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Abstract: Spectral imaging combined with machine learning offers a powerful approach to predicting
quality parameters and classifying strawberry cultivars. This study compares the performance of Partial
Least Squares (PLS) models and 3D Convolutional Neural Networks (3D-CNNs) for Total Soluble Solids
(TSS, °Brix) prediction and cultivar discrimination using a dataset of 17 strawberry cultivars from two
origins. For TSS prediction, the 3D-CNN model achieved superior accuracy with an R? of 0.82 compared
to 0.71 for the PLS model. For cultivar classification, the 3D-CNN model outperformed traditional
approaches with an F1 score of 0.87, compared to 0.75 for the PLS model. The CNN's ability to utilise both
spatial and spectral features allowed it to capture subtle morphological differences among cultivars, which
traditional models struggled to identify effectively. These findings demonstrate the superiority of deep
learning models over traditional spectral methods in handling complex datasets and highlight the potential
of spectral imaging and CNNs for robust quality assessment and classification in agricultural applications.
Although previous studies have classified strawberry cultivars and predicted TSS, none have included as
many varieties or samples (3,564) as this study. Additionally, the proposed model’s simple and replicable

structure makes it especially useful for cultivar identification and easy for other researchers to adopt.
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1. INTRODUCTION

Neural networks are increasingly being recognised for their
ability to improve predictive modelling in various fields, often
outperforming traditional machine learning models. Their
capacity to capture non-linear and complex patterns within
data has made them particularly valuable in solving
challenging problems. Convolutional Neural Networks
(CNNB), in particular 3D-CNN:ss, are gaining attention for their
effectiveness in processing image-based data. Traditionally,
data analysis has relied on machine learning algorithms trained
on large labelled datasets to perform classification or
regression tasks. While methods like Partial Least Squares
(PLS) regression have been effective in certain contexts, they
often struggle to capture the intricate relationships inherent in
complex datasets. In contrast, CNNs excel at identifying
hidden patterns and non-linear relationships, making them a
promising alternative for hyperspectral imaging applications.
Specifically, 3D-CNNs are designed to process n-dimensional
data, enabling them to leverage the full potential of
hyperspectral images (Chollet, 2021).

Spectral imaging and spectroscopy are widely used for
monitoring crops and fruits. While spectroscopy gathers
information from specific parts of a sample, spectral imaging
captures both spatial and spectral data from the entire sample,
providing a more comprehensive dataset. This makes spectral
imaging especially suitable for agricultural applications,
where understanding both the internal and external properties

of products is crucial (Polder et al., 2024). Previous studies
have demonstrated the potential of spectral imaging combined
with machine learning techniques for evaluating the internal
properties of fruits. For example, Pullanagari & Li. (2021)
used PLS regression to predict Total Soluble Solids (TSS) and
firmness in gooseberries, achieving R2 values of 0.88 and
0.60, respectively. While these results are promising, there is
a growing need to explore advanced neural network models
like CNNs to further enhance prediction accuracy.

This study aims to evaluate the use of spectral imaging for
predicting the TSS content of seventeen strawberry cultivars
while also discriminating between these cultivars. A key
objective was to develop and compare predictive models using
a traditional machine learning algorithm (PLS) and CNNs by
employing both complete image data and mean spectra. By
highlighting the advantages of 3D-CNNs in processing
hyperspectral data compared to traditional methods such as
PLS regression and mean spectra analysis, this study aims to
enhance the use of spectral imaging for evaluating fruit
quality.

While previous studies have predicted total soluble solids
(TSS) in strawberries and performed cultivar classification,
none have examined as many different varieties (17) or
included as large a sample size (3,564 samples) as this study.
Moreover, the proposed model stands out for its simple and
replicable structure, making it particularly accessible for other
researchers. Its straightforward design and demonstrated
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effectiveness make it especially suitable for cultivar
identification, encouraging broader adoption in future studies.

2. MATERIALS AND METHODS
2.1 Fruit samples and experimental design

The experiments were conducted in a laboratory located in the
Greenhouse Horticulture & Flower Bulbs department at
Wageningen University & Research in Bleiswijk, The
Netherlands. A total of 3,564 strawberries from 17 different
cultivars were analysed, with eight cultivars grown in the
Netherlands and nine in Spain. For each cultivar, nine boxes
of strawberries were provided, with each box containing 27
strawberries arranged in trays of five rows and either five or
six columns.

The strawberries cultivated in the Netherlands were harvested
three days before the experiment and transported to the
laboratory in a refrigerated van at 5°C. Similarly, the
strawberries from Spain were collected three days before the
experiment and shipped refrigerated at 5°C to the laboratory.
In both cases, the fruit was stored in the laboratory at 5°C and
90% relative humidity (RH) to prevent degradation before the
experiments began.

Once all samples were collected, the boxes containing the
strawberries were imaged. From these images, the mean
spectra for each box, as well as the individual hyperspectral
images of each strawberry, were extracted. Following the
image acquisition, the strawberries were separated, blended,
and their TSS content was measured using a refractometer, as
shown in Figure 1.
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Figure 1. Acquisition of images and collection of spectral data and
total suspended solids (TSS) content flow.

2.2 Spectral image acquisition

Prior to image acquisition, the strawberries were allowed to
reach room temperature (20 °C) for one hour. A total of 3564
strawberry samples were imaged in a laboratory setting under
controlled conditions at 20 °C using a line-scanning camera
(Specim FX10, Specim, Oulu, Finland) with sensitivity in the
spectral range of 400 to 1000 nm. The images were obtained
with spectral intervals of 2.7 nm, a spatial resolution of 0.28
mm per scan, and an exposure time of 10 ms. The scene was
illuminated using a halogen lamp (125 V, 3.120 A, 390 W,
Phillips, Amsterdam, The Netherlands) for the NIR range and

LED lights (Effi-Flex-HSI-300-910-970-TR-$, Effilux, Les
Ules, France) for the Vis/NIR range. After imaging, the
samples were returned to storage at 5 °C and 90% relative
humidity. On the following day, quality assessments and
consumer sensory evaluations were conducted.

Once images were acquired, the reflectance of the images was
corrected using a white polytetrafluorethylene (PTFE)
reference (99 % reflectance) and dark references (image with
the camera shutter closed). Equation X shows the image
correction.

Image reflectance correction is described in equation (1),
where pReference() is the reflectance value of the standard
surface at a specific wavelength, Imp gk 2y and Imyypiceay are
the dark and white refeences at that specific wavelength, and
IMpaw (2 is the raw image at that wavelength.

Reference ) ImRaW(/l) - ImDark(/l)
Imwnite) = IMpark(a)

€y

IMpesy = p

2.3 Destructive quality measurements

For the quality assessment, 174 samples out of the total 3564
strawberries were selected for destructive quality
measurements, TSS in this case, which involved destroying the
sample to analyse internal properties. These samples were
randomly chosen to ensure equal representation across all
cultivars and boxes, providing a fair and comprehensive
evaluation of the fruit's quality.

The selected fruit was blended into a uniform mixture to
measure TSS, an indicator of sugar content, expressed in
degrees Brix (°Brix). The measurement was conducted using
a refractometer (Mettler Toledo, 4004 JK Tiel, Netherlands),
an instrument that determines the refractive index of the juice.
This method is based on the principle of total refraction, where
the refractometer calculates how light bends as it passes
through the sample, correlating this to sugar concentration.

2.4 Image processing and data extraction

The reflectance of the images was corrected using a white
polytetrafluorethylene (PTFE) reference and dark references.
To isolate individual strawberries, a deep learning model was
employed. Specifically, a Detectron 2 fast-RCNN network,
trained on FX10 false-colour images derived from the spectral
data, was used to segment single strawberries from images of
entire boxes.

Once segmented, the spectral images of each strawberry were
extracted and saved, forming a spectral image dataset.
Additionally, the mean spectra of each strawberry were
calculated and stored to create a separate spectral dataset later
used to train a 3D Convolutional Neural Network model (3D-
CNN). This dataset was used to analyse spectral differences
among samples and to develop a machine Learning (ML)
model, Partial Least Squares Discriminant Analysis (PLS-
DA).

2.5 Data analysis and model creation

Using the spectra dataset, Partial Least Squares Regression
(PLSR) was employed to predict TSS, while Partial Least
Squares Discriminant Analysis (PLS-DA) was used to classify
the strawberry varieties. Partial Least Squares (PLS) reduce
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the dimensionality of high-dimensional data by identifying
latent variables (components) that capture the most relevant
variance for predicting a target variable. PLSR is specifically
used for continuous variables, such as TSS, while PLS-DA
extends this approach for categorical classification tasks, such
as identifying strawberry varieties. These methods are
particularly effective for analysing spectral data, where high
dimensionality and multicollinearity are common challenges
(Miiller & Guido, 2016).

Using the image dataset, a 3D-CNN model was developed for
each parameter under study. To address computational
limitations, the images were resized to 100 x 100 pixels on the
spatial dimension but not in the spectral dimension,
maintaining all 224 wavelengths before training. Additionally,
data augmentation techniques, such as image rotation and
flipping, were applied to prevent overfitting during the training
process.

First, a 3D-CNN model was developed to classify 17 different
strawberry cultivars using the spectral dataset of 3,564
samples. After training the model for cultivar classification,
transfer learning was applied to adapt the model for TSS
prediction. Specifically, the final dense layers after flattening
(global average pooling) were replaced to suit the regression
task, and then these layers were fine-tuned using the TSS
dataset (174 samples), while the earlier layers were kept
frozen. This approach leveraged the feature representations
learned from the larger classification dataset, reducing the risk
of overfitting when training on the smaller TSS dataset.

The model structures are shown in Figure 2. Both models
consisted of three convolutional layers with 16, 32, and 64
neurons, respectively, and kernel sizes of 3x3x3. Each
convolutional layer was followed by a max-pooling layer with
a pooling size of 2 and batch normalisation to stabilise training.
After these layers, a global average max pooling 3D layer was
included, followed by two dense layers: the first with 128
neurons and the second varying depending on the task. For the
regression model predicting TSS, the final dense layer had 1
neuron, while the cultivar classification model had 17 neurons.

A dropout rate of 0.2 was applied between the first and last
dense layers to reduce overfitting. All layers used ReLU
activation functions except for the final dense layers. In the
cultivar classification model, a softmax activation function
was applied in the last layer to output probabilities for each
class. A softplus activation function was used in the final layer
for the TSS regression model to ensure non-negative
predictions.

Both models were compiled using the Adam optimiser. The
loss function varied depending on the task: Categorical
Crossentropy was used for cultivar classification, while Mean
Squared Error (MSE) was employed for TSS prediction. This
architecture ensured flexibility and performance tailored to
both regression and classification tasks.
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Figure 2. The 3D-CNN Model structures for cultivar (left) and TSS
prediction (right).

70 % of the data was used for training, 15 % for validation
during training, and 15 % for testing the created models. This
was accomplished using scikit-learn’s train-test split to
separate between the training, validation, and test sets.

For classification models, the F1 score was used, and the
confusion matrices were obtained on the test set prediction.
The F1 score assesses accuracy by combining precision and
recall. Precision reflects the reliability of the model's positive
predictions, whereas recall (or sensitivity) measures the
model's ability to identify all positive instances correctly.

Equation (2) shows how the F1 score was calculated, where
TP means true positives, FP means false positives, and FN
means false negatives.

2 TP

1 + 1
Precision = Recall

A confusion matrix is a table that shows how well a
classification model performs by displaying the number of
correct and incorrect predictions for each class. It helps
visualise the model’s accuracy and where it makes mistakes.

F1

(2)

TP +%*(FP+FN)

The performance of the regression models was evaluated using
three metrics: R?, Mean Absolute Error (MAE), and Root
Mean Squared Error (RMSE). R? measures the proportion of
variance in the dependent variable explained by the
independent variable in the regression model. Measures how
well the model explains the variance in the data. MAE
quantifies the average absolute difference between the
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predicted and actual values, while RMSE calculates the square
root of the average of the squared differences between the
predicted and observed values.

Model training and data analysis were conducted using Python
3.9 with the sci-kit-learn library on a 14-core processor (Intel
19 12th generation; Intel Inc., Santa Clara, CA, USA) equipped
with 64 GB of DDR5 RAM and an 8 GB GPU (NVIDIA
GeForce RTX 3070 Ti; Nvidia Inc., Santa Clara, CA, USA).

3. RESULTS AND DISCUSSION
3.1 Cultivar discrimination

For cultivar discrimination, high F1 scores were obtained
across all models, as shown in Figure 3. The 3D-CNN model
achieved the highest F1 score (0.87), followed by the PLS
model with an F1 score of 0.75. The superior performance of
the CNN can be attributed to its ability to extract both spatial
and spectral features from image data, enabling it to capture
subtle morphological differences between cultivars that other
models could not effectively identify (Ketkar & Moolayil,
2021).

The PLS model correctly classified a significant number of
samples for some cultivars (e.g., 50 for cultivar 1 and 58 for
cultivar 3). However, it showed notable misclassifications for
others, such as cultivars 6, 7, and 17, where predictions were
more dispersed across incorrect classes. In the case of the 3D-
CNN, most samples were correctly classified for all cultivars.
For example, cultivars such as 9, 10, and 13 show strong
classification performance with minimal misclassifications.

These findings are consistent with earlier research using
spectroscopy for cultivar classification but demonstrate
improvements due to deep learning and image data integration.
For example, Sanchez et al. (2012) used a PLS model to
classify five strawberry cultivars based on spectral data,
achieving accuracies ranging from 57% to 78%, which
corresponds to an F1 score similar to that of the PLS model in
this study (F1 = 0.75). In contrast, the CNN's F1 score of 0.87
highlights its ability to outperform traditional spectral
approaches by leveraging additional spatial information.
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Figure 3. Confusion matrices of the cultivar discrimination on the
test set using PLS (up) and the proposed 3D-CNN (down).

3.2 Prediction of TSS

Table 1 summarises the performance of the models for
predicting TSS (°Brix) in strawberries, evaluated using the test
set. The metrics include the coefficient of determination (R2),
MAE and RMSE. The results indicate that the 3D-CNN model
outperformed the PLS model in terms of R? (0.82 vs. 0.71),
demonstrating superior predictive accuracy. Also, the 3D-
CNN model achieved slightly lower error values for MAE
(0.65 vs. 0.67) and RMSE (0.81 vs. 0.85), suggesting more
consistent absolute predictions. Thus, the CNN model excelled
at capturing complex spatial and spectral features across a
highly variable dataset, underscoring its potential for
applications requiring robust predictive accuracy under
diverse conditions.

Table 1. Classification metrics of the TSS prediction using PLS
and the 3D-CNN

TSS (°Brix)
Model R MAE RMSE
PLS 0.71 0.67 0.85
3D-CNN 0.82 0.65 0.81

R? = coefficient of determination; MAE = mean absolute error;
RMSE = root mean squared error; TSS = total soluble solids

3D-CNNs can exploit both spatial and spectral information,
capturing complex patterns and local variations within the fruit
that are lost when averaging spectra or using only spectral data.
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This richer feature extraction enables more accurate modelling
of TSS. In contrast, PLS with mean spectra ignores spatial
context and thus cannot leverage the full potential of
hyperspectral imaging (Audebert et al., 2019).

These findings align with previous studies that have
demonstrated the effectiveness of spectral imaging and
machine learning models for predicting quality parameters in
strawberries, though differences in datasets and methodologies
must be considered. For instance, EIMasry et al. (2007)
reported a correlation coefficient (R?) of 0.80 for TSS
prediction using a PLS model with mean spectra from a single
cultivar, which is comparable to the PLS model's performance
in this study. Su et al. (2021) also used image data with a 3D-
CNN model and achieved a lower R? value of 0.56 for TSS
prediction on fruit from one cultivar at four ripeness levels. In
contrast, the 3D-CNN model in this study achieved
significantly higher accuracy (R?> = 0.82), likely due to
improvements in architecture and its application to a broader
dataset encompassing 17 strawberry cultivars from two
different origins.

4. CONCLUSIONS

This study highlights the superiority of 3D-CNNs over other
traditional ML models, such as PLS, for predicting TSS and
classifying strawberry cultivars using spectral imaging data.
The results demonstrate that the 3D-CNN model achieved
higher predictive accuracy for TSS, with an R2 of 0.82
compared to 0.71 for the PLS model. This underscores CNN’s
ability to capture complex spatial and spectral patterns in a
diverse dataset comprising 17 strawberry cultivars from two
origins. For cultivar discrimination, the 3D-CNN model
significantly outperformed the PLS model, achieving an F1
score of 0.87 compared to 0.75 for the PLS model. The
confusion matrices revealed that the CNN correctly classified
most samples across all cultivars with minimal
misclassifications. In contrast, the PLS model struggled with
misclassifications in certain cultivars, reflecting its limitations
in leveraging spatial information. These findings align with
previous studies that demonstrated the potential of spectral
imaging for quality prediction and cultivar classification but
highlight significant improvements due to deep learning
integration. This study supports the potential of combining
spectral imaging with advanced machine learning techniques,
such as 3D-CNNs, for effective quality assessment and
cultivar classification in strawberries.

Unlike similar studies, this study examines a much larger set
of strawberry varieties and samples. The simple and replicable
model presented is effective for cultivar identification and easy
for other researchers to use.
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