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ABSTRACT

Most research questions in agricultural and applied economics are causal in nature: they study how changes in one or more

variables (such as policies, prices or weather) affect one or more other variables (e.g., income, crop yields or pollution). Only a

minority of these research questions can be studied with experimental methods, so most empirical studies in agricultural and

applied economics rely on observational data. However, estimating causal effects with observational data requires an appropriate

research design and a transparent discussion of all identifying assumptions, together with a critical discussion of how plausible

they are. This paper provides an overview of approaches that are frequently used in agricultural and applied economics to esti-

mate causal effects with observational data. It then provides advice and guidelines for agricultural and applied economists seek-

ing to estimate causal effects with observational data, including how to assess and discuss the identification strategies adopted

in their analysis.
JEL Classification: C21, C23, C24, C26, C51, C52

1 | Introduction

Today, around 50% of empirical economics articles focus on
causal inference (Imbens 2024). However, a commonly ob-
served problem in empirical research is that there is not al-
ways an obvious path to causal identification. Sometimes, the
researcher might only be able to approximate causality without
fully achieving it, for example by adjusting for some but not all
confounders, or by addressing reverse causality but still failing
to account for a systematic measurement error. In these cases,
outstanding challenges to causal identification could continue
to bias an estimate away from the true causal effect.

McKenzie et al. (2010) compared experimental and non-
experimental methods in an empirical application and found
that estimates from Ordinary Least Squares (OLS) regression,
matching approaches, and Difference-in-Differences (DID)
methods based on observational data overstate the effect of in-
terest by 20%-82% compared to an experimental benchmark.
However, econometric estimates based on observational data
are often interpreted causally, without paying attention to the
validity of the assumptions that allow this (Gibson 2019).

The misinterpretation of statistical associations as causal ef-
fects, together with insufficient robustness and replicability of
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empirical analyses, has motivated the “credibility revolution”
in quantitative economics research and a call for higher stan-
dards in statistical identification (Angrist and Pischke 2010;
Bellemare 2012; Gibson 2019).! More recently, the availability
of large data sets has led to the “big data fallacy”, whereby
decision makers often incorrectly consider a large data set as a
substitute for a proper identification strategy and consequently
misinterpret association as causation when the sample size is
large (Vosgerau et al. 2025). While the “credibility revolution”
has its origin in labour economics, it has increasingly reached
into agricultural economics (Bellemare 2012). However, many
empirical studies in agricultural economics continue to in-
terpret estimated relationships between economic variables
causally using terms such as “effect” or “impact”, even when
the underlying research design and econometric framework
are not based on a valid identification strategy, or at least
not a sufficiently described and motivated one. For example,
some studies use OLS or matching methods, which rely on a
selection-on-observables (conditional independence) assump-
tion, although there is a high risk of this assumption being
violated. The use of these methods possibly moves the esti-
mates in the direction of the actual causal effect but often not
sufficiently far that the estimates can be causally interpreted.
Other examples are studies that use Instrumental Variables
(IVs), such as 2-Stage Least Squares (2SLS) or endogenous
switching regression, but do not sufficiently discuss or justify
the validity of the I'Vs, or studies that use a DID design but do
not scrutinise the parallel-trends assumption they are relying
on. The mere application of such econometric approaches, yet
without sufficient verification of the underlying assumptions,
is often falsely regarded as a sufficient condition for the causal
interpretation of the results. Incorrect use of causal identifica-
tion approaches may even make the estimate worse and move
it away from the actual causal effect. Examples are an erro-
neous null-finding because the parallel-trends assumption for
the chosen DID estimator does not hold, or an exaggerated sta-
tistical significance because the IV does not produce a strong
first-stage estimate.

The correct identification of causal effects is highly relevant
for agricultural economics research because decisions and rec-
ommendations by policymakers, international organisations
(e.g., FAO, IFAD, World Bank), NGOs, and the private sector
(e.g., agribusinesses, farmers) in the area of agriculture and
food often have crucial implications for society, in areas such
as environmental sustainability, food safety, and food security
(Finger et al. 2023).2 Hence, empirical agricultural econom-
ics papers that aim to identify causal effects should include a
clear description and justification of the underlying “identifi-
cation strategy” (Imbens 2024). This refers to the identifica-
tion of the exogenous variation in an endogenous covariate or
treatment variable of interest, that is, the part of the variation
in this variable that is not related to unobserved confounders
(e.g., Gibson 2019; Lal et al. 2024). Only for this part of the
variation in the endogenous covariate or treatment variable
is it possible to say that it affects the dependent variable (e.g.,
Gibson 2019). Moreover, the limitations of the identification
strategy should be clearly outlined and possible implications
for the reliability of the results should be acknowledged and
investigated.? If a specific method is used to address the non-
experimental nature of the data, the added value compared to

simpler approaches such as OLS should be highlighted. If the
added value cannot be clearly shown, it may be preferable to
stick with a simpler method and interpret the results as asso-
ciations. Especially problematic are analyses in which an out-
come is regressed on a set of explanatory variables and each
coefficient is interpreted as reflecting the causal effect of the
respective variable. This is usually inappropriate as, in most
empirical applications, it is impossible to present a credible
identification strategy for multiple explanatory variables and
to avoid “bad controls” for estimating the causal effect of each
of these explanatory variables.

The “gold standard” for internal validity is the use of
Randomised Controlled Trials (RCTs) (Gibson 2019), and
numerous examples can be found in the agricultural and ap-
plied economics literature (e.g., Bulte et al. 2014; Wilebore
et al. 2019; El Benni et al. 2025).* However, RCTs also have
important limitations (see, e.g., Barrett and Carter 2010). Most
of the highly relevant research questions in agricultural and
applied economics cannot be answered with experiments be-
cause they would be problematic, impractical, or infeasible
for various reasons. For example, randomly assigning import
tariffs, randomly assigning different levels of education to fu-
ture farmers at their birth, increasing food prices in randomly
selected regions, or restricting food aid to specific regions
while excluding others that are also in need (Buchanan-Smith
et al. 2016, 36) would be problematic for multiple reasons,
including ethical considerations.” However, highly relevant
research questions should not be neglected just because they
cannot be answered by applying experimental methods.
Instead, observational data must be used to answer these re-
search questions as thoroughly as possible.

This paper discusses research designs and empirical methods
that are frequently used in agricultural and applied economics
to estimate causal effects with observational data. These dis-
cussions should help researchers, analysts and reviewers assess
the suitability of these empirical approaches in their specific
analysis, choose the most appropriate approach, justify their
choice of approach, and interpret their results appropriately.
Therefore, we extend previous literature that provides overviews
(Imbens 2024) or guidelines on how to conduct econometric
identification methods using IVs (e.g., Jiang 2017; Young 2022;
Lal et al. 2024) for different disciplines, and tailor our guide-
lines to research questions and commonly used econometric ap-
proaches in agricultural and applied economics. We focus on the
most common empirical research designs used in agricultural
economics. For focus and brevity, we omit approaches that are
less frequently used in agricultural economics so far, such as the
regression kink approach (Cattaneo and Titiunik 2022), bunch-
ing (Caetano et al. 2025), and the front-door criterion (Bellemare
et al. 2024).

Section 2 discusses the use of various methods that are based
on the “selection on observables” identification strategy such as
OLS and matching methods (e.g., propensity score matching).
Section 3 explores methods based on IVs (or exclusion restric-
tions) such as 2SLS regression and endogenous switching re-
gression. Section 4 discusses fixed-effects estimations and DID
approaches. Section 5 describes the synthetic control method,
while Section 6 examines regression discontinuity designs.
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Section 7 provides general suggestions that apply to all methods
and Section 8 concludes the paper.

2 | Selection on Observables

The selection-on-observables identification strategy is based
on the assumption that we can observe and control for all vari-
ables that are correlated with both the treatment and the error
term. This implies that there are no unobserved factors that are
correlated with the treatment and affect the outcome through
pathways that are not blocked by control variables. This assump-
tion is also sometimes called the Conditional Independence
Assumption (CIA), conditional ignorability, or conditional
unconfoundedness.

2.1 | Classical Regression Methods

Classical regression analyses (e.g., OLS, logit, probit, tobit, or
Poisson regression) can be affected by three potential sources
of statistical endogeneity:® (a) omitted variables/unobserved het-
erogeneity; (b) measurement error (any type of measurement
error in the explanatory variables or non-random measurement
error in the dependent variable); and (c) reverse causality/simul-
taneity from which it follows that the dependent variable also
influences the explanatory variable of interest. When discuss-
ing potential endogeneity in a regression analysis, it is advisable
to focus on each of the three potential reasons separately (see,
e.g., Bellemare and Novak 2017). Theoretically, all the explan-
atory variables must be uncorrelated with the error term, while
in practice the discussion of endogeneity usually focuses on one
or a few explanatory variables that are of particular interest for
the research question, for example, treatment variables. If a
control variable is correlated with the error term, the bias of the
estimated coefficient(s) of interest depends on the relationship
between this endogenous control variable and the explanatory
variable of interest, that is, whether there is a direct correlation
or indirect relationship through other control variables (see
Frolich 2008; Bellemare 2015, the latter provides an illustrative
example with only one control variable).”

2.2 | Directed Acyclic Graphs (DAGs)

Whether a selection-on-observables identification strategy may
befeasible can be assessed, for example, by using Directed Acyclic
Graphs (DAGs). DAGs are useful for at least two purposes. First,
they clearly communicate and discuss assumptions about rela-
tionships between variables. Second, by applying certain rules
or algorithms to DAGs (either manually or through available
software tools®), sets of suitable control variables can be deter-
mined (Morgan and Winship 2014; Pearl and Mackenzie 2018).°
This also includes the identification of variables that should not
be used as control variables, that is, variables on the causal path
from the treatment variable to the outcome variable (“bad con-
trols”). DAGs were originally developed in computer science
(Pearl and Mackenzie 2018), but are increasingly being used in
economics (Imbens 2020; Hiinermund and Bareinboim 2025).
However, it is important to emphasise that a DAG should not be
considered as the only “true” and universally valid presentation

of the real world, but rather as a tool to communicate the under-
lying assumptions of an empirical analysis.

2.3 | Approaches to Address Endogeneity

Some studies aim to address unobserved heterogeneity by using
a control variable that indicates the marginal utility of joining
or leaving the “treatment” (Verhofstadt and Maertens 2014;
Bellemare and Novak 2017; Ruml and Qaim 2021; Aihounton
and Henningsen 2024). Theoretically, this approach seems
promising, but in practice it can be problematic because the
control variable is usually observed after the decision to partic-
ipate in the treatment has been made and, thus, it can be influ-
enced by the treatment itself, which can introduce endogeneity
(Aihounton and Henningsen 2024).

Some empirical researchers try to address endogeneity by using
lagged values instead of concurrent values of explanatory vari-
ables. Bellemare et al. (2017) show theoretically that using
lagged values of explanatory variables addresses endogeneity
only under the untestable assumption of “no dynamics among
unobservables”. Their Monte Carlo simulation shows that using
lagged values of explanatory variables can result in substan-
tially biased estimates and incorrect inference even if there are
only low levels of dynamics among unobservables (Bellemare
et al. 2017). Providing convincing arguments that there are no
dynamics in any unobservable variables seems to be very diffi-
cult or impossible for most empirical studies.

There are methods to assess the sensitivity of the results to unob-
served heterogeneity (e.g., Oster 2019; Cinelli and Hazlett 2020;
Diegert et al. 2023), which have often been used in recent ap-
plied economics research. However, these methods are, in gen-
eral, based on bold assumptions, and it is difficult or impossible
to assess whether these assumptions are fulfilled in a specific
empirical application. However, when applying a selection-on-
observables identification strategy, these methods can contrib-
ute to assessing the suitability of the identification strategy if
their assumptions are discussed appropriately and their results
are interpreted carefully.

Bernard et al. (2024) recommend presenting confidence inter-
vals that adjust conventional confidence intervals by incorpo-
rating the uncertainty about the bias that occurs due to using
observational data (e.g., unobserved heterogeneity, violation of
the Stable Unit Treatment Value Assumption (SUTVA), insuffi-
cient common support).

2.4 | Relaxing Functional Form Assumptions

Classical regression methods usually rely on strict assumptions
about the functional form of the relationship between treatment
variables, control variables, and the dependent variable. These
restrictive assumptions can be partly or fully relaxed by using,
for instance, the Augmented Inverse Propensity Weighted
(AIPW) estimator,'® semi- or nonparametric regression meth-
ods, matching methods such as propensity score matching
(PSM),!! or machine learning approaches. However, except for
assumptions about the functional form, these methods are based
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on the same identifying assumptions as regression methods
(e.g., Angrist and Pischke 2009; Blattman 2010; Mullally and
Chakravarty 2018). Therefore, the same discussion as for the use
of regression methods is required.

In recent years, machine learning methods have rapidly ad-
vanced and are being increasingly used in agricultural and
applied economics. It is important to note that most machine
learning methods are unsuitable when they are used directly to
estimate causal effects, even if all variables that are correlated
with both the outcome and the treatment variable are observed.
This is because machine learning methods are generally de-
signed for prediction and not for the direct estimation of causal
relationships. For example, machine learning approaches for
variable selection (such as Lasso) select the subset of covariates
that optimises out-of-sample prediction performance, but this
selection likely introduces omitted-variable biases as it drops
highly correlated control variables, including covariates that are
correlated with both the outcome and the treatment variable.

However, machine learning methods can be used within estab-
lished econometrics frameworks for causal identification such
as under the selection-on-observables assumption or for IV esti-
mation (see Section 3 and Appendix A). These methods are then
called “causal machine learning.” Despite this name, it should
be clear that these methods are not new concepts for causal
identification but rather extensions of the established economet-
rics frameworks of causal identification in which specific parts
are replaced by machine learning methods. Hence, they come
with the same identification assumptions that apply to “classi-
cal” econometric approaches and, thus, the same requirements
to carefully consider and motivate an appropriate identification
strategy. The basic idea of causal machine learning is to lever-
age the predictive capabilities of machine learning methods and
their flexibility to approximate potentially complex relationships
within these frameworks (Storm et al. 2020; Baylis et al. 2021).
For example, under the selection-on-observables assumption,
causal machine learning methods can be used to relax restric-
tive functional form assumptions, such as in the case of Double/
Debiased Machine Learning (DML) (Chernozhukov et al. 2018),
which assumes that the outcome model is a separable additive
function, but that treatment effects, the influence of controls
on outcomes, and the treatment assignment are unknown non-
linear functions. The approach allows the use of any machine
learning algorithm to approximate these nonlinear functions
and to derive average treatment effects.

2.5 | Estimating Treatment Heterogeneity

The “Causal Forests” method (Wager and Athey 2018), which
is a special case of Generalised Random Forests (RF) (Athey
et al. 2019), extends the DML approach allowing the estimation
of heterogeneous treatment effects, that is, treatment effects
that depend on observed characteristics (Conditional Average
Treatment Effects, CATE). From an applied perspective, a cru-
cial advantage is that treatment heterogeneity is estimated in a
transparent and data-driven way, and thus avoids the need to
predefine and potentially cherry-pick treatment groups. In agri-
cultural economics, Causal Forests have already been applied in
various contexts to study treatment heterogeneity (e.g., Deines

et al. 2019, 2023; Stetter et al. 2022; Schulz et al. 2024), while
Brignoli et al. (2024) conduct simulation studies to compare the
performance of classical econometric methods, Causal Forests,
and other machine-learning methods in the estimation of (het-
erogeneous) treatment effects with typical cross-sectional farm-
level data.

2.6 | Suggestions

In summary, when relying on a selection-on-observables identi-
fication strategy, we suggest doing the following (in addition to
following the general suggestions that we provide in Section 7):

« Clearly state the assumptions that the chosen method and
model specification require for obtaining unbiased and/or
consistent estimates.

« Use a DAG to find a suitable model specification (e.g., which
control variables to include and which not to include) and to
discuss the credibility of the chosen identification strategy,
including potential unobserved confounders.

« Separately discuss the three potential sources of statisti-
cal endogeneity: (a) omitted variables/unobserved hetero-
geneity; (b) measurement error; and (c) reverse causality/
simultaneity.

» Discuss the potential statistical endogeneity not only of
the explanatory variable of interest but also of the control
variables.

« Consider using placebo tests with outcome variables that
should not be affected by the explanatory variable of in-
terest, for example, using lagged values of the outcome
variable (e.g., see Imbens and Wooldridge 2009, and Chabé-
Ferret 2025b, section 8.3, for criticism of the former and also
an alternative specification).

« Consider using methods for assessing the sensitivity of the
results to unobserved heterogeneity (e.g., Oster 2019; Cinelli
and Hazlett 2020; Diegert et al. 2023; Bernard et al. 2024).

« Consider using methods that do not rely on strict paramet-
ric assumptions.

3 | Instrumental-Variable Methods

Instrumental-variable (IV) methods are often used in cases
in which selection-on-observables cannot be justified (Lal
et al. 2024). We define “IV methods” in a broad sense. While this
section focusses on the use of IVs in linear IV and 2-Stage Least
Squares (2SLS) regression (which is identical to IV-regression if
the number of IVs!? is equal to the number of endogenous re-
gressors), these discussions and the practical advice given in this
section also apply to other estimators that rely on I'Vs, including
machine-learning IV methods (see Appendix A). A brief over-
view of special types of I'Vs is presented in Appendix B.

The assumptions required by IV approaches are sophisticated
and difficult to test empirically (Lal et al. 2024). However, this
does not imply that we want to discourage their use. Rather,
our aim is to provide some suggestions and tools on how to
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implement credible I'V-based identification strategies in empiri-
cal research. This is important as invalid IVs can exacerbate the
problem so that the bias in the 2SLS estimator may even exceed
the OLS endogeneity bias (Lal et al. 2024). By construction, IV
estimates are less precise than OLS estimates. For example, Lal
et al. (2024) analyse 70 IV designs and show that 2SLS estimates
have, on average, six times higher standard errors than OLS es-
timates, although this decreases with the strength of the IV.13

Using an IV approach to estimate a causal effect is possible if
one has at least as many I'Vs as endogenous regressors. These
IVs must fulfil the following two criteria: (a) they must be “rel-
evant”, i.e., strongly related to the endogenous regressors (even
after controlling for all exogenous regressors); and (b) they must
be statistically “exogenous”, i.e., no direct effect on the outcome
variable (exclusion restriction) and not related to the error term
(statistical independence).

3.1 | Assessing the Strength of IVs

The first criterion can be empirically investigated with tests
for weak IVs. Traditionally, an IV was considered relevant (i.e.,
not weak) if an F-test of its relevance in the first-stage regres-
sion had a test statistic of 10 or higher (Staiger and Stock 1997).
However, more recent research indicates that a test statistic of
10 is insufficient in most empirical applications. For instance,
Keane and Neal (2024) show that OLS estimates are often closer
to the “true” causal effects than 2SLS estimates if the IV's
F-statistic in the first stage is below 20. They also demonstrate
that, in cases where there is only one IV, the evaluation of the
strength of the I'V should be based on an F-statistic that exceeds
50. Moreover, estimation results (e.g., t-tests) are often unreli-
able even in cases where there are much higher values for the
F-statistic (e.g., Lee et al. 2022; Keane and Neal 2023, 2024). In
addition, Lal et al. (2024) show that first-stage F-statistics are
frequently overestimated if the test is not robust towards het-
eroskedasticity, clustering, and autocorrelation, which implies
that I'Vs in such cases may incorrectly be treated as relevant.

3.2 | Assessing the Exogeneity of I'Vs

The statistical exogeneity of the IV implies that it influences
the dependent variable only via its effect on the endogenous ex-
planatory variable (exclusion restriction) and it is not correlated
with the error term (statistical independence). If the endogenous
explanatory variable is continuous, the exogeneity of the IVs
cannot be empirically investigated without further assumptions
(Pearl 1995a, 1995b; Gunsilius 2021).1* For instance, if there
are more potential IVs than endogenous regressors available,
it is possible to apply the Sargan-Hansen test/Sargan's J test/
Hansen's J test for overidentifying restrictions. If, based on
theoretical considerations, it is certain that there are at least as
many exogenous I'Vs as there are endogenous regressors, the test
indicates (under some assumptions, e.g., correct model specifi-
cation) whether the additional I'Vs, that is, those that are not cer-
tain to be exogenous, are indeed exogenous. However, without
clear theoretical justifications that ascertain the exogeneity of at
least as many IVs as there are exogenous regressors, the test is
basically uninformative.

In contrast, if the endogenous explanatory variable is discrete,
the exogeneity of the IVs can be tested. Pearl (1995a, 1995b)
derives testable inequalities, which have been extended by
Kitagawa (2015, for binary endogenous explanatory variables
and discrete IVs) and Kédagni and Mourifié¢ (2020, for discrete
endogenous explanatory variables and any kind of IVs). The in-
tuition behind these inequalities is that for observations with the
same value of the endogenous explanatory variable, the potential
outcomes should not depend on the value of the IV. However,
these inequalities have rarely been used in empirical research.!®

In addition, it is helpful to think of placebo estimates that can be
used to test specific violations of the exogeneity assumption. For
instance, in some cases, the effect on the pre-treatment outcome
can be estimated (see, e.g., Chabé-Ferret 2025b, section 8.2.1). In
other empirical applications, the IV might affect the treatment
via a specific mechanism that only matters for some observations
(e.g., specific locations, farmers, or crops) but not for others. In
this case, a useful placebo test would be to obtain reduced-form
estimates of the correlation between the outcome and the IV
for a (sub)sample of observations, where the outcome and the
IV should be uncorrelated. If the main concern is that the IV
might affect the outcome through a specific pathway other than
the endogenous regressor, and this potential other pathway is
measurable, one can directly test this violation of the exogeneity
assumption by regressing this pathway on the I'V. For example,
if an IV is supposed to affect the farmers' access to credit but is
assumed not to affect their access to insurance, one can regress
farmers' access to insurance on the I'V.

One weakness of all the tests mentioned above is that they can
never “prove” that an IV is exogenous because they all rely on
the null hypothesis that the IVs are exogenous, and not reject-
ing the null hypothesis does not necessarily mean that it is true,
particularly if the test has low statistical power, for example,
caused by a small number of observations, multicollinearity, or
a large error variance. Hence, it is always necessary to strongly
motivate the exogeneity of IVs based on solid theoretical argu-
mentation (e.g., Lal et al. 2024) and critically discuss the as-
sumption of statistical exogeneity for each IV used, for example,
by debating whether potential (unobserved) variables may be
related to both the treatment variable and the outcome variable.
This is important as McKenzie et al. (2010) show that using I'Vs
for which the exogeneity assumption is potentially violated may
lead to the overestimation of the effect of up to 82% compared to
the effect found from an experimental benchmark study. This is
more than the overestimation that occurs when simply applying
OLS (35%), matching (20%) or DID (22%), which implies that a
badly identified 2SLS estimation only amplifies estimation bias.
As a general rule, the less specific the effects of the chosen IV,
the less likely the exogeneity assumption is fulfilled (see, e.g.,
Mellon (2024) for a discussion of rainfall as an IV).

3.3 | Interpretation and Practical Aspects of 2SLS

In the case of a weak IV or a violation of the exogeneity as-
sumption, an IV estimation can lead to greater bias than an
OLS regression (Lal et al. 2024). In such cases, it is advisable
to apply non-causal estimators, interpret the results as as-
sociations, and draw conclusions with due caution. Here we

Journal of Agricultural Economics, 2025

85U807 SUOWILLIOD BAes.D 3|qedljdde 8Ly Aq pausenob ale il VO ‘8sn 4O Sa|ni Joj ARIqIT 8UIIUO AB|1M UO (SUOIpUOD-pUe-SWLBHLI0d" A | 1M Afe.q 1 BU1|UO//:SANY) SUORIPUOD PUe SWwie 1 8L} 88S *[9202/T0/T] Uo AreiqiTauliuO A8|IM ‘6T00L 26G6-LLYT/TTTT OT/I0p/W0d 8| Im" Afeiq | puljuo//SaRY Wol4 papeo|umoq ‘0 ‘25561 T



refer, for example, to Groher et al. (2020) and Aihounton and
Henningsen (2024) for examples of correlational wording. Lal
et al. (2024) note that 2SLS estimates are in many cases much
larger than standard OLS estimates, although the aim of the
IV estimation is usually to tackle a positive omitted variable
bias of OLS. Therefore, it is also advisable to discuss the direc-
tion of the bias that the IV estimation is intended to address
and assess the extent to which the IV approach was able to
address this bias (for examples, see e.g., Basu 2018; Hirsch
et al. 2023).

For the interpretation of results, it is important to note that 2SLS
estimates indicate Average Treatment Effects (ATE) only under
restrictive assumptions (e.g., that the treatment effect is homo-
geneous across all subjects with the same values of the control
variables) (e.g., Heckman 1997; Aronow and Carnegie 2013).16
However, these assumptions are unlikely to be fulfilled in
most empirical analyses. Under less restrictive assumptions
(e.g., monotonicity of the effect of the IV on the endogenous
explanatory variable), 2SLS estimates indicate Local Average
Treatment Effects (LATE), which indicate the effect of the part
of the variation in the endogenous explanatory variable that is
caused by variation in the IV (e.g., Imbens and Angrist 1994).
For instance, in the case of a binary IV and a binary endogenous
explanatory variable, the LATE indicates the average treatment
effect on those subjects that “comply” with the IV. The effects
on the “always takers” and the “never takers” remain uniden-
tified, and in most cases it is unknown who the “compliers” ac-
tually are. While the LATE may provide relevant information
in some empirical analyses, in others it might not identify the
effect we are interested in (Angrist and Pischke 2009; Aronow
and Carnegie 2013).

For estimating 2SLS, modern statistical software offers vari-
ous packages. It is advisable to use these rather than manually
estimating 2SLS by first estimating the first-stage OLS and
then manually inserting the predicted values into a separately
estimated second-stage OLS regression. A common mistake
when using the “manual” procedure is failing to include the
same control variables in both stages, resulting in inconsistent
2SLS estimates (Angrist and Pischke 2009). Furthermore, the
manual procedure results in incorrect OLS standard errors
in the second stage. However, unless the IVs are very strong,
even the standard errors obtained by software packages for
2SLS estimations do not correctly reflect the uncertainty of
2SLS estimates and, thus, they need to be further adjusted
(Lee et al. 2022; Lal et al. 2024). For example, Lal et al. (2024)
analyse 70 IV designs and report that the estimated standard
errors of 2SLS estimates systematically underestimate the un-
certainties of these estimates.

3.4 | Beyond Linear 2SLS

Although the above discussions refer to linear IV and 2SLS
regression, they are largely transferable to a large number of
other methods that rely on I'Vs or exclusion restrictions such as
endogenous switching regression models or methods for non-
continuous dependent or endogenous explanatory variables
(see Appendix A for details). It is important to note that addi-
tional pitfalls exist when using IVs in regression models with

non-linear terms (e.g., quadratic, interaction terms) and/or in
non-linear regression models (e.g., probit, logit) (see Appendix A
for details).

While the availability of a valid IV is a crucial requirement for
obtaining unbiased estimates using any IV approach, it is also
crucial to consider the functional form assumption that un-
derlies the employed methods. For instance, Okui et al. (2012)
show that 2SLS regression may result in substantially biased
estimates of the treatment effect if the functional relationship
between the control variables and the outcome variable is incor-
rectly specified. Interestingly, in applied settings, much of the
discussion seems to focus on the validity of the IV, while often
the strong functional form assumptions seem to be more readily
accepted and less critically discussed. However, depending on
the degree of heterogeneity or nonlinearity, they may be equally
critical (Okui et al. 2012).

Existing nonparametric versions of IV estimators relax these
functional form assumptions and require only that the outcome
is the sum of an (unknown) nonlinear function of a treatment
variable and observed covariates (that are uncorrelated with un-
observed confounders) and an additive error term that may be
correlated with the treatment variable (Newey and Powell 2003).
However, early nonparametric approaches based on basis func-
tions/splines or kernel methods struggle with a larger number
of covariates or IVs and large sample sizes. Building on these
early nonparametric estimators, an active field of research at
the intersection of machine learning and econometrics has de-
veloped extensions that leverage the predictive capabilities of
modern machine learning methods to improve nonparametric
IV estimators.

Although these new machine learning-based IV approaches
offer some interesting extensions of existing approaches, it is im-
portant to emphasise that they do not change the requirement of
having a solid identification strategy and valid IVs.!”

Generally, the promise of IV estimation is that it can estimate
unbiased effects despite unobserved confounders. However, any
IV approach comes at the cost of a substantial reduction in the
statistical power of the estimation. This is particularly relevant
to consider when estimating heterogeneous treatment effects
(given that estimating not just one value but infinitely many or a
function of values is a substantially more complex task). Hence,
applying IV methods with the aim of identifying treatment het-
erogeneity typically requires large datasets.

3.5 | Suggestions

If various assessments indicate that an IV-based method should
be considered, we suggest performing the following checks that
comprise a combination of theory-based considerations and
suitable statistical tests (e.g., Lal et al. 2024) (in addition to fol-
lowing the general suggestions that we provide in Section 7):

« If an explanatory variable is incorrectly treated as en-
dogenous, estimates based on IV regression (e.g., 2SLS)
are less efficient than estimates based on correspond-
ingselection-on-observables regression methods (e.g.,
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OLS). Therefore, it is important to consider and discuss,
based on theoretical argumentation, whether a poten-
tially endogenous explanatory variable should indeed be
instrumented. In all cases, it is advisable to provide and
compare the results for both the IV regression and the
OLS estimation.

When using an IV regression method, it is important to assess
the strength of the I'Vs based on the following criteria:

« Always report complete first-stage results including all
model diagnostics.

+ Only use IV-based methods when the IV(s) are sufficiently
strong, that is, there is a sufficiently high correlation be-
tween the endogenous explanatory variable and the IV(s)
after controlling for exogenous control variables.

+ Assess the strength of the IV(s) by applying an F-test to the
first stage of the IV estimation that tests the statistical sig-
nificance of the IVs [i.e., tests a specification with the ex-
ogenous control variables but not the IV(s) as explanatory
variables against the complete first-stage regression with
the IV(s)].

« If the F-statistic of the statistical significance of the IVs in
the first stage is below 20, consider presenting OLS esti-
mates instead of 2SLS estimates as OLS estimates are often
closer to the “true” causal effects than are 2SLS estimates.
In the case of a single IV, the F-statistic should exceed 50
(Keane and Neal 2024).

« If the first-stage F-statistic is below 100, standard errors
may need to be adjusted as described by Lee et al. (2022) or
Keane and Neal (2024).

« In the case of heteroskedasticity, clustering, or autocor-
relation of the error term in the first stage, it is import-
ant to conduct an F-test that is robust to these conditions,
as a standard F-test overestimates the F-statistic (Lal
et al. 2024). See, for example, the Cragg-Donald F-statistic
(Cragg and Donald 1993) or the Kleibergen-Paap statistic
(Kleibergen and Paap 2006) and the guidance on these sta-
tistics provided, for example, in Bazzi and Clemens (2013)
or Windmeijer (2024).

We refer to previous parts of this section and the literature (e.g.,
Lal et al. 2024, section 2.2.1) for a more in-depth discussion of
the options to investigate the strength of I'Vs.

If the I'Vs are sufficiently strong (so that the use of IV regression
is not abandoned), it is important to assess the appropriateness
of the exogeneity assumption, that is, the exclusion restriction
and the statistical independence assumption. We suggest doing
the following:

» Use strong theoretical considerations to rule out any di-
rect effect of the IVs on the dependent variable or any
relationship with omitted factors (error term), see, for ex-
ample, Mellon (2024), who discusses the use of weather as
anIV.

« If the endogenous explanatory variable(s) are discrete,
use statistical tests to test the exogeneity of the IV(s), for

example, the tests suggested by Kitagawa (2015) or Kédagni
and Mourifié (2020).

« If possible, use placebo tests to assess the exogeneity as-
sumption (see above).

« In the rare situations when the model is overidentified (i.e.,
the number of I'Vs is larger than the number of endogenous
explanatory variables) and there are clear theoretical justifi-
cations for the exogeneity of at least as many IVs as there are
exogenous regressors, use a Sargan-Hansen test/Sargan'’s J
test/Hansen's J test to test the exogeneity of the additional
IVs, that is, those that are not certain to be exogenous.
However, in most cases, one cannot be certain that there
are at least as many exogenous I'Vs as there are endogenous
regressors, and thus the result of this test gives no practical
guidance. Furthermore, it is important to note that this test
relies on a correct model specification and does not investi-
gate instrument relevance.

« Be aware of the limitations of statistical tests for the exoge-
neity of IVs, particularly that not rejecting the null hypothe-
sis of exogeneity does not mean that the I'Vs are exogenous,
particularly if the test has low statistical power.

For further discussion on how to assess the exogeneity assump-
tion, we refer to previous parts of this section and the literature
(e.g., Lal et al. 2024, section 2.2.2).

If the exogeneity assumption is considered to be appropriate, it
is important to carefully assess and interpret the second-stage
results and:

« Provide OLS estimates for comparison.

« Discuss whether 2SLS was able to address the bias of OLS
estimates, which involves a discussion of the direction of
the bias and the extent to which a 2SLS regression can at-
tenuate this bias (see, e.g., Basu 2018).

« Interpret the results as LATE unless there is credible evi-
dence that the chosen method and empirical specification
provide an estimate of the ATE.

« Use the tF test (Lee et al. 2022) or the Anderson-Rubin test
(Keane and Neal 2024) instead of standard t-tests.

4 | Fixed Effects and Difference in Differences

Fixed-Effects (FE) estimators and Difference-in-Differences
(DID) research designs are useful tools to control for unobserved
confounders when certain assumptions about these confound-
ers are fulfilled.

4.1 | Fixed-Effects Estimators

FE estimators control for unobserved confounders that are
constant at the fixed-effect level. For example, when using
individual-fixed effects in a study with panel data, which in
agricultural economics papers are often farm-fixed effects,
one can control for all time-invariant unobserved heterogene-
ity at the individual (farm) level. The unobserved heterogeneity
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may be differences in management skills, local climatic and
soil conditions, infrastructure, or the remoteness of the area.
Consequently, models with individual-fixed effects cannot
quantify the effects of time-invariant factors such as proxim-
ity to a city (Wooldridge 2010). Similarly, FE can be set and
combined at every level that reasonably groups the data. For
instance, year-fixed effects control for all unobserved hetero-
geneity that affects all units in a given year in the same way,
such as market conditions, the introduction of a certain policy,
etc. Mathematically, FE are equal to a joint demeaning of the
dependent variable and the independent variables, which is
also called within transformation. For farm-fixed effects, this
implies subtracting the farm average from each observation.
This transforms, for example, farm profits into deviations from
the average profit of the respective farm in the observed time
period (Mundlak 1961). FE may be helpful for controlling for
many unobserved factors, and they may also be combined with
other methods such as IV or DID. However, there are only a few
examples of cases in which FE are sufficient to fully establish
causality in a model (Blanc and Schlenker 2017). One example
is weather shock impact models that regress a measure of ag-
ricultural performance such as yields or productivity on a ran-
dom and exogenous weather shock (Blanc and Schlenker 2017).
Remaining caveats of FE models are related to reverse causality
and time-variant confounders, which may still introduce simul-
taneity and omitted-variable biases.!®

Taking a closer look at the above examples of time-invariant
factors, climatic conditions, soil quality, and infrastructure
may be reasonably considered time-invariant in the short run
but they may change over longer time horizons. Therefore,
Millimet and Bellemare (2023) follow Mundlak (1961, 1978)
and argue that such a potential bias may be ignored in shorter
panels due to negligible changes in these variables over time.
However, in increasingly long panels, a trade-off arises be-
tween efficiency gains derived from more observations and
potential biases and inconsistency resulting from not truly
time-invariant factors accumulating to considerable unob-
served confounders over time. Millimet and Bellemare (2023)
highlight alternative estimators such as the First-Difference
(FD), Twice First-Differenced (TFD), or Interactive Fixed
Effects (IFE) estimator, and suggest Rolling FD (RFD),
Rolling TFD (RTFD), and Rolling FE (RFE) estimators, which
can either be used as alternatives to FE estimators or at least
to explore the sensitivity of FE estimates to these alternative
estimators.

Table 1 summarises panel data estimators that address un-
observed heterogeneity. When using panel data sets with two
time periods (T =2), “rolling” estimators cannot be used,
while (individual) FE estimates are equal to FD estimates
without intercept and Two-Way Fixed Effects (TWFE) es-
timates are equal to FD estimates with intercept. In case of
more than two time periods (T > 2) and mostly time-invariant
unobserved heterogeneity, FE, TWFE, and FD estimators are
recommended. In the presence of autocorrelation in the treat-
ment variable, standard errors that are robust to clustering
at the level of the treatment assignment yield valid estimates
of the standard errors of any estimator in Table 1 (FD, FE,
TWFE, etc.) (Bertrand et al. 2004; Cameron and Miller 2015;
Chabé-Ferret 2025b, Chapter 9).1° However, these estimators

Panel data estimators for unobserved heterogeneity (N > T).

TABLE 1

Implementation in R

Recommended estimator Implementation in STATA

Unit unobserved heterogeneity

TimeT

fixest, plm

xtreg, reghdfe, gen + by (manual)

FD without intercept;
FD with intercept

FE=RFE=
TWFE

(Mostly) time-invariant

fixest, plm

FE and TWFE (if no or little autocorrelation), xtreg, reghdfe, gen + by (manual)

(Mostly) time-invariant

2< T o0

FD (if strong positive autocorrelation)

plm, fixest+rollapply

FD, RFD, RFE rolling, rangestat, reghdfe in loop

Gradual time-varying

rollapply, fixest in loop

TFD, RTFD, RFE rolling, rangestat, reghdfe in loop

Rapid time-varying
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differ in efficiency depending on the degree of autocorrelation
(McKenzie 2012). Following McKenzie (2012) and Millimet
and Bellemare (2023), we recommend testing for autocorrela-
tion and estimating both FD and FE/TWFE models, retaining
the more precise specification. The FD estimator is preferable
if there is strong positive temporal autocorrelation in the un-
transformed error term because the first differencing removes
this strong temporal autocorrelation, while FE and TWFE es-
timators are preferable if there is no or only little temporal
autocorrelation in the untransformed error term because, in
this case, first differencing would introduce strong negative
temporal autocorrelation.

Furthermore, the robustness of estimators that rely on the as-
sumption of time-invariant confounders can be assessed by
comparing their estimates to those of estimators that are more
robust to time-varying unobserved heterogeneity. If discrep-
ancies arise, Millimet and Bellemare (2023) recommend addi-
tionally reporting the results of alternative estimators. In the
very long run (T — o0), most unobserved heterogeneity would
change over time, making FE and TWFE unreliable and less rel-
evant (Bellemare and Millimet 2025). In agricultural econom-
ics, some outcomes, such as crop or milk yield and farm profits,
could exhibit substantial variability and low autocorrelation,
making FE or TWFE estimators appropriate (McKenzie 2012).
In these settings, using panel data with higher frequencies is
often more beneficial than merely extending the time dimension
of the panel (McKenzie 2012; Millimet and Bellemare 2023). For
example, Belay and Olsen (2025) leverage monthly data to im-
plement TWFE and IFE models in their analysis of milk yield.

4.2 | Difference-in-Differences

An alternative approach to estimating causal effects with panel
data is the DID research design.? In classic (2 x 2) DID esti-
mations, there are two groups and two time periods. There is
a pre-treatment period, when no units are treated; and there
is a post-treatment period, when some units are treated (the
treated group) and others (the control group) remain untreated.
By using the control group as the counterfactual in the post-
treatment period, it is possible to calculate the difference in the
changes in the average outcomes between the treatment group
and the counterfactual: the “Average Treatment effects on the
Treated” (ATT).

The underlying identifying assumption in DID is the parallel-
trends assumption, which reasons that the treated units would
have followed the same parallel trends as the untreated control
units had the treated units gone from the pre-treatment period
to the post-treatment period in the absence of treatment.?! If this
assumption is satisfied, then the control units can provide the
counterfactual for the treated group in the post-treatment pe-
riod. However, the parallel-trends assumption is purely hypo-
thetical by definition since it is impossible to be certain that the
trends of the treated units and the untreated control units would
have followed parallel paths in the post-treatment period. When
a data set includes multiple pre-treatment periods, one can
verify that the pre-treatment trends of the two groups are par-
allel, though one should be cautious when inferring “true cau-
sality”, as parallel trends in the pre-treatment periods may not

necessarily imply parallel trends between the last pre-treatment
period and the post-treatment period in the hypothetical situa-
tion in which the treatment group is not treated.

Multiple applications of DID in agricultural and food economics
settings exist. For instance, in production economics, Belay and
Jensen (2020) estimate the effect of information disclosure on
antibiotic use and market survival among pig farms, while Belay
and Ayalew (2020) examine the impact of reference market price
disclosure on smallholders’ crop choice. Similarly, Belay and
Jensen (2022) evaluate the impact of limiting antibiotic use on
the economic performance of pig farms. In consumption eco-
nomics, Fan et al. (2022) estimate the impact of the introduction
of a sugar tax on candy purchases and Hoy and Wrenn (2020)
estimate the impact of GMO labelling on consumer choices.
Other studies, such as Pufahl and Weiss (2009), Chabé-Ferret
and Subervie (2013), and Wuepper and Huber (2022) apply DID
design to evaluate alternative agri-environmental schemes.

The basic (2 x 2) DID set-up can be extended to situations with
multiple time periods. In DID settings with multiple time pe-
riods, a key question is how treatment effects evolve with ex-
posure duration, that is, do they increase, decrease, or remain
stable over time? Investigating these dynamics is often the
primary reason for using event-study (ES) regressions in DID
designs (Callaway and Sant'‘Anna 2021; Miller 2023). The DID
estimations with multiple periods can also be extended to sce-
narios in which different units of the treatment group receive
the treatment at different times, which is known as heteroge-
neous treatment timing. Under conditions in which the size of
the treatment effect is: (a) constant over time; and (b) indepen-
dent of the time period of the treatment, a standard TWFE esti-
mator offers a reliable estimation for inferring treatment effect
causality (Roth et al. 2023).

However, under heterogeneous treatment timing and treatment
effect heterogeneity, the TWFE estimator may result in a bi-
ased estimate of the average treatment effect on the treated and,
thus, causally interpreting the regression coefficient becomes
problematic even if the parallel-trends assumption holds (de
Chaisemartin and D'Haultfeeuille 2020; Goodman-Bacon 2021;
Athey and Imbens 2022). For instance, this may be the stag-
gered?? adoption of an agricultural policy whose effect is time-
varying, that is, the magnitude of the effect depends on the time
when a farm faced the treatment (e.g., policy) for the first time,
the number of years that the farm has already faced the treat-
ment (e.g., due to adjustments, learning, and/or accumulating
effects over time), and/or the specific year (e.g., on the weather
or market conditions in the year). By makingso-called “forbid-
den comparisons” between groups that received the treatment
at earlier and later times, standard DID methods may give neg-
ative estimates of the average treatment effect on the treated
even when the “true” effect is, in fact, positive, which is known
as the negative weights problem (Goodman-Bacon 2021; de
Chaisemartin and D'Haultfeeuille 2023b; Borusyak et al. 2024).
Recent developments in DID have identified solutions to this
issue. Callaway and Sant'’Anna (2021), Sun and Abraham (2021),
Wooldridge (2021), de Chaisemartin and D'Haultfceuille (2023a),
and Borusyak et al. (2024) have overcome the negative weights
problem by restricting the types of comparisons that can be
made, ensuring that appropriate counterfactuals are used to
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causally infer effects under heterogeneous treatment timing
and treatment effect heterogeneity under various conditions of
the parallel-trends assumption. For example, one may condition
the parallel-trends assumption on additional covariates, such
as weather or growing conditions, or on anticipatory behaviour
such as in the event of an upcoming policy change (Callaway
and Sant’/Anna 2021).

Researchers could choose from alternative DID estimators
summarised in Table 2, depending on the treatment design,
data structure, number of groups, causal estimand of interest
(e.g., overall/static ATT or event-study/dynamic ATT), choice
of baseline period (in event studies), control group definition
and cohort size (in staggered designs), nature of parallel-trends
violation, computational speed, and other criteria. The table
includes several recent heterogeneity-robust DID estimators
for staggered treatment designs. For example, in the context of
gradual policy rollout, one can select either the never-treated
group or the not-yet-treated group as controls (Callaway and
Sant'’Anna 2021; de Chaisemartin and D'Haultfceuille 2023a).
A researcher can opt for estimators that construct counterfac-
tuals using imputation methods based on efficient and fast
linear estimation (Borusyak et al. 2024), two-stage differ-
ence in differences (Gardner et al. 2024), or non-linear DID
models such as exponential, Poisson, logit, or probit models
(Wooldridge 2023). Moreover, heterogeneity-robust DID de-
signs have also been developed for continuous (i.e., non-binary
and non-discrete) treatments (Callaway et al. 2024a, 2024b;
de Chaisemartin and D'Haultfeeuille 2024; de Chaisemartin
et al. 2025) as well as for multiple (i.e., reversible and re-
treatable) (de Chaisemartin and D'Haultfceuille 2024) and sev-
eral treatments (de Chaisemartin and D'Haultfoeuille 2023b).
In the case of multiple treatments (sometimes also called
treatment-on-and-off scenario), it is important to distinguish
between “no-carryover” and “(arbitrary) carryover.” In the
no-carryover case, only the current treatment status affects
outcomes with no lasting impact from past treatment (de
Chaisemartin and D'Haultfeeuille 2024). In contrast, (arbi-
trary) carryover means that the treatment history influences
outcomes, making it resemble the staggered treatment sce-
nario. In this case, “intent-to-treat” effects can be estimated
by defining treatment as “has ever been treated” in a staggered
treatment fashion, thereby ensuring that the treatment status
is absorbing and accounts for any potential carryover effects
(Sun and Abraham 2021; Liu et al. 2024). In many cases, the
effect of having previously received the treatment is of interest
as it reflects the long-term impact of the treatment, even if the
treatment itself is temporary. For instance, Deryugina (2017)
studies the fiscal cost for counties hit by hurricanes. Although
hurricanes are transitory, their long-term impact persists,
so the author models the year of the first hurricane to cap-
ture these effects. Deryugina (2017) then adopts what de
Chaisemartin and D'Haultfeeuille (2023a) refer to as a “bina-
rise and staggerise” approach, that is, by replacing the hur-
ricane status (on/off) with a binary indicator of having been
previously hit by a hurricane, the treatment becomes absorb-
ing, allowing the use of staggered adoption designs (Sun and
Abraham 2021; de Chaisemartin and D'Haultfoeuille 2023a).

It is important to note that the estimation methods recom-
mended for various DID model scenarios in Table 2, along with

their implementation in Stata and R, are based on the assump-
tion that the parallel-trends assumption holds unconditionally
(i.e., without covariates). Of all the methods listed in Table 2, the
method suggested by Callaway and Sant'’Anna (2021) is the most
suitable for cases where the parallel-trends assumption holds
only after conditioning on covariates. This method is applicable
for treatments that are both binary and staggered.?

When violations of the parallel-trends assumption arise from
long-run discrepancies in outcome trends between groups, es-
timators such as the one suggested by Borusyak et al. (2024),
which leverage the full set of pre-treatment periods to con-
struct counterfactuals, can be particularly effective, especially
compared to methods that rely solely on the last pre-treatment
period as a baseline. However, if the violation stems from a
known anticipation effect, approaches such as those sug-
gested by Callaway and Sant’Anna (2021) and Sun and
Abraham (2021), can be adapted to use the anticipation period
as a baseline to produce reliable estimates (de Chaisemartin
and D'Haultfceuille 2023a).

Moreover, DID in an ES framework (including recent gener-
alised DID estimators) offers plots that visually present both
dynamic treatment effects and pretreatment trends, allowing
the evaluation and testing of parallel trends before treatment
(e.g., Taylor 2022; Li and Zhu 2024). However, it is important
to note that failure to detect a non-parallel pre-treatment trend
does not necessarily imply its absence, as conventional ES tests
for parallel pre-treatment trends often lack power and therefore
fail to detect non-parallel pre-treatment trends (Freyaldenhoven
et al. 2019, 2021; Roth 2022). Researchers should assess the sta-
tistical power of these tests using tools such as the R package
pretrends (Roth 2025) for nonlinear trends and consider alter-
native visualisation tools such as the xtevent package in Stata
(Freyaldenhoven et al. 2025), the eventstudyr package in R
(Freyaldenhoven et al. 2023), or magnitude-based pre-treatment
trend evaluation (Bilinski and Hatfield 2020). If the (uncondi-
tional) trends during and after the treatment cannot be consid-
ered to be parallel (e.g., if pre-treatment trends do not seem to be
parallel), Freyaldenhoven et al. (2019) recommend using a 2SLS
framework (available in xtevent or eventstudyr) with one or more
covariates that are affected by the confounding (non-parallel)
trends but are not related to the treatment. Rambachan and
Roth et al. (2023) propose confidence sets that are robust to vio-
lations of the parallel-trends assumption, which can be obtained
using the HonestDiD package (Rambachan and Roth 2024) in R
or Stata, as applied by Wuepper and Huber (2022). Regardless of
the approach, using economic knowledge to analyse potential
parallel-trends violations strengthens causal inferences over re-
lyingsolely on the statistical significance of tests of parallel pre-
treatment trends (Roth 2022). Furthermore, it is important to
emphasise that the parallel-trends assumption cannot be tested,
as even perfect parallel pre-treatment trends do not guarantee
that the trends during and after the treatment period would also
be parallel.?*

An interesting extension to study staggered treatment problems
is the matrix completion approach for causal panel data models,
which allows the combination of TWFE with synthetic controls
in a data-driven manner (Athey et al. 2021). In an agricultural
context, this approach is particularly appealing as it naturally
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deals with unbalanced panel data sets (Martinsson et al. 2024).
Similarly, Arkhangelsky et al. (2021) developed the Synthetic
Difference-in-Differences (SDID) method, which combines ele-
ments of the synthetic control approach (discussed below) with
DID. While SDID requires a relatively longer pre-treatment
period to construct credible counterfactuals, it does more than
merely testing for parallel pre-treatment trends using past out-
comes (Roth 2022); it leverages the pre-treatment information to
compute weights that ensure pre-treatment trends are parallel
by construction.

Another relevant impact estimator related to DID design
is the Changes-in-Changes (CIC) estimator (Athey and
Imbens 2006), which serves as an alternative to DID by focus-
ing on the Quantile Treatment Effect on the Treated (QTT)
rather than on the ATT. The QTT approach helps policymak-
ers understand how the benefits and/or costs of a treatment
are distributed across subgroups, particularly when decisions
depend on distributional effects. For example, Mayr and
Agnolucci (2023) apply CIC to estimate heterogeneous im-
pacts of voluntary climate agreements in the UK on business
electricity consumption and employment.

In applications of DID in the field of agricultural and applied eco-
nomics, functional form issues often arise when outcome vari-
ables such as shares, areas, incomes, spending, or yields contain
many zeros or are non-continuous, such as technology adoption.
For outcomes with many zeros, researchers are advised to follow
the approaches proposed by Bellemare and Wichman (2020) and
Chen and Roth (2024). For non-continuous outcome variables,
nonlinear DID specifications such as exponential, logit, or probit
models are recommended (Wooldridge 2023).

4.3 | Suggestions

When using fixed-effect-based or DID-based methods, we sug-
gest doing the following (in addition to the general suggestions
that we provide in Section 7):

« Provide reasoning based on economic theory on unob-
served confounders that potentially bias estimates and that
can be addressed by the use of fixed effects.

+ Provide reasoning on the time invariance of potential unob-
served confounders with respect to the covered time hori-
zon when using individual-fixed effects.

« Select an appropriate estimator to account for unobserved
heterogeneity in panel data, and justify the choice with
compelling arguments (see, e.g., Table 1).

+ When using FE or TWFE estimators (e.g., in case of low
temporal autocorrelation), increasing data frequency is
more beneficial than lengthening the panel duration.

+ Adjust standard errors to make them robust to heterosce-
dasticity, clustering, and spatial and temporal autocorrela-
tion (if necessary).

« Choose a suitable DID method and substantiate the choice
of method by providing convincing arguments (see, e.g.,
Table 2).

« Evaluate if pre-treatment trends are parallel by creating
parallel-trends plots in static DID analyses and event-study
plots in dynamic DID settings.

« Empirically investigate the extent to which pre-treatment
trends are parallel in DID settings. This investigation
should include supplementing event-study plots with diag-
nostic tests that assess the statistical power of tests for par-
allel pre-treatment trends.

« Consider using methods such as those suggested by
Abadie (2005), Sant‘Anna and Zhao (2020), and Callaway
and Sant’Anna (2021) in DID settings where the parallel-
trends assumption only holds when conditioning on covari-
ates. However, Freyaldenhoven et al. (2019) emphasise that
this conditioning approach may often be inadequate in real-
world economic applications because it requires the condi-
tioning covariate to be a perfect proxy for the confounding
trend—an assumption that may not always hold. To address
this, Freyaldenhoven et al. (2019) propose a generalised
2SLS framework for an event study that allows conditioning
on covariates that are not necessarily perfect proxies for the
confounding trend.

« In simple DID (i.e., classic (2 X 2) or multiple-period single-
treated), if the unconditional pre-treatment trends are not
parallel and the researcher wishes to specifically control for
lagged outcome due to potential policy/program anticipa-
tion effects (Ashenfelter 1978; Ashenfelter and Card 1985;
Heckman and Smith 1999), selecting the appropriate esti-
mator requires testing for unit roots and assessing parallel
pre-treatment trends (Chabé-Ferret 2025a). If there is a unit
root in the outcome and pre-treatment trends are parallel
only when conditioning on lagged outcome, use DID with
lagged outcomes. If neither unconditional nor conditional
pre-treatment trends are parallel, choose the method with
the lower pre-treatment bias (Chabé-Ferret 2025a).

« Provide reasoning based on economic theory on parallel
post-treatment trends in DID settings.

« In DID with staggered treatment, consider using the Bacon
Decomposition to explicitly diagnose and interpret static
TWEFE estimates as a weighted average of all possible
pairwise 2 X 2 DID comparisons (Goodman-Bacon 2021).
This decomposition can be conducted with or without
time-varying covariates, and implemented using the ba-
condecomp package in Stata (Goodman-Bacon et al. 2022)
or R (Flack and Jee 2020). Alternatively, one can use the
twowayfeweights package in Stata (de Chaisemartin,
D'Haultfoeuille, and Deeb 2024) or the TwoWayFE Weights
package in R (Ciccia et al. 2024).

« Consider supplementing DID estimates using falsification
or placebo tests on outcomes arguably unrelated to the
treatment/intervention.

« In DID applications with many zeros or non-continuous
outcome variables, researchers should follow Bellemare and
Wichman (2020) and Chen and Roth (2024) for zero-inflated
outcomes and use nonlinear DID models such as exponential,
Poisson, logit, or probit specifications (Wooldridge 2023).

« If SUTVA violations are plausible (e.g., due to spillovers)
in DID or other panel-data settings, see Butts (2023) and
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Chabé-Ferret et al. (2021) for methods to test and relax this
assumption, including machine-learning approaches for de-
tectingsocial networks in panel data (Manresa 2013).

5 | Synthetic Control Method

The Synthetic Control Method (SCM) was introduced by
Abadie and Gardeazabal (2003) and later formalised by Abadie
et al. (2010, 2015). SCM is a combination of DID and matching.
Synthetic control units are selected as the weighted average of all
potential comparison units based on how closely they resemble
the treated unit(s) in the pre-treatment periods (Abadie 2021).
According to Athey and Imbens (2017), “the synthetic control
approach [...] is arguably the most important innovation in the
policy evaluation literature in the last 15years.” However, de-
spite the increasing availability of long panel datasets, this
method has not yet been widely applied in agricultural econom-
ics. The few examples for the use of this method in agricultural
economics include, for example, Grogger (2017), Mohan (2017),
Opatrny (2020) and Kim (2023).

5.1 | Prerequisites for Using SCM

SCM is particularly valuable when the parallel-trends assump-
tion required for DID does not hold, provided that sufficiently
long pre-treatment panel data are available. It is especially
well-suited for evaluating the impact of interventions affecting
a single or small number of large units such as cities, regions,
or countries, making it a useful tool in agricultural and applied
economics, where national or state-level agricultural, food,
and environmental policies can be assessed by constructing a
synthetic control group of comparable nations or states. For ex-
ample, Grogger (2017) estimates the impact of the soda tax im-
plemented in Mexico in 2014 on soda prices by comparing them
to those of other untaxed non-substitute goods, creating a syn-
thetic control group. Alternatively, researchers can construct the
synthetic control usingsoda price data from other countries not
subject to the tax, offering another way to estimate the causal
effect of the policy.

Furthermore, a balanced panel data set must be available that
includes the treated unit(s) and a reasonably large number of
potential comparison units (“donor pool”), while it includes a
reasonably large number of pre-treatment periods and at least
one post-treatment period.?> Although the SCM usually can-
not give unbiased estimates of the treatment effect, Abadie
et al. (2010) show that—under certain assumptions—the bias is
bounded and approaches zero with an increasing number of pre-
treatment periods. Hence, it is important to have a sufficiently
large number of pre-treatment units.

One of the most basic assumptions of the standard SCM is that
the data generating process corresponds to a “factor model”
(Abadie et al. 2010, equation 1), which assumes, for example,
that unobserved differences between units are constant over
time and that the effects of observed and unobserved differences
between units on the outcome are identical across all units (but
these effects can change over time). Thus, empirical applications
must clearly discuss the appropriateness of these assumptions,

for example, if the treatment could potentially affect the effects
of observed and unobserved variables on the outcome so that
these effects differ between the treatment unit and the control
unit in the post-treatment period. Furthermore, in order to avoid
overfitting, the number of potential comparison units should
not be too large, which can be achieved by restricting potential
comparison units to those that are sufficiently similar to the
treatment unit (Abadie et al. 2015). Recent studies further clar-
ified the theoretical links between SCM and latent factor mod-
els, highlighting both its strengths and limitations. Specifically,
Gobillon and Magnac (2016) demonstrate that SCM is a special
case of interactive FE estimators, while Liu et al. (2024) unify
SCM, interactive fixed effects, and other counterfactual estima-
tors within a common framework for panel data analysis.

5.2 | Criticisms of SCM

Although SCM enhances transparency by revealing each com-
parison unit's contribution to the counterfactual and, thus,
enables clear interpretation and expert evaluation of potential
biases, researcher discretion in selecting donor pools, predic-
tors, and weights may raise concerns about robustness and
replicability. These concerns can be mitigated by designing the
study (e.g., selecting donor units and predictors) without access
to post-treatment data, thereby reducing risks of specification
searches and p-value hacking (Abadie 2021). Furthermore, pre-
registration of synthetic control weights before the intervention,
similar to pre-registration of RCTs, further strengthens trans-
parency and credibility (Abadie 2021).

5.3 | Suggestions

When using SCM, we suggest doing the following (in addition to
the general suggestions provided in Section 7):

o Clearly state the assumptions that the chosen SCM requires
and discuss how credible these assumptions are in the pre-
sented empirical analysis

« Make sure that there is a sufficiently long pre-treatment
period

« Ensure that there is a sufficiently large but not too large
number of comparison units.

« Visualise the SCM estimation results using graphs.
« Present the contributions of each unit to the synthetic control.

« Conduct inference using the permutation method (Abadie
et al. 2015).

« To support the internal validity of causality using SCM,
researchers are advised to conduct validity tests, such as
leaving out units of the donor pool (with non-zero weights),
placebo tests, using fake treatment dates, and other out-
comes not related to the treatment.

« When appropriate and beneficial for reliability, consider com-
bining SCM with DID, using SDID (Arkhangelsky et al. 2021).

« Note that: (a) inference in SCM is limited to the data used
to construct the synthetic control; (b) SCM does not allow
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predictions or inferences outside the range of the observed
data; and (c) extrapolation or generalisation outside the sup-
porting data and context is invalid

« For better transparency, replicability, and credibility, re-
searchers are recommended to preregister synthetic control
weights before the analysis or the intervention, or select
donor units and predictors without access to post-treatment
data (Abadie 2021)

6 | Regression Discontinuity and
Difference-in-Discontinuity Designs

Regression Discontinuity Designs (RDDs) and Difference-in-
Discontinuity Designs (DiDDs) can be set up in multiple ways
(as discussed below and in Wuepper and Finger 2023, in more
detail) but they all share a particular mechanism for identifying
causal effects: if treatment assignment is triggered by a clearly-
defined threshold in a continuously distributed variable,?°
then—given a few falsifiable assumptions—discontinuity in the
outcome right at this threshold quantifies the treatment effect
(Thistlewaite and Campbell 1960; Imbens and Lemieux 2008).
Intuitively, this works especially well with arbitrarily set thresh-
olds because this minimises the risk that, besides the treatment
assignment, something else “jumps” exactly at the threshold.
Another important condition is that observations (usually peo-
ple) cannot choose which side of the threshold they are on (e.g.,
if it is well known that a subsidy is available to farms below a
certain size, farmers whose farms are just above the threshold
may be able to take measures that ensure that their farms fall
just below, which might make the treatment endogenous).

6.1 | Regression Discontinuity Design

The fundamental requirement for RDDs is the existence of a
continuously distributed variable that has a threshold which
triggers treatment assignment.?’ For instance, public extension
services may only visit farms within an arbitrarily defined max-
imum distance-to-branch (Pan et al. 2018), and governments
might target villages with an anti-poverty programme if they
are above an arbitrarily defined poverty threshold (Alix-Garcia
et al. 2013). Also, geographical borders can be used such as his-
torical borders within a country (Noack et al. 2022), or national
borders dividing countries (Wuepper, Borrelli, and Finger 2020;

Cambodid |

? Cambodia 4 ‘

- Vietnam

Wuepper, Le Clech, et al. 2020). When geographic borders are
being used, the most general treatment one can define is “be-
longing to one side of the border or the other.” For example, one
might ask how much agricultural or environmental outcomes
are simply the result of an area belonging to one country and not
another (see, e.g., figure 1 or Wuepper, Borrelli, and Finger 2020).
When the border triggers mainly one specific mechanism, one
might also be able to focus more narrowly on this mechanism
directly. For example, Noack et al. (2022) use the historical bor-
der between East and West Germany to identify the effect of
agricultural structures (small-scale vs. large-scale farming) on
bird diversity, and Gupta et al. (2024) use Indian state borders
to identify the negative impact of language barriers on the effec-
tiveness of agricultural extension services. Sometimes the treat-
ment is introduced spatially with a clear boundary, for example,
in the case of protected areas (Neal 2024) or World Heritage sites
(Rodriguez et al. 2025). In this case, the effect of “belonging to
one side and not the other” is a narrow treatment in and of itself.

The most intuitive way to understand how a national border can
be used to identify the effect of an area belonging to one country
but not another is provided in Figure 1. This figure is based on
data from Wuepper et al. (2023). Their starting point is to quan-
tify for each of many years how much countries matter for local
crop yields. Here, we only focus on two countries: Vietnam and
Cambodia. The border can be divided into small segments (panel
a), and crop yields can be quantified in high resolution from sat-
ellite imagery (panel b) (Wuepper et al. 2025). When computing
local averages of crop yields at equal distances from the border and
plotting these as a function of border distance, a pattern emerges:
whereas crop yield is distributed rather smoothly on either side
of the border, there is a stark jump at the border (panel c), which
cannot be explained by potential confounders such as rainfall or
sunshine because these do not jump at the border: it is the coun-
tries as political constructs that make the fields in Vietnam more
productive than those in Cambodia (Wuepper et al. 2023). The
most important assumption here is that no potential confounding
factors also show a discontinuity right at the border. For example,
if this border was located right on top of a natural barrier such as
amajor mountain range, the sudden change in agricultural condi-
tions could also explain a jump in crop yields. This can be tested,
for example, by replacing the outcome variable, in this case crop
yields, with elevation, rainfall, temperature, or sunshine, which
would reveal whether these are also discontinuously distributed.
Wuepper et al. (2023) analyse first the role of the institutions of

5
L
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FIGURE 1 | (a) The border between Cambodia and Vietnam separates an otherwise comparable agricultural area into two countries. Colours

distinguish different border segments. (b) Satellite data can be used to obtain a methodologically unified, high-resolution crop yield measure. (c)

An important step: Before the actual RDD is estimated, the data should be plotted, so that it is possible to visually inspect whether the discontinuity

that is to be estimated is visible. It is usually helpful to aggregate the data points in small bins and fit regression lines separately on both sides of the
threshold. The actual RDD estimates the size of the discontinuity at the threshold. Sources: Wuepper et al. (2023) (a +c), Google Earth (b).
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these countries in differences in crop yields, and second how
much agricultural technology (mechanisation and irrigation) is
the channel. For these further analyses, they move on to panel
data, as discussed in the followingsection.

6.2 | Difference-in-Discontinuity Design
and Regression Discontinuity in Time

An increasingly popular research design is the DiDD, which
is a combination of RDD and DID. It is set up like a standard
DID design with the only difference being that it focusses on the
change in a discontinuity from before to after treatment. This
built-in extra step improves the chance of a valid parallel-trends
assumption because the estimated discontinuity already helps to
avoid confounding factors as discussed above. In the best-case
scenario, a researcher finds a situation in which the threshold is
newly created at some point in time (e.g., an existingstate is split
into two), which means that demonstrating that there was no dis-
continuity prior to treatment is straightforward, and afterwards
the discontinuity shows the causal treatment effect (Garg and
Shenoy 2021). Alternatively, in the study by Wuepper et al. (2023),
the leveraged country borders do not change, but they show that
the discontinuities in crop yields are stable before treatment and
change in response to countries' institutional changes.

Finally, Regression Discontinuity in Time (RDiT) tackles en-
dogeneity by examining a narrow time window around the
implementation of a policy, where time is used as the running
variable and the treatment date acts as the threshold.?® This ap-
proach assumes that unobserved factors remain similar within
the window, which allows pre-treatment observations to be used
as a comparison for post-treatment observations. RDiT utilises
flexible polynomial time trends and has been recently used in
studies involvingso-called “sin taxes”, sugar and fat taxes, air
quality, fisheries, and food safety (Hausman and Rapson 2018;
Bovay 2025). The growing availability of high-frequency data
further enhances its utility for researchers evaluating national
agricultural and environmental policies and interventions.

6.3 | Assessing the Discontinuity

For the research designs discussed above, simple procedures
can be followed. These include performing various tests and an-
alytics in a chronological order, which allows readers to easily
follow and judge the credibility of the analysis (Wuepper and
Finger 2023). This procedure is facilitated by off-the-shelf soft-
ware packages, especially the Python, R, and Stata packages
provided by Calonico et al. (2015) and Calonico et al. (2017).%°
The two main assumptions of RDD are exogenous thresholds
and no endogenous sorting. The simplest way of examining the
assumption of no endogenous sorting is to look for bunching
near the threshold (McCrary 2008). The simple logic is that if
there is a striking dip in observations on one side of the thresh-
old, and these “missing” observations all bunch together on the
other side of the threshold, it is likely that it is the result of opti-
mising behaviour (e.g., if a regulation that only applies to farms
above 5ha was introduced, farmers who initially had 5.2ha
quickly got rid of 0.3 ha).

6.4 | Technical Aspects

There are a few important technical aspects to consider. First,
for any kind of discontinuity analysis, one needs to restrict the
dataset to observations within an “optimal” bandwidth near
the cut-off (Cattaneo and Titiunik 2022). This can have an im-
portant impact on the estimates as it involves a variance-bias
trade-off. The cleanest comparison is possible just next to the
threshold (assuming the absence of spillovers). However, using
only observations that are directly at the threshold will make the
sample size small and specific; keeping only one observation on
each side of the threshold would even make it impossible to fit a
regression line. Thus, in order to obtain precise and meaningful
estimates, one must allow for some maximum distance to the
border, while still having two sides that are sufficiently compa-
rable to each other. Over the years, various algorithms have been
developed that aim to find the statistically optimal bandwidth
(Wuepper and Finger 2023). It is generally a good idea to demon-
strate the sensitivity of one's findings to small (or large) devia-
tions from the chosen bandwidth. For example, if the running
variable is farm size and the optimal bandwidth (e.g., according
to the Mean Squared Error) is 30ha, it is good to additionally re-
port the findings for a bandwidth of 25 and 35ha. Second, in ad-
dition to choosing the optimal bandwidth, one must decide how
to fit the regression to the observations. The simplest approach is
to use a linear regression with a dummy variable identifying the
threshold and then two variables reflecting the continuous run-
ning variable, separately on each side of the threshold. A more
sophisticated way to do it is to use local polynomial functions
(Cattaneo and Titiunik 2022). These can be based on a continu-
ity assumption as discussed above, that is, a smooth distribution
of potential outcomes across the threshold; or a local randomi-
sation assumption similar to common experimental set-ups,
that is, potential outcomes are statistically the same on either
side of the threshold (Cattaneo and Titiunik 2022; Wuepper and
Finger 2023). A limitation of the local polynomial approach is
its relative complexity and computational demand compared to
a linear regression framework. For example, in the local polyno-
mial framework, it is not straightforward how to handle panel
data with fixed effects. Furthermore, with increasingly avail-
able, very large datasets, such as high-resolution satellite data
(Wuepper et al. 2025), the simpler linear regression approach is
clearly faster than the local polynomial approach.

6.5 | Suggestions

When using discontinuity-based methods, we suggest doing the
following (in addition to following the general suggestions that
we provide in Section 7):

« Clearly describe the running variable, explain the reason
for a discontinuity at the threshold, and discuss all variables
that might discontinuously “jump” at the threshold, espe-
cially potential confounders.

« Visually assess the discontinuity (or the change in disconti-
nuity) and the data distributions around the discontinuity.

« Conduct placebo tests to probe the exogeneity of the thresh-
old (see, e.g., Wuepper and Finger 2023).
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« Use alternative algorithms to compute the optimal statisti-
cal bandwidth for robustness checks.

« Test for endogenous sorting across the threshold
(McCrary 2008).

+ In a discrete running variable with mass points, consider
local randomisation or redefining the running variable by
aggregating observations at the mass points to handle the
discreteness (Cattaneo and Titiunik 2022).

« Discuss the generalisability of the results as the effects
are identified very locally at the threshold. Sometimes, a
threshold might be found in unrepresentative places (e.g.,
places with especially high or low agricultural productivity)
or among unrepresentative units (e.g., among farms that are
especially large or small).

7 | General Suggestions

In addition to the method-specific guidelines provided in previ-
ous sections of this paper, we suggest doing the following irre-
spective of the chosen method:

+ Before pursuing causal inference, it is important to deter-
mine whether the question at hand concerns the “effect of
a cause” or the “cause of an effect.” Plausible and policy-
relevant causal inference can typically be made only in re-
lation to the “effect of a cause,” not the “cause of an effect.”
The latter is only meaningful to the extent that it helps iden-
tify which cause to study when estimating the “effect of a
cause” (Gelman and Imbens 2013)

« As the mere use of big data sets, by itself, does not resolve
causal identification challenges, avoid the “big data fal-
lacy”, where a large sample size is erroneously perceived as
a substitute for a proper identification strategy (Vosgerau
et al. 2025).

« Start from the theoretical understanding of the problem
(e.g., based on a DAG) to define an identification strategy
and clearly discuss the assumptions under which the quan-
tity of interest is identified, any potential explanations for
the assumptions being violated and their consequences for
identification.

» Before jumping into the econometric analyses, begin by
examining the data, which should involve the computation
of various descriptive statistics and plotting and mapping
the data in various ways. For instance, for panel data, it
is important to understand how the data varies over units
and over time. Fully understanding the data is essential
for making appropriate data preparation and modelling
choices.

+ Carefully consider the assumptions of the chosen estima-
tion approach(es). Consider the extent to which these as-
sumptions fit the theoretically motivated identification
strategy and the data at hand.

 Clearly point out the added value of the chosen method
compared to simpler approaches such as OLS. Unless added
value can be clearly demonstrated, a simpler method may be
preferable.

o Check if the methods used require a “common support”
and, if they do, the extent to which the common support
assumption is fulfilled, that is, the treated units indeed have
comparable counterparts in the control group (see, e.g.,
Heckman et al. 1998)3°

« Discuss the plausibility of the SUTVA in the specific em-
pirical analysis. Under this assumption, the potential out-
comes of each observation only depend on the treatment of
this observation and not on the treatment of other obser-
vations. All methods discussed in previous sections require
this assumption unless spillovers between observations are
explicitly and appropriately accounted for in the empirical
analysis.

« It can be informative to simulate artificial data sets with
known properties before using actual data to perform an
empirical analysis. These properties may include the func-
tional form of the analysed relationship, the magnitude
of the treatment effect and its heterogeneity between ob-
servations, correlations between observed variables and
between observed and unobserved variables, potential en-
dogeneity issues, validity of the exogeneity assumption and
IV strength (in the case of an IV-based method), the degree
of autocorrelation of observed and unobserved variables (in
the case of panel data and/or the use of lagged variables),
deviations from independently and identically distributed
(i.i.d.) error terms (e.g., heteroscedasticity, clustering), and
other assumptions. Use these data sets to test the estimation
approach (as well as the code used to implement it). Test the
conditions under which the estimation approach succeeds
in recovering the effects used to create the artificial data.
Using artificial data to test the code/inference is an inte-
gral part of the data-generating-process centric workflow
(McElreath 2018; Gelman et al. 2020; Storm et al. 2024).

« If feasible, consider using multiple identification ap-
proaches and critically discuss what can be learnt from
the different estimates, as they are based on different
assumptions and have different advantages and disad-
vantages. Recent textbooks on causal inference, such as
Cunningham (2021) and Huntington-Klein (2025), pro-
vide more detailed information about and code examples
for several of the methods mentioned in this paper, which
are helpful sources of information for robustness checks
and sensitivity analyses.

8 | Conclusions

We do not recommend one particular method over another as
the most suitable method is case-dependent. Therefore, our aim
is to provide clear guidelines that should be followed when ap-
plying these methods.

Even if these guidelines for investigating causal effects with ob-
servational data are followed, there is always uncertainty about
whether all the required assumptions are completely fulfilled.
Therefore, one should be very careful when using causal lan-
guage such as “the effect of A on B”, “the impact of A on B”, “A af-
fects B”, “A reduces B”, “A increases B”, or “A leads to a change in
B”. As a precaution, one could use statements about associations
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such as “A is positively related to B”, “A is negatively related to B”,
“A is associated with B”, or “A is conditionally associated with B”.
In any case, it is important to use consistent language through-
out the entire paper.3! If causal statements are made, it is crucial
to clearly point out that these statements are conditional on the
appropriateness of the identifying assumptions, the model speci-
fication implemented, and the data used for estimation.

Finally, it is important to acknowledge that our article cannot
provide an exhaustive overview of all available approaches for
causal identification in applied economics research, as the field
continues to advance and benefit from ongoing methodological
developments. One particularly active area of development is
mediation analysis (e.g., Imai, Keele, and Tingley 2010; Imai,
Keele, and Yamamoto 2010; Deuchert et al. 2019; Chabé-
Ferret 2025b, section 15). Another noteworthy line of research,
inspired by the classical work of LaLonde (1986), involves
assessing the reliability of observational methods (including
those discussed in this article) in estimating causal effects (e.g.,
Glazerman et al. 2003; Chaplin et al. 2018; Gordon et al. 2019;
Gechter 2024; Bernard et al. 2024).
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Endnotes

! More general factors undermining the credibility of published re-
sults include publication bias, insufficient sample size, insufficient
standardisation of variable definitions across studies, and various
types of statistical malpractice such as p-value hacking or explor-
atory research that is incorrectly framed as confirmatory research,
a practice known as Hypothesising After the Results are Known
(HARKIing). All of these factors and practices can lead to biased and
less replicable results and misleading conclusions. See Ioannidis and
Doucouliagos (2013) for a more detailed discussion of these drivers of
a loss of credibility.

2 While recent research documents that the uptake of scientific ev-
idence by policymakers may be selective (see, for example, Vivalt
and Coville (2023) who show that policymakers update their be-
liefs more strongly on positive evaluation outcomes than on neg-
ative evaluation outcomes, or Rao (2025) who shows that policy
decisions are only in very specific situations related to results of
programme evaluations), we are unaware of studies that investi-
gate the use of results from economics research by other decision
makers. However, given that governments and other stakehold-
ers frequently spend money on independent research studies and
that private businesses can benefit from reliable and unbiased
scientific evidence, we contend that many decision makers are
genuinely committed to evidence-based decision making. For ex-
ample, in many resource-constrained settings, credible estimates
of programme effectiveness can help guide more efficient resource
allocation and support better-targeted interventions. Even where
evidence uptake may be delayed or selective, credible (causal) im-
pact evaluation solidifies the evidence base and can inform policy
discourse and decisions.

3 In addition, the external validity of the results should be outlined
and discussed, for example whether the results that are based on
a specific group of economic agents such as farmers or consumers
in a specific region or country may also be valid for other groups of
economic agents such as farmers or consumers in other regions or
countries. However, the discussion of external validity is outside
the scope of this paper, which is limited to the issue of internal
validity.

4 See, for example, El Benni et al. (2025), who provide a review of stud-
ies using experimental methods to assess how nudge interventions
influence farmers' behaviour.

5 Even in the relatively rare cases in which experimental methods can
be applied, their results often have important limitations. For ex-
ample, RCTs are usually restricted to narrow cases, the results are
rarely directly generalisable, and there are often additional compli-
cations, such as non-compliance with the treatment or uncontrolla-
ble external influences. Furthermore, it may be hard to prevent the
non-treated group from becoming informed about the treatment of
the intervention group (Buchanan-Smith et al. 2016; Koppenberg
et al. 2023). In addition, it is difficult to identify the mechanisms be-
hind the cause-effect interplay (Quisumbing et al. 2020; Koppenberg
et al. 2023; Todd and Wolpin 2023). Even when using experiments,
only relationships with randomised variables can indicate causal ef-
fects, while relationships with non-randomised variables (e.g., per-
sonal characteristics) usually cannot be interpreted as causal effects
(see, e.g., Nigus et al. 2024). Deaton (2010) and Bulte et al. (2020) pro-
vide overviews of the limitations of RCTs.
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% In this paper, we focus on the endogeneity of explanatory variables.
However, all other assumptions that are required to obtain unbiased
and/or consistent estimates should also be fulfilled and discussed
when presenting econometric analyses. For instance, the functional
form used in the econometric analysis should resemble the relation-
ship between the explanatory variables and the dependent variable
in the population. Furthermore, the observations used for the esti-
mation should be a random sample of the relevant population, while
deviations from random sampling, e.g., non-proportional stratified
random sampling, should be appropriately addressed in the econo-
metric analysis. Furthermore, what the used data actually measure
and what the results really imply should also be correctly interpreted
(Gibson 2019).

7Regarding the interpretation of the coefficients of covariates, see
Westreich and Greenland (2013).

8 Several online and offline software tools for visualising and analysing
DAGs exist. One of these tools is the open-source software DAGitty
(https://www.dagitty.net/).

9 It is important to note that a DAG indicates whether a causal effect is
non-parametrically identified, that is, the identification does not rely
on parametric assumptions, for example, about the functional form
of the modelled relationships or the distribution of the error term.
Even when using parametric empirical methods, in most cases it is
desirable to identify causal effects non-parametrically so that approx-
imately reliable results are obtained if parametric assumptions are
not 100% fulfilled.

10 This estimator is called ‘doubly-robust’ as only one of its two regres-
sion equations needs to be correctly specified, but otherwise this
estimator requires the same identification assumptions as an OLS
regression (e.g., Kurz 2022, equation 1).

11 King and Nielsen (2019) point out that “propensity scores should not
be used for matching” and that other matching methods are more
suitable than PSM.

121n this paper, we use the narrow definition of I'Vs, that is, we only
consider the variables that are used to explain the endogenous regres-
sor but that are not used to explain the outcome variable as I'Vs. The
broad definition of IVs additionally includes the variables that are
used to explain the outcome variable because these variables are also
used to explain the endogenous regressor.

13 See figure 3 of Lal et al. (2024). Lal et al. (2024) also point out that
this makes 2SLS estimations more susceptible to p-value hacking and
publication bias.

14 Some empirical researchers (e.g., Acemoglu et al. 2001) aim to test the
exogeneity of IVs by estimating the outcome equation with both the
endogenous regressor and the IV (and of course all relevant control
variables). If the IV affects the dependent variable only through the
endogenous regressor, the coefficient of the IV in this auxiliary re-
gression should be close to zero. However, if the endogenous explana-
tory variable is indeed endogenous, the coefficient of this variable and
the coefficient of the IV are not jointly identified (Conley et al. 2012).
Hence, this auxiliary regression does not provide useful information.

15 The ‘falsification test” for IV-regression with a binary endogenous
treatment variable, originally applied by Di Falco et al. (2011), has
been used in several empirical studies in the agricultural and ap-
plied economics literature. However, this test is invalid because it
relies exclusively on untreated units, thereby introducing sample-
selection bias. If the IV is valid, meaning it is independent of the po-
tential outcomes with treatment and without treatment, it does not
remain independent of the (observed) outcome without treatment
when conditioning on the sample of untreated units. This is be-
cause, if the IV is relevant, conditioning on untreated units induces
a correlation between the IV and unobserved factors that affect the
treatment assignment and potentially also the outcome. We illustrate
this with a simple treatment assignment model. A unit i is treated if
ay + a'x; + yz; + £; > 0, where X; is a vector of control variables, z; is

the IV, and ¢, is the error term capturing the influence of unobserved
factors on treatment assignment. Restricting the sample to untreated
units implies: ¢; < — «, — a’x; — yz;, which means the expected value
of ¢; becomes a function of z; (unless the IV is irrelevant, i.e., y = 0).
As a result, the IV z; becomes correlated with the error term in the
outcome equation, violating the exclusion restriction (unless the
selection-on-observables assumption holds, i.e., there are no unob-
served factors that affect both treatment and outcome so that ¢; is un-
correlated with the error term in the outcome equation). The authors
thank an anonymous reviewer for pointing this out.

16 Aronow and Carnegie (2013) suggest a method that requires either
homogeneity of the treatment effect or homogeneity of compliance
(i-e., IVs have the same effect on the treatment assignment across all
observations).

17 Appendix A provides a more detailed discussion of machine learning
IV methods.

18 While fixed effects help to control for biases arising from unobserved
time-invariant confounders, common issues in fixed-effect applica-
tions are temporal and spatial correlation, clustering, and heterosce-
dasticity in the error term. The standard approach to dealing with
this is to obtain standard errors that are robust to these deviations
from independently and identically distributed errors (see, e.g., Low
et al. 2025, for an example).

19 Making standard errors robust to clustering accounts for autocor-
relation in the treatment variable but not for autocorrelation in the
outcome variable, which may require dynamic specifications for con-
sistent estimation (Arellano and Bond 1991; Arellano and Bover 1995;
Chabé-Ferret 2025a, 2025b).

20Tt is important to note that DID is a research design, while FE, TWFE,
FD, etc. are estimation methods. Depending on the data structure and
assumptions about the data generating process, different estimators
are suitable for DID research designs.

In certain cases, a simple DID design may not yield reliable causal
inference. For instance, if a policy targets farmers younger than
40years in a specific state, comparing this group of farmers to either
farmers aged 40-49years in the same state or to farmers younger
than 40years in other states may lead to biased estimates because it
does not account for age-related or state-specific trends, respectively.
To address this, a triple-DID estimator uses differences in three di-
mensions (state, age group, and time) to isolate the causal effect of the
policy change. The triple DID estimator, which can also be calculated
as the difference between two DID estimators, may only require one
parallel-trends assumption as long as the bias is the same in both es-
timators, in which case the bias cancels out when differenced (Olden
and Moen 2022).

22 Staggered treatment is a setting where different units adopt/imple-
ment the treatment at different times with no reversal to the unit's
treatment status, that is, if a unit is treated once, it remains always
treated (Callaway and Sant'’Anna 2021).

23 For classic (2 x 2) and multiple-period (single treated group) DID, see
Chabé-Ferret (2015) and Chabé-Ferret (2025a) for tests and guidance
on when to condition on lagged outcomes. In particular, Chabé-
Ferret (2025a) provides a detailed practical checklist to support these
decisions.

24 Although parallel pre-treatment trends are neither necessary nor suf-
ficient for obtaining unbiased estimates, it is highly recommended to
test for parallel pre-treatment trends because if there are parallel pre-
treatment trends, it is more likely that the parallel-trends assumption
is fulfilled, and if pre-treatment trends are not parallel, it is less likely
that the parallel-trends assumption is fulfilled.

25 Some Generalised SCM methods can also be applied to unbalanced
panel data, for example, the method implemented in the R package
gsynth (Xu and Liu 2021) that adds the capability to use unbalanced
panel data to the method suggested by Xu (2017).
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https://www.dagitty.net/

26 Under certain conditions, it is also possible to apply the RDD frame-
work if the running variable is discrete (e.g., food safety inspection
score based on restaurant hygiene inspections). However, the em-
pirical analysis must take into account the discreteness of the run-
ning variable. Details are available, for example, in Kolesar and
Rothe (2018) and Cattaneo and Titiunik (2022), while software pack-
ages such as rdhonest for Stata (Armstrong et al. 2023) or RDHonest
for R (Kolesar 2025) can be used.

27 The threshold does not have to deterministically trigger the treatment
as it does in the standard model. If the threshold only changes the
probability of treatment, one moves from the sharp RDD to the fuzzy
RDD, which involves estimating an I'V regression such as 2SLS with
the threshold as the I'V.

28 RDIT is related to Interrupted Time Series (ITS), which is another
method that also leverages temporal variation. However, RDiT re-
quires discontinuity at the cut-off, bandwidth selection, and strong
RDD assumptions that can be empirically tested (e.g., via the density
test suggested by McCrary 2008). While ITS can identify changes in
a trend without these requirements, it typically requires longer time
series and lacks formal tests for violations of key identifying assump-
tions, such as manipulation or anticipation.

29 All available at: https://rdpackages.github.io/rdrobust/.

30 The concept of common support is based on a binary treatment vari-
able, but similar criteria can be made for continuous explanatory vari-
ables of interest. For instance, when investigating the effect of farm
size and farm size is strongly correlated with confounders such as
farm type, soil characteristics, climate, and ownership type, there
may not be farms available in the data that differ only in size while
sharing similar values of other characteristics.

31 One minor exception to this rule would be to write that a study “aims
to estimate the effect of A on B”, to explain why the estimates may not
indicate causal effects, and to interpret all estimates as conditional as-
sociations (as done in, for example, Athounton and Henningsen 2024).

References

Abadie, A. 2005. “Semiparametric Difference-in-Differences
Estimators.” Review of Economic Studies 72, no. 1: 1-19.

Abadie, A. 2021. “Using Synthetic Controls: Feasibility, Data
Requirements, and Methodological Aspects.” Journal of Economic
Literature 59, no. 2: 391-425.

Abadie, A., A. Diamond, and J. Hainmueller. 2010. “Synthetic Control
Methods for Comparative Case Studies: Estimating the Effect of
California's Tobacco Control Program.” Journal of the American
Statistical Association 105, no. 490: 493-505.

Abadie, A., A. Diamond, and J. Hainmueller. 2015. “Comparative
Politics and the Synthetic Control Method.” American Journal of
Political Science 59, no. 2: 495-510.

Abadie, A., and J. Gardeazabal. 2003. “The Economic Costs of Conflict:
A Case Study of the Basque Country.” American Economic Review 93,
no. 1: 113-132.

Acemoglu, D., S. Johnson, and J. Robinson. 2001. “The Colonial Origins
of Comparative Development: An Empirical Investigation.” American
Economic Review 91, no. 5: 1369-1401.

Aihounton, G., and A. Henningsen. 2024. “Does Organic Farming
Jeopardize Food Security of Farm Households in Benin?” Food Policy
124:102622.

Alix-Garcia, J., C. McIntosh, K. R. Sims, and J. R. Welch. 2013. “The
Ecological Footprint of Poverty Alleviation: Evidence From Mexico's
Oportunidades Program.” Review of Economics and Statistics 95, no. 2:
417-435.

Amemiya, T.1974. “The Nonlinear Two-Stage Least-Squares Estimator.”
Journal of Econometrics 2, no. 2: 105-110.

Angrist, J. 2014. “The Perils of Peer Effects.” Labour Economics 30:
98-108.

Angrist, J., and J.-S. Pischke. 2009. Mostly Harmless Econometrics: An
Empiricist's Companion. Princeton University Press.

Angrist, J., and J.-S. Pischke. 2010. “The Credibility Revolution in
Empirical Economics: How Better Research Design Is Taking the Con
out of Econometrics.” Journal of Economic Perspectives 24, no. 2: 3-30.

Arellano, M., and S. Bond. 1991. “Some Tests of Specification for
Panel Data: Monte Carlo Evidence and an Application to Employment
Equations.” Review of Economic Studies 58: 277-297.

Arellano, M., and O. Bover. 1995. “Another Look at the Instrumental
Variables Estimation of Error Components Models.” Journal of
Econometrics 68: 29-51.

Arkhangelsky, D., S. Athey, D. A. Hirshberg, G. W. Imbens, and
S. Wager. 2021. “Synthetic Difference-in-Differences.” American
Economic Review 111, no. 12: 4088-4118.

Armstrong, T., M. Kolesér, Y. Chen, S. Zhang, and K.-H. Lee. 2023.
“rdhonest: Honest Confidence Intervals for Regression Discontinuity
Designs.” Stata Package. Accessed July 2025. Development Version.
https://raw.githubusercontent.com/tbarmstr/RDHonest-vStata/mas-
ter/current/.

Aronow, P. M., and A. Carnegie. 2013. “Beyond Late: Estimation of the
Average Treatment Effect With an Instrumental Variable.” Political
Analysis 21, no. 4: 492-506.

Ashenfelter, O. 1978. “Estimating the Effect of Training Programs on
Earnings.” Review of Economics and Statistics 60, no. 1: 47-57.

Ashenfelter, O., and D. Card. 1985. “Using the Longitudinal Structure
of Earnings to Estimate the Effect of Training Programs.” Review of
Economics and Statistics 67, no. 4: 648-660.

Athey, S., M. Bayati, N. Doudchenko, G. Imbens, and K. Khosravi. 2021.
“Matrix Completion Methods for Causal Panel Data Models.” Journal of
the American Statistical Association 116, no. 536: 1716-1730.

Athey, S., and G. Imbens. 2017. “The State of Applied Econometrics:
Causality and Policy Evaluation.” Journal of Economic Perspectives 31,
no. 2: 3-32.

Athey, S., and G. W. Imbens. 2006. “Identification and Inference in
Nonlinear Difference-In-Differences Models.” Econometrica 74, no. 2:
431-497.

Athey, S., and G. W. Imbens. 2022. “Design-Based Analysis in
Difference-In-Differences Settings With Staggered Adoption.” Journal
of Econometrics 226, no. 1: 62-79.

Athey, S., J. Tibshirani, and S. Wager. 2019. “Generalized Random
Forests.” Annals of Statistics 47, no. 2: 1148-1178.

Auci, S., N. Barbieri, M. Coromaldi, and M. Michetti. 2021. “Climate
Variability, Innovation and Firm Performance: Evidence From the
European Agricultural Sector.” European Review of Agricultural
Economics 48, no. 5: 1074-1108.

Barrett, C. B., and M. R. Carter. 2010. “The Power and Pitfalls
of Experiments in Development Economics: Some Non-Random
Reflections.” Applied Economic Perspectives and Policy 32, no. 4:
515-548.

Bartik, T. 1991. Who Benefits From State and Local Economic
Development Policies? W.E. Upjohn Institute for Employment Research.

Basu, D.. 2018. “When Can We Determine the Direction of Omitted
Variable Bias of OLS Estimators?” Technical Report No. 2018-16.
Department of Economics, University of Massachusetts, Amherst, MA.

Baylis, K., T. Heckelei, and H. Storm. 2021. “Machine Learning in
Agricultural Economics (Chapter 83).” In Handbook of Agricultural
Economics, edited by C. B. Barrett and D. R. Just, vol. 5, 4551-4612.
Elsevier.

20

Journal of Agricultural Economics, 2025

85U807 SUOWILLIOD BAes.D 3|qedljdde 8Ly Aq pausenob ale il VO ‘8sn 4O Sa|ni Joj ARIqIT 8UIIUO AB|1M UO (SUOIpUOD-pUe-SWLBHLI0d" A | 1M Afe.q 1 BU1|UO//:SANY) SUORIPUOD PUe SWwie 1 8L} 88S *[9202/T0/T] Uo AreiqiTauliuO A8|IM ‘6T00L 26G6-LLYT/TTTT OT/I0p/W0d 8| Im" Afeiq | puljuo//SaRY Wol4 papeo|umoq ‘0 ‘25561 T


https://rdpackages.github.io/rdrobust/
https://raw.githubusercontent.com/tbarmstr/RDHonest-vStata/master/current/
https://raw.githubusercontent.com/tbarmstr/RDHonest-vStata/master/current/

Bazzi, S., and M. A. Clemens. 2013. “Blunt Instruments: Avoiding
Common Pitfalls in Identifying the Causes of Economic Growth.”
American Economic Journal: Macroeconomics 5, no. 2: 152-186.

Belay, D. G., and H. Ayalew. 2020. “Nudging Farmers in Crop Choice
Using Price Information: Evidence From Ethiopian Commodity
Exchange.” Agricultural Economics 51, no. 5: 793-808.

Belay, D. G., and J. D. Jensen. 2020. ““The Scarlet Letters’: Information
Disclosure and Self-Regulation: Evidence From Antibiotic Use in
Denmark.” Journal of Environmental Economics and Management 104:
102385.

Belay, D. G., and J. D. Jensen. 2022. “Quantitative Input Restriction and
Farmers' Economic Performance: Evidence From Denmark's Yellow
Card Initiative on Antibiotics.” Journal of Agricultural Economics 73,
no. 1: 155-171.

Belay, D., and J. V. Olsen. 2025. “Economic Impacts of Salmonella
Dublin in Dairy Farms: Panel Evidence From Denmark.” Agricultural
Economics 56, no. 4: 666—693.

Bellemare, M. 2012. “The ‘Credibility Revolution’ in Economics:
Agricultural and Applied Economists, Take Note.” Keynote Lecture
at the Annual Meeting of the SCC-76 ‘Economics and Management of
Risk in Agriculture and Natural Resources’ Group, Pensacola Beach
(FL), USA. Accessed December 2024. https://marcfbellemare.com/
wordpress/wp-content/uploads/2012/03/BellemareSCCKeynote.pdf.

Bellemare, M. 2015. “Metrics Monday: What to Do With Endogenous
Control Variables?” Blog Post, Accessed December 2024. https://marcf
bellemare.com/wordpress/11057.

Bellemare, M., J. Bloem, and N. Wexler. 2024. “The Paper of How:
Estimating Treatment Effects Using the Front-Door Criterion.” Oxford
Bulletin of Economics and Statistics 86, no. 4: 951-993.

Bellemare, M., T. Masaki, and T. Pepinsky. 2017. “Lagged Explanatory
Variables and the Estimation of Causal Effect.” Journal of Politics 79,
no. 3: 949-963.

Bellemare, M. F., and D. L. Millimet. 2025. “Retrospectives: Yair
Mundlak and the Fixed Effects Estimator.” Journal of Economic
Perspectives 39, no. 2: 261-274.

Bellemare, M., and L. Novak. 2017. “Contract Farming and Food
Security.” American Journal of Agricultural Economics 99: 357-378.

Bellemare, M. F., and C. J. Wichman. 2020. “Elasticities and the Inverse
Hyperbolic Sine Transformation.” Oxford Bulletin of Economics and
Statistics 82, no. 1: 50-61.

Belloni, A., D. Chen, V. Chernozhukov, and C. Hansen. 2012. “Sparse
Models and Methods for Optimal Instruments With an Application to
Eminent Domain.” Econometrica 80: 2369-2429.

Bernard, D., G. Bryan, S. Chabé-Ferret, J. de Quidt, J. Fliegner, and R.
Rathelot. 2024. “How Much Should We Trust Observational Estimates?
Accumulating Evidence Using RCTs With Imperfect Compliance.”
Technical Report 18794. CEPR Press. Accessed September 2025. https://
cepr.org/publications/dp18794.

Bertrand, M., E. Duflo, and S. Mullainathan. 2004. “How Much Should
We Trust Differences-In-Differences Estimates?” Quarterly Journal of
Economics 119, no. 1: 249-275.

Betz, T., S. Cook, and F. Hollenbach. 2018. “On the Use and Abuse of
Spatial Instruments.” Political Analysis 26, no. 4: 474-479.

Bilinski, A., and L. A. Hatfield. 2020. “Nothing to See Here? Non-
Inferiority Approachesto Parallel Trends and Other Model Assumptions.”
arXiv. Accessed December 2024. https://arxiv.org/abs/1805.03273.

Blanc, E., and W. Schlenker. 2017. “The Use of Panel Models
in Assessments of Climate Impacts on Agriculture.” Review of
Environmental Economics and Policy 11, no. 2: 258-279.

Blattman, C. 2010. “The Cardinal Sin of Matching.” Blog Post. Accessed
December 2024. https://chrisblattman.com/blog/2010/10/27/the-cardi
nal-sin-of-matching/.

Blundell, R., and S. Bond. 1998. “Initial Conditions and Moment
Restrictions in Dynamic Panel Data Models.” Journal of Econometrics
87:11-143.

Borusyak, K., P. Hull, and X. Jaravel. 2025. “A Practical Guide to Shift-
Share Instruments.” Journal of Economic Perspectives 39: 181-204.

Borusyak, K., X. Jaravel, and J. Spiess. 2024. “Revisiting Event Study
Designs: Robust and Efficient Estimation.” Review of Economic Studies
91, no. 6: 3253-3285.

Bovay, J. 2025. “Shaming, Stringency, and Shirking: Evidence From
Food-Safety Inspections.” American Journal of Agricultural Economics
107, no. 1: 152-180.

Breuer, M. 2022. “Bartik Instruments: An Applied Introduction.”
Journal of Financial Reporting 7, no. 1: 49-67.

Brignoli, P. L., Y. de Mey, and C. Gardebroek. 2024. “Everything Under
Control: Comparing Machine Learning and Classical Econometric
Impact Assessment Methods Using FADN Data.” European Review of
Agricultural Economics 51, no. 5: 1410-1441.

Buchanan-Smith, M., J. Cosgrave, and A. Warner. 2016. “Evaluation of
Humanitarian Action Guide.” ALNAP (Active Learning Network for
Accountability and Performance in Humanitarian Action).

Bulte, E., G. Beekman, S. Di Falco, J. Hella, and P. Lei. 2014. “Behavioral
Responses and the Impact of New Agricultural Technologies: Evidence
From a Double-Blind Field Experiment in Tanzania.” American Journal
of Agricultural Economics 96, no. 3: 813-830.

Bulte, E., S. Di Falco, and R. Lensink. 2020. “Randomized Interventions
and ‘Real’ Treatment Effects: A Cautionary Tale and an Example.”
World Development 127: 104790.

Butts, K. 2023. “Difference-in-Differences Estimation With Spatial
Spillovers.” Accessed September 2025. arXiv. https://arxiv.org/abs/2105.
03737.

Caetano, C., G. Caetano, L. Goff, and E. Nielsen. 2025. “Identification
of Causal Effects With a Bunching Design.” Accessed November 2025.
arXiv. https://arxiv.org/pdf/2507.05210.

Callaway, B., A. Goodman-Bacon, and P. H. C. Sant'/Anna. 2024a.
Difference-in-Differences With a Continuous Treatment. NBER Working
Paper 32117, National Bureau of Economic Research.

Callaway, B., A. Goodman-Bacon, and P. H. C. Sant'/Anna. 2024b. “Event
Studies With a Continuous Treatment.” AEA Papers and Proceedings
114: 601-605.

Callaway, B., and P. Sant'’Anna. 2021. “Difference-in-Differences
With Multiple Time Periods.” Journal of Econometrics 225, no. 2:
200-230.

Calonico, S., M. Cattaneo, M. Farrell, and R. Titiunik. 2017. “Rdrobust:
Software for Regression-Discontinuity Designs.” Stata Journal:
Promoting Communications on Statistics and Stata 17, no. 2: 372-404.

Calonico, S., M. Cattaneo, and R. Titiunik. 2015. “Rdrobust: An
R Package for Robust Nonparametric Inference in Regression-
Discontinuity Designs.” R Journal 7, no. 1: 38.

Cameron, C. A.,and D. L. Miller. 2015. “A Practitioner's Guide to Cluster-
Robust Inference.” Journal of Human Resources 50, no. 2: 317-372.

Cattaneo, M. D., and R. Titiunik. 2022. “Regression Discontinuity
Designs.” Annual Review of Economics 14, no. 1: 821-851.

Chabé-Ferret, S. 2015. “Analysis of the Bias of Matching and Difference-
In-Difference Under Alternative Earnings and Selection Processes.”
Journal of Econometrics 185, no. 1: 110-123.

Journal of Agricultural Economics, 2025

21

85U807 SUOWILLIOD BAes.D 3|qedljdde 8Ly Aq pausenob ale il VO ‘8sn 4O Sa|ni Joj ARIqIT 8UIIUO AB|1M UO (SUOIpUOD-pUe-SWLBHLI0d" A | 1M Afe.q 1 BU1|UO//:SANY) SUORIPUOD PUe SWwie 1 8L} 88S *[9202/T0/T] Uo AreiqiTauliuO A8|IM ‘6T00L 26G6-LLYT/TTTT OT/I0p/W0d 8| Im" Afeiq | puljuo//SaRY Wol4 papeo|umoq ‘0 ‘25561 T


https://marcfbellemare.com/wordpress/wp-content/uploads/2012/03/BellemareSCCKeynote.pdf
https://marcfbellemare.com/wordpress/wp-content/uploads/2012/03/BellemareSCCKeynote.pdf
https://marcfbellemare.com/wordpress/11057
https://marcfbellemare.com/wordpress/11057
https://cepr.org/publications/dp18794
https://cepr.org/publications/dp18794
https://arxiv.org/abs/1805.03273
https://chrisblattman.com/blog/2010/10/27/the-cardinal-sin-of-matching/
https://chrisblattman.com/blog/2010/10/27/the-cardinal-sin-of-matching/
https://arxiv.org/abs/2105.03737
https://arxiv.org/abs/2105.03737
https://arxiv.org/pdf/2507.05210

Chabé-Ferret, S. 2025a. “Should We Combine Difference in Differences
With Conditioning on Pre-Treatment Outcomes?” Acccessed September
2025. https://drive.google.com/file/d/1JjHRdca65yCDyKtrf13S-23kRQ
uubVix/view.

Chabé-Ferret, S. 2025b. “Statistical Tools for Causal Inference.”
Accessed September 2025. https://chabefer.github.io/STCI/.

Chabé-Ferret, S., A. Reynaud, and E. Téne. 2021. “Water Quality, Policy
Diffusion Effects and Farmers' Behavior.” Accessed September 2025.
https://drive.google.com/file/d/1wJYHWk{Bz9LII_9yPAXdl-ppXpV
d7dr8/view.

Chabé-Ferret, S., and J. Subervie. 2013. “How Much Green for the
Buck? Estimating Additional and Windfall Effects of French Agro-
Environmental Schemes by DID-Matching.” Journal of Environmental
Economics and Management 65, no. 1: 12-27.

Chaplin, D. D., T. D. Cook, J. Zurovac, et al. 2018. “The Internal and
External Validity of the Regression Discontinuity Design: A Meta-
Analysis of 15 Within-Study Comparisons.” Journal of Policy Analysis
and Management 37, no. 2: 403-429.

Chen, J., and J. Roth. 2024. “Logs With Zeros? Some Problems and
Solutions.” Quarterly Journal of Economics 139, no. 2: 891-936.

Chernozhukov, V., D. Chetverikov, M. Demirer, et al. 2018. “Double/
Debiased Machine Learning for Treatment and Structural Parameters.”
Econometrics Journal 21, no. 1: C1-C68.

Ciccia, D., F. Knau, M. Malezieux, D. Sow, S. Zhang, and C. de
Chaisemartin. 2024. “TwoWayFEWeights: Estimation of the Weights
Attached to the Two-Way Fixed Effects Regressions.” R Package
Version 2.0.4. Accessed July 2025. https://CRAN.R-project.org/packa
ge=TwoWayFEWeights.

Cinelli, C.,and C. Hazlett. 2020. “Making Sense of Sensitivity: Extending
Omitted Variable Bias.” Journal of the Royal Statistical Society, Series B:
Statistical Methodology 82, no. 1: 39-67.

Conley, T. G., C. B. Hansen, and P. E. Rossi. 2012. “Plausibly Exogenous.”
Review of Economics and Statistics 94, no. 1: 260-272.

Cragg, J., and S. Donald. 1993. “Testing Identifiability and Specification
in Instrumental Variable Models.” Econometric Theory 9: 222-240.

Cunningham, S. 2021. Causal Inference: The Mixtape. Yale University
Press.

de Chaisemartin, C., X. D'Haultfoeuille, and A. Deeb. 2024.
“TWOWAYFEWEIGHTS: Stata Module to Estimate the Weights and
Measure of Robustness to Treatment Effect Heterogeneity Attached to
Two-Way Fixed Effects Regressions.” Statistical Software Components,
Boston College Department of Economics. Accessed July 2025. https://
EconPapers.repec.org/RePEc:boc:bocode:s458611.

de Chaisemartin, C., X. d'Haultfoeuille, F. Pasquier, D. Sow, and
G. Vazquez-Bare. 2025. “Difference-in-Differences for Continuous
Treatments and Instruments With Stayers.”

de Chaisemartin, C., and X. D'Haultfeeuille. 2020. “Two-Way Fixed
Effects Estimators With Heterogeneous Treatment Effects.” American
Economic Review 110, no. 9: 2964-2996.

de Chaisemartin, C., and X. D'Haultfeeuille. 2023a. “Two-Way Fixed
Effects and Difference-in-Differences Estimators With Several
Treatments.” Journal of Econometrics 236, no. 2: 105480.

de Chaisemartin, C., and X. D'Haultfeeuille. 2023b. “Two-Way Fixed
Effects and Differences-in-Differences With Heterogeneous Treatment
Effects: A Survey.” Econometrics Journal 26, no. 3: C1-C30.

de Chaisemartin, C., and X. D'Haultfeeuille. 2024. “Difference-in-
Differences Estimators of Intertemporal Treatment Effects.” Review of
Economics and Statistics 1: 1-45.

de Chaisemartin, C., X. D'Haultfeeuille, and G. Vazquez-Bare. 2024.
“Difference-in-Difference Estimators With Continuous Treatments and
no Stayers.” AEA Papers and Proceedings 114: 610-613.

Deaton, A. 2010. “Instruments, Randomization, and Learning About
Development.” Journal of Economic Literature 48, no. 2: 424-455.

Deines, J., K. Guan, B. Lopez, et al. 2023. “Recent Cover Crop Adoption
Is Associated With Small Maize and Soybean Yield Losses in the United
States.” Global Change Biology 29: 794-807.

Deines, J., S. Wang, and D. Lobell. 2019. “Satellites Reveal a Small
Positive Yield Effect From Conservation Tillage Across the US Corn
Belt.” Environmental Research Letters 14, no. 12: 124038.

Deryugina, T. 2017. “The Fiscal Cost of Hurricanes: Disaster Aid Versus
Social Insurance.” American Economic Journal: Economic Policy 9, no.
3:168-198.

Deuchert, E., M. Huber, and M. Schelker. 2019. “Direct and Indirect
Effects Based on Difference-In-Differences With an Application to
Political Preferences Following the Vietnam Draft Lottery.” Journal of
Business & Economic Statistics 37, no. 4: 710-720.

Di Falco, S., M. Veronesi, and M. Yesuf. 2011. “Does Adaptation
to Climate Change Provide Food Security? A Micro-Perspective
From Ethiopia.” American Journal of Agricultural Economics 93:
825-842.

Diegert, P., M. Masten, and A. Poirier. 2023. “Assessing Omitted
Variable Bias When the Controls Are Endogenous.” arXiv. Accessed
December 2024. https://arxiv.org/abs/2206.02303.

El Benni, N., Y. Wang, J. Ammann, G. Mack, and R. Finger. 2025. “A
Scoping Review of Nudges for Enhancing Agricultural Policy.” Applied
Economic Perspectives and Policy.

Fan, L., A. Stevens, and B. Thomas. 2022. “Consumer Purchasing
Response to Mandatory Genetically Engineered Labeling.” Food Policy
110: 102296.

Finger, R., C. Grebitus, and A. Henningsen. 2023. “Replications in
Agricultural Economics.” Applied Economic Perspectives and Policy 45,
no. 3: 1258-1274.

Flack, E., and E. Jee. 2020. “bacondecomp: Goodman-Bacon
Decomposition.” R Package Version 0.1.1. Accessed July 2025. https://
CRAN.R-project.org/package=bacondecomp.

Freyaldenhoven, S., C. Hansen, J. P. Pérez, et al. 2023. “eventstudyr
Package.” Accessed July 2025. https://github.com/JMSLab/event
studyr.

Freyaldenhoven, S., C. B. Hansen, J. P. Pérez, J. M. Shapiro, and C.
Carreto. 2025. “Xtevent: Estimation and Visualization in the Linear
Panel Event-Study Design.” Stata Journal 25, no. 1: 97-135.

Freyaldenhoven, S., C. Hansen, J. Pérez Pérez, and J. M. Shapiro.
2021. Visualization, Identification, and Estimation in the Linear Panel
Event-Study Design. NBER Working Papers 29170. National Bureau of
Economic Research.

Freyaldenhoven, S., C. Hansen, and J. M. Shapiro. 2019. “Pre-Event
Trends in the Panel Event-Study Design.” American Economic Review
109, no. 9: 3307-3338.

Frolich, M. 2008. “Parametric and Nonparametric Regression in the
Presence of Endogenous Control Variables.” International Statistical
Review 76: 214-227.

Gardner, J.,, N. Thakral, L. T. To, and L. Yap. 2024. “Two-Stage
Differences in Differences.” Working Paper. Accessed December 2024.
https://neilthakral.github.io/files/papers/2sdd.pdf.

Garg, T., and A. Shenoy. 2021. “The Ecological Impact of Place-Based
Economic Policies.” American Journal of Agricultural Economics 103,
no. 4:1239-1250.

Gechter, M. 2024. “Combining Experimental and Observational Studies
in Meta-Analysis: A Debiasing Approach.” Accessed September 2025.
https://www.dropbox.com/scl/fi/yqa5xevishf721b274apm/MGRM_
Combining_Experimental_and_Observational_Studies.pdf?rlkey=
jwhtduzk2ixoz9svdc3jo665c&e=1&d1=0.

22

Journal of Agricultural Economics, 2025

85U807 SUOWILLIOD BAes.D 3|qedljdde 8Ly Aq pausenob ale il VO ‘8sn 4O Sa|ni Joj ARIqIT 8UIIUO AB|1M UO (SUOIpUOD-pUe-SWLBHLI0d" A | 1M Afe.q 1 BU1|UO//:SANY) SUORIPUOD PUe SWwie 1 8L} 88S *[9202/T0/T] Uo AreiqiTauliuO A8|IM ‘6T00L 26G6-LLYT/TTTT OT/I0p/W0d 8| Im" Afeiq | puljuo//SaRY Wol4 papeo|umoq ‘0 ‘25561 T


https://drive.google.com/file/d/1JjHRdca65yCDyKtrf13S-23kRQuubVix/view
https://drive.google.com/file/d/1JjHRdca65yCDyKtrf13S-23kRQuubVix/view
https://chabefer.github.io/STCI/
https://drive.google.com/file/d/1wJYHWkfBz9LII_9yPAXdl-ppXpVd7dr8/view
https://drive.google.com/file/d/1wJYHWkfBz9LII_9yPAXdl-ppXpVd7dr8/view
https://cran.r-project.org/package=TwoWayFEWeights
https://cran.r-project.org/package=TwoWayFEWeights
https://econpapers.repec.org/RePEc:boc:bocode:s458611
https://econpapers.repec.org/RePEc:boc:bocode:s458611
https://arxiv.org/abs/2206.02303
https://cran.r-project.org/package=bacondecomp
https://cran.r-project.org/package=bacondecomp
https://github.com/JMSLab/eventstudyr
https://github.com/JMSLab/eventstudyr
https://neilthakral.github.io/files/papers/2sdd.pdf
https://www.dropbox.com/scl/fi/yqa5xevi5hf72lb274apm/MGRM_Combining_Experimental_and_Observational_Studies.pdf?rlkey=jwhtduzk2ixoz9svdc3jo665c&e=1&dl=0
https://www.dropbox.com/scl/fi/yqa5xevi5hf72lb274apm/MGRM_Combining_Experimental_and_Observational_Studies.pdf?rlkey=jwhtduzk2ixoz9svdc3jo665c&e=1&dl=0
https://www.dropbox.com/scl/fi/yqa5xevi5hf72lb274apm/MGRM_Combining_Experimental_and_Observational_Studies.pdf?rlkey=jwhtduzk2ixoz9svdc3jo665c&e=1&dl=0

Gelman, A., and G. Imbens. 2013. “Why Ask Why? Forward Causal
Inference and Reverse Causal Questions.” National Bureau of Economic
Research Working Paper 19614. Accessed July 2025. https://www.nber.
org/papers/w19614.

Gelman, A., A. Vehtari, D. Simpson, et al. 2020. “Bayesian Workflow.”
arXiv. Accessed November 2025. https://doi.org/10.48550/arXiv.2011.
01808.

Gibson, J. 2019. “Are You Estimating the Right Thing? An Editor
Reflects.” Applied Economic Perspectives and Policy 41, no. 3: 329-350.

Glazerman, S., D. M. Levy, and D. Myers. 2003. “Nonexperimental
Versus Experimental Estimates of Earnings Impacts.” Annals of the
American Academy of Political and Social Science 589, no. 1: 63-93.

Gobillon, L., and T. Magnac. 2016. “Regional Policy Evaluation:
Interactive Fixed Effects and Synthetic Controls.” Review of Economics
and Statistics 98, no. 3: 535-551.

Gollin, D., C. W. Hansen, and A. M. Wingender. 2021. “Two Blades
of Grass: The Impact of the Green Revolution.” Journal of Political
Economy 129, no. 8: 2344-2384.

Goodman-Bacon, A. 2021. “Difference-in-Differences With Variation in
Treatment Timing.” Journal of Econometrics 225, no. 2: 254-277.

Goodman-Bacon, A., T. Goldring, and A. Nichols. 2022.
“BACONDECOMP: Stata Module to Perform a Bacon Decomposition
of Difference-in-Differences Estimation.” Statistical Software
Components, Boston College Department of Economics. Accessed July
2025. https://EconPapers.repec.org/RePEc:boc:bocode:s458676.

Gordon, B. R., F. Zettelmeyer, N. Bhargava, and D. Chapsky. 2019. “A
Comparison of Approaches to Advertising Measurement: Evidence
From Big Field Experiments at Facebook.” Marketing Science 38, no. 2:
193-225.

Grogger, J. 2017. “Soda Taxes and the Prices of Sodas and Other Drinks:
Evidence From Mexico.” American Journal of Agricultural Economics
99, no. 2: 481-498.

Groher, T., K. Heitkdmper, A. Walter, F. Liebisch, and C. Umstitter. 2020.
“Status Quo of Adoption of Precision Agriculture Enabling Technologies
in Swiss Plant Production.” Precision Agriculture 21: 1327-1350.

Gunsilius, F. F. 2021. “Nontestability of Instrument Validity Under
Continuous Treatments.” Biometrika 108, no. 4: 989-995.

Gupta, A., J. Ponticelli, and A. Tesei. 2024. “Language Barriers,
Technology Adoption and Productivity: Evidence From Agriculture in
India.” Review of Economics and Statistics, forthcoming.

Hartford, J., G. Lewis, K. Leyton-Brown, and M. Taddy. 2017. “Deep
IV: A Flexible Approach for Counterfactual Prediction.” In Proceedings
of the 34th International Conference on Machine Learning, edited by D.
Precup and Y. W. Teh. PMLR.

Hausman, C., and D. S. Rapson. 2018. “Regression Discontinuity in
Time: Considerations for Empirical Applications.” Annual Review of
Resource Economics 10: 533-552.

Hausman, J. 1996. “Valuation of New Goods Under Perfect and
Imperfect Competition.” In The Economics of New Goods, edited by T.
Bresnahan and R. Gordon. University of Chicago Press.

Heckman, J. 1976. “The Common Structure of Statistical Models of
Truncation, Sample Selection and Limited Dependent Variables and
a Simple Estimator for Such Models.” Annals of Economic and Social
Measurement 5: 475-492.

Heckman, J. 1997. “Instrumental Variables: A Study of Implicit
Behavioral Assumptions Used in Making Program Evaluations.”
Journal of Human Resources 32, no. 3: 441-462.

Heckman, J., H. Ichimura, J. Smith, and P. Todd. 1998. “Characterizing
Selection Bias Using Experimental Data.” Econometrica 66, no. 5:
1017-1098.

Heckman, J. J., and J. A. Smith. 1999. “The Pre-Programme Earnings
Dip and the Determinants of Participation in a Social Programme.
Implications for Simple Programme Evaluation Strategies.” Economic
Journal 109, no. 457: 313-348.

Hirsch, S., M. Khalilov, T. Dalhaus, and A. Mishra. 2023. “Firm Names
and Profitability in German Food Processing.” European Review of
Agricultural Economics 50: 1103-1139.

Hirsch, S., G. Tiboldo, and R. Lopez. 2018. “A Tale of Two Italian Cities:
Brand-Level Milk Demand and Price Competition.” Applied Economics
50, no. 49: 5239-5252.

Hoy, K., and D. Wrenn. 2020. “The Effectiveness of Taxes in Decreasing
Candy Purchases.” Food Policy 97: 101959.

Hiinermund, P., and E. Bareinboim. 2025. “Causal Inference and Data
Fusion in Econometrics.” Econometrics Journal 28, no. 1: 41-82.

Huntington-Klein, N. 2025. The Effect: An Introduction to Research
Design and Causality. Chapman and Hall/CRC.

Imai, K., L. Keele, and D. Tingley. 2010. “A General Approach to Causal
Mediation Analysis.” Psychological Methods 15, no. 4: 309-334.

Imai, K., L. Keele, and T. Yamamoto. 2010. “Identification, Inference
and Sensitivity Analysis for Causal Mediation Effects.” Statistical
Science 25, no. 1: 51-71.

Imbens, G. 2024. “Causal Inference in the Social Sciences.” Annual
Review of Statistics and Its Application 11: 123-152.

Imbens, G. W. 2020. “Potential Outcome and Directed Acyclic
Graph Approaches to Causality: Relevance for Empirical Practice in
Economics.” Journal of Economic Literature 58, no. 4: 1129-1179.

Imbens, G., and J. Angrist. 1994. “Identification and Estimation of
Local Average Treatment Effects.” Econometrica 62: 467-475.

Imbens, G. W., and T. Lemieux. 2008. “Regression Discontinuity
Designs: A Guide to Practice.” Journal of Econometrics 142, no. 2:
615-635.

Imbens, G. W., and J. M. Wooldridge. 2009. “Recent Developments
in the Econometrics of Program Evaluation.” Journal of Economic
Literature 47, no. 1: 5-86.

Toannidis, J., and C. Doucouliagos. 2013. “What's to Know About the
Credibility of Empirical Economics?” Journal of Economic Surveys 27,
no. 5: 997-1004.

Jafari, Y., M. Koppenberg, S. Hirsch, and T. Heckelei. 2023. “Markups
and Export Behavior: Firm-Level Evidence From the French Food
Processing Industry.” American Journal of Agricultural Economics 105,
no. 1: 174-194.

Jiang, W. 2017. “Have Instrumental Variables Brought Us Closer to the
Truth.” Review of Corporate Finance Studies 6, no. 2: 127-140.

Keane, M., and T. Neal. 2023. “Instrument Strength in IV Estimation
and Inference: A Guide to Theory and Practice.” Journal of Econometrics
235, no. 2: 1625-1653.

Keane, M., and T. Neal. 2024. “A Practical Guide to Weak Instruments.”
Annual Review of Economics 16: 185-212.

Kédagni, D., and I. Mourifié. 2020. “Generalized Instrumental
Inequalities: Testing the Instrumental Variable Independence
Assumption.” Biometrika 107, no. 3: 661-675.

Kim, Y. 2023. Payments for Ecosystem Services Programs and Climate
Change Adaptation in Agriculture. Technical Report. Department of
Economics, University of Oxford.

King, G., and R. Nielsen. 2019. “Why Propensity Scores Should Not Be
Used for Matching.” Political Analysis 27, no. 4: 435-454.

Kitagawa, T. 2015. “A Test for Instrument Validity.” Econometrica 83,
no. 5: 2043-2063.

Journal of Agricultural Economics, 2025

23

85U807 SUOWILLIOD BAes.D 3|qedljdde 8Ly Aq pausenob ale il VO ‘8sn 4O Sa|ni Joj ARIqIT 8UIIUO AB|1M UO (SUOIpUOD-pUe-SWLBHLI0d" A | 1M Afe.q 1 BU1|UO//:SANY) SUORIPUOD PUe SWwie 1 8L} 88S *[9202/T0/T] Uo AreiqiTauliuO A8|IM ‘6T00L 26G6-LLYT/TTTT OT/I0p/W0d 8| Im" Afeiq | puljuo//SaRY Wol4 papeo|umoq ‘0 ‘25561 T


https://www.nber.org/papers/w19614
https://www.nber.org/papers/w19614
https://doi.org/10.48550/arXiv.2011.01808
https://doi.org/10.48550/arXiv.2011.01808
https://econpapers.repec.org/RePEc:boc:bocode:s458676

Kleibergen, F., and R. Paap. 2006. “Generalized Reduced Rank Tests
Using the Singular Value Decomposition.” Journal of Econometrics 133,
no. 1: 97-126.

Kolesar, M. 2025. “RDHonest: Honest Inference in Regression
Discontinuity Designs.” R Package Version 1.0.1.9000. Accessed July
2025. https://github.com/kolesarm/rdhonest.

Kolesar, M., and C. Rothe. 2018. “Inference in Regression Discontinuity
Designs With a Discrete Running Variable.” American Economic Review
108, no. 8: 2277-2304.

Koppenberg, M., A. Mishra, and S. Hirsch. 2023. “Food Aid and Violent
Conflict: A Review and Empiricist's Companion.” Food Policy 121:
102542.

Krishnan, P., and M. Patnam. 2014. “Neighbors and Extension Agents
in Ethiopia: Who Matters More for Technology Adoption?” American
Journal of Agricultural Economics 96, no. 1: 308-327.

Kurz, C. 2022. “Augmented Inverse Probability Weighting and the
Double Robustness Property.” Medical Decision Making 42, no. 2:
156-167.

Lal, A., M. Lockhart, Y. Xu, and Z. Zu. 2024. “How Much Should We
Trust Instrumental Variable Estimates in Political Science? Practical
Advice Based on 67 Replicated Studies.” Political Analysis 32, no. 4:
521-540.

LaLonde, R. J. 1986. “Evaluating the Econometric Evaluations of
Training Programs With Experimental Data.” American Economic
Review 76, no. 4: 604-620.

Lee, D., J. McCrary, M. Moreira, and P. Porter. 2022. “Valid t-Ratio
Inference for IV.” American Economic Review 112, no. 10: 3260-3290.

Li, H., and J. Zhu. 2024. “Property Rights and Land Quality.” American
Journal of Agricultural Economics 106, no. 5: 1619-1647.

Liu, L., Y. Wang, and Y. Xu. 2024. “A Practical Guide to Counterfactual
Estimators for Causal Inference With Time-Series Cross-Sectional
Data.” American Journal of Political Science 68, no. 1: 160-176.

Low, G., M. P. Meuwissen, R. Finger, and T. Dalhaus. 2025. “Frost
Shocks Negatively Impact the Supply of High-Stem Juicing Apples in
Switzerland.” Agricultural Systems 228: 104363.

Maggio, G., M. Mastrorillo, and N. Sitko. 2022. “Adapting to High
Temperatures: Effect of Farm Practices and Their Adoption Duration
on Total Value of Crop Production in Uganda.” American Journal of
Agricultural Economics 104: 385-403.

Magnan, N., D. Spielman, T. Lybbert, and K. Gulati. 2015. “Leveling
With Friends: Social Networks and Indian Farmers' Demand for a
Technology With Heterogeneous Benefits.” Journal of Development
Economics 116: 223-251.

Manresa, E. 2013. “Estimating the Structure of Social Interactions
Using Panel Data.” Accessed September 2025. https://igier.unibocconi.
eu/sites/default/files/media/attach/JMP_EM_1st_Dec-Manresa201
40117095117.pdf.

Martinsson, E., H. Hansson, K. Mittenzwei, and H. Storm. 2024.
“Evaluating Environmental Effects of Adopting Automatic Milking
Systems on Norwegian Dairy Farms.” European Review of Agricultural
Economics 51, no. 1: 128-156.

Mason, N., T. Jayne, and R. Mofya-Mukuka. 2013. “Zambia's Input
Subsidy Programs.” Agricultural Economics 44, no. 6: 613-628.

Mayr, K. F., and P. Agnolucci. 2023. “Heterogeneous Impacts in
Voluntary Agreements: A Changes-In-Changes Approach to the UK
Climate Change Agreements.” Environmental and Resource Economics
86, no. 3: 345-379.

McCrary, J. 2008. “Manipulation of the Running Variable in the
Regression Discontinuity Design: A Density Test.” Journal of
Econometrics 142, no. 2: 698-714.

McElreath, R. 2018. Statistical Rethinking: A Bayesian Course With
Examples in R and Stan. Chapman and Hall/CRC.

McKenzie, D. 2012. “Beyond Baseline and Follow-Up: The Case for
More T in Experiments.” Journal of Development Economics 99, no. 2:
210-221.

McKenzie, D. 2018. I'm Not a Fan of Leave-One-Out/Spatial Instruments.
World Bank Blogs. Accessed December 2024. https://blogs.world
bank.org/en/impactevaluations/im-not-fan-leave-one-outspatial-instr
uments.

McKenzie, D., J. Gibson, and S. Stillman. 2010. “How Important Is
Selection? Experimental vs. Non-Experimental Measures of the Income
Gains From Migration.” Journal of the European Economic Association
8, no. 4: 913-945.

Mellon, J. 2024. “Rain, Rain, Go Away: 194 Potential Exclusion-
Restriction Violations for Studies Using Weather as an Instrumental
Variable.” American Journal of Political Science 69, no. 3: 881-898.

Miller, D. L. 2023. “An Introductory Guide to Event Study Models.”
Journal of Economic Perspectives 37, no. 2: 203-230.

Millimet, D., and M. Bellemare. 2023. “Fixed Effects and Causal
Inference.” Technical Report No. 16202, IZA Discussion Paper.

Mohan, P. 2017. “The Economic Impact of Hurricanes on Bananas: A
Case Study of Dominica Using Synthetic Control Methods.” Food Policy
68: 21-30.

Morgan, S., and C. Winship. 2014. Counterfactuals and Causal Inference:
Methods and Principles for Social Research. Cambridge University Press.

Mullally, C., and S. Chakravarty. 2018. “Are Matching Funds for
Smallholder Irrigation Money Well Spent?” Food Policy 76: 70-80.

Mundlak, Y. 1961. “Empirical Production Function Free of Management
Bias.” Journal of Farm Economics 43, no. 1: 44-56.

Mundlak, Y. 1978. “On the Pooling of Time Series and Cross Section
Data.” Econometrica 46, no. 1: 69-85.

Neal, T. 2024. “Estimating the Effectiveness of Forest Protection Using
Regression Discontinuity.” Journal of Environmental Economics and
Management 127: 103021.

Nevo, A. 2000. “A Practitioner's Guide to Estimation of Random-
Coefficients Logit Models of Demand.” Journal of Economics and
Management Strategy 9, no. 4: 513-548.

Nevo, A. 2001. “Measuring Market Power in the Ready-to-Eat Cereal
Industry.” Econometrica 69, no. 2: 307-342.

Newey, W., and J. Powell. 2003. “Instrumental Variable Estimation of
Nonparametric Models.” Econometrica 71: 1565-1578.

Nigus, H. Y., P. Mohnen, and E. Nillesen. 2024. “Market Experience
and Agricultural Technology Adoption: The Role of Risk Aversion and
Locus of Control.” European Review of Agricultural Economics 51, no.
5:1312-1347.

Noack, F., A. Larsen, J. Kamp, and C. Levers. 2022. “A Bird's Eye View of
Farm Size and Biodiversity: The Ecological Legacy of the Iron Curtain.”
American Journal of Agricultural Economics 104, no. 4: 1460-1484.

Okui, R., D. Small, Z. Tan, and J. Robins. 2012. “Doubly Robust
Instrumental Variable Regression.” Statistica Sinica 22: 173-205.

Olden, A., and J. Meen. 2022. “The Triple Difference Estimator.”
Econometrics Journal 25, no. 3: 531-553.

Opatrny, M. 2020. “The Impact of EU Accession on Farm Production
in The Czech Republic: A Synthetic Control Method Approach.” Czech
Journal of Economics and Finance 30, no. 3: 281-307.

Oster, E. 2019. “Unobservable Selection and Coefficient Stability:
Theory and Evidence.” Journal of Business & Economic Statistics 37:
187-204.

24

Journal of Agricultural Economics, 2025

85U807 SUOWILLIOD BAes.D 3|qedljdde 8Ly Aq pausenob ale il VO ‘8sn 4O Sa|ni Joj ARIqIT 8UIIUO AB|1M UO (SUOIpUOD-pUe-SWLBHLI0d" A | 1M Afe.q 1 BU1|UO//:SANY) SUORIPUOD PUe SWwie 1 8L} 88S *[9202/T0/T] Uo AreiqiTauliuO A8|IM ‘6T00L 26G6-LLYT/TTTT OT/I0p/W0d 8| Im" Afeiq | puljuo//SaRY Wol4 papeo|umoq ‘0 ‘25561 T


https://github.com/kolesarm/rdhonest
https://igier.unibocconi.eu/sites/default/files/media/attach/JMP_EM_1st_Dec-Manresa20140117095117.pdf
https://igier.unibocconi.eu/sites/default/files/media/attach/JMP_EM_1st_Dec-Manresa20140117095117.pdf
https://igier.unibocconi.eu/sites/default/files/media/attach/JMP_EM_1st_Dec-Manresa20140117095117.pdf
https://blogs.worldbank.org/en/impactevaluations/im-not-fan-leave-one-outspatial-instruments
https://blogs.worldbank.org/en/impactevaluations/im-not-fan-leave-one-outspatial-instruments
https://blogs.worldbank.org/en/impactevaluations/im-not-fan-leave-one-outspatial-instruments

Pan, Y., S. Smith, and M. Sulaiman. 2018. “Agricultural Extension
and Technology Adoption for Food Security: Evidence From Uganda.”
American Journal of Agricultural Economics 100, no. 4: 1012-1031.

Pearl, J. 1995a. “Causal Inference From Indirect Experiments.”
Artificial Intelligence in Medicine 7, no. 6: 561-582.

Pearl, J. 1995b. “On the Testability of Causal Models With Latent and
Instrumental Variables.” In Proceedings of the 11th Conference on
Uncertainty in Artificial Intelligence, edited by P. Besnard and S. Hanks,
435-443. ACM Press.

Pearl, J., and D. Mackenzie. 2018. The Book of Why: The New Science of
Cause and Effect. Basic Books.

Pufahl, A., and C. R. Weiss. 2009. “Evaluating the Effects of Farm
Programmes: Results From Propensity Score Matching.” European
Review of Agricultural Economics 36, no. 1: 79-101.

Quisumbing, A., A. Ahmed, D. Gilligan, et al. 2020. “Randomized
Controlled Trials of Multi-Sectoral Programs: Lessons From
Development Research.” World Development 127: 104822.

Rambachan, A., and J. Roth. 2023. “A More Credible Approach to
Parallel Trends.” Review of Economic Studies 90, no. 5: 2555-2591.

Rambachan, A., and J. Roth. 2024. “HonestDiD: Robust Inference in
Difference-in-Differences and Event Study Designs.” R Package Version
0.2.6. Accessed July 2025. https://CRAN.R-project.org/package=
HonestDiD.

Rao, E., and M. Qaim. 2013. “Supermarkets and Agricultural Labor
Demand in Kenya: A Gendered Perspective.” Food Policy 38: 165-176.

Rao, M. 2025. “Program Evaluations and Policy Spending.” Accessed
July 2025. https://michelle-rao.github.io/website_papers/01_papers/
Rao_policyCCTs.pdf.

Rodriguez, O., M. Vrachioli, D. Wuepper, and J. Sauer. 2025. “World
Heritage Status and Farmers' Income: Evidence From a Regression
Discontinuity Design in Colombia.” Agricultural Economics 56, no. 5:
728-748.

Roth, J. 2022. “Pretest With Caution: Event-Study Estimates After
Testing for Parallel-Trends.” American Economic Review: Insights 4, no.
3:305-322.

Roth, J. 2025. “pretrends: Power Calculations and Visualization for Pre-
Trends.” R Package Version 0.1.0. Accessed July 2025. https://github.
com/jonathandroth/pretrends.

Roth,J.,and P. H. C. Sant’/Anna. 2023. “Efficient Estimation for Staggered
Rollout Designs.” Journal of Political Economy: Microeconomics 1, no. 4:
669-709.

Roth, J., P. H. C. Sant'Anna, A. Bilinski, and J. Poe. 2023. “What's
Trending in Difference-In-Differences? A Synthesis of the Recent
Econometrics Literature.” Journal of Econometrics 235, no. 2:
2218-2244.

Ruml, A., and M. Qaim. 2021. “New Evidence Regarding the Effects of
Contract Farming on Agricultural Labor Use.” Agricultural Economics
52:51-66.

Sant'’Anna, P. H., and J. Zhao. 2020. “Doubly Robust Difference-in-
Differences Estimators.” Journal of Econometrics 219, no. 1: 101-122.

Schulz, D., C. Stetter, J. Muro, et al. 2024. “Trade-Offs Between
Grassland Plant Biodiversity and Yields Are Heterogenous Across
Germany.” Communications Earth & Environment 5, no. 1: 514.

Sellare, J., E. Meemken, and M. Qaim. 2020. “Fairtrade, Agrochemical
Input Use, and Effects on Human Health and the Environment.”
Ecological Economics 176: 106718.

Sellare, J., E.-M. Meemken, C. Kouamé, and M. Qaim. 2020. “Do
Sustainability Standards Benefit Smallholder Farmers Also When
Accounting for Cooperative Effects? Evidence From Coéte d'Ivoire.”
American Journal of Agricultural Economics 102, no. 2: 681-695.

Smale, M., and N. Mason. 2014. “Hybrid Seed and the Economic Well-
Being of Smallholder Maize Farmers in Zambia.” Journal of Development
Studies 50, no. 5: 680-695.

Staiger, D., and J. Stock. 1997. “Instrumental Variables With Weak
Instruments.” Econometrica 65: 557-586.

Stata Press. 2023. “Stata Extended Regression Models Reference
Manual, Release 18.” Accessed December 2024. https://www.stata.
com/manuals/erm.pdf.

Stetter, C., P. Mennig, and J. Sauer. 2022. “Using Machine Learning to
Identify Heterogeneous Impacts of Agri-Environment Schemes in the
EU: A Case Study.” European Review of Agricultural Economics 49:
723-759.

Storm, H., K. Baylis, and T. Heckelei. 2020. “Machine Learning in
Agricultural and Applied Economics.” European Review of Agricultural
Economics 47, no. 3: 849-892.

Storm, H., T. Heckelei, and K. Baylis. 2024. “Probabilistic Programming
for Embedding Theory and Quantifying Uncertainty in Econometric
Analysis.” European Review of Agricultural Economics 51, no. 3:
589-616.

Sun, L., and S. Abraham. 2021. “Estimating Dynamic Treatment Effects
in Event Studies With Heterogeneous Treatment Effects.” Journal of
Econometrics 255, no. 2: 175-199.

Syrgkanis, V., V. Lei, M. Oprescu, M. Hei, K. Battocchi, and G. Lewis.
2019. “Machine Learning Estimation of Heterogeneous Treatment
Effects With Instruments.” arXiv. Accessed December 2024. http://
arxiv.org/abs/1905.10176.

Tabe-Ojong, M., K. Mausch, T. Woldeyohanes, and T. Heckelei. 2022.
“Three Hurdles Towards Commercialisation: Integrating Subsistence
Chickpea Producers in the Market Economy.” European Review of
Agricultural Economics 49, no. 3: 668-695.

Taylor, R. 2022. “It's in the Bag? The Effect of Plastic Carryout Bags
Bans on Where and What People Purchase to Eat.” American Journal of
Agricultural Economics 104, no. 5: 1563-1584.

Terza, J., A. Basu, and P. Rathouz. 2008. “Two-Stage Residual Inclusion
Estimation: Addressing Endogeneity in Health Econometric Modeling.”
Journal of Health Economics 27, no. 3: 531-543.

Thistlewaite, D. L., and D. T. Campbell. 1960. “Regression-Discontinuity
Analysis: An Alternative to the Ex-Post Facto Experiment.” Journal of
Educational Psychology 51: 309-317.

Todd, P., and K. Wolpin. 2023. “The Best of Both Worlds: Combining
Randomized Controlled Trials With Structural Modeling.” Journal of
Economic Literature 61, no. 1: 41-85.

Verhofstadt, E., and M. Maertens. 2014. “Smallholder Cooperatives and
Agricultural Performance in Rwanda: Do Organizational Differences
Matter?” Agricultural Economics 45: 39-52.

Vivalt, E., and A. Coville. 2023. “How Do Policymakers Update Their
Beliefs?” Journal of Development Economics 165: 103121.

Vosgerau, J., G. Giambastiani, and I. Scopelliti. 2025. “The Big Data
Fallacy: When N is Large, Correlation = Causation.” Available at SSRN.
Accessed November 2025. https://doi.org/10.2139/ssrn.5553621.

Wager, S., and S. Athey. 2018. “Estimation and Inference of
Heterogeneous Treatment Effects Using Random Forests.” Journal of
the American Statistical Association 113, no. 523: 1228-1242.

Wang, Y., and M. Bellemare. 2020. “Lagged Variables as Instruments.”
Working Paper. Accessed December 2024. https://marcfbellemare.
com/wordpress/wp-content/uploads/2020/09/WangBellemareLagIVsJ
uly2020.pdf.

Westreich, D., and S. Greenland. 2013. “The Table 2 Fallacy: Presenting
and Interpreting Confounder and Modifier Coefficients.” American
Journal of Epidemiology 177, no. 4: 292-298.

Journal of Agricultural Economics, 2025

25

85U807 SUOWILLIOD BAes.D 3|qedljdde 8Ly Aq pausenob ale il VO ‘8sn 4O Sa|ni Joj ARIqIT 8UIIUO AB|1M UO (SUOIpUOD-pUe-SWLBHLI0d" A | 1M Afe.q 1 BU1|UO//:SANY) SUORIPUOD PUe SWwie 1 8L} 88S *[9202/T0/T] Uo AreiqiTauliuO A8|IM ‘6T00L 26G6-LLYT/TTTT OT/I0p/W0d 8| Im" Afeiq | puljuo//SaRY Wol4 papeo|umoq ‘0 ‘25561 T


https://cran.r-project.org/package=HonestDiD
https://cran.r-project.org/package=HonestDiD
https://michelle-rao.github.io/website_papers/01_papers/Rao_policyCCTs.pdf
https://michelle-rao.github.io/website_papers/01_papers/Rao_policyCCTs.pdf
https://github.com/jonathandroth/pretrends
https://github.com/jonathandroth/pretrends
https://www.stata.com/manuals/erm.pdf
https://www.stata.com/manuals/erm.pdf
http://arxiv.org/abs/1905.10176
http://arxiv.org/abs/1905.10176
https://doi.org/10.2139/ssrn.5553621
https://marcfbellemare.com/wordpress/wp-content/uploads/2020/09/WangBellemareLagIVsJuly2020.pdf
https://marcfbellemare.com/wordpress/wp-content/uploads/2020/09/WangBellemareLagIVsJuly2020.pdf
https://marcfbellemare.com/wordpress/wp-content/uploads/2020/09/WangBellemareLagIVsJuly2020.pdf

Wilebore, B., M. Voors, E. H. Bulte, D. Coomes, and A. Kontoleon. 2019.
“Unconditional Transfers and Tropical Forest Conservation: Evidence
From a Randomized Control Trial in Sierra Leone.” American Journal
of Agricultural Economics 101, no. 3: 894-918.

Windmeijer, F. 2024. “Testing Underidentification in Linear Models,
With Applications to Dynamic Panel and Asset Pricing Models.”
Journal of Econometrics 240, no. 2: 105104.

Wooldridge, J. 2010. Econometric Analysis of Cross Section and Panel
Data. MIT Press.

Wooldridge, J. 2015. “Control Function Methods in Applied
Econometrics.” Journal of Human Resources 50, no. 2: 420-445.

Wooldridge, J. 2021. “Two-Way Fixed Effects, the Two-Way Mundlak
Regression, and Difference-in-Differences Estimators.” Working Paper,
Available at SSRN. Accessed December 2024. https://doi.org/10.2139/
ssrn.3906345.

Wooldridge, J. M. 2023. “Simple Approaches to Nonlinear Difference-in-
Differences With Panel Data.” Econometrics Journal 26, no. 3: C31-C66.

Wuepper, D. 2020. “Does Culture Affect Soil Erosion? Empirical
Evidence From Europe.” European Review of Agricultural Economics
47, no. 2: 619-653.

Wuepper, D., P. Borrelli, and R. Finger. 2020. “Countries and the Global
Rate of Soil Erosion.” Nature Sustainability 3, no. 1: 51-55.

Wuepper, D., and R. Finger. 2023. “Regression Discontinuity Designs
in Agricultural and Environmental Economics.” European Review of
Agricultural Economics 50, no. 1: 1-28.

Wuepper, D., and R. Huber. 2022. “Comparing Effectiveness and Return
on Investment of Action- and Results-Based Agri-Environmental
Payments in Switzerland.” American Journal of Agricultural Economics
104, no. 5: 1585-1604.

Wuepper, D., S. Le Clech, D. Zilberman, N. Mueller, and R. Finger. 2020.
“Countries Influence the Trade-Off Between Crop Yields and Nitrogen
Pollution.” Nature Food 1, no. 11: 713-719.

Wuepper, D., W. A. Oluoch, and H. Hadi. 2025. “Satellite Data in
Agricultural and Environmental Economics: Theory and Practice.”
Agricultural Economics 56: €70006.

Wuepper, D., H. Wang, W. Schlenker, M. Jain, and R. Finger. 2023.
Institutions and Global Crop Yields. Technical Report 31426. National
Bureau of Economic Research.

Wuepper, D., H. Yesigat Ayenew, and J. Sauer. 2018. “Social Capital,
Income Diversification and Climate Change Adaptation: Panel Data
Evidence From Rural Ethiopia.” Journal of Agricultural Economics 69,
no. 2: 458-475.

Xu, Y. 2017. “Generalized Synthetic Control Method: Causal Inference
With Interactive Fixed Effects Models.” Political Analysis 25, no. 1:
57-76.

Xu, Y., and L. Liu. 2021. “gsynth: Generalized Synthetic Control
Method.” R Package Version 1.2.1. Accessed July 2025. https://CRAN.
R-project.org/package=gsynth.

Young, A. 2022. “Consistency Without Inference: Instrumental
Variables in Practical Application.” European Economic Review 147:
104112.

Zou, B., Y. Chen, A. Mishra, and S. Hirsch. 2024. “Agricultural
Mechanization and the Performance of the Local Chinese Economy.”
Food Policy 125:102648.

Appendix A

Extended IV Methods

While the discussions in Section 3 refer to IV and 2SLS regression,
they are largely transferable to other methods that rely on IVs such
as 3-Stage Least Squares (3SLS) regression, extended IV methods for

binary endogenous regressors (Angrist and Pischke 2009, 142-144;
Wooldridge 2010, 937-942; Wooldridge 2015), and more recent estima-
tors that are particularly suited to handling binary and ordinal endoge-
nous variables such as the extended regression IV approaches in Stata,
which estimate the parameters using maximum likelihood (see Jafari
et al. 2023, for an example and Stata Press 2023, 183, for a technical
description). These discussions are also largely transferable to esti-
mators that are based on distributional assumptions of error terms as
suggested by Heckman (1976) such as the endogenous treatment effect
model and the endogenous switching regression model. These models
can be estimated with a two-stage approach that uses an inverse Mills
ratio as an additional regressor in the second-stage regression or with
a one-step maximum likelihood estimation. In fact, these models can
be estimated without I'Vs (or exclusion restrictions) but in this case, the
identification of the estimated parameters hinges solely on the distribu-
tional assumptions, for example, a bivariate normal distribution of the
two error terms. As it is very unlikely that the distributional assump-
tions will be fulfilled exactly in a real-world application, using these
estimators without I'Vs would very likely result in unreliable estimates.
As strong IVs render the distributional assumptions less relevant, it is
imperative to use strong I'Vs when using these estimators. Thus, at least
one variable that strongly affects the selection outcome (i.e., whether
an observation is treated in an endogenous treatment effect model or
whether an observation is in the first or second outcome regime of an
endogenous switching regression model) but does not affect the depen-
dent variable of the outcome equation and is not related to the error
term(s) of the outcome equation(s) is needed (see, e.g., Auci et al. 2021,
for an example). These variables are frequently called I'Vs because they
basically need to fulfil the same criteria as IVs in the regression meth-
ods discussed in the beginning of this section. Hence, the validity of the
exclusion restrictions must be investigated and critically discussed in
similar ways to the validity of IVs in the regression methods discussed
in the beginning of this section.

A straightforward extension of a 2SLS estimation to non-linear regres-
sion models would be to regress each endogenous explanatory variable
on the exogenous explanatory variables and the IVs (using linear or non-
linear regression) and to obtain the predicted values of the endogenous
explanatory variables. One can then estimate the non-linear regression
model with the endogenous explanatory variables replaced by the pre-
dicted values obtained in the first stage. However, caution is advised
here to avoid falling into what Angrist and Pischke (2009) refer to as the
“forbidden regression” trap and directly applying the 2SLS argument to
a non-linear case, for example, using the predicted values from a probit
first stage in the second stage. Another mistake that must be avoided in
this context is, when dealing with both a linear and quadratic form of
the endogenous variable, simply using the square of the predicted values
from the first stage instead of estimating two separate first-stage regres-
sions (Angrist and Pischke 2009).

In the case of non-linear least-squares regression, the Non-linear Two-
Stage Least Squares (N2SLS) estimator has similar properties to the
2SLS estimator (Amemiya 1974). However, in many other non-linear
regression models (e.g., logit, probit, count-data models), this approach,
which is sometimes called Two-Stage Predictor Substitution (2SPS), re-
sults in inconsistent estimates (e.g., Terza et al. 2008). An alternative to
this approach is a slightly different procedure: the first stage is identical
to the first-stage regression of 2SLS, N2SLS and 2SPS estimators, but
in the second stage, the residuals that were obtained in the first stage
are added as additional regressors (while the endogenous explanatory
variables are used as regressors). This approach is called Two-Stage
Residual Inclusion (2SRI) in biostatistics and health economics Terza
et al. (2008), while it is called the Control-Function (CF) approach in the
econometrics literature (e.g., Wooldridge 2015). In the case of linear re-
gression models, this approach provides the same estimates as a 2SLS es-
timation, while the consistency of this approach has been demonstrated
for many non-linear estimators. Hence, it is frequently used to address
the endogeneity of regressors in non-linear regression models such as
double hurdle models (e.g., Rao and Qaim 2013; Sellare, Meemken, and
Qaim 2020) or fractional logit models (e.g., Wuepper 2020). As the iden-
tifying assumptions for the 2SRI/CF approach are similar to those of IV

26

Journal of Agricultural Economics, 2025

85U807 SUOWILLIOD BAes.D 3|qedljdde 8Ly Aq pausenob ale il VO ‘8sn 4O Sa|ni Joj ARIqIT 8UIIUO AB|1M UO (SUOIpUOD-pUe-SWLBHLI0d" A | 1M Afe.q 1 BU1|UO//:SANY) SUORIPUOD PUe SWwie 1 8L} 88S *[9202/T0/T] Uo AreiqiTauliuO A8|IM ‘6T00L 26G6-LLYT/TTTT OT/I0p/W0d 8| Im" Afeiq | puljuo//SaRY Wol4 papeo|umoq ‘0 ‘25561 T


https://doi.org/10.2139/ssrn.3906345
https://doi.org/10.2139/ssrn.3906345
https://cran.r-project.org/package=gsynth
https://cran.r-project.org/package=gsynth

and 2SLS estimations, the identification strategy should be based on the
same evaluation criteria as for other estimations with IVs.

A further regression framework that can be used in an IV setting is the
Generalised Method of Moments (GMM), which identifies the regres-
sion coefficients by assuming moment conditions in the population and
then imposing these moment conditions in the sample. The number of
assumed moment conditions must be equal to or larger than the number
of regression coefficients to be estimated. Given that a myriad of differ-
ent moment conditions can be assumed, the GMM framework is very
flexible and many well-known estimators such as OLS regression and
2SLS regression are special cases. If a GMM approach is used to esti-
mate causal effects, the appropriateness of the assumed moment condi-
tions must be thoroughly and critically discussed. If a GMM estimation
uses I'Vs, the validity of these IVs should be discussed in a similar way
as for other methods that use IVs. If we have more moment conditions
available than we have regression coefficients, a Sargan-Hansen test
(also known as Sargan’s J test or Hansen's J test) can be used to empiri-
cally assess the validity of the moment conditions.

In the case of panel data, the GMM framework can address the en-
dogeneity of explanatory variables even without external IVs by using
the lagged values of some variables as “internal” IVs. The “Difference
GMM” estimator suggested by Arellano and Bond (1991) and the
“System GMM” estimator suggested by Arellano and Bover (1995) and
Blundell and Bond (1998) are frequently used GMM estimators that use
internal IVs. The moment conditions assumed by these types of esti-
mators can be complex. Similar to using lagged values of endogenous
regressors as I'Vs in 2SLS estimations (see Section B below and Wang
and Bellemare 2020), these types of estimators usually require restric-
tive assumptions about unobserved factors, which may be unrealistic in
most empirical applications.

Finally, frequently used Structural Equation Modelling (SEM) and
Partial Least Squares SEM (PLS-SEM) rely on similar identifying as-
sumptions as outlined in Sections 2 and 3 (e.g., regarding unobserved
confounders and exclusion restrictions) and are often based on addi-
tional assumptions. Hence, like other methods, a causal interpretation
of the SEM results requires a careful and critical discussion of the as-
sumptions that the SEM relies on.

Even if one uses a valid (i.e., exogenous and highly relevant) IV, IV
regression can result in substantially biased estimates if parametric
assumptions, e.g., about the functional form, are not fulfilled (Okui
et al. 2012). Hence, it might be worthwhile to consider using non-
parametric IV regression methods. Chernozhukov et al. (2018) show
that Double Machine Learning (see Section 2) can also be applied to
an IV setting, which means the linearity assumption of 2SLS regres-
sion can be relaxed. Their approach allows both the outcome equa-
tion and the treatment equation to be unknown nonlinear equations
that can be approximated by any flexible machine learning algorithm.
However, it still requires assuming either homogeneity of treatment or
homogeneity of treatment assignment. Under these conditions, the ap-
proach provides a consistent estimate of an ATE. Going further, multi-
ple approaches also relax the homogeneity assumptions and allow the
estimation of treatment effects that vary depending on the observed
characteristics. Hartford et al. (2017) have developed an approach called
DeeplV, which uses deep neural networks in both the outcome and the
treatment model. Athey et al. (2019) have developed Generalised RFs
as a nonparametric estimator that can be used to estimate any quan-
tity identified by a set of (local) moment conditions. They demonstrate
that this approach can be used to estimate treatment effects under the
unconfoundedness assumption (leading to an approach called Causal
Forests, see Section 2) but also in an IV setting. Generalised RFs can
basically be understood as a more flexible alternative to GMM estima-
tion methods. Importantly, Generalised RFs are able to learn treatment
heterogeneity in a data-driven manner. Additionally, it is possible to
obtain asymptotic uncertainty intervals for the estimated treatment
effect, allowing the user to assess uncertainty in the estimates and per-
form hypothesis testing. While DeepIV and Generalised RFs are spe-
cifically designed around deep neural networks and RFs, respectively,
Syrgkanis et al. (2019) provide a generalised framework (Orthogonal

IV) for nonparametric IV estimations that allows the use of any ma-
chine learning approach in the outcome and treatment model. They also
develop methods that allow the projection of treatment heterogeneity
to a simpler (potentially linear) lower dimensional space. This means
asymptotic confidence intervals can be derived and machine learning
interpretability methods (e.g., SHAP values) can be used to illustrate
and inspect treatment heterogeneity.

Another relatively specialised case of machine learning in the context of
IV estimation is to deal with a situation in which there is a large number
of potential IVs (potentially larger than the number of observations).
Belloni et al. (2012) demonstrate that simple machine learning methods
such as LASSO can be used to select IVs under the assumption that the
treatment assignment can be sufficiently predicted by a small subset of
all the available IVs. However, in empirical settings, we very rarely face
the (luxury) problem of having too many I'Vs.

Most of the machine-learning approaches that are relevant for ap-
plied economists (Double Machine Learning, DeeplV, Causal Forest,
Generalised RFs for IV, Orthogonal IV) are available in the Python
package EconML  (https://econml.azurewebsites.net/index.html),
which provides a unified API for all these approaches and represents a
relatively simple application for applied researchers.

Appendix B
Special Types of I'Vs

This section discusses some special types of I'Vs that are frequently used
in agricultural and applied economics. One of these special types of IVs
is the so-called spatial IV or leave-one-out IV (e.g., Mason et al. 2013;
Krishnan and Patnam 2014; Smale and Mason 2014; Magnan et al. 2015;
Wuepper et al. 2018; Sellare, Meemken, Kouamé, and Qaim 2020; Tabe-
Ojong et al. 2022). In this case, an endogenous explanatory (treatment)
variable is instrumented by the average or proportion within a peer
group leaving out the respective observation. For example, a farmer's
adoption of a technology is instrumented by the proportion of farmers
in the village who adopted this technology, leaving out the respective
farmer. However, while this type of IV is usually highly relevant, its
exogeneity requires strict assumptions that are not fulfilled in many em-
pirical applications (Angrist 2014; Betz et al. 2018; McKenzie 2018). In
some empirical analyses, it may be reasonable to use such a spatial IV
or a variant thereof, potentially combined with other tools, but authors
must provide clear reasoning as to why this identification strategy is
valid in their study (e.g., Maggio et al. 2022).

Closely related to spatial IVs are Hausman-type IVs, which are fre-
quently used in food product demand analyses to account for the endog-
eneity of product prices (see, e.g., Nevo 2001). The idea is that the price
of a product in other regions can be used as an IV since the same product
has similar marginal costs across regions but different demand shift-
ers (Hausman 1996; Nevo 2000; Hirsch et al. 2018). However, this as-
sumption may be violated in the case of a nationwide shock in demand;
for example, if a nationwide advertising campaign that influences the
demand of a product across regional borders is launched (Nevo 2000,
2001).

Similar to using lagged values of explanatory variables to address en-
dogeneity in an identification-on-observables identification strategy
(see Section 2), lagged values can also be used as IVs; an identification
strategy that is popular among applied economists. However, Wang and
Bellemare (2020) show that IVs of this type require specific assump-
tions. For instance, even if the exclusion restriction is fulfilled, the es-
timates are biased (although consistent), and the likelihood of making
Type-1 errors is high if there is first-order autocorrelation in unobserved
factors because this leads to a correlation between the lagged IV and
the error term (Wang and Bellemare 2020). As this cannot be ruled out
in most empirical applications, Wang and Bellemare (2020) conclude
that using lagged values of endogenous explanatory variables as IVs “is
unlikely to lead to credible estimates.”

Shift-share IVs, also known as Bartik-type IVs (Bartik 1991; Borusyak
et al. 2025), can be used in cases where panel data is available and the
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intensity of a unit's treatment is affected by an initial share that affects
the exposure to a trend. Either the trend or the share needs to be exoge-
nous for this approach to be valid. Then, the interaction of the shift and
the share provides an IV, conditional on the standard IV assumptions
being valid. For example, when analysing the effect of a regional subsidy
on farm performance, a shift-share IV can be constructed based on the
idea that the nationwide values of subsidies “shift” the regional (endog-
enous) subsidies according to a predetermined out-of-sample economic
state of the region (share) (see, e.g., Zou et al. 2024, for an example).
More precisely, in this case, the Bartik IV is the product of a variable
that captures the national subsidy level and a variable with informa-
tion on the initial state of the regional economy, e.g., 1year before the
start of the sample period that is used in the analysis. This reflects the
exogenous variation in regional subsidies which is uncorrelated with
the regional-level error term, which means that it may serve as a valid
IV (Bartik 1991; Breuer 2022; Zou et al. 2024). It is important to note
that for shift-share IVs, valid identification can be achieved when ei-
ther the shift component or the share component of the IV is exogenous.
For additional guidance, we refer to Borusyak et al. (2025). Another
illustrative example of a shift-share IV analysis is the paper of Gollin
et al. (2021) who estimate the impact of the Green Revolution with a
shift-share I'V.
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