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Abstract: Robotic apple harvesting is a complex operation requiring e!cient coordination
among multiple subsystems including fruit detection, gripping/grasping, picking, and storage. A
robot that can accurately detect the moment a fruit is picked can adjust its behavior dynamically,
moving directly from the picking task to the next task in the pipeline, such as fruit storage.
Similarly, a robot that can determine whether it has failed to pick an attempted fruit can
estimate the crop load remaining in the orchard, field, etc. after harvesting. In this paper, we
present a simple approach that uses feedback from pressure and force sensors to predict the
moment an apple has been separated from the tree. To evaluate our approach, we completed
field experiments at a research orchard in Randwijk, Netherlands. Postprocessing the data, we
manually annotated in videos the moment of apple abscission and compared the annotations
with the algorithm’s predictions. Over 35 samples, the algorithm’s F1 score was 0.95, and
the average time di”erence between the user’s manual annotations and the predicted time of
abscission was 0.59 +/- 0.42 sec.
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1. INTRODUCTION

In robotic fruit harvesting, accurately detecting the mo-
ment a fruit is picked is important for improving har-
vesting e!ciency. A robot capable of identifying successful
fruit detachment can adapt its behavior dynamically, mov-
ing directly from the picking task to fruit storage, reduc-
ing unnecessary movements and maximizing operational
speed. In contrast, detecting a failed pick attempt enables
the robot to immediately retry the pick, or to move on
and record the missed fruit’s location in a map. Detailed
information about fruit remaining in the orchard (e.g.
fruit distribution maps) could then be used by growers to
plan follow-up harvesting with human workers, increasing
yields. To increase the likelihood of adoption, a method
for pick detection should be cost-e”ective, robust, and
generalizable across fruit varieties and orchard systems.

While there has been extensive work on vision for fruit de-
tection and localization, detecting abscission in cluttered
and occluded plant canopies using camera-based tech-
niques would be very challenging. More recently, there has
been an increase in the use of in-hand sensing (Dischinger
et al. (2021)) such as tactile sensing (Mandil et al. (2023);
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Fig. 1. Apple abscission during robotic harvesting. Our
goal is detect the moment the fruit is picked from the
tree, tabscission.

El”erich et al. (2022)) during robotic harvesting. Typi-
cally, tactile sensing has been used during the grasping
phase (i.e. when the end-e”ector attempts to secure the
fruit); a few examples include using tactile sensors to
control the grip force applied to strawberries (Visentin
et al. (2023); Rajendran et al. (2024)) and sense finger
obstructions from branches during robotic apple harvest-
ing (Zhou et al. (2023)). One way that tactile sensing has
been used during the pick phase is to detect and react to
slip (Zhou et al. (2022)) between the gripper and fruit.
Some challenges with integrating tactile sensors are cost
and long-term robustness in agricultural environments, as
well as di!culties embedding tactile sensors with some
gripper morphologies, such as those that use suction cups.

In this paper, we present a pick detection technique for
robotic apple harvesting that uses in-hand sensors to
predict the moment that the fruit is separated from the
tree (see Fig. 1). Our approach is most similar to slip
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Fig. 2. Experimental setup. The apple harvesting gripper
uses a custom soft suction cup. The integrated system
includes an eye-in-hand camera configuration, pres-
sure sensor, and a 6-axis force/torque sensor mounted
between the gripper and the manipulator. The z→axis
of the force sensor passes through the central axis of
the suction cup.

detection, but rather than try to detect transient slip as
it occurs, we study a slightly di”erent question – at what
time was the apple picked or missed? The technique uses
force sensing from a force-torque sensor mounted on the
robot’s wrist instead of tactile sensing from the gripper. To
evaluate the technique, we conducted robotic harvesting
experiments in realistic field conditions at a research
orchard in the Netherlands. Our primary contribution is
a computationally simple, intuitive heuristic that requires
no data collection, learning, or model training.

2. METHODS

Our robotic apple harvesting system integrates a com-
pliant suction cup, in-line pressure sensor, and a wrist
force/torque sensor. During the picking phase, a simple
heuristic algorithm uses realtime pressure and force mea-
surements to detect the moment the apple is picked from
the tree. To validate our approach, we compared the al-
gorithm’s classifications and event detection times with
synchronized videos from real world apple picks.

2.1 Hardware description

The apple picking gripper, shown in Fig. 2, is a custom
soft suction cup developed at Wageningen University and
Research (van Damme (2024)). For picking experiments,
the gripper was mounted on a 6 degree-of-freedom UR5e
manipulator (Universal Robots, Odense, Denmark). The
pneumatic system (i.e. vacuum pump, solenoid valves, and
pressure sensors) are integrated with the UR5e’s industrial
controller. For measuring forces during harvesting, there
is a 6-axis Robotiq (Québec, Canada) FT300 force/torque
sensor mounted between the suction cup and the manipu-
lator’s tool flange. A ZED-X mini RGB-D sensor (Stereo-
Labs, San Francisco, USA) mounted above the suction cup
in an ‘eye-in-hand’ configuration is used for fruit detection
and localization.

2.2 Pick detection algorithm

Picking an apple is a dynamic action. The intuition behind
our approach is that fruit abscission is a mechanical
‘disturbance’ that should be detectable in the wrist force
sensor. Figure 3 shows the gripper’s synchronized x-y
position (i.e. the gripper’s coordinates in the x̂→ ŷ plane;
see Fig. 2 for the location of the fixed world frame W at
the robot’s base), wrist force, and suction cup pressure
during each phase of an example apple pick, shaded in
di”erent colors. Suction during the fruit grip phase (green)
registers a high force normal to the wrist force/torque
sensor. As the robot starts to pick the fruit, shown shaded
in pink, an additional load from the resistance of the
tree is applied that is generally opposite in direction to
the suction force/suction cup. The moment the fruit is
severed at the abscission joint, the load from the limb is
quickly removed, which appears as a small positive force
impulse as vacuum pulls in the compliant suction cup.
During the pick, there is a slight change in pressure as the
suction cup is deformed (but for a successful pick, suction
is maintained until the fruit is released). An unsuccessful
pick where the fruit slips from the gripper can be seen from
a premature sharp rise in pressure.

To detect abscission, our simple algorithm looks for large
transients in the force signal. First, starting at the onset
of the picking phase, at each time step we calculate the
2-norm of Fx(t), Fy(t), and Fz(t) as measured by the
force/torque sensor (the three torque components are not
used):

||F (t)||2 =
√
Fx(t)2 + Fy(t)2 + Fz(t)2 (1)

Then, we calculate a numerical derivative of force using
the central finite di”erence:

dF (t) =
dF

dt
=

3Fj → 4Fj↑!t + Fj↑2!t

2#t
(2)

where F is the value of the force at the current index j. We
then smooth the derivative with a weighted moving aver-

age (dF̃ (t)) over a fixed-length bu”er of recent derivative
values. Let L denote the total number of samples collected
during the picking phase so far, and let w be the moving
average window size:

dF̃ (t) =
1

w




L↑w+1∑

j=1

dFj



 (3)

The remaining logic is straightforward – if there is a
positive spike in the derivative and vacuum is maintained,
the algorithm estimates that the apple has been picked.

For this work, we set the threshold to dF̃ (t) = 1, which
was experimentally determined through trial and error. If
the pressure in the suction gripper rises back to ambient
air pressure (i.e. the surrounding atmospheric pressure)
without reaching this threshold, we assume that the fruit
was missed – indicating that suction was lost before a
successful pick could be finished.

2.3 Data collection

To evaluate our approach, we conducted robotic harvesting
field experiments and postprocessed the data. Figure 2
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Fig. 2. Experimental setup. The apple harvesting gripper
uses a custom soft suction cup. The integrated system
includes an eye-in-hand camera configuration, pres-
sure sensor, and a 6-axis force/torque sensor mounted
between the gripper and the manipulator. The z→axis
of the force sensor passes through the central axis of
the suction cup.
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orchard in the Netherlands. Our primary contribution is
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no data collection, learning, or model training.
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The remaining logic is straightforward – if there is a
positive spike in the derivative and vacuum is maintained,
the algorithm estimates that the apple has been picked.

For this work, we set the threshold to dF̃ (t) = 1, which
was experimentally determined through trial and error. If
the pressure in the suction gripper rises back to ambient
air pressure (i.e. the surrounding atmospheric pressure)
without reaching this threshold, we assume that the fruit
was missed – indicating that suction was lost before a
successful pick could be finished.

2.3 Data collection

To evaluate our approach, we conducted robotic harvesting
field experiments and postprocessed the data. Figure 2

Scan
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Scan Approach Grip Pick

Fig. 3. Top row: Images of the di”erent phases during apple harvesting. Bottom row: Sensor signals corresponding to
the same phases of a successful apple pick, with color shading indicating each phase. The (left) plot shows the
gripper’s vertical position (z-axis) in meters as it moves over time, the (center) plot shows the normalized wrist
force, and the (right) plot shows the gripper’s pressure. The dashed red vertical line indicates the moment the fruit
separates from the tree.

shows the experimental setup used for data collection.
Experiments were completed in Randwijk, Netherlands
in September 2024 with ‘Gala’ apples cultivated using a
high density, 2-dimensional trellised training system. Our
protocol was to pick a single apple in each iteration using
the sequence of detect fruit, approach fruit, grip fruit, pick
fruit.

We used RGB-D images from the ZED-X mini for fruit de-
tection and localization. Fruit detection in the color image
was completed with deep learning instance segmentation.
For this step a YoloV8 (Jocher et al. (2023)) model was
trained with manually annotated apple images. Transfer
learning from the default pre-trained model on the COCO
dataset was applied. To determine the center of an apple
and to reduce the disturbing e”ects of partial fruit occlu-
sion (by i.e. leaves, branches or incomplete segmentations)
a minimum enclosing circle was fit on the mask of each
segmented apple. The center of this circle was taken as the
center of the apple. To calculate the distance of the apple
with respect to the camera, the median of all available
depth values of the corresponding depth image inside a
circle drawn at the center of the enclosing circle with
0.1*radius of the enclosing circle was used (Fig. 4). To-
gether with the 2D image coordinates of the center of the
apple and the intrinsics of the camera, the 3D position of
the fruit in the camera coordinate system was calculated.
This position was then transformed into the robot base
frame W and used as the target gripping point. Before
the experiments, an eye-in-hand calibration was performed
to determine the relative position and orientation of the
camera with respect to the robot’s end e”ector. Another

Fig. 4. Camera image with result of apple detection. Shown
are the detected apple instances (green contour),
enclosing circle (white circle), and region used for
distance measurement (small red circle inside white
circle)

time-synchronized camera on a static tripod recorded the
scene.

We used Robot Operating System 2 (ROS2 Humble) (Ma-
censki et al. (2022)) on Ubuntu 22.04 for control and
communication. To perform each pick, we transmitted a
twist command via ROS2 to the robot that included a
linear pull along the negative z-axis of the robot’s wrist
and an angular twist about the same axis. The linear
pull speed was set to 0.5m/s, and the twist was set to
3 rad/s. We recorded the robot’s pose and the output of
the force/torque sensor in the robot’s wrist as ROS2 topics.
The pose was sampled at a rate of 10 Hz using a transform
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Fig. 5. User Interface for determining moment of abscis-
sion. The user was provided a video of the pick (right),
as well as the z-position of the gripper (left), and was
given a button to press when the pick occurred. The
force signals were not provided to the subject.

listener in MoveIt. The Robotiq FT300 sensor broadcasts
the force and torque data at a rate of 100 Hz.

We manually recorded grip success, pick success, and
measured the size and damage, if any, for each pick
attempt. We only postprocessed the data for those trials
where the initial grip of the apple was successful (i.e. we
did not evaluate the algorithm for attempts where there
was a fruit localization error, there was a failed grip due
to a branch obstruction, etc.).

2.4 Evaluation

Our performance evaluation included two metrics, classifi-
cation accuracy, i.e. was the classification correct, and time
accuracy, i.e. did the classification occur at the moment
of abscission. To evaluate time accuracy, we created a
PyQt 1 interface that displayed the evolution of the robot’s
pose with the synchronized video from the tripod-mounted
camera observing the scene (see Fig. 5). A user manually
annotated the moment of abscission in the interface. Wrist
force signals and the algorithm’s prediction were not shown
to the user during manual annotations. We then compared
the time stamps from the algorithm’s predictions with the
user’s manual annotations.

3. RESULTS AND DISCUSSION

Figure 6 shows a summary of the actual events compared
with the predicted events for 35 unique apple pick at-
tempts. For the heuristic, Recall = TP

TP+FN was 0.90,

Precision = TP
TP+FP was 1.00, and the F1 → score =

2→Precision→Recall
Precision+Recall was 0.95. There is a significant class
imbalance with 31 successful picks compared to only 4
failed picks. Note that we only report results for trials
where the initial grip phase was successful, which filtered
the total number of approximately 100 pick attempts down
to 35. The small number of failed picks in the dataset
presented here is because, generally, if the initial grip was
successful (i.e. a vacuum seal was achieved with the fruit),
the pick was usually successful. An example of a success-
ful classification is shown in Fig. 7 where abscission can
clearly be seen by the spike in the derivative of the force
signal (and the pressure signal indicates that vacuum has
been maintained with the fruit). The three false negatives
occurred in trials where the force threshold was never

1 https://wiki.python.org/moin/PyQt

Fig. 6. Confusion matrix that compares the actual event
with the heuristic’s predicted event for 35 apple picks.
A ‘positive’ is a successful pick and a ‘negative’ is a
failed pick.

reached during the pick phase. While these early results
are promising and show the potential value of using force
and pressure sensing to detect fruit abscission, in future
work we will evaluate our method on a larger dataset of
pick attempts.

For the successful apple picks classified correctly, the av-
erage di”erence between the heuristic’s classification time
and the user’s annotated time was 0.59 seconds. Figure 8
shows the paired time comparisons for the 28 true posi-
tives. While there is lag plus variability in the user’s reac-
tion time, plus some subjectivity when trying to detect ab-
scission in a video, this result shows that the classification
is occurring close to the moment of fruit abscission. Since
the heuristic only incorporates straightforward analytical
calculations (i.e. vector magnitude, derivative, and filter-
ing), it could easily be integrated for real time operations.
Table 1 summarizes the heuristic’s overall performance.

Mean (!Time) [sec] 0.59±0.42

Precision 1.00

Recall 0.90

F1 Score 0.95

Table 1. Performance results for the heuristic.
#Time is the di”erence between the classifica-
tion time and the time annotated by the user.

Figure 9 shows a histogram of the peak force for each
channel over all 35 pick attempts. The dominant force
signal for our experimental setup is the z-axis (i.e. the
axis normal to the wrist force/torque sensor; see the vector
shown in Fig. 2). If the algorithm is evaluated on the 35
pick samples using just the z-channel, leaving out the force
signals from the x- and y- channels, the F1-score only
drops from 0.95 to 0.93. This result indicates the potential
to use single-axis force sensors or load cells, which are
substantially less expensive than multi-axis force sensors,
without significant loss of performance.

Finally, the threshold value for dF̃ (t) may need to be
tuned when the robot’s environment changes. The fruit’s
mean abscission strength (i.e. the force required to pick the
fruit) and limb compliance, which are known to vary by
apple variety and tree architecture, will influence the force
signal. Abscission strength and the tree’s compliance may
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dForce threshold
Pressure threshold

Fig. 7. Results from a successful classification. The apple was separated from the tree at 47.52 seconds. The horizontal
blue lines indicate the threshold dForce and pressure values used in the heuristic.

Fig. 8. Comparisons of the heuristic’s classification time
with the user-annotated abscission time for the 28
true positives, shown as a paired parallel line plot.

even change for the same orchard from year to year. For
autonomous, robotic harvesting, the derivative’s threshold
value could be learned during a calibration procedure at
startup.

4. CONCLUSION

In this paper we presented a technique that uses a combi-
nation of pressure sensing and force sensing from a wrist-
mounted force/torque sensor to detect fruit abscission
during robotic apple harvesting. The simple algorithm first
looks for spikes in the force signal’s derivative, then checks
whether vacuum has been maintained. We evaluated our
approach on 35 unique apple picks from a real world
orchard. The algorithm’s F1-score was 0.95 when using all
three linear force channels, and inspection of time synchro-
nized videos shows that the classification is happening at,
or near, the correct moment. The classification accuracy
only drops slightly when using just the z-channel force
signal. Our results indicate that in-hand pressure and force
sensing may o”er useful signals for detecting important
events that may be di!cult to observe from cameras or

Fig. 9. Peak forces recorded during all 35 pick attempts,
separated by force channel (Fx, Fy, Fz). The x-axis
represents individual pick attempts (1 through 35, for
each force axis). The y-axis shows force magnitude
in Newtons (N). Each bar represents the peak value
recorded on that channel during a single pick attempt.

vision-based sensors alone. While this study focused on
robotic apple harvesting, similar approaches using wrist-
mounted force sensing may have potential in other crops
involving dynamic picking motions aiming to sever the
peduncle at the abscission joint. However, further eval-
uation under varied conditions and crop types is necessary
to confirm broader applicability.
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