about the practical considerations to use NBV planning
in the real world.

In this paper, we provide an comprehensive evaluation of
the Semantic NBV method in the real world in a tomato-
harvesting and deleafing use-case. The task of the NBV
method is to detect, classify and localize the fruit and
leaf nodes of tomato plants, which can be used in down-
stream tasks to harvest the fruits and remove the leaves.
To provide insight in the functioning of the method, we
investigated a number of important aspects: (i) the di”er-
ence between fruit-node and leaf-node detection, (ii) how
the level of occlusion relates to the detection performance,
(iii) how important the selection of candidate viewpoints
is, and (iv) what the relationship is between the camera
field of view and the NBV performance.

2. MATERIALS AND METHODS

2.1 Semantic next-best-view planner

This subsection provides a high-level description of the
Semantic NBV Planner. For a detailed description, we
refer to (Burusa et al., 2024a).

Figure 1 gives an overview of the Semantic NBV Planner.
Every iteration, the planner gets an observation from the
RGB-D camera (Intel Realsense L515). The colour image
is processed using Mask R-CNN (He et al., 2017), which
was trained to detect the fruit and leaf nodes. Combined
with the depth information, this gives a semantic point
cloud, which is then used to update the probabilistic
3D scene reconstruction using the Semantic OctoMap

Object-of-interest
Bounding Box

Main-stem
Bounding Box

Fig. 2. Attention mechanism to guide view planning. Blue shows

the RoIs around the main stem, red indicates RoIs on the plant

nodes.

(Section 2.1.1). In the OctoMap, the objects of interest
(OOIs) – the fruit and leaf nodes in our use-case – are
detected by clustering the voxels using OPTICS (Ankerst
et al., 1999), with the minimum number of points set to
20 and the maximum distance to 40mm, based on the size
of a single node. These OOIs are then used to update the
set of RoIs (Section 2.1.2). Using the updated Semantic
OctoMap and RoIs, the information gain is then calculated
for a set of candidate viewpoints, resulting in the candidate
with the highest IG to be selected as the next viewpoint
(Section 2.1.3).

Semantic OctoMap: The 3D workspace is represented
using OctoMap (Hornung et al., 2013), a probabilistic
occupancy map. In our experiments, we used a resolution
of 3 mm for a voxel. Each voxel stores the occupancy
probability, with a value of po(x) = 0 for an empty
voxel x, po(x) = 1 for certainly occupied, and values in
between for uncertain reconstructions, with a maximum
uncertainty for po(x) = 0.5. Unobserved voxels are not
represented in the OctoMap, and are considered unknown
with po = 0.5. The occupancy probabilities are updated
when new sensor measurements are received. When a
sensor measurement indicates that a voxel is occupied, the
occupancy probability is increased by 0.7 in a Bayesian
manner, and reduced by 0.4 when a sensor measurement
indicates that a voxel is free (Hornung et al., 2013).

In addition to the occupancy information, the OctoMap
stores semantic information. Apart from the occupancy
probability, each voxel holds a semantic class label, cs(x)
and an associated confidence score, ps(x). For voxels
that are observed for the first time, the class label and
confidence are set based on the corresponding Mask R-
CNN output. If a voxel was already in the Semantic
OctoMap, the values were updated with the Mask R-
CNN output using the max-fusion method (for details, see
Burusa et al. (2024a)). Note that ps(x) is updated for all
points related to the objects detected by Mask R-CNN. All
other observed points are considered background, cs(x) =
→1, and get ps(x) = 1, to make sure that the information
gain for those is zero (see Eq. 2).

Regions of Interest: Figure 2 illustrates the RoIs that
guide the attention of the Semantic NBV Planner. The red

RoIs are placed around the nodes (the OOIs) detected in
the Semantic OctoMap, guiding the planner to reconstruct
the nodes in more detail. Every time a new node is
detected, a new RoI is placed. The blue RoIs are centred
around the main stem and run between the detected nodes.
At the start, the stem RoI is initialized as an elongated
vertical box centred in the workspace. When nodes are
detected, the stem RoI can be estimated more accurately.

Information Gain: Using the Semantic OctoMap and
the RoIs, the expected information gain can be calculated
for a given viewpoint, ω, using ray tracing:

Gsem(ω) =
∑

x↑(Xω↓B)

Isem(x), (1)

where Xω is the set of voxel within the camera field-of-view
of viewpoint ω and B is the set of all voxels in the attention
RoIs. The expected information gain for a voxel, Isem(x),
is determined using entropy:

Isem(x) = →ps(x) log2(ps(x))→ (1→ ps(x)) log2(1→ ps(x)),
(2)

Note that Isem(x) = 0 for all irrelevant parts of the plant
because ps(x) = 1 for voxels that are not associated with
outputs of the image-based object detector, in order to
focus view planning on the relevant semantic classes.

In order to minimize motion of the robot, informative
viewpoints close to the current viewpoint are promoted
by calculating the view utility U :

Usem = Gsem(ω)↑ e↔0.5d, (3)

where d is the Euclidean distance cost.

The next-best viewpoint is selected as the viewpoint
with the highest utility from a sampled set of viewpoint
candidates V:

ωbest = argmax
ω↑V

Usem(ω). (4)

2.2 Experimental setup

Data acquisition: To compare the di”erent planners in
identical circumstances and to allow a repeated sensitivity
analysis, we set up an o#ine experimental setup. For this,
a large number of camera images from a diverse set of
camera views were collected of eight plants in a production
greenhouse. A total of 600 camera images per plant were
collected, at 600 di”erent positions (20 columns ↑ 30 rows
on a view plane with a distance of 40-60 cm from the
plant’s centre). At each position, one image was collected
with the orientation perpendicular to the view plane. A
total of 600 ↑ 8 = 4,800 camera images with a resolution of
960↑ 540 pixels were collected for the o#ine experiments.

Per plant, for every viewpoint, the set of 30 viewpoint
candidates, V, was selected pseudo randomly from the 600
camera images. The view plane was equally divided into
a 3-by-3 grid and candidates were sampled from each grid
to ensure that candidates were sampled from all parts of
the view plane, similar to Burusa et al. (2024b). Note that
this results in a set of viewpoint candidates at di”erent
distances d from the current viewpoint (see Eq. 3). For
the random planner, the next viewpoint was selected at
random from the set of camera images.

Ground-truth reconstruction: A ground-truth 3D recon-
struction was made of every plant using a structure-from-
motion and multi-view stereo reconstruction (Schonberger
and Frahm, 2016) based on all 600 camera images. Using a
voxel filter, the resolution of the ground-truth point clouds
was reduced to 3mm, the same resolution as used for the
OctoMap. Because the 600 viewpoints were all from one
side of the plant, the ground-truth reconstruction is not
fully complete and misses parts of the back side. However,
as the NBV planners selected the viewpoints from the
same set of 600 images, the evaluation is still valid.

Evaluation: The OctoMap reconstruction was converted
into a point cloud and then compared to the ground-
truth plant reconstruction. As this paper focuses on the
detection and reconstruction of fruit and leaf nodes, the
evaluation also focused on the reconstruction of these parts
of the plant. To that end, the position of all nodes were
manually annotated and all points within a cube with sides
of 40 mm around the nodes were used for comparison.

For each node, the F1-score was calculated by comparing
the reconstructed point cloud, R, to the ground-truth
point cloud, G. For the F1-score calculation, a point in R
was considered a true positive, if there was a corresponding
point in R within 6mm distance (twice the point-cloud
resolution). All points in R without correspondence were
false positives, and all points in G without correspondence
were false negatives. If a node was reconstructed with a F1-
score greater of equal to 62.5%, the node was considered
correctly detected. As a final metric indicating the quality
of the reconstruction of all nodes on a plant, we then used
the percentage of correctly detected objects (PCO):

PCO =
Correctly detected objects

Total number of objects
↑ 100. (5)

The threshold of 62.5% corresponded roughly to 50%
reconstruction of a complete node. The threshold is higher,
because the ground-truth reconstruction missed parts of
the back side, as discussed earlier.

Experiments: The performance of the planners was eval-
uated on the detection of fruit nodes and the detection of
leaf nodes separately. The tomato plants had fewer tomato
nodes than leaf nodes, on average 2.5 and 5.5 per plant,
respectively. The experiments were performed on the eight
plants with twelve repetitions per plant to even out the
random selection e”ects, leading to total of 96 trials. The
PCO was calculated for every viewpoint and each trial was
terminated after ten viewpoints.

The Semantic NBV planner presented in Section 2.1 was
compared to the Volumetric NBV planner (Burusa et al.,
2024b), which calculates the information gain based only
on the occupancy probability, po, and a random planner,
selecting random viewpoints from the set of candidates.
In the sensitivity analysis, three di”erent conditions were
applied: (1) the addition of extra occluding objects in the
scene, (2) the addition of uninformative viewpoints in the
set of viewpoint candidates, and (3) a reduction of the field
of view of the camera. Details on the experiments and the
results are presented in the next Section.
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Fig. 3. Performance of the planners on the perception of (a) fruit

nodes and (b) leaf nodes when a tomato plant was placed in

front of the robot. The error bands show the 95% confidence

interval of the mean over all 96 experiments.

3. RESULTS

3.1 Semantic NBV

Figure 3 (a) and (b) show the performance of the planners
on the detection of fruit and leaf nodes, respectively. The
Semantic NBV planner outperforms the other planners,
achieving a higher PCO with viewer viewpoints. After four
viewpoints, the planner achieves 10 and 9 percent point
higher performance compared to the random planner for
fruit and leaf nodes respectively. The performance on the
fruit nodes exceeds that of the leaf nodes.

3.2 Impact of adding more occlusion

The impact of occlusion on the performance of the plan-
ners was tested by adding black boxes of 0.05m ↑ 0.01m
↑ 0.05m at a distance of 0.05m in front of the plant nodes,
with a deviation of 0.15m to the left or right. These boxes
were rendered in the camera images and depth map, as
illustrated in Figure 4.

The results in Figure 5 show that the reconstruction
with the added occlusion is slightly worse, but without
a significant di”erence in the PCO. For the leaf nodes, the
impact is a bit more severe, resulting in a small yet non-
significant lower PCO for all planners. The Semantic NBV
planner still outperforms the other planners.

Further inspection showed that the added occlusions only
blocked the view on the nodes for a small set of all collected
viewpoints, which explains the small impact on the PCO
for all planners.

Fig. 4. To test the impact of occlusion on planner performance,

more occlusion was simulated by adding black boxes in front

of the plant nodes. The figure shows the rendered boxes in the

camera image.

Fruit Nodes
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Leaf Nodes

Original result
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Fig. 5. Impact of adding more occlusion on the planners’ perfor-

mance on the perception of (a) fruit nodes and (b) leaf nodes.

The error bands show the 95% confidence interval of the mean

over all 96 experiments.

3.3 Impact of adding uninformative viewpoint candidates

The NBV planners are designed to choose the most in-
formative viewpoints. To test if this is also happening
in practice, 30 uninformative viewpoints were added to
the set of candidate viewpoints, V, at each step. The
uninformative candidates were facing away from the plant
and did not have any plant node in view.

The results in Figure 6 clearly show that the added un-
informative views do not influence the two NBV plan-
ners, but have a significant negative e”ect on the random
planner. This indicates that the NBV planners e”ectively
assess the information gain of candidate viewpoints.

3.4 Impact of reducing the camera’s field-of-view

The original field-of-view (FOV) of the camera was quite
big, capturing a large part of the plant. To study the e”ect
of a smaller FOV on the performance of the planners, we
reduced it by a factor of four, as shown in Figure 7. The
image size was reduced from 960 ↑ 540 pixels to 480 ↑
270 pixels.

Figure 8 shows that the smaller FOV significantly impacts
all the planners. The NBV planners, however, still outper-
form the random planner. For the fruit nodes, both NBV
planners were less impacted by the reduced FOV than the

Fruit Nodes

(a) (b)

Original result

Uninformative
Sampling

Leaf Nodes

Fig. 6. Impact of adding uninformative viewpoint candidates on

the planners’ performance on the perception of (a) fruit nodes

and (b) leaf nodes. The error bands show the 95% confidence

interval of the mean over all 96 experiments.
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a significant di”erence in the PCO. For the leaf nodes, the
impact is a bit more severe, resulting in a small yet non-
significant lower PCO for all planners. The Semantic NBV
planner still outperforms the other planners.
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The NBV planners are designed to choose the most in-
formative viewpoints. To test if this is also happening
in practice, 30 uninformative viewpoints were added to
the set of candidate viewpoints, V, at each step. The
uninformative candidates were facing away from the plant
and did not have any plant node in view.

The results in Figure 6 clearly show that the added un-
informative views do not influence the two NBV plan-
ners, but have a significant negative e”ect on the random
planner. This indicates that the NBV planners e”ectively
assess the information gain of candidate viewpoints.

3.4 Impact of reducing the camera’s field-of-view

The original field-of-view (FOV) of the camera was quite
big, capturing a large part of the plant. To study the e”ect
of a smaller FOV on the performance of the planners, we
reduced it by a factor of four, as shown in Figure 7. The
image size was reduced from 960 ↑ 540 pixels to 480 ↑
270 pixels.

Figure 8 shows that the smaller FOV significantly impacts
all the planners. The NBV planners, however, still outper-
form the random planner. For the fruit nodes, both NBV
planners were less impacted by the reduced FOV than the
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Fig. 7. To test the impact of the camera’s field-of-view on planner

performance, the field-of-view was reduced by a factor of four.
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Fig. 8. Impact of reducing the camera’s field-of-view on the plan-

ners’ performance on the perception of (a) fruit nodes and (b)

leaf nodes. The error bands show the 95% confidence interval

of the mean over all 96 experiments.

random planner, while for the leaf nodes the impact was
less for the Semantic NBV planner.

4. DISCUSSION

This work demonstrated the advantage of using semantic
information in addition to 3D volumetric information
to estimate the information gain of a next viewpoint
for targeted perception of plant nodes. In this study,
the Semantic NBV planner was evaluated on the 3D
reconstruction quality of fruit and leaf nodes of real tomato
plants in a production greenhouse and compared to a
volumetric NBV planner and a random planner. The
results show that the Semantic NBV planner is most
e”ective in locating and reconstructing the nodes, which
is in agreement with the results of Burusa et al. (2024a).

The sensitivity of the planners was evaluated under vary-
ing conditions, specifically, higher levels of occlusion, un-
informative viewpoint candidates, and a reduced field-of-
view. These conditions occur in real-world applications,
depending on the crop and the robotic setup, and can
strongly influence the performance of the viewpoint plan-
ners. In general, the results demonstrated that the Se-
mantic NBV planner outperformed the other planners in
all conditions and that it generally dealt better with the
perturbations, thereby further validating the e”ectiveness
of the approach for real-world greenhouse environments.

Both the addition of more occluding objects and the
reduction of the field of view resulted in a lower PCO.

This was to be expected, as in both cases there are
fewer viewpoints with a good view on the plant nodes. In
our experiments, we used 30 randomly selected candidate
viewpoints for the NBV planners. The drop in performance
due to the perturbations could be prevented by using a
higher number of candidate viewpoints. However, that
would come with addition computational costs, as the
complexity of the NBV planners is linear in the number of
candidate viewpoints.

The experiment with the added level of occlusion showed
only a minor e”ect, caused by the occluding objects
being too small. With large objects, resulting in more
severe occlusions, it is expected that the NBV planners,
compared to the random planner, will be less impacted,
due to the use of information-gain estimation.

A key limitation of the experiments was that all available
viewpoints for the planners were collected on a planar
surface, with the camera always pointing perpendicular
to that plane. This setup severely constrained the perfor-
mance of the NBV planners, as oblique views can provide
more favourable perspectives on the nodes. If the robot
can sample viewpoints with more variation in the pose,
the NBV planners are expected to outperform the random
planner by a larger margin.

The presented method selects the next viewpoint without
considering future viewpoints. This can result in subop-
timal behavior. Future improvements, therefore, should
include future viewpoints, for instance by utilizing a
receding-horizon planner Lodel et al. (2022). To deal with
the additional computation time, learning-based NBV
methods should be considered ?.

The plants used in this study were growing in normal
greenhouse conditions, so in rows with overlapping plants
and with a complex background consisting of consecu-
tive rows. However, the plant reconstruction was done
per plant independently. The set of 600 viewpoints were
collected from a plane centred in front of the plant and
the working space of the OctoMap was centered around
the plant. Future work needs to extend the work to deal
with the reconstruction of multiple tomato plants. This
requires also a method to link the fruit and leaf nodes a
specific plant ID, for instance by detecting the main stem.

The accurate and e!cient perception of plant nodes, as
demonstrated in this work, directly improves the perfor-
mance and productivity of robotic harvesting and deleaf-
ing in greenhouses. The accurate perception of nodes can
enable robots to e”ectively localize and cut the nodes, in-
creasing their success rate. Also, by e!ciently overcoming
occlusion using fewer viewpoints can improve the speed of
harvesting and deleafing operation by the robots.

5. CONCLUSIONS

This work presented an evaluation of a semantics-aware
next-best-view planner for robotic perception of tomato
plant parts. The planner used semantic information in
addition to 3D volumetric information to focus on task-
relevant plant-part reconstruction. The results indicate
that the Semantic NBV planner could gather information
e!ciently, even in cluttered and occluded environments.
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In the real-world experiments, the Semantic NBV planner
perceived 10 percent points more fruit nodes and 9 percent
points more leaf nodes after four viewpoints compared to
the baseline Volumetric NBV and Random planners. Ad-
ditional experiments highlighted the method’s robustness
to changes in conditions related to increased occlusion, the
presence of uninformative viewpoints, and reduced camera
field-of-view.

This study provides strong evidence that Semantic NBV
planning is a viable solution for improving robotic percep-
tion in complex agricultural environments. By integrating
semantic and volumetric information into viewpoint plan-
ning, agricultural robots can deal better with occlusions,
paving the way for enhanced automation in crop monitor-
ing and harvesting.
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