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ABSTRACT
Most research questions in agricultural and applied economics are causal in nature: they study how changes in one or more 
variables (such as policies, prices or weather) affect one or more other variables (e.g., income, crop yields or pollution). Only a 
minority of these research questions can be studied with experimental methods, so most empirical studies in agricultural and 
applied economics rely on observational data. However, estimating causal effects with observational data requires an appropriate 
research design and a transparent discussion of all identifying assumptions, together with a critical discussion of how plausible 
they are. This paper provides an overview of approaches that are frequently used in agricultural and applied economics to esti-
mate causal effects with observational data. It then provides advice and guidelines for agricultural and applied economists seek-
ing to estimate causal effects with observational data, including how to assess and discuss the identification strategies adopted 
in their analysis.
JEL Classification: C21, C23, C24, C26, C51, C52

1   |   Introduction

Today, around 50% of empirical economics articles focus on 
causal inference (Imbens  2024). However, a commonly ob-
served problem in empirical research is that there is not al-
ways an obvious path to causal identification. Sometimes, the 
researcher might only be able to approximate causality without 
fully achieving it, for example by adjusting for some but not all 
confounders, or by addressing reverse causality but still failing 
to account for a systematic measurement error. In these cases, 
outstanding challenges to causal identification could continue 
to bias an estimate away from the true causal effect.

McKenzie et  al.  (2010) compared experimental and non-
experimental methods in an empirical application and found 
that estimates from Ordinary Least Squares (OLS) regression, 
matching approaches, and Difference-in-Differences (DID) 
methods based on observational data overstate the effect of in-
terest by 20%–82% compared to an experimental benchmark. 
However, econometric estimates based on observational data 
are often interpreted causally, without paying attention to the 
validity of the assumptions that allow this (Gibson 2019).

The misinterpretation of statistical associations as causal ef-
fects, together with insufficient robustness and replicability of 
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empirical analyses, has motivated the “credibility revolution” 
in quantitative economics research and a call for higher stan-
dards in statistical identification (Angrist and Pischke  2010; 
Bellemare 2012; Gibson 2019).1 More recently, the availability 
of large data sets has led to the “big data fallacy”, whereby 
decision makers often incorrectly consider a large data set as a 
substitute for a proper identification strategy and consequently 
misinterpret association as causation when the sample size is 
large (Vosgerau et al. 2025). While the “credibility revolution” 
has its origin in labour economics, it has increasingly reached 
into agricultural economics (Bellemare 2012). However, many 
empirical studies in agricultural economics continue to in-
terpret estimated relationships between economic variables 
causally using terms such as “effect” or “impact”, even when 
the underlying research design and econometric framework 
are not based on a valid identification strategy, or at least 
not a sufficiently described and motivated one. For example, 
some studies use OLS or matching methods, which rely on a 
selection-on-observables (conditional independence) assump-
tion, although there is a high risk of this assumption being 
violated. The use of these methods possibly moves the esti-
mates in the direction of the actual causal effect but often not 
sufficiently far that the estimates can be causally interpreted. 
Other examples are studies that use Instrumental Variables 
(IVs), such as 2-Stage Least Squares (2SLS) or endogenous 
switching regression, but do not sufficiently discuss or justify 
the validity of the IVs, or studies that use a DID design but do 
not scrutinise the parallel-trends assumption they are relying 
on. The mere application of such econometric approaches, yet 
without sufficient verification of the underlying assumptions, 
is often falsely regarded as a sufficient condition for the causal 
interpretation of the results. Incorrect use of causal identifica-
tion approaches may even make the estimate worse and move 
it away from the actual causal effect. Examples are an erro-
neous null-finding because the parallel-trends assumption for 
the chosen DID estimator does not hold, or an exaggerated sta-
tistical significance because the IV does not produce a strong 
first-stage estimate.

The correct identification of causal effects is highly relevant 
for agricultural economics research because decisions and rec-
ommendations by policymakers, international organisations 
(e.g., FAO, IFAD, World Bank), NGOs, and the private sector 
(e.g., agribusinesses, farmers) in the area of agriculture and 
food often have crucial implications for society, in areas such 
as environmental sustainability, food safety, and food security 
(Finger et  al.  2023).2 Hence, empirical agricultural econom-
ics papers that aim to identify causal effects should include a 
clear description and justification of the underlying “identifi-
cation strategy” (Imbens 2024). This refers to the identifica-
tion of the exogenous variation in an endogenous covariate or 
treatment variable of interest, that is, the part of the variation 
in this variable that is not related to unobserved confounders 
(e.g., Gibson  2019; Lal et  al.  2024). Only for this part of the 
variation in the endogenous covariate or treatment variable 
is it possible to say that it affects the dependent variable (e.g., 
Gibson  2019). Moreover, the limitations of the identification 
strategy should be clearly outlined and possible implications 
for the reliability of the results should be acknowledged and 
investigated.3 If a specific method is used to address the non-
experimental nature of the data, the added value compared to 

simpler approaches such as OLS should be highlighted. If the 
added value cannot be clearly shown, it may be preferable to 
stick with a simpler method and interpret the results as asso-
ciations. Especially problematic are analyses in which an out-
come is regressed on a set of explanatory variables and each 
coefficient is interpreted as reflecting the causal effect of the 
respective variable. This is usually inappropriate as, in most 
empirical applications, it is impossible to present a credible 
identification strategy for multiple explanatory variables and 
to avoid “bad controls” for estimating the causal effect of each 
of these explanatory variables.

The “gold standard” for internal validity is the use of 
Randomised Controlled Trials (RCTs) (Gibson  2019), and 
numerous examples can be found in the agricultural and ap-
plied economics literature (e.g., Bulte et  al.  2014; Wilebore 
et al.  2019; El Benni et al.  2025).4 However, RCTs also have 
important limitations (see, e.g., Barrett and Carter 2010). Most 
of the highly relevant research questions in agricultural and 
applied economics cannot be answered with experiments be-
cause they would be problematic, impractical, or infeasible 
for various reasons. For example, randomly assigning import 
tariffs, randomly assigning different levels of education to fu-
ture farmers at their birth, increasing food prices in randomly 
selected regions, or restricting food aid to specific regions 
while excluding others that are also in need (Buchanan-Smith 
et  al.  2016, 36) would be problematic for multiple reasons, 
including ethical considerations.5 However, highly relevant 
research questions should not be neglected just because they 
cannot be answered by applying experimental methods. 
Instead, observational data must be used to answer these re-
search questions as thoroughly as possible.

This paper discusses research designs and empirical methods 
that are frequently used in agricultural and applied economics 
to estimate causal effects with observational data. These dis-
cussions should help researchers, analysts and reviewers assess 
the suitability of these empirical approaches in their specific 
analysis, choose the most appropriate approach, justify their 
choice of approach, and interpret their results appropriately. 
Therefore, we extend previous literature that provides overviews 
(Imbens  2024) or guidelines on how to conduct econometric 
identification methods using IVs (e.g., Jiang 2017; Young 2022; 
Lal et  al.  2024) for different disciplines, and tailor our guide-
lines to research questions and commonly used econometric ap-
proaches in agricultural and applied economics. We focus on the 
most common empirical research designs used in agricultural 
economics. For focus and brevity, we omit approaches that are 
less frequently used in agricultural economics so far, such as the 
regression kink approach (Cattaneo and Titiunik 2022), bunch-
ing (Caetano et al. 2025), and the front-door criterion (Bellemare 
et al. 2024).

Section 2 discusses the use of various methods that are based 
on the “selection on observables” identification strategy such as 
OLS and matching methods (e.g., propensity score matching). 
Section 3 explores methods based on IVs (or exclusion restric-
tions) such as 2SLS regression and endogenous switching re-
gression. Section 4 discusses fixed-effects estimations and DID 
approaches. Section  5 describes the synthetic control method, 
while Section  6 examines regression discontinuity designs. 
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Section 7 provides general suggestions that apply to all methods 
and Section 8 concludes the paper.

2   |   Selection on Observables

The selection-on-observables identification strategy is based 
on the assumption that we can observe and control for all vari-
ables that are correlated with both the treatment and the error 
term. This implies that there are no unobserved factors that are 
correlated with the treatment and affect the outcome through 
pathways that are not blocked by control variables. This assump-
tion is also sometimes called the Conditional Independence 
Assumption (CIA), conditional ignorability, or conditional 
unconfoundedness.

2.1   |   Classical Regression Methods

Classical regression analyses (e.g., OLS, logit, probit, tobit, or 
Poisson regression) can be affected by three potential sources 
of statistical endogeneity:6 (a) omitted variables/unobserved het-
erogeneity; (b) measurement error (any type of measurement 
error in the explanatory variables or non-random measurement 
error in the dependent variable); and (c) reverse causality/simul-
taneity from which it follows that the dependent variable also 
influences the explanatory variable of interest. When discuss-
ing potential endogeneity in a regression analysis, it is advisable 
to focus on each of the three potential reasons separately (see, 
e.g., Bellemare and Novak 2017). Theoretically, all the explan-
atory variables must be uncorrelated with the error term, while 
in practice the discussion of endogeneity usually focuses on one 
or a few explanatory variables that are of particular interest for 
the research question, for example, treatment variables. If a 
control variable is correlated with the error term, the bias of the 
estimated coefficient(s) of interest depends on the relationship 
between this endogenous control variable and the explanatory 
variable of interest, that is, whether there is a direct correlation 
or indirect relationship through other control variables (see 
Frölich 2008; Bellemare 2015, the latter provides an illustrative 
example with only one control variable).7

2.2   |   Directed Acyclic Graphs (DAGs)

Whether a selection-on-observables identification strategy may 
be feasible can be assessed, for example, by using Directed Acyclic 
Graphs (DAGs). DAGs are useful for at least two purposes. First, 
they clearly communicate and discuss assumptions about rela-
tionships between variables. Second, by applying certain rules 
or algorithms to DAGs (either manually or through available 
software tools8), sets of suitable control variables can be deter-
mined (Morgan and Winship 2014; Pearl and Mackenzie 2018).9 
This also includes the identification of variables that should not 
be used as control variables, that is, variables on the causal path 
from the treatment variable to the outcome variable (“bad con-
trols”). DAGs were originally developed in computer science 
(Pearl and Mackenzie 2018), but are increasingly being used in 
economics (Imbens  2020; Hünermund and Bareinboim  2025). 
However, it is important to emphasise that a DAG should not be 
considered as the only “true” and universally valid presentation 

of the real world, but rather as a tool to communicate the under-
lying assumptions of an empirical analysis.

2.3   |   Approaches to Address Endogeneity

Some studies aim to address unobserved heterogeneity by using 
a control variable that indicates the marginal utility of joining 
or leaving the “treatment” (Verhofstadt and Maertens  2014; 
Bellemare and Novak 2017; Ruml and Qaim 2021; Aïhounton 
and Henningsen  2024). Theoretically, this approach seems 
promising, but in practice it can be problematic because the 
control variable is usually observed after the decision to partic-
ipate in the treatment has been made and, thus, it can be influ-
enced by the treatment itself, which can introduce endogeneity 
(Aïhounton and Henningsen 2024).

Some empirical researchers try to address endogeneity by using 
lagged values instead of concurrent values of explanatory vari-
ables. Bellemare et  al.  (2017) show theoretically that using 
lagged values of explanatory variables addresses endogeneity 
only under the untestable assumption of “no dynamics among 
unobservables”. Their Monte Carlo simulation shows that using 
lagged values of explanatory variables can result in substan-
tially biased estimates and incorrect inference even if there are 
only low levels of dynamics among unobservables (Bellemare 
et al. 2017). Providing convincing arguments that there are no 
dynamics in any unobservable variables seems to be very diffi-
cult or impossible for most empirical studies.

There are methods to assess the sensitivity of the results to unob-
served heterogeneity (e.g., Oster 2019; Cinelli and Hazlett 2020; 
Diegert et al. 2023), which have often been used in recent ap-
plied economics research. However, these methods are, in gen-
eral, based on bold assumptions, and it is difficult or impossible 
to assess whether these assumptions are fulfilled in a specific 
empirical application. However, when applying a selection-on-
observables identification strategy, these methods can contrib-
ute to assessing the suitability of the identification strategy if 
their assumptions are discussed appropriately and their results 
are interpreted carefully.

Bernard et  al.  (2024) recommend presenting confidence inter-
vals that adjust conventional confidence intervals by incorpo-
rating the uncertainty about the bias that occurs due to using 
observational data (e.g., unobserved heterogeneity, violation of 
the Stable Unit Treatment Value Assumption (SUTVA), insuffi-
cient common support).

2.4   |   Relaxing Functional Form Assumptions

Classical regression methods usually rely on strict assumptions 
about the functional form of the relationship between treatment 
variables, control variables, and the dependent variable. These 
restrictive assumptions can be partly or fully relaxed by using, 
for instance, the Augmented Inverse Propensity Weighted 
(AIPW) estimator,10 semi- or nonparametric regression meth-
ods, matching methods such as propensity score matching 
(PSM),11 or machine learning approaches. However, except for 
assumptions about the functional form, these methods are based 
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on the same identifying assumptions as regression methods 
(e.g., Angrist and Pischke  2009; Blattman  2010; Mullally and 
Chakravarty 2018). Therefore, the same discussion as for the use 
of regression methods is required.

In recent years, machine learning methods have rapidly ad-
vanced and are being increasingly used in agricultural and 
applied economics. It is important to note that most machine 
learning methods are unsuitable when they are used directly to 
estimate causal effects, even if all variables that are correlated 
with both the outcome and the treatment variable are observed. 
This is because machine learning methods are generally de-
signed for prediction and not for the direct estimation of causal 
relationships. For example, machine learning approaches for 
variable selection (such as Lasso) select the subset of covariates 
that optimises out-of-sample prediction performance, but this 
selection likely introduces omitted-variable biases as it drops 
highly correlated control variables, including covariates that are 
correlated with both the outcome and the treatment variable.

However, machine learning methods can be used within estab-
lished econometrics frameworks for causal identification such 
as under the selection-on-observables assumption or for IV esti-
mation (see Section 3 and Appendix A). These methods are then 
called “causal machine learning.” Despite this name, it should 
be clear that these methods are not new concepts for causal 
identification but rather extensions of the established economet-
rics frameworks of causal identification in which specific parts 
are replaced by machine learning methods. Hence, they come 
with the same identification assumptions that apply to “classi-
cal” econometric approaches and, thus, the same requirements 
to carefully consider and motivate an appropriate identification 
strategy. The basic idea of causal machine learning is to lever-
age the predictive capabilities of machine learning methods and 
their flexibility to approximate potentially complex relationships 
within these frameworks (Storm et al. 2020; Baylis et al. 2021). 
For example, under the selection-on-observables assumption, 
causal machine learning methods can be used to relax restric-
tive functional form assumptions, such as in the case of Double/
Debiased Machine Learning (DML) (Chernozhukov et al. 2018), 
which assumes that the outcome model is a separable additive 
function, but that treatment effects, the influence of controls 
on outcomes, and the treatment assignment are unknown non-
linear functions. The approach allows the use of any machine 
learning algorithm to approximate these nonlinear functions 
and to derive average treatment effects.

2.5   |   Estimating Treatment Heterogeneity

The “Causal Forests” method (Wager and Athey  2018), which 
is a special case of Generalised Random Forests (RF) (Athey 
et al. 2019), extends the DML approach allowing the estimation 
of heterogeneous treatment effects, that is, treatment effects 
that depend on observed characteristics (Conditional Average 
Treatment Effects, CATE). From an applied perspective, a cru-
cial advantage is that treatment heterogeneity is estimated in a 
transparent and data-driven way, and thus avoids the need to 
predefine and potentially cherry-pick treatment groups. In agri-
cultural economics, Causal Forests have already been applied in 
various contexts to study treatment heterogeneity (e.g., Deines 

et al. 2019, 2023; Stetter et al. 2022; Schulz et al. 2024), while 
Brignoli et al. (2024) conduct simulation studies to compare the 
performance of classical econometric methods, Causal Forests, 
and other machine-learning methods in the estimation of (het-
erogeneous) treatment effects with typical cross-sectional farm-
level data.

2.6   |   Suggestions

In summary, when relying on a selection-on-observables identi-
fication strategy, we suggest doing the following (in addition to 
following the general suggestions that we provide in Section 7):

•	 Clearly state the assumptions that the chosen method and 
model specification require for obtaining unbiased and/or 
consistent estimates.

•	 Use a DAG to find a suitable model specification (e.g., which 
control variables to include and which not to include) and to 
discuss the credibility of the chosen identification strategy, 
including potential unobserved confounders.

•	 Separately discuss the three potential sources of statisti-
cal endogeneity: (a) omitted variables/unobserved hetero-
geneity; (b) measurement error; and (c) reverse causality/
simultaneity.

•	 Discuss the potential statistical endogeneity not only of 
the explanatory variable of interest but also of the control 
variables.

•	 Consider using placebo tests with outcome variables that 
should not be affected by the explanatory variable of in-
terest, for example, using lagged values of the outcome 
variable (e.g., see Imbens and Wooldridge 2009, and Chabé-
Ferret 2025b, section 8.3, for criticism of the former and also 
an alternative specification).

•	 Consider using methods for assessing the sensitivity of the 
results to unobserved heterogeneity (e.g., Oster 2019; Cinelli 
and Hazlett 2020; Diegert et al. 2023; Bernard et al. 2024).

•	 Consider using methods that do not rely on strict paramet-
ric assumptions.

3   |   Instrumental-Variable Methods

Instrumental-variable (IV) methods are often used in cases 
in which selection-on-observables cannot be justified (Lal 
et al. 2024). We define “IV methods” in a broad sense. While this 
section focusses on the use of IVs in linear IV and 2-Stage Least 
Squares (2SLS) regression (which is identical to IV-regression if 
the number of IVs12 is equal to the number of endogenous re-
gressors), these discussions and the practical advice given in this 
section also apply to other estimators that rely on IVs, including 
machine-learning IV methods (see Appendix A). A brief over-
view of special types of IVs is presented in Appendix B.

The assumptions required by IV approaches are sophisticated 
and difficult to test empirically (Lal et al. 2024). However, this 
does not imply that we want to discourage their use. Rather, 
our aim is to provide some suggestions and tools on how to 
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implement credible IV-based identification strategies in empiri-
cal research. This is important as invalid IVs can exacerbate the 
problem so that the bias in the 2SLS estimator may even exceed 
the OLS endogeneity bias (Lal et al. 2024). By construction, IV 
estimates are less precise than OLS estimates. For example, Lal 
et al. (2024) analyse 70 IV designs and show that 2SLS estimates 
have, on average, six times higher standard errors than OLS es-
timates, although this decreases with the strength of the IV.13

Using an IV approach to estimate a causal effect is possible if 
one has at least as many IVs as endogenous regressors. These 
IVs must fulfil the following two criteria: (a) they must be “rel-
evant”, i.e., strongly related to the endogenous regressors (even 
after controlling for all exogenous regressors); and (b) they must 
be statistically “exogenous”, i.e., no direct effect on the outcome 
variable (exclusion restriction) and not related to the error term 
(statistical independence).

3.1   |   Assessing the Strength of IVs

The first criterion can be empirically investigated with tests 
for weak IVs. Traditionally, an IV was considered relevant (i.e., 
not weak) if an F-test of its relevance in the first-stage regres-
sion had a test statistic of 10 or higher (Staiger and Stock 1997). 
However, more recent research indicates that a test statistic of 
10 is insufficient in most empirical applications. For instance, 
Keane and Neal (2024) show that OLS estimates are often closer 
to the “true” causal effects than 2SLS estimates if the IV's  
F-statistic in the first stage is below 20. They also demonstrate 
that, in cases where there is only one IV, the evaluation of the 
strength of the IV should be based on an F-statistic that exceeds 
50. Moreover, estimation results (e.g., t-tests) are often unreli-
able even in cases where there are much higher values for the 
F-statistic (e.g., Lee et al. 2022; Keane and Neal 2023, 2024). In 
addition, Lal et  al.  (2024) show that first-stage F-statistics are 
frequently overestimated if the test is not robust towards het-
eroskedasticity, clustering, and autocorrelation, which implies 
that IVs in such cases may incorrectly be treated as relevant.

3.2   |   Assessing the Exogeneity of IVs

The statistical exogeneity of the IV implies that it influences 
the dependent variable only via its effect on the endogenous ex-
planatory variable (exclusion restriction) and it is not correlated 
with the error term (statistical independence). If the endogenous 
explanatory variable is continuous, the exogeneity of the IVs 
cannot be empirically investigated without further assumptions 
(Pearl  1995a, 1995b; Gunsilius  2021).14 For instance, if there 
are more potential IVs than endogenous regressors available, 
it is possible to apply the Sargan-Hansen test/Sargan's J test/
Hansen's J test for overidentifying restrictions. If, based on 
theoretical considerations, it is certain that there are at least as 
many exogenous IVs as there are endogenous regressors, the test 
indicates (under some assumptions, e.g., correct model specifi-
cation) whether the additional IVs, that is, those that are not cer-
tain to be exogenous, are indeed exogenous. However, without 
clear theoretical justifications that ascertain the exogeneity of at 
least as many IVs as there are exogenous regressors, the test is 
basically uninformative.

In contrast, if the endogenous explanatory variable is discrete, 
the exogeneity of the IVs can be tested. Pearl  (1995a, 1995b) 
derives testable inequalities, which have been extended by 
Kitagawa  (2015, for binary endogenous explanatory variables 
and discrete IVs) and Kédagni and Mourifié (2020, for discrete 
endogenous explanatory variables and any kind of IVs). The in-
tuition behind these inequalities is that for observations with the 
same value of the endogenous explanatory variable, the potential 
outcomes should not depend on the value of the IV. However, 
these inequalities have rarely been used in empirical research.15

In addition, it is helpful to think of placebo estimates that can be 
used to test specific violations of the exogeneity assumption. For 
instance, in some cases, the effect on the pre-treatment outcome 
can be estimated (see, e.g., Chabé-Ferret 2025b, section 8.2.1). In 
other empirical applications, the IV might affect the treatment 
via a specific mechanism that only matters for some observations 
(e.g., specific locations, farmers, or crops) but not for others. In 
this case, a useful placebo test would be to obtain reduced-form 
estimates of the correlation between the outcome and the IV 
for a (sub)sample of observations, where the outcome and the 
IV should be uncorrelated. If the main concern is that the IV 
might affect the outcome through a specific pathway other than 
the endogenous regressor, and this potential other pathway is 
measurable, one can directly test this violation of the exogeneity 
assumption by regressing this pathway on the IV. For example, 
if an IV is supposed to affect the farmers' access to credit but is 
assumed not to affect their access to insurance, one can regress 
farmers' access to insurance on the IV.

One weakness of all the tests mentioned above is that they can 
never “prove” that an IV is exogenous because they all rely on 
the null hypothesis that the IVs are exogenous, and not reject-
ing the null hypothesis does not necessarily mean that it is true, 
particularly if the test has low statistical power, for example, 
caused by a small number of observations, multicollinearity, or 
a large error variance. Hence, it is always necessary to strongly 
motivate the exogeneity of IVs based on solid theoretical argu-
mentation (e.g., Lal et  al.  2024) and critically discuss the as-
sumption of statistical exogeneity for each IV used, for example, 
by debating whether potential (unobserved) variables may be 
related to both the treatment variable and the outcome variable. 
This is important as McKenzie et al. (2010) show that using IVs 
for which the exogeneity assumption is potentially violated may 
lead to the overestimation of the effect of up to 82% compared to 
the effect found from an experimental benchmark study. This is 
more than the overestimation that occurs when simply applying 
OLS (35%), matching (20%) or DID (22%), which implies that a 
badly identified 2SLS estimation only amplifies estimation bias. 
As a general rule, the less specific the effects of the chosen IV, 
the less likely the exogeneity assumption is fulfilled (see, e.g., 
Mellon (2024) for a discussion of rainfall as an IV).

3.3   |   Interpretation and Practical Aspects of 2SLS

In the case of a weak IV or a violation of the exogeneity as-
sumption, an IV estimation can lead to greater bias than an 
OLS regression (Lal et al. 2024). In such cases, it is advisable 
to apply non-causal estimators, interpret the results as as-
sociations, and draw conclusions with due caution. Here we 
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refer, for example, to Groher et al. (2020) and Aïhounton and 
Henningsen (2024) for examples of correlational wording. Lal 
et al. (2024) note that 2SLS estimates are in many cases much 
larger than standard OLS estimates, although the aim of the 
IV estimation is usually to tackle a positive omitted variable 
bias of OLS. Therefore, it is also advisable to discuss the direc-
tion of the bias that the IV estimation is intended to address 
and assess the extent to which the IV approach was able to 
address this bias (for examples, see e.g., Basu  2018; Hirsch 
et al. 2023).

For the interpretation of results, it is important to note that 2SLS 
estimates indicate Average Treatment Effects (ATE) only under 
restrictive assumptions (e.g., that the treatment effect is homo-
geneous across all subjects with the same values of the control 
variables) (e.g., Heckman 1997; Aronow and Carnegie 2013).16 
However, these assumptions are unlikely to be fulfilled in 
most empirical analyses. Under less restrictive assumptions 
(e.g., monotonicity of the effect of the IV on the endogenous 
explanatory variable), 2SLS estimates indicate Local Average 
Treatment Effects (LATE), which indicate the effect of the part 
of the variation in the endogenous explanatory variable that is 
caused by variation in the IV (e.g., Imbens and Angrist 1994). 
For instance, in the case of a binary IV and a binary endogenous 
explanatory variable, the LATE indicates the average treatment 
effect on those subjects that “comply” with the IV. The effects 
on the “always takers” and the “never takers” remain uniden-
tified, and in most cases it is unknown who the “compliers” ac-
tually are. While the LATE may provide relevant information 
in some empirical analyses, in others it might not identify the 
effect we are interested in (Angrist and Pischke 2009; Aronow 
and Carnegie 2013).

For estimating 2SLS, modern statistical software offers vari-
ous packages. It is advisable to use these rather than manually 
estimating 2SLS by first estimating the first-stage OLS and 
then manually inserting the predicted values into a separately 
estimated second-stage OLS regression. A common mistake 
when using the “manual” procedure is failing to include the 
same control variables in both stages, resulting in inconsistent 
2SLS estimates (Angrist and Pischke 2009). Furthermore, the 
manual procedure results in incorrect OLS standard errors 
in the second stage. However, unless the IVs are very strong, 
even the standard errors obtained by software packages for 
2SLS estimations do not correctly reflect the uncertainty of 
2SLS estimates and, thus, they need to be further adjusted 
(Lee et al. 2022; Lal et al. 2024). For example, Lal et al. (2024) 
analyse 70 IV designs and report that the estimated standard 
errors of 2SLS estimates systematically underestimate the un-
certainties of these estimates.

3.4   |   Beyond Linear 2SLS

Although the above discussions refer to linear IV and 2SLS 
regression, they are largely transferable to a large number of 
other methods that rely on IVs or exclusion restrictions such as 
endogenous switching regression models or methods for non-
continuous dependent or endogenous explanatory variables 
(see Appendix A for details). It is important to note that addi-
tional pitfalls exist when using IVs in regression models with 

non-linear terms (e.g., quadratic, interaction terms) and/or in 
non-linear regression models (e.g., probit, logit) (see Appendix A 
for details).

While the availability of a valid IV is a crucial requirement for 
obtaining unbiased estimates using any IV approach, it is also 
crucial to consider the functional form assumption that un-
derlies the employed methods. For instance, Okui et al. (2012) 
show that 2SLS regression may result in substantially biased 
estimates of the treatment effect if the functional relationship 
between the control variables and the outcome variable is incor-
rectly specified. Interestingly, in applied settings, much of the 
discussion seems to focus on the validity of the IV, while often 
the strong functional form assumptions seem to be more readily 
accepted and less critically discussed. However, depending on 
the degree of heterogeneity or nonlinearity, they may be equally 
critical (Okui et al. 2012).

Existing nonparametric versions of IV estimators relax these 
functional form assumptions and require only that the outcome 
is the sum of an (unknown) nonlinear function of a treatment 
variable and observed covariates (that are uncorrelated with un-
observed confounders) and an additive error term that may be 
correlated with the treatment variable (Newey and Powell 2003). 
However, early nonparametric approaches based on basis func-
tions/splines or kernel methods struggle with a larger number 
of covariates or IVs and large sample sizes. Building on these 
early nonparametric estimators, an active field of research at 
the intersection of machine learning and econometrics has de-
veloped extensions that leverage the predictive capabilities of 
modern machine learning methods to improve nonparametric 
IV estimators.

Although these new machine learning-based IV approaches 
offer some interesting extensions of existing approaches, it is im-
portant to emphasise that they do not change the requirement of 
having a solid identification strategy and valid IVs.17

Generally, the promise of IV estimation is that it can estimate 
unbiased effects despite unobserved confounders. However, any 
IV approach comes at the cost of a substantial reduction in the 
statistical power of the estimation. This is particularly relevant 
to consider when estimating heterogeneous treatment effects 
(given that estimating not just one value but infinitely many or a 
function of values is a substantially more complex task). Hence, 
applying IV methods with the aim of identifying treatment het-
erogeneity typically requires large datasets.

3.5   |   Suggestions

If various assessments indicate that an IV-based method should 
be considered, we suggest performing the following checks that 
comprise a combination of theory-based considerations and 
suitable statistical tests (e.g., Lal et al. 2024) (in addition to fol-
lowing the general suggestions that we provide in Section 7):

•	 If an explanatory variable is incorrectly treated as en-
dogenous, estimates based on IV regression (e.g., 2SLS) 
are less efficient than estimates based on correspond-
ing selection-on-observables regression methods (e.g., 
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OLS). Therefore, it is important to consider and discuss, 
based on theoretical argumentation, whether a poten-
tially endogenous explanatory variable should indeed be 
instrumented. In all cases, it is advisable to provide and 
compare the results for both the IV regression and the 
OLS estimation.

When using an IV regression method, it is important to assess 
the strength of the IVs based on the following criteria:

•	 Always report complete first-stage results including all 
model diagnostics.

•	 Only use IV-based methods when the IV(s) are sufficiently 
strong, that is, there is a sufficiently high correlation be-
tween the endogenous explanatory variable and the IV(s) 
after controlling for exogenous control variables.

•	 Assess the strength of the IV(s) by applying an F-test to the 
first stage of the IV estimation that tests the statistical sig-
nificance of the IVs [i.e., tests a specification with the ex-
ogenous control variables but not the IV(s) as explanatory 
variables against the complete first-stage regression with 
the IV(s)].

•	 If the F-statistic of the statistical significance of the IVs in 
the first stage is below 20, consider presenting OLS esti-
mates instead of 2SLS estimates as OLS estimates are often 
closer to the “true” causal effects than are 2SLS estimates. 
In the case of a single IV, the F-statistic should exceed 50 
(Keane and Neal 2024).

•	 If the first-stage F-statistic is below 100, standard errors 
may need to be adjusted as described by Lee et al. (2022) or 
Keane and Neal (2024).

•	 In the case of heteroskedasticity, clustering, or autocor-
relation of the error term in the first stage, it is import-
ant to conduct an F-test that is robust to these conditions, 
as a standard F-test overestimates the F-statistic (Lal 
et al. 2024). See, for example, the Cragg-Donald F-statistic 
(Cragg and Donald  1993) or the Kleibergen-Paap statistic 
(Kleibergen and Paap 2006) and the guidance on these sta-
tistics provided, for example, in Bazzi and Clemens (2013) 
or Windmeijer (2024).

We refer to previous parts of this section and the literature (e.g., 
Lal et al. 2024, section 2.2.1) for a more in-depth discussion of 
the options to investigate the strength of IVs.

If the IVs are sufficiently strong (so that the use of IV regression 
is not abandoned), it is important to assess the appropriateness 
of the exogeneity assumption, that is, the exclusion restriction 
and the statistical independence assumption. We suggest doing 
the following:

•	 Use strong theoretical considerations to rule out any di-
rect effect of the IVs on the dependent variable or any 
relationship with omitted factors (error term), see, for ex-
ample, Mellon (2024), who discusses the use of weather as 
an IV.

•	 If the endogenous explanatory variable(s) are discrete, 
use statistical tests to test the exogeneity of the IV(s), for 

example, the tests suggested by Kitagawa (2015) or Kédagni 
and Mourifié (2020).

•	 If possible, use placebo tests to assess the exogeneity as-
sumption (see above).

•	 In the rare situations when the model is overidentified (i.e., 
the number of IVs is larger than the number of endogenous 
explanatory variables) and there are clear theoretical justifi-
cations for the exogeneity of at least as many IVs as there are 
exogenous regressors, use a Sargan-Hansen test/Sargan's J 
test/Hansen's J test to test the exogeneity of the additional 
IVs, that is, those that are not certain to be exogenous. 
However, in most cases, one cannot be certain that there 
are at least as many exogenous IVs as there are endogenous 
regressors, and thus the result of this test gives no practical 
guidance. Furthermore, it is important to note that this test 
relies on a correct model specification and does not investi-
gate instrument relevance.

•	 Be aware of the limitations of statistical tests for the exoge-
neity of IVs, particularly that not rejecting the null hypothe-
sis of exogeneity does not mean that the IVs are exogenous, 
particularly if the test has low statistical power.

For further discussion on how to assess the exogeneity assump-
tion, we refer to previous parts of this section and the literature 
(e.g., Lal et al. 2024, section 2.2.2).

If the exogeneity assumption is considered to be appropriate, it 
is important to carefully assess and interpret the second-stage 
results and:

•	 Provide OLS estimates for comparison.

•	 Discuss whether 2SLS was able to address the bias of OLS 
estimates, which involves a discussion of the direction of 
the bias and the extent to which a 2SLS regression can at-
tenuate this bias (see, e.g., Basu 2018).

•	 Interpret the results as LATE unless there is credible evi-
dence that the chosen method and empirical specification 
provide an estimate of the ATE.

•	 Use the tF test (Lee et al. 2022) or the Anderson-Rubin test 
(Keane and Neal 2024) instead of standard t-tests.

4   |   Fixed Effects and Difference in Differences

Fixed-Effects (FE) estimators and Difference-in-Differences 
(DID) research designs are useful tools to control for unobserved 
confounders when certain assumptions about these confound-
ers are fulfilled.

4.1   |   Fixed-Effects Estimators

FE estimators control for unobserved confounders that are 
constant at the fixed-effect level. For example, when using 
individual-fixed effects in a study with panel data, which in 
agricultural economics papers are often farm-fixed effects, 
one can control for all time-invariant unobserved heterogene-
ity at the individual (farm) level. The unobserved heterogeneity 
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may be differences in management skills, local climatic and 
soil conditions, infrastructure, or the remoteness of the area. 
Consequently, models with individual-fixed effects cannot 
quantify the effects of time-invariant factors such as proxim-
ity to a city (Wooldridge  2010). Similarly, FE can be set and 
combined at every level that reasonably groups the data. For 
instance, year-fixed effects control for all unobserved hetero-
geneity that affects all units in a given year in the same way, 
such as market conditions, the introduction of a certain policy, 
etc. Mathematically, FE are equal to a joint demeaning of the 
dependent variable and the independent variables, which is 
also called within transformation. For farm-fixed effects, this 
implies subtracting the farm average from each observation. 
This transforms, for example, farm profits into deviations from 
the average profit of the respective farm in the observed time 
period (Mundlak  1961). FE may be helpful for controlling for 
many unobserved factors, and they may also be combined with 
other methods such as IV or DID. However, there are only a few 
examples of cases in which FE are sufficient to fully establish 
causality in a model (Blanc and Schlenker 2017). One example 
is weather shock impact models that regress a measure of ag-
ricultural performance such as yields or productivity on a ran-
dom and exogenous weather shock (Blanc and Schlenker 2017). 
Remaining caveats of FE models are related to reverse causality 
and time-variant confounders, which may still introduce simul-
taneity and omitted-variable biases.18

Taking a closer look at the above examples of time-invariant 
factors, climatic conditions, soil quality, and infrastructure 
may be reasonably considered time-invariant in the short run 
but they may change over longer time horizons. Therefore, 
Millimet and Bellemare  (2023) follow Mundlak  (1961, 1978) 
and argue that such a potential bias may be ignored in shorter 
panels due to negligible changes in these variables over time. 
However, in increasingly long panels, a trade-off arises be-
tween efficiency gains derived from more observations and 
potential biases and inconsistency resulting from not truly 
time-invariant factors accumulating to considerable unob-
served confounders over time. Millimet and Bellemare (2023) 
highlight alternative estimators such as the First-Difference 
(FD), Twice First-Differenced (TFD), or Interactive Fixed 
Effects (IFE) estimator, and suggest Rolling FD (RFD), 
Rolling TFD (RTFD), and Rolling FE (RFE) estimators, which 
can either be used as alternatives to FE estimators or at least 
to explore the sensitivity of FE estimates to these alternative 
estimators.

Table  1 summarises panel data estimators that address un-
observed heterogeneity. When using panel data sets with two 
time periods (T = 2), “rolling” estimators cannot be used, 
while (individual) FE estimates are equal to FD estimates 
without intercept and Two-Way Fixed Effects (TWFE) es-
timates are equal to FD estimates with intercept. In case of 
more than two time periods (T > 2) and mostly time-invariant 
unobserved heterogeneity, FE, TWFE, and FD estimators are 
recommended. In the presence of autocorrelation in the treat-
ment variable, standard errors that are robust to clustering 
at the level of the treatment assignment yield valid estimates 
of the standard errors of any estimator in Table  1 (FD, FE, 
TWFE, etc.) (Bertrand et al. 2004; Cameron and Miller 2015; 
Chabé-Ferret 2025b, Chapter 9).19 However, these estimators T
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differ in efficiency depending on the degree of autocorrelation 
(McKenzie  2012). Following McKenzie  (2012) and Millimet 
and Bellemare (2023), we recommend testing for autocorrela-
tion and estimating both FD and FE/TWFE models, retaining 
the more precise specification. The FD estimator is preferable 
if there is strong positive temporal autocorrelation in the un-
transformed error term because the first differencing removes 
this strong temporal autocorrelation, while FE and TWFE es-
timators are preferable if there is no or only little temporal 
autocorrelation in the untransformed error term because, in 
this case, first differencing would introduce strong negative 
temporal autocorrelation.

Furthermore, the robustness of estimators that rely on the as-
sumption of time-invariant confounders can be assessed by 
comparing their estimates to those of estimators that are more 
robust to time-varying unobserved heterogeneity. If discrep-
ancies arise, Millimet and Bellemare  (2023) recommend addi-
tionally reporting the results of alternative estimators. In the 
very long run (T → ∞), most unobserved heterogeneity would 
change over time, making FE and TWFE unreliable and less rel-
evant (Bellemare and Millimet 2025). In agricultural econom-
ics, some outcomes, such as crop or milk yield and farm profits, 
could exhibit substantial variability and low autocorrelation, 
making FE or TWFE estimators appropriate (McKenzie 2012). 
In these settings, using panel data with higher frequencies is 
often more beneficial than merely extending the time dimension 
of the panel (McKenzie 2012; Millimet and Bellemare 2023). For 
example, Belay and Olsen (2025) leverage monthly data to im-
plement TWFE and IFE models in their analysis of milk yield.

4.2   |   Difference-in-Differences

An alternative approach to estimating causal effects with panel 
data is the DID research design.20 In classic (2 × 2) DID esti-
mations, there are two groups and two time periods. There is 
a pre-treatment period, when no units are treated; and there 
is a post-treatment period, when some units are treated (the 
treated group) and others (the control group) remain untreated. 
By using the control group as the counterfactual in the post-
treatment period, it is possible to calculate the difference in the 
changes in the average outcomes between the treatment group 
and the counterfactual: the “Average Treatment effects on the 
Treated” (ATT).

The underlying identifying assumption in DID is the parallel-
trends assumption, which reasons that the treated units would 
have followed the same parallel trends as the untreated control 
units had the treated units gone from the pre-treatment period 
to the post-treatment period in the absence of treatment.21 If this 
assumption is satisfied, then the control units can provide the 
counterfactual for the treated group in the post-treatment pe-
riod. However, the parallel-trends assumption is purely hypo-
thetical by definition since it is impossible to be certain that the 
trends of the treated units and the untreated control units would 
have followed parallel paths in the post-treatment period. When 
a data set includes multiple pre-treatment periods, one can 
verify that the pre-treatment trends of the two groups are par-
allel, though one should be cautious when inferring “true cau-
sality”, as parallel trends in the pre-treatment periods may not 

necessarily imply parallel trends between the last pre-treatment 
period and the post-treatment period in the hypothetical situa-
tion in which the treatment group is not treated.

Multiple applications of DID in agricultural and food economics 
settings exist. For instance, in production economics, Belay and 
Jensen  (2020) estimate the effect of information disclosure on 
antibiotic use and market survival among pig farms, while Belay 
and Ayalew (2020) examine the impact of reference market price 
disclosure on smallholders' crop choice. Similarly, Belay and 
Jensen (2022) evaluate the impact of limiting antibiotic use on 
the economic performance of pig farms. In consumption eco-
nomics, Fan et al. (2022) estimate the impact of the introduction 
of a sugar tax on candy purchases and Hoy and Wrenn (2020) 
estimate the impact of GMO labelling on consumer choices. 
Other studies, such as Pufahl and Weiss  (2009), Chabé-Ferret 
and Subervie (2013), and Wuepper and Huber (2022) apply DID 
design to evaluate alternative agri-environmental schemes.

The basic (2 × 2) DID set-up can be extended to situations with 
multiple time periods. In DID settings with multiple time pe-
riods, a key question is how treatment effects evolve with ex-
posure duration, that is, do they increase, decrease, or remain 
stable over time? Investigating these dynamics is often the 
primary reason for using event-study (ES) regressions in DID 
designs (Callaway and Sant'Anna 2021; Miller 2023). The DID 
estimations with multiple periods can also be extended to sce-
narios in which different units of the treatment group receive 
the treatment at different times, which is known as heteroge-
neous treatment timing. Under conditions in which the size of 
the treatment effect is: (a) constant over time; and (b) indepen-
dent of the time period of the treatment, a standard TWFE esti-
mator offers a reliable estimation for inferring treatment effect 
causality (Roth et al. 2023).

However, under heterogeneous treatment timing and treatment 
effect heterogeneity, the TWFE estimator may result in a bi-
ased estimate of the average treatment effect on the treated and, 
thus, causally interpreting the regression coefficient becomes 
problematic even if the parallel-trends assumption holds (de 
Chaisemartin and D'Haultfœuille 2020; Goodman-Bacon 2021; 
Athey and Imbens  2022). For instance, this may be the stag-
gered22 adoption of an agricultural policy whose effect is time-
varying, that is, the magnitude of the effect depends on the time 
when a farm faced the treatment (e.g., policy) for the first time, 
the number of years that the farm has already faced the treat-
ment (e.g., due to adjustments, learning, and/or accumulating 
effects over time), and/or the specific year (e.g., on the weather 
or market conditions in the year). By making so-called “forbid-
den comparisons” between groups that received the treatment 
at earlier and later times, standard DID methods may give neg-
ative estimates of the average treatment effect on the treated 
even when the “true” effect is, in fact, positive, which is known 
as the negative weights problem (Goodman-Bacon  2021; de 
Chaisemartin and D'Haultfœuille 2023b; Borusyak et al. 2024). 
Recent developments in DID have identified solutions to this 
issue. Callaway and Sant'Anna (2021), Sun and Abraham (2021), 
Wooldridge (2021), de Chaisemartin and D'Haultfœuille (2023a), 
and Borusyak et al. (2024) have overcome the negative weights 
problem by restricting the types of comparisons that can be 
made, ensuring that appropriate counterfactuals are used to 
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causally infer effects under heterogeneous treatment timing 
and treatment effect heterogeneity under various conditions of 
the parallel-trends assumption. For example, one may condition 
the parallel-trends assumption on additional covariates, such 
as weather or growing conditions, or on anticipatory behaviour 
such as in the event of an upcoming policy change (Callaway 
and Sant'Anna 2021).

Researchers could choose from alternative DID estimators 
summarised in Table  2, depending on the treatment design, 
data structure, number of groups, causal estimand of interest 
(e.g., overall/static ATT or event-study/dynamic ATT), choice 
of baseline period (in event studies), control group definition 
and cohort size (in staggered designs), nature of parallel-trends 
violation, computational speed, and other criteria. The table 
includes several recent heterogeneity-robust DID estimators 
for staggered treatment designs. For example, in the context of 
gradual policy rollout, one can select either the never-treated 
group or the not-yet-treated group as controls (Callaway and 
Sant'Anna 2021; de Chaisemartin and D'Haultfœuille 2023a). 
A researcher can opt for estimators that construct counterfac-
tuals using imputation methods based on efficient and fast 
linear estimation (Borusyak et  al.  2024), two-stage differ-
ence in differences (Gardner et  al.  2024), or non-linear DID 
models such as exponential, Poisson, logit, or probit models 
(Wooldridge  2023). Moreover, heterogeneity-robust DID de-
signs have also been developed for continuous (i.e., non-binary 
and non-discrete) treatments (Callaway et  al.  2024a, 2024b; 
de Chaisemartin and D'Haultfœuille  2024; de Chaisemartin 
et  al.  2025) as well as for multiple (i.e., reversible and re-
treatable) (de Chaisemartin and D'Haultfœuille 2024) and sev-
eral treatments (de Chaisemartin and D'Haultfœuille 2023b). 
In the case of multiple treatments (sometimes also called 
treatment-on-and-off scenario), it is important to distinguish 
between “no-carryover” and “(arbitrary) carryover.” In the 
no-carryover case, only the current treatment status affects 
outcomes with no lasting impact from past treatment (de 
Chaisemartin and D'Haultfœuille  2024). In contrast, (arbi-
trary) carryover means that the treatment history influences 
outcomes, making it resemble the staggered treatment sce-
nario. In this case, “intent-to-treat” effects can be estimated 
by defining treatment as “has ever been treated” in a staggered 
treatment fashion, thereby ensuring that the treatment status 
is absorbing and accounts for any potential carryover effects 
(Sun and Abraham 2021; Liu et al. 2024). In many cases, the 
effect of having previously received the treatment is of interest 
as it reflects the long-term impact of the treatment, even if the 
treatment itself is temporary. For instance, Deryugina (2017) 
studies the fiscal cost for counties hit by hurricanes. Although 
hurricanes are transitory, their long-term impact persists, 
so the author models the year of the first hurricane to cap-
ture these effects. Deryugina  (2017) then adopts what de 
Chaisemartin and D'Haultfœuille (2023a) refer to as a “bina-
rise and staggerise” approach, that is, by replacing the hur-
ricane status (on/off) with a binary indicator of having been 
previously hit by a hurricane, the treatment becomes absorb-
ing, allowing the use of staggered adoption designs (Sun and 
Abraham 2021; de Chaisemartin and D'Haultfœuille 2023a).

It is important to note that the estimation methods recom-
mended for various DID model scenarios in Table 2, along with 

their implementation in Stata and R, are based on the assump-
tion that the parallel-trends assumption holds unconditionally 
(i.e., without covariates). Of all the methods listed in Table 2, the 
method suggested by Callaway and Sant'Anna (2021) is the most 
suitable for cases where the parallel-trends assumption holds 
only after conditioning on covariates. This method is applicable 
for treatments that are both binary and staggered.23

When violations of the parallel-trends assumption arise from 
long-run discrepancies in outcome trends between groups, es-
timators such as the one suggested by Borusyak et al. (2024), 
which leverage the full set of pre-treatment periods to con-
struct counterfactuals, can be particularly effective, especially 
compared to methods that rely solely on the last pre-treatment 
period as a baseline. However, if the violation stems from a 
known anticipation effect, approaches such as those sug-
gested by Callaway and Sant'Anna  (2021) and Sun and 
Abraham (2021), can be adapted to use the anticipation period 
as a baseline to produce reliable estimates (de Chaisemartin 
and D'Haultfœuille 2023a).

Moreover, DID in an ES framework (including recent gener-
alised DID estimators) offers plots that visually present both 
dynamic treatment effects and pretreatment trends, allowing 
the evaluation and testing of parallel trends before treatment 
(e.g., Taylor  2022; Li and Zhu  2024). However, it is important 
to note that failure to detect a non-parallel pre-treatment trend 
does not necessarily imply its absence, as conventional ES tests 
for parallel pre-treatment trends often lack power and therefore 
fail to detect non-parallel pre-treatment trends (Freyaldenhoven 
et al. 2019, 2021; Roth 2022). Researchers should assess the sta-
tistical power of these tests using tools such as the R package 
pretrends (Roth  2025) for nonlinear trends and consider alter-
native visualisation tools such as the xtevent package in Stata 
(Freyaldenhoven et  al.  2025), the eventstudyr package in R 
(Freyaldenhoven et al. 2023), or magnitude-based pre-treatment 
trend evaluation (Bilinski and Hatfield 2020). If the (uncondi-
tional) trends during and after the treatment cannot be consid-
ered to be parallel (e.g., if pre-treatment trends do not seem to be 
parallel), Freyaldenhoven et al. (2019) recommend using a 2SLS 
framework (available in xtevent or eventstudyr) with one or more 
covariates that are affected by the confounding (non-parallel) 
trends but are not related to the treatment. Rambachan and 
Roth et al. (2023) propose confidence sets that are robust to vio-
lations of the parallel-trends assumption, which can be obtained 
using the HonestDiD package (Rambachan and Roth 2024) in R 
or Stata, as applied by Wuepper and Huber (2022). Regardless of 
the approach, using economic knowledge to analyse potential 
parallel-trends violations strengthens causal inferences over re-
lying solely on the statistical significance of tests of parallel pre-
treatment trends (Roth  2022). Furthermore, it is important to 
emphasise that the parallel-trends assumption cannot be tested, 
as even perfect parallel pre-treatment trends do not guarantee 
that the trends during and after the treatment period would also 
be parallel.24

An interesting extension to study staggered treatment problems 
is the matrix completion approach for causal panel data models, 
which allows the combination of TWFE with synthetic controls 
in a data-driven manner (Athey et al. 2021). In an agricultural 
context, this approach is particularly appealing as it naturally 
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deals with unbalanced panel data sets (Martinsson et al. 2024). 
Similarly, Arkhangelsky et  al.  (2021) developed the Synthetic 
Difference-in-Differences (SDID) method, which combines ele-
ments of the synthetic control approach (discussed below) with 
DID. While SDID requires a relatively longer pre-treatment 
period to construct credible counterfactuals, it does more than 
merely testing for parallel pre-treatment trends using past out-
comes (Roth 2022); it leverages the pre-treatment information to 
compute weights that ensure pre-treatment trends are parallel 
by construction.

Another relevant impact estimator related to DID design 
is the Changes-in-Changes (CIC) estimator (Athey and 
Imbens 2006), which serves as an alternative to DID by focus-
ing on the Quantile Treatment Effect on the Treated (QTT) 
rather than on the ATT. The QTT approach helps policymak-
ers understand how the benefits and/or costs of a treatment 
are distributed across subgroups, particularly when decisions 
depend on distributional effects. For example, Mayr and 
Agnolucci  (2023) apply CIC to estimate heterogeneous im-
pacts of voluntary climate agreements in the UK on business 
electricity consumption and employment.

In applications of DID in the field of agricultural and applied eco-
nomics, functional form issues often arise when outcome vari-
ables such as shares, areas, incomes, spending, or yields contain 
many zeros or are non-continuous, such as technology adoption. 
For outcomes with many zeros, researchers are advised to follow 
the approaches proposed by Bellemare and Wichman (2020) and 
Chen and Roth (2024). For non-continuous outcome variables, 
nonlinear DID specifications such as exponential, logit, or probit 
models are recommended (Wooldridge 2023).

4.3   |   Suggestions

When using fixed-effect-based or DID-based methods, we sug-
gest doing the following (in addition to the general suggestions 
that we provide in Section 7):

•	 Provide reasoning based on economic theory on unob-
served confounders that potentially bias estimates and that 
can be addressed by the use of fixed effects.

•	 Provide reasoning on the time invariance of potential unob-
served confounders with respect to the covered time hori-
zon when using individual-fixed effects.

•	 Select an appropriate estimator to account for unobserved 
heterogeneity in panel data, and justify the choice with 
compelling arguments (see, e.g., Table 1).

•	 When using FE or TWFE estimators (e.g., in case of low 
temporal autocorrelation), increasing data frequency is 
more beneficial than lengthening the panel duration.

•	 Adjust standard errors to make them robust to heterosce-
dasticity, clustering, and spatial and temporal autocorrela-
tion (if necessary).

•	 Choose a suitable DID method and substantiate the choice 
of method by providing convincing arguments (see, e.g., 
Table 2).

•	 Evaluate if pre-treatment trends are parallel by creating 
parallel-trends plots in static DID analyses and event-study 
plots in dynamic DID settings.

•	 Empirically investigate the extent to which pre-treatment 
trends are parallel in DID settings. This investigation 
should include supplementing event-study plots with diag-
nostic tests that assess the statistical power of tests for par-
allel pre-treatment trends.

•	 Consider using methods such as those suggested by 
Abadie  (2005), Sant'Anna and Zhao  (2020), and Callaway 
and Sant'Anna  (2021) in DID settings where the parallel-
trends assumption only holds when conditioning on covari-
ates. However, Freyaldenhoven et al. (2019) emphasise that 
this conditioning approach may often be inadequate in real-
world economic applications because it requires the condi-
tioning covariate to be a perfect proxy for the confounding 
trend—an assumption that may not always hold. To address 
this, Freyaldenhoven et  al.  (2019) propose a generalised 
2SLS framework for an event study that allows conditioning 
on covariates that are not necessarily perfect proxies for the 
confounding trend.

•	 In simple DID (i.e., classic (2 × 2) or multiple-period single-
treated), if the unconditional pre-treatment trends are not 
parallel and the researcher wishes to specifically control for 
lagged outcome due to potential policy/program anticipa-
tion effects (Ashenfelter 1978; Ashenfelter and Card 1985; 
Heckman and Smith 1999), selecting the appropriate esti-
mator requires testing for unit roots and assessing parallel 
pre-treatment trends (Chabé-Ferret 2025a). If there is a unit 
root in the outcome and pre-treatment trends are parallel 
only when conditioning on lagged outcome, use DID with 
lagged outcomes. If neither unconditional nor conditional 
pre-treatment trends are parallel, choose the method with 
the lower pre-treatment bias (Chabé-Ferret 2025a).

•	 Provide reasoning based on economic theory on parallel 
post-treatment trends in DID settings.

•	 In DID with staggered treatment, consider using the Bacon 
Decomposition to explicitly diagnose and interpret static 
TWFE estimates as a weighted average of all possible 
pairwise 2 × 2 DID comparisons (Goodman-Bacon  2021). 
This decomposition can be conducted with or without 
time-varying covariates, and implemented using the ba-
condecomp package in Stata (Goodman-Bacon et al. 2022) 
or R (Flack and Jee  2020). Alternatively, one can use the 
twowayfeweights package in Stata (de Chaisemartin, 
D'Haultfoeuille, and Deeb 2024) or the TwoWayFEWeights 
package in R (Ciccia et al. 2024).

•	 Consider supplementing DID estimates using falsification 
or placebo tests on outcomes arguably unrelated to the 
treatment/intervention.

•	 In DID applications with many zeros or non-continuous 
outcome variables, researchers should follow Bellemare and 
Wichman (2020) and Chen and Roth (2024) for zero-inflated 
outcomes and use nonlinear DID models such as exponential, 
Poisson, logit, or probit specifications (Wooldridge 2023).

•	 If SUTVA violations are plausible (e.g., due to spillovers) 
in DID or other panel-data settings, see Butts  (2023) and 
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Chabé-Ferret et al. (2021) for methods to test and relax this 
assumption, including machine-learning approaches for de-
tecting social networks in panel data (Manresa 2013).

5   |   Synthetic Control Method

The Synthetic Control Method (SCM) was introduced by 
Abadie and Gardeazabal (2003) and later formalised by Abadie 
et al. (2010, 2015). SCM is a combination of DID and matching. 
Synthetic control units are selected as the weighted average of all 
potential comparison units based on how closely they resemble 
the treated unit(s) in the pre-treatment periods (Abadie 2021). 
According to Athey and Imbens  (2017), “the synthetic control 
approach […] is arguably the most important innovation in the 
policy evaluation literature in the last 15 years.” However, de-
spite the increasing availability of long panel datasets, this 
method has not yet been widely applied in agricultural econom-
ics. The few examples for the use of this method in agricultural 
economics include, for example, Grogger (2017), Mohan (2017), 
Opatrny (2020) and Kim (2023).

5.1   |   Prerequisites for Using SCM

SCM is particularly valuable when the parallel-trends assump-
tion required for DID does not hold, provided that sufficiently 
long pre-treatment panel data are available. It is especially 
well-suited for evaluating the impact of interventions affecting 
a single or small number of large units such as cities, regions, 
or countries, making it a useful tool in agricultural and applied 
economics, where national or state-level agricultural, food, 
and environmental policies can be assessed by constructing a 
synthetic control group of comparable nations or states. For ex-
ample, Grogger (2017) estimates the impact of the soda tax im-
plemented in Mexico in 2014 on soda prices by comparing them 
to those of other untaxed non-substitute goods, creating a syn-
thetic control group. Alternatively, researchers can construct the 
synthetic control using soda price data from other countries not 
subject to the tax, offering another way to estimate the causal 
effect of the policy.

Furthermore, a balanced panel data set must be available that 
includes the treated unit(s) and a reasonably large number of 
potential comparison units (“donor pool”), while it includes a 
reasonably large number of pre-treatment periods and at least 
one post-treatment period.25 Although the SCM usually can-
not give unbiased estimates of the treatment effect, Abadie 
et al. (2010) show that—under certain assumptions—the bias is 
bounded and approaches zero with an increasing number of pre-
treatment periods. Hence, it is important to have a sufficiently 
large number of pre-treatment units.

One of the most basic assumptions of the standard SCM is that 
the data generating process corresponds to a “factor model” 
(Abadie et  al.  2010, equation  1), which assumes, for example, 
that unobserved differences between units are constant over 
time and that the effects of observed and unobserved differences 
between units on the outcome are identical across all units (but 
these effects can change over time). Thus, empirical applications 
must clearly discuss the appropriateness of these assumptions, 

for example, if the treatment could potentially affect the effects 
of observed and unobserved variables on the outcome so that 
these effects differ between the treatment unit and the control 
unit in the post-treatment period. Furthermore, in order to avoid 
overfitting, the number of potential comparison units should 
not be too large, which can be achieved by restricting potential 
comparison units to those that are sufficiently similar to the 
treatment unit (Abadie et al. 2015). Recent studies further clar-
ified the theoretical links between SCM and latent factor mod-
els, highlighting both its strengths and limitations. Specifically, 
Gobillon and Magnac (2016) demonstrate that SCM is a special 
case of interactive FE estimators, while Liu et al. (2024) unify 
SCM, interactive fixed effects, and other counterfactual estima-
tors within a common framework for panel data analysis.

5.2   |   Criticisms of SCM

Although SCM enhances transparency by revealing each com-
parison unit's contribution to the counterfactual and, thus, 
enables clear interpretation and expert evaluation of potential 
biases, researcher discretion in selecting donor pools, predic-
tors, and weights may raise concerns about robustness and 
replicability. These concerns can be mitigated by designing the 
study (e.g., selecting donor units and predictors) without access 
to post-treatment data, thereby reducing risks of specification 
searches and p-value hacking (Abadie 2021). Furthermore, pre-
registration of synthetic control weights before the intervention, 
similar to pre-registration of RCTs, further strengthens trans-
parency and credibility (Abadie 2021).

5.3   |   Suggestions

When using SCM, we suggest doing the following (in addition to 
the general suggestions provided in Section 7):

•	 Clearly state the assumptions that the chosen SCM requires 
and discuss how credible these assumptions are in the pre-
sented empirical analysis

•	 Make sure that there is a sufficiently long pre-treatment 
period

•	 Ensure that there is a sufficiently large but not too large 
number of comparison units.

•	 Visualise the SCM estimation results using graphs.

•	 Present the contributions of each unit to the synthetic control.

•	 Conduct inference using the permutation method (Abadie 
et al. 2015).

•	 To support the internal validity of causality using SCM, 
researchers are advised to conduct validity tests, such as 
leaving out units of the donor pool (with non-zero weights), 
placebo tests, using fake treatment dates, and other out-
comes not related to the treatment.

•	 When appropriate and beneficial for reliability, consider com-
bining SCM with DID, using SDID (Arkhangelsky et al. 2021).

•	 Note that: (a) inference in SCM is limited to the data used 
to construct the synthetic control; (b) SCM does not allow 
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predictions or inferences outside the range of the observed 
data; and (c) extrapolation or generalisation outside the sup-
porting data and context is invalid

•	 For better transparency, replicability, and credibility, re-
searchers are recommended to preregister synthetic control 
weights before the analysis or the intervention, or select 
donor units and predictors without access to post-treatment 
data (Abadie 2021)

6   |   Regression Discontinuity and 
Difference-in-Discontinuity Designs

Regression Discontinuity Designs (RDDs) and Difference-in-
Discontinuity Designs (DiDDs) can be set up in multiple ways 
(as discussed below and in Wuepper and Finger 2023, in more 
detail) but they all share a particular mechanism for identifying 
causal effects: if treatment assignment is triggered by a clearly-
defined threshold in a continuously distributed variable,26 
then—given a few falsifiable assumptions—discontinuity in the 
outcome right at this threshold quantifies the treatment effect 
(Thistlewaite and Campbell 1960; Imbens and Lemieux 2008). 
Intuitively, this works especially well with arbitrarily set thresh-
olds because this minimises the risk that, besides the treatment 
assignment, something else “jumps” exactly at the threshold. 
Another important condition is that observations (usually peo-
ple) cannot choose which side of the threshold they are on (e.g., 
if it is well known that a subsidy is available to farms below a 
certain size, farmers whose farms are just above the threshold 
may be able to take measures that ensure that their farms fall 
just below, which might make the treatment endogenous).

6.1   |   Regression Discontinuity Design

The fundamental requirement for RDDs is the existence of a 
continuously distributed variable that has a threshold which 
triggers treatment assignment.27 For instance, public extension 
services may only visit farms within an arbitrarily defined max-
imum distance-to-branch (Pan et  al.  2018), and governments 
might target villages with an anti-poverty programme if they 
are above an arbitrarily defined poverty threshold (Alix-Garcia 
et al. 2013). Also, geographical borders can be used such as his-
torical borders within a country (Noack et al. 2022), or national 
borders dividing countries (Wuepper, Borrelli, and Finger 2020; 

Wuepper, Le Clech, et al. 2020). When geographic borders are 
being used, the most general treatment one can define is “be-
longing to one side of the border or the other.” For example, one 
might ask how much agricultural or environmental outcomes 
are simply the result of an area belonging to one country and not 
another (see, e.g., figure 1 or Wuepper, Borrelli, and Finger 2020). 
When the border triggers mainly one specific mechanism, one 
might also be able to focus more narrowly on this mechanism 
directly. For example, Noack et al. (2022) use the historical bor-
der between East and West Germany to identify the effect of 
agricultural structures (small-scale vs. large-scale farming) on 
bird diversity, and Gupta et al. (2024) use Indian state borders 
to identify the negative impact of language barriers on the effec-
tiveness of agricultural extension services. Sometimes the treat-
ment is introduced spatially with a clear boundary, for example, 
in the case of protected areas (Neal 2024) or World Heritage sites 
(Rodríguez et al. 2025). In this case, the effect of “belonging to 
one side and not the other” is a narrow treatment in and of itself.

The most intuitive way to understand how a national border can 
be used to identify the effect of an area belonging to one country 
but not another is provided in Figure 1. This figure is based on 
data from Wuepper et al. (2023). Their starting point is to quan-
tify for each of many years how much countries matter for local 
crop yields. Here, we only focus on two countries: Vietnam and 
Cambodia. The border can be divided into small segments (panel 
a), and crop yields can be quantified in high resolution from sat-
ellite imagery (panel b) (Wuepper et al. 2025). When computing 
local averages of crop yields at equal distances from the border and 
plotting these as a function of border distance, a pattern emerges: 
whereas crop yield is distributed rather smoothly on either side 
of the border, there is a stark jump at the border (panel c), which 
cannot be explained by potential confounders such as rainfall or 
sunshine because these do not jump at the border: it is the coun-
tries as political constructs that make the fields in Vietnam more 
productive than those in Cambodia (Wuepper et al. 2023). The 
most important assumption here is that no potential confounding 
factors also show a discontinuity right at the border. For example, 
if this border was located right on top of a natural barrier such as 
a major mountain range, the sudden change in agricultural condi-
tions could also explain a jump in crop yields. This can be tested, 
for example, by replacing the outcome variable, in this case crop 
yields, with elevation, rainfall, temperature, or sunshine, which 
would reveal whether these are also discontinuously distributed. 
Wuepper et al. (2023) analyse first the role of the institutions of 

FIGURE 1    |    (a) The border between Cambodia and Vietnam separates an otherwise comparable agricultural area into two countries. Colours 
distinguish different border segments. (b) Satellite data can be used to obtain a methodologically unified, high-resolution crop yield measure. (c) 
An important step: Before the actual RDD is estimated, the data should be plotted, so that it is possible to visually inspect whether the discontinuity 
that is to be estimated is visible. It is usually helpful to aggregate the data points in small bins and fit regression lines separately on both sides of the 
threshold. The actual RDD estimates the size of the discontinuity at the threshold. Sources: Wuepper et al. (2023) (a + c), Google Earth (b).
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these countries in differences in crop yields, and second how 
much agricultural technology (mechanisation and irrigation) is 
the channel. For these further analyses, they move on to panel 
data, as discussed in the following section.

6.2   |   Difference-in-Discontinuity Design 
and Regression Discontinuity in Time

An increasingly popular research design is the DiDD, which 
is a combination of RDD and DID. It is set up like a standard 
DID design with the only difference being that it focusses on the 
change in a discontinuity from before to after treatment. This 
built-in extra step improves the chance of a valid parallel-trends 
assumption because the estimated discontinuity already helps to 
avoid confounding factors as discussed above. In the best-case 
scenario, a researcher finds a situation in which the threshold is 
newly created at some point in time (e.g., an existing state is split 
into two), which means that demonstrating that there was no dis-
continuity prior to treatment is straightforward, and afterwards 
the discontinuity shows the causal treatment effect (Garg and 
Shenoy 2021). Alternatively, in the study by Wuepper et al. (2023), 
the leveraged country borders do not change, but they show that 
the discontinuities in crop yields are stable before treatment and 
change in response to countries' institutional changes.

Finally, Regression Discontinuity in Time (RDiT) tackles en-
dogeneity by examining a narrow time window around the 
implementation of a policy, where time is used as the running 
variable and the treatment date acts as the threshold.28 This ap-
proach assumes that unobserved factors remain similar within 
the window, which allows pre-treatment observations to be used 
as a comparison for post-treatment observations. RDiT utilises 
flexible polynomial time trends and has been recently used in 
studies involving so-called “sin taxes”, sugar and fat taxes, air 
quality, fisheries, and food safety (Hausman and Rapson 2018; 
Bovay  2025). The growing availability of high-frequency data 
further enhances its utility for researchers evaluating national 
agricultural and environmental policies and interventions.

6.3   |   Assessing the Discontinuity

For the research designs discussed above, simple procedures 
can be followed. These include performing various tests and an-
alytics in a chronological order, which allows readers to easily 
follow and judge the credibility of the analysis (Wuepper and 
Finger 2023). This procedure is facilitated by off-the-shelf soft-
ware packages, especially the Python, R, and Stata packages 
provided by Calonico et al. (2015) and Calonico et al. (2017).29 
The two main assumptions of RDD are exogenous thresholds 
and no endogenous sorting. The simplest way of examining the 
assumption of no endogenous sorting is to look for bunching 
near the threshold (McCrary 2008). The simple logic is that if 
there is a striking dip in observations on one side of the thresh-
old, and these “missing” observations all bunch together on the 
other side of the threshold, it is likely that it is the result of opti-
mising behaviour (e.g., if a regulation that only applies to farms 
above 5 ha was introduced, farmers who initially had 5.2 ha 
quickly got rid of 0.3 ha).

6.4   |   Technical Aspects

There are a few important technical aspects to consider. First, 
for any kind of discontinuity analysis, one needs to restrict the 
dataset to observations within an “optimal” bandwidth near 
the cut-off (Cattaneo and Titiunik 2022). This can have an im-
portant impact on the estimates as it involves a variance-bias 
trade-off. The cleanest comparison is possible just next to the 
threshold (assuming the absence of spillovers). However, using 
only observations that are directly at the threshold will make the 
sample size small and specific; keeping only one observation on 
each side of the threshold would even make it impossible to fit a 
regression line. Thus, in order to obtain precise and meaningful 
estimates, one must allow for some maximum distance to the 
border, while still having two sides that are sufficiently compa-
rable to each other. Over the years, various algorithms have been 
developed that aim to find the statistically optimal bandwidth 
(Wuepper and Finger 2023). It is generally a good idea to demon-
strate the sensitivity of one's findings to small (or large) devia-
tions from the chosen bandwidth. For example, if the running 
variable is farm size and the optimal bandwidth (e.g., according 
to the Mean Squared Error) is 30 ha, it is good to additionally re-
port the findings for a bandwidth of 25 and 35 ha. Second, in ad-
dition to choosing the optimal bandwidth, one must decide how 
to fit the regression to the observations. The simplest approach is 
to use a linear regression with a dummy variable identifying the 
threshold and then two variables reflecting the continuous run-
ning variable, separately on each side of the threshold. A more 
sophisticated way to do it is to use local polynomial functions 
(Cattaneo and Titiunik 2022). These can be based on a continu-
ity assumption as discussed above, that is, a smooth distribution 
of potential outcomes across the threshold; or a local randomi-
sation assumption similar to common experimental set-ups, 
that is, potential outcomes are statistically the same on either 
side of the threshold (Cattaneo and Titiunik 2022; Wuepper and 
Finger 2023). A limitation of the local polynomial approach is 
its relative complexity and computational demand compared to 
a linear regression framework. For example, in the local polyno-
mial framework, it is not straightforward how to handle panel 
data with fixed effects. Furthermore, with increasingly avail-
able, very large datasets, such as high-resolution satellite data 
(Wuepper et al. 2025), the simpler linear regression approach is 
clearly faster than the local polynomial approach.

6.5   |   Suggestions

When using discontinuity-based methods, we suggest doing the 
following (in addition to following the general suggestions that 
we provide in Section 7):

•	 Clearly describe the running variable, explain the reason 
for a discontinuity at the threshold, and discuss all variables 
that might discontinuously “jump” at the threshold, espe-
cially potential confounders.

•	 Visually assess the discontinuity (or the change in disconti-
nuity) and the data distributions around the discontinuity.

•	 Conduct placebo tests to probe the exogeneity of the thresh-
old (see, e.g., Wuepper and Finger 2023).
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•	 Use alternative algorithms to compute the optimal statisti-
cal bandwidth for robustness checks.

•	 Test for endogenous sorting across the threshold 
(McCrary 2008).

•	 In a discrete running variable with mass points, consider 
local randomisation or redefining the running variable by 
aggregating observations at the mass points to handle the 
discreteness (Cattaneo and Titiunik 2022).

•	 Discuss the generalisability of the results as the effects 
are identified very locally at the threshold. Sometimes, a 
threshold might be found in unrepresentative places (e.g., 
places with especially high or low agricultural productivity) 
or among unrepresentative units (e.g., among farms that are 
especially large or small).

7   |   General Suggestions

In addition to the method-specific guidelines provided in previ-
ous sections of this paper, we suggest doing the following irre-
spective of the chosen method:

•	 Before pursuing causal inference, it is important to deter-
mine whether the question at hand concerns the “effect of 
a cause” or the “cause of an effect.” Plausible and policy-
relevant causal inference can typically be made only in re-
lation to the “effect of a cause,” not the “cause of an effect.” 
The latter is only meaningful to the extent that it helps iden-
tify which cause to study when estimating the “effect of a 
cause” (Gelman and Imbens 2013)

•	 As the mere use of big data sets, by itself, does not resolve 
causal identification challenges, avoid the “big data fal-
lacy”, where a large sample size is erroneously perceived as 
a substitute for a proper identification strategy (Vosgerau 
et al. 2025).

•	 Start from the theoretical understanding of the problem 
(e.g., based on a DAG) to define an identification strategy 
and clearly discuss the assumptions under which the quan-
tity of interest is identified, any potential explanations for 
the assumptions being violated and their consequences for 
identification.

•	 Before jumping into the econometric analyses, begin by 
examining the data, which should involve the computation 
of various descriptive statistics and plotting and mapping 
the data in various ways. For instance, for panel data, it 
is important to understand how the data varies over units 
and over time. Fully understanding the data is essential 
for making appropriate data preparation and modelling 
choices.

•	 Carefully consider the assumptions of the chosen estima-
tion approach(es). Consider the extent to which these as-
sumptions fit the theoretically motivated identification 
strategy and the data at hand.

•	 Clearly point out the added value of the chosen method 
compared to simpler approaches such as OLS. Unless added 
value can be clearly demonstrated, a simpler method may be 
preferable.

•	 Check if the methods used require a “common support” 
and, if they do, the extent to which the common support 
assumption is fulfilled, that is, the treated units indeed have 
comparable counterparts in the control group (see, e.g., 
Heckman et al. 1998)30

•	 Discuss the plausibility of the SUTVA in the specific em-
pirical analysis. Under this assumption, the potential out-
comes of each observation only depend on the treatment of 
this observation and not on the treatment of other obser-
vations. All methods discussed in previous sections require 
this assumption unless spillovers between observations are 
explicitly and appropriately accounted for in the empirical 
analysis.

•	 It can be informative to simulate artificial data sets with 
known properties before using actual data to perform an 
empirical analysis. These properties may include the func-
tional form of the analysed relationship, the magnitude 
of the treatment effect and its heterogeneity between ob-
servations, correlations between observed variables and 
between observed and unobserved variables, potential en-
dogeneity issues, validity of the exogeneity assumption and 
IV strength (in the case of an IV-based method), the degree 
of autocorrelation of observed and unobserved variables (in 
the case of panel data and/or the use of lagged variables), 
deviations from independently and identically distributed 
(i.i.d.) error terms (e.g., heteroscedasticity, clustering), and 
other assumptions. Use these data sets to test the estimation 
approach (as well as the code used to implement it). Test the 
conditions under which the estimation approach succeeds 
in recovering the effects used to create the artificial data. 
Using artificial data to test the code/inference is an inte-
gral part of the data-generating-process centric workflow 
(McElreath 2018; Gelman et al. 2020; Storm et al. 2024).

•	 If feasible, consider using multiple identification ap-
proaches and critically discuss what can be learnt from 
the different estimates, as they are based on different 
assumptions and have different advantages and disad-
vantages. Recent textbooks on causal inference, such as 
Cunningham  (2021) and Huntington-Klein  (2025), pro-
vide more detailed information about and code examples 
for several of the methods mentioned in this paper, which 
are helpful sources of information for robustness checks 
and sensitivity analyses.

8   |   Conclusions

We do not recommend one particular method over another as 
the most suitable method is case-dependent. Therefore, our aim 
is to provide clear guidelines that should be followed when ap-
plying these methods.

Even if these guidelines for investigating causal effects with ob-
servational data are followed, there is always uncertainty about 
whether all the required assumptions are completely fulfilled. 
Therefore, one should be very careful when using causal lan-
guage such as “the effect of A on B”, “the impact of A on B”, “A af-
fects B”, “A reduces B”, “A increases B”, or “A leads to a change in 
B”. As a precaution, one could use statements about associations 
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such as “A is positively related to B”, “A is negatively related to B”, 
“A is associated with B”, or “A is conditionally associated with B”. 
In any case, it is important to use consistent language through-
out the entire paper.31 If causal statements are made, it is crucial 
to clearly point out that these statements are conditional on the 
appropriateness of the identifying assumptions, the model speci-
fication implemented, and the data used for estimation.

Finally, it is important to acknowledge that our article cannot 
provide an exhaustive overview of all available approaches for 
causal identification in applied economics research, as the field 
continues to advance and benefit from ongoing methodological 
developments. One particularly active area of development is 
mediation analysis (e.g., Imai, Keele, and Tingley 2010; Imai, 
Keele, and Yamamoto  2010; Deuchert et  al.  2019; Chabé-
Ferret 2025b, section 15). Another noteworthy line of research, 
inspired by the classical work of LaLonde  (1986), involves 
assessing the reliability of observational methods (including 
those discussed in this article) in estimating causal effects (e.g., 
Glazerman et al. 2003; Chaplin et al. 2018; Gordon et al. 2019; 
Gechter 2024; Bernard et al. 2024).
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Endnotes

	 1	More general factors undermining the credibility of published re-
sults include publication bias, insufficient sample size, insufficient 
standardisation of variable definitions across studies, and various 
types of statistical malpractice such as p-value hacking or explor-
atory research that is incorrectly framed as confirmatory research, 
a practice known as Hypothesising After the Results are Known 
(HARKing). All of these factors and practices can lead to biased and 
less replicable results and misleading conclusions. See Ioannidis and 
Doucouliagos (2013) for a more detailed discussion of these drivers of 
a loss of credibility.

	 2	While recent research documents that the uptake of scientific ev-
idence by policymakers may be selective (see, for example, Vivalt 
and Coville  (2023) who show that policymakers update their be-
liefs more strongly on positive evaluation outcomes than on neg-
ative evaluation outcomes, or Rao  (2025) who shows that policy 
decisions are only in very specific situations related to results of 
programme evaluations), we are unaware of studies that investi-
gate the use of results from economics research by other decision 
makers. However, given that governments and other stakehold-
ers frequently spend money on independent research studies and 
that private businesses can benefit from reliable and unbiased 
scientific evidence, we contend that many decision makers are 
genuinely committed to evidence-based decision making. For ex-
ample, in many resource-constrained settings, credible estimates 
of programme effectiveness can help guide more efficient resource 
allocation and support better-targeted interventions. Even where 
evidence uptake may be delayed or selective, credible (causal) im-
pact evaluation solidifies the evidence base and can inform policy 
discourse and decisions.

	 3	In addition, the external validity of the results should be outlined 
and discussed, for example whether the results that are based on 
a specific group of economic agents such as farmers or consumers 
in a specific region or country may also be valid for other groups of 
economic agents such as farmers or consumers in other regions or 
countries. However, the discussion of external validity is outside 
the scope of this paper, which is limited to the issue of internal 
validity.

	 4	See, for example, El Benni et al. (2025), who provide a review of stud-
ies using experimental methods to assess how nudge interventions 
influence farmers' behaviour.

	 5	Even in the relatively rare cases in which experimental methods can 
be applied, their results often have important limitations. For ex-
ample, RCTs are usually restricted to narrow cases, the results are 
rarely directly generalisable, and there are often additional compli-
cations, such as non-compliance with the treatment or uncontrolla-
ble external influences. Furthermore, it may be hard to prevent the 
non-treated group from becoming informed about the treatment of 
the intervention group (Buchanan-Smith et  al.  2016; Koppenberg 
et al. 2023). In addition, it is difficult to identify the mechanisms be-
hind the cause-effect interplay (Quisumbing et al. 2020; Koppenberg 
et al. 2023; Todd and Wolpin 2023). Even when using experiments, 
only relationships with randomised variables can indicate causal ef-
fects, while relationships with non-randomised variables (e.g., per-
sonal characteristics) usually cannot be interpreted as causal effects 
(see, e.g., Nigus et al. 2024). Deaton (2010) and Bulte et al. (2020) pro-
vide overviews of the limitations of RCTs.
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	 6	In this paper, we focus on the endogeneity of explanatory variables. 
However, all other assumptions that are required to obtain unbiased 
and/or consistent estimates should also be fulfilled and discussed 
when presenting econometric analyses. For instance, the functional 
form used in the econometric analysis should resemble the relation-
ship between the explanatory variables and the dependent variable 
in the population. Furthermore, the observations used for the esti-
mation should be a random sample of the relevant population, while 
deviations from random sampling, e.g., non-proportional stratified 
random sampling, should be appropriately addressed in the econo-
metric analysis. Furthermore, what the used data actually measure 
and what the results really imply should also be correctly interpreted 
(Gibson 2019).

	 7	Regarding the interpretation of the coefficients of covariates, see 
Westreich and Greenland (2013).

	 8	Several online and offline software tools for visualising and analysing 
DAGs exist. One of these tools is the open-source software DAGitty 
(https://​www.​dagit​ty.​net/​).

	 9	It is important to note that a DAG indicates whether a causal effect is 
non-parametrically identified, that is, the identification does not rely 
on parametric assumptions, for example, about the functional form 
of the modelled relationships or the distribution of the error term. 
Even when using parametric empirical methods, in most cases it is 
desirable to identify causal effects non-parametrically so that approx-
imately reliable results are obtained if parametric assumptions are 
not 100% fulfilled.

	10	This estimator is called ‘doubly-robust’ as only one of its two regres-
sion equations needs to be correctly specified, but otherwise this 
estimator requires the same identification assumptions as an OLS 
regression (e.g., Kurz 2022, equation 1).

	11	King and Nielsen (2019) point out that “propensity scores should not 
be used for matching” and that other matching methods are more 
suitable than PSM.

	12	In this paper, we use the narrow definition of IVs, that is, we only 
consider the variables that are used to explain the endogenous regres-
sor but that are not used to explain the outcome variable as IVs. The 
broad definition of IVs additionally includes the variables that are 
used to explain the outcome variable because these variables are also 
used to explain the endogenous regressor.

	13	See figure 3 of Lal et al. (2024). Lal et al. (2024) also point out that 
this makes 2SLS estimations more susceptible to p-value hacking and 
publication bias.

	14	Some empirical researchers (e.g., Acemoglu et al. 2001) aim to test the 
exogeneity of IVs by estimating the outcome equation with both the 
endogenous regressor and the IV (and of course all relevant control 
variables). If the IV affects the dependent variable only through the 
endogenous regressor, the coefficient of the IV in this auxiliary re-
gression should be close to zero. However, if the endogenous explana-
tory variable is indeed endogenous, the coefficient of this variable and 
the coefficient of the IV are not jointly identified (Conley et al. 2012). 
Hence, this auxiliary regression does not provide useful information.

	15	The ‘falsification test’ for IV-regression with a binary endogenous 
treatment variable, originally applied by Di Falco et  al.  (2011), has 
been used in several empirical studies in the agricultural and ap-
plied economics literature. However, this test is invalid because it 
relies exclusively on untreated units, thereby introducing sample-
selection bias. If the IV is valid, meaning it is independent of the po-
tential outcomes with treatment and without treatment, it does not 
remain independent of the (observed) outcome without treatment 
when conditioning on the sample of untreated units. This is be-
cause, if the IV is relevant, conditioning on untreated units induces 
a correlation between the IV and unobserved factors that affect the 
treatment assignment and potentially also the outcome. We illustrate 
this with a simple treatment assignment model. A unit i  is treated if 
𝛼0 + 𝛼

�xi + 𝛾zi + 𝜀i > 0, where xi is a vector of control variables, zi is 

the IV, and �i is the error term capturing the influence of unobserved 
factors on treatment assignment. Restricting the sample to untreated 
units implies: �i ≤ − �0 − �

�xi − �zi, which means the expected value 
of �i becomes a function of zi (unless the IV is irrelevant, i.e., � = 0 ). 
As a result, the IV zi becomes correlated with the error term in the 
outcome equation, violating the exclusion restriction (unless the 
selection-on-observables assumption holds, i.e., there are no unob-
served factors that affect both treatment and outcome so that �i is un-
correlated with the error term in the outcome equation). The authors 
thank an anonymous reviewer for pointing this out.

	16	Aronow and Carnegie  (2013) suggest a method that requires either 
homogeneity of the treatment effect or homogeneity of compliance 
(i.e., IVs have the same effect on the treatment assignment across all 
observations).

	17	Appendix A provides a more detailed discussion of machine learning 
IV methods.

	18	While fixed effects help to control for biases arising from unobserved 
time-invariant confounders, common issues in fixed-effect applica-
tions are temporal and spatial correlation, clustering, and heterosce-
dasticity in the error term. The standard approach to dealing with 
this is to obtain standard errors that are robust to these deviations 
from independently and identically distributed errors (see, e.g., Low 
et al. 2025, for an example).

	19	Making standard errors robust to clustering accounts for autocor-
relation in the treatment variable but not for autocorrelation in the 
outcome variable, which may require dynamic specifications for con-
sistent estimation (Arellano and Bond 1991; Arellano and Bover 1995; 
Chabé-Ferret 2025a, 2025b).

	20	It is important to note that DID is a research design, while FE, TWFE, 
FD, etc. are estimation methods. Depending on the data structure and 
assumptions about the data generating process, different estimators 
are suitable for DID research designs.

	21	In certain cases, a simple DID design may not yield reliable causal 
inference. For instance, if a policy targets farmers younger than 
40 years in a specific state, comparing this group of farmers to either 
farmers aged 40–49 years in the same state or to farmers younger 
than 40 years in other states may lead to biased estimates because it 
does not account for age-related or state-specific trends, respectively. 
To address this, a triple-DID estimator uses differences in three di-
mensions (state, age group, and time) to isolate the causal effect of the 
policy change. The triple DID estimator, which can also be calculated 
as the difference between two DID estimators, may only require one 
parallel-trends assumption as long as the bias is the same in both es-
timators, in which case the bias cancels out when differenced (Olden 
and Møen 2022).

	22	Staggered treatment is a setting where different units adopt/imple-
ment the treatment at different times with no reversal to the unit's 
treatment status, that is, if a unit is treated once, it remains always 
treated (Callaway and Sant'Anna 2021).

	23	For classic (2 × 2) and multiple-period (single treated group) DID, see 
Chabé-Ferret (2015) and Chabé-Ferret (2025a) for tests and guidance 
on when to condition on lagged outcomes. In particular, Chabé-
Ferret (2025a) provides a detailed practical checklist to support these 
decisions.

	24	Although parallel pre-treatment trends are neither necessary nor suf-
ficient for obtaining unbiased estimates, it is highly recommended to 
test for parallel pre-treatment trends because if there are parallel pre-
treatment trends, it is more likely that the parallel-trends assumption 
is fulfilled, and if pre-treatment trends are not parallel, it is less likely 
that the parallel-trends assumption is fulfilled.

	25	Some Generalised SCM methods can also be applied to unbalanced 
panel data, for example, the method implemented in the R package 
gsynth (Xu and Liu 2021) that adds the capability to use unbalanced 
panel data to the method suggested by Xu (2017).
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	26	Under certain conditions, it is also possible to apply the RDD frame-
work if the running variable is discrete (e.g., food safety inspection 
score based on restaurant hygiene inspections). However, the em-
pirical analysis must take into account the discreteness of the run-
ning variable. Details are available, for example, in Kolesár and 
Rothe (2018) and Cattaneo and Titiunik (2022), while software pack-
ages such as rdhonest for Stata (Armstrong et al. 2023) or RDHonest 
for R (Kolesár 2025) can be used.

	27	The threshold does not have to deterministically trigger the treatment 
as it does in the standard model. If the threshold only changes the 
probability of treatment, one moves from the sharp RDD to the fuzzy 
RDD, which involves estimating an IV regression such as 2SLS with 
the threshold as the IV.

	28	RDiT is related to Interrupted Time Series (ITS), which is another 
method that also leverages temporal variation. However, RDiT re-
quires discontinuity at the cut-off, bandwidth selection, and strong 
RDD assumptions that can be empirically tested (e.g., via the density 
test suggested by McCrary 2008). While ITS can identify changes in 
a trend without these requirements, it typically requires longer time 
series and lacks formal tests for violations of key identifying assump-
tions, such as manipulation or anticipation.

	29	All available at: https://​rdpac​kages.​github.​io/​rdrob​ust/​.

	30	The concept of common support is based on a binary treatment vari-
able, but similar criteria can be made for continuous explanatory vari-
ables of interest. For instance, when investigating the effect of farm 
size and farm size is strongly correlated with confounders such as 
farm type, soil characteristics, climate, and ownership type, there 
may not be farms available in the data that differ only in size while 
sharing similar values of other characteristics.

	31	One minor exception to this rule would be to write that a study “aims 
to estimate the effect of A on B”, to explain why the estimates may not 
indicate causal effects, and to interpret all estimates as conditional as-
sociations (as done in, for example, Aïhounton and Henningsen 2024).
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Appendix A

Extended IV Methods

While the discussions in Section  3 refer to IV and 2SLS regression, 
they are largely transferable to other methods that rely on IVs such 
as 3-Stage Least Squares (3SLS) regression, extended IV methods for 

binary endogenous regressors (Angrist and Pischke  2009, 142–144; 
Wooldridge 2010, 937–942; Wooldridge 2015), and more recent estima-
tors that are particularly suited to handling binary and ordinal endoge-
nous variables such as the extended regression IV approaches in Stata, 
which estimate the parameters using maximum likelihood (see Jafari 
et  al.  2023, for an example and Stata Press  2023, 183, for a technical 
description). These discussions are also largely transferable to esti-
mators that are based on distributional assumptions of error terms as 
suggested by Heckman (1976) such as the endogenous treatment effect 
model and the endogenous switching regression model. These models 
can be estimated with a two-stage approach that uses an inverse Mills 
ratio as an additional regressor in the second-stage regression or with 
a one-step maximum likelihood estimation. In fact, these models can 
be estimated without IVs (or exclusion restrictions) but in this case, the 
identification of the estimated parameters hinges solely on the distribu-
tional assumptions, for example, a bivariate normal distribution of the 
two error terms. As it is very unlikely that the distributional assump-
tions will be fulfilled exactly in a real-world application, using these 
estimators without IVs would very likely result in unreliable estimates. 
As strong IVs render the distributional assumptions less relevant, it is 
imperative to use strong IVs when using these estimators. Thus, at least 
one variable that strongly affects the selection outcome (i.e., whether 
an observation is treated in an endogenous treatment effect model or 
whether an observation is in the first or second outcome regime of an 
endogenous switching regression model) but does not affect the depen-
dent variable of the outcome equation and is not related to the error 
term(s) of the outcome equation(s) is needed (see, e.g., Auci et al. 2021, 
for an example). These variables are frequently called IVs because they 
basically need to fulfil the same criteria as IVs in the regression meth-
ods discussed in the beginning of this section. Hence, the validity of the 
exclusion restrictions must be investigated and critically discussed in 
similar ways to the validity of IVs in the regression methods discussed 
in the beginning of this section.

A straightforward extension of a 2SLS estimation to non-linear regres-
sion models would be to regress each endogenous explanatory variable 
on the exogenous explanatory variables and the IVs (using linear or non-
linear regression) and to obtain the predicted values of the endogenous 
explanatory variables. One can then estimate the non-linear regression 
model with the endogenous explanatory variables replaced by the pre-
dicted values obtained in the first stage. However, caution is advised 
here to avoid falling into what Angrist and Pischke (2009) refer to as the 
“forbidden regression” trap and directly applying the 2SLS argument to 
a non-linear case, for example, using the predicted values from a probit 
first stage in the second stage. Another mistake that must be avoided in 
this context is, when dealing with both a linear and quadratic form of 
the endogenous variable, simply using the square of the predicted values 
from the first stage instead of estimating two separate first-stage regres-
sions (Angrist and Pischke 2009).

In the case of non-linear least-squares regression, the Non-linear Two-
Stage Least Squares (N2SLS) estimator has similar properties to the 
2SLS estimator (Amemiya  1974). However, in many other non-linear 
regression models (e.g., logit, probit, count-data models), this approach, 
which is sometimes called Two-Stage Predictor Substitution (2SPS), re-
sults in inconsistent estimates (e.g., Terza et al. 2008). An alternative to 
this approach is a slightly different procedure: the first stage is identical 
to the first-stage regression of 2SLS, N2SLS and 2SPS estimators, but 
in the second stage, the residuals that were obtained in the first stage 
are added as additional regressors (while the endogenous explanatory 
variables are used as regressors). This approach is called Two-Stage 
Residual Inclusion (2SRI) in biostatistics and health economics Terza 
et al. (2008), while it is called the Control-Function (CF) approach in the 
econometrics literature (e.g., Wooldridge 2015). In the case of linear re-
gression models, this approach provides the same estimates as a 2SLS es-
timation, while the consistency of this approach has been demonstrated 
for many non-linear estimators. Hence, it is frequently used to address 
the endogeneity of regressors in non-linear regression models such as 
double hurdle models (e.g., Rao and Qaim 2013; Sellare, Meemken, and 
Qaim 2020) or fractional logit models (e.g., Wuepper 2020). As the iden-
tifying assumptions for the 2SRI/CF approach are similar to those of IV 
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and 2SLS estimations, the identification strategy should be based on the 
same evaluation criteria as for other estimations with IVs.

A further regression framework that can be used in an IV setting is the 
Generalised Method of Moments (GMM), which identifies the regres-
sion coefficients by assuming moment conditions in the population and 
then imposing these moment conditions in the sample. The number of 
assumed moment conditions must be equal to or larger than the number 
of regression coefficients to be estimated. Given that a myriad of differ-
ent moment conditions can be assumed, the GMM framework is very 
flexible and many well-known estimators such as OLS regression and 
2SLS regression are special cases. If a GMM approach is used to esti-
mate causal effects, the appropriateness of the assumed moment condi-
tions must be thoroughly and critically discussed. If a GMM estimation 
uses IVs, the validity of these IVs should be discussed in a similar way 
as for other methods that use IVs. If we have more moment conditions 
available than we have regression coefficients, a Sargan-Hansen test 
(also known as Sargan's J test or Hansen's J test) can be used to empiri-
cally assess the validity of the moment conditions.

In the case of panel data, the GMM framework can address the en-
dogeneity of explanatory variables even without external IVs by using 
the lagged values of some variables as “internal” IVs. The “Difference 
GMM” estimator suggested by Arellano and Bond  (1991) and the 
“System GMM” estimator suggested by Arellano and Bover (1995) and 
Blundell and Bond (1998) are frequently used GMM estimators that use 
internal IVs. The moment conditions assumed by these types of esti-
mators can be complex. Similar to using lagged values of endogenous 
regressors as IVs in 2SLS estimations (see Section B below and Wang 
and Bellemare 2020), these types of estimators usually require restric-
tive assumptions about unobserved factors, which may be unrealistic in 
most empirical applications.

Finally, frequently used Structural Equation Modelling (SEM) and 
Partial Least Squares SEM (PLS-SEM) rely on similar identifying as-
sumptions as outlined in Sections 2 and 3 (e.g., regarding unobserved 
confounders and exclusion restrictions) and are often based on addi-
tional assumptions. Hence, like other methods, a causal interpretation 
of the SEM results requires a careful and critical discussion of the as-
sumptions that the SEM relies on.

Even if one uses a valid (i.e., exogenous and highly relevant) IV, IV 
regression can result in substantially biased estimates if parametric 
assumptions, e.g., about the functional form, are not fulfilled (Okui 
et  al.  2012). Hence, it might be worthwhile to consider using non-
parametric IV regression methods. Chernozhukov et  al.  (2018) show 
that Double Machine Learning (see Section  2) can also be applied to 
an IV setting, which means the linearity assumption of 2SLS regres-
sion can be relaxed. Their approach allows both the outcome equa-
tion and the treatment equation to be unknown nonlinear equations 
that can be approximated by any flexible machine learning algorithm. 
However, it still requires assuming either homogeneity of treatment or 
homogeneity of treatment assignment. Under these conditions, the ap-
proach provides a consistent estimate of an ATE. Going further, multi-
ple approaches also relax the homogeneity assumptions and allow the 
estimation of treatment effects that vary depending on the observed 
characteristics. Hartford et al. (2017) have developed an approach called 
DeepIV, which uses deep neural networks in both the outcome and the 
treatment model. Athey et al.  (2019) have developed Generalised RFs 
as a nonparametric estimator that can be used to estimate any quan-
tity identified by a set of (local) moment conditions. They demonstrate 
that this approach can be used to estimate treatment effects under the 
unconfoundedness assumption (leading to an approach called Causal 
Forests, see Section 2) but also in an IV setting. Generalised RFs can 
basically be understood as a more flexible alternative to GMM estima-
tion methods. Importantly, Generalised RFs are able to learn treatment 
heterogeneity in a data-driven manner. Additionally, it is possible to 
obtain asymptotic uncertainty intervals for the estimated treatment 
effect, allowing the user to assess uncertainty in the estimates and per-
form hypothesis testing. While DeepIV and Generalised RFs are spe-
cifically designed around deep neural networks and RFs, respectively, 
Syrgkanis et  al.  (2019) provide a generalised framework (Orthogonal 

IV) for nonparametric IV estimations that allows the use of any ma-
chine learning approach in the outcome and treatment model. They also 
develop methods that allow the projection of treatment heterogeneity 
to a simpler (potentially linear) lower dimensional space. This means 
asymptotic confidence intervals can be derived and machine learning 
interpretability methods (e.g., SHAP values) can be used to illustrate 
and inspect treatment heterogeneity.

Another relatively specialised case of machine learning in the context of 
IV estimation is to deal with a situation in which there is a large number 
of potential IVs (potentially larger than the number of observations). 
Belloni et al. (2012) demonstrate that simple machine learning methods 
such as LASSO can be used to select IVs under the assumption that the 
treatment assignment can be sufficiently predicted by a small subset of 
all the available IVs. However, in empirical settings, we very rarely face 
the (luxury) problem of having too many IVs.

Most of the machine-learning approaches that are relevant for ap-
plied economists (Double Machine Learning, DeepIV, Causal Forest, 
Generalised RFs for IV, Orthogonal IV) are available in the Python 
package EconML (https://​econml.​azure​websi​tes.​net/​index.​html), 
which provides a unified API for all these approaches and represents a 
relatively simple application for applied researchers.

Appendix B

Special Types of IVs

This section discusses some special types of IVs that are frequently used 
in agricultural and applied economics. One of these special types of IVs 
is the so-called spatial IV or leave-one-out IV (e.g., Mason et al. 2013; 
Krishnan and Patnam 2014; Smale and Mason 2014; Magnan et al. 2015; 
Wuepper et al. 2018; Sellare, Meemken, Kouamé, and Qaim 2020; Tabe-
Ojong et al. 2022). In this case, an endogenous explanatory (treatment) 
variable is instrumented by the average or proportion within a peer 
group leaving out the respective observation. For example, a farmer's 
adoption of a technology is instrumented by the proportion of farmers 
in the village who adopted this technology, leaving out the respective 
farmer. However, while this type of IV is usually highly relevant, its 
exogeneity requires strict assumptions that are not fulfilled in many em-
pirical applications (Angrist 2014; Betz et al. 2018; McKenzie 2018). In 
some empirical analyses, it may be reasonable to use such a spatial IV 
or a variant thereof, potentially combined with other tools, but authors 
must provide clear reasoning as to why this identification strategy is 
valid in their study (e.g., Maggio et al. 2022).

Closely related to spatial IVs are Hausman-type IVs, which are fre-
quently used in food product demand analyses to account for the endog-
eneity of product prices (see, e.g., Nevo 2001). The idea is that the price 
of a product in other regions can be used as an IV since the same product 
has similar marginal costs across regions but different demand shift-
ers (Hausman 1996; Nevo 2000; Hirsch et al. 2018). However, this as-
sumption may be violated in the case of a nationwide shock in demand; 
for example, if a nationwide advertising campaign that influences the 
demand of a product across regional borders is launched (Nevo 2000, 
2001).

Similar to using lagged values of explanatory variables to address en-
dogeneity in an identification-on-observables identification strategy 
(see Section 2), lagged values can also be used as IVs; an identification 
strategy that is popular among applied economists. However, Wang and 
Bellemare  (2020) show that IVs of this type require specific assump-
tions. For instance, even if the exclusion restriction is fulfilled, the es-
timates are biased (although consistent), and the likelihood of making 
Type-1 errors is high if there is first-order autocorrelation in unobserved 
factors because this leads to a correlation between the lagged IV and 
the error term (Wang and Bellemare 2020). As this cannot be ruled out 
in most empirical applications, Wang and Bellemare  (2020) conclude 
that using lagged values of endogenous explanatory variables as IVs “is 
unlikely to lead to credible estimates.”

Shift-share IVs, also known as Bartik-type IVs (Bartik 1991; Borusyak 
et al. 2025), can be used in cases where panel data is available and the 
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intensity of a unit's treatment is affected by an initial share that affects 
the exposure to a trend. Either the trend or the share needs to be exoge-
nous for this approach to be valid. Then, the interaction of the shift and 
the share provides an IV, conditional on the standard IV assumptions 
being valid. For example, when analysing the effect of a regional subsidy 
on farm performance, a shift-share IV can be constructed based on the 
idea that the nationwide values of subsidies “shift” the regional (endog-
enous) subsidies according to a predetermined out-of-sample economic 
state of the region (share) (see, e.g., Zou et  al.  2024, for an example). 
More precisely, in this case, the Bartik IV is the product of a variable 
that captures the national subsidy level and a variable with informa-
tion on the initial state of the regional economy, e.g., 1 year before the 
start of the sample period that is used in the analysis. This reflects the 
exogenous variation in regional subsidies which is uncorrelated with 
the regional-level error term, which means that it may serve as a valid 
IV (Bartik 1991; Breuer 2022; Zou et al. 2024). It is important to note 
that for shift-share IVs, valid identification can be achieved when ei-
ther the shift component or the share component of the IV is exogenous. 
For additional guidance, we refer to Borusyak et  al.  (2025). Another 
illustrative example of a shift-share IV analysis is the paper of Gollin 
et  al.  (2021) who estimate the impact of the Green Revolution with a 
shift-share IV.
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