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Abstract

In agricultural production, plant diseases and pests are among the major threats to crop
yield and quality. Existing agricultural pest and disease identification methods have prob-
lems such as small target scales, complex background environments, and unbalanced
sample distributions. This paper proposes a lightweight improved target detection model,
YOLOvbs-LiteAttn. Based on YOLOvVb5s, the model introduces GhostConv and Depthwise
Conv to reduce the number of parameters and computational complexity, and it combines
CBAM and Coordinate Attention mechanisms to enhance the network’s feature repre-
sentation capability. Experimental results show that, compared with the basic YOLOv5s
model, the number of parameters of the improved model is reduced by 22.75%, and the
computational load is reduced by 16.77%. At the same time, mAP@0.5-0.95 is increased
by 3.3 percentage points, and recall is improved by 1.1 percentage points. In addition, the
inference speed increases from 121 FPS to 142 FPS at an input resolution of 640 x 640, fur-
ther confirming that the proposed model achieves a favorable trade-off between accuracy
and efficiency. The average precision of YOLOv5s-LiteAttn is 97.1%, which outperforms
the existing mainstream lightweight detection models. Moreover, an independent test set
containing 4328 newly collected field images was established to evaluate generalization and
practical applicability. Despite a slight performance decrease compared with the validation
results, the model maintained an mAP@0.5-0.95 of 95.8%, significantly outperforming the
baseline model, thereby confirming its robustness and cross-domain adaptability. These
results confirm that the model has high precision and is lightweight, making it effective for
the detection of agricultural diseases and pests.

Keywords: agricultural pest and disease detection; lightweight model; YOLOVS5; attention
mechanism; target detection; mobile deployment; deep learning

1. Introduction

In the process of agricultural production, plant diseases and pests have always been
one of the main factors threatening the stable yield and income increase in crops. Pests, by
feeding on crop tissues, transmitting pathogens, or causing abiotic stress, not only hinder
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crop growth and reduce quality but also lead to the premature death of plants [1,2]. At
the same time, crop diseases are also widespread and often occur in conjunction with
pests, further exacerbating crop losses [3]. Therefore, how to achieve accurate identification
and efficient control of agricultural diseases and pests has always been a core issue in
agricultural scientific research and production practice.

Traditional pest and disease identification methods mainly rely on manual surveys and
expert experience. Although this approach is intuitive, it has problems such as high labor
intensity, low efficiency, strong subjectivity, and proneness to errors. Particularly in large-
area farmlands, manual identification can hardly cover the entire area in a timely manner,
which often leads to the miss of the optimal prevention and control period and causes
greater losses [4]. With the development of agricultural informatization and intelligence,
automatic detection methods based on image processing and pattern recognition have
gradually emerged [5]. Early Machine learning methods, such as Support Vector Machines
(SVM) [6], Artificial Neural Networks (ANN) [7], and Genetic Algorithms (GA) [8], have
been applied to pest identification tasks. These methods can achieve automatic classification
and recognition of crop images to a certain extent, but they usually rely on manual feature
extraction, have poor adaptability to complex backgrounds and variable pest morphologies,
and have limited generalization ability, making it difficult to meet the requirements for
real-time performance and robustness in actual production [9].

In recent years, the rapid development of Deep Learning (DL) has provided new op-
portunities for the intelligent identification of agricultural pests and diseases [10]. Models
such as Convolutional Neural Networks (CNNs) can automatically extract deep features
from images and have shown significant advantages in target detection and image classifica-
tion tasks. In the field of pest and disease detection, deep learning technology has not only
improved the recognition accuracy but also significantly enhanced the detection efficiency.
For example, Amrani et al. proposed a pest detection model based on Bayesian multi-task
learning, which uses ResNet18 as the backbone network to achieve aphid recognition, with
an accuracy rate ranging from 59% to 75.77% [11]. Ye et al. proposed the PestNAS model,
which optimizes the network structure through adaptive feature fusion and evolutionary
neural architecture search, and is superior to traditional models in terms of accuracy [12].
Domestically, Zhang Huan et al. improved the fruit tree pest recognition model based on
MobileViT, introducing Pania convolution and atrous spatial pyramid pooling modules.
While increasing the accuracy by 7.5%, the model parameters were reduced by 33.86%,
demonstrating the potential of balancing lightweight and high precision [13]. In recent
years, knowledge graphs [14] have been introduced into agricultural pest and disease
research. By integrating heterogeneous data such as pest morphological characteristics,
damage symptoms, and control methods, semantic relationships between entities are estab-
lished to provide support for intelligent diagnosis and question-answering systems [15].
This direction has provided new ideas for the comprehensive identification and intelligent
prevention and control of agricultural pests and diseases, but its combination with deep
learning models is still in the exploratory stage.

How to balance recognition accuracy with real-time performance and model lightweight-
ness has become the core challenge in agricultural pest and disease detection. Although
traditional convolutional structures can enhance feature expression, they often come at
the cost of linear growth in FLOPs and model parameters; while pure attention mech-
anisms are prone to overfitting or redundancy under lightweight constraints, resulting
in poor application effects of the model in actual agricultural scenarios [16-18]. In this
study, YOLOV5s [19] was first selected as the base model because it has shown good
adaptability in agricultural pest and disease detection, which is specifically reflected in
three aspects: first, it has real-time processing capability, suitable for dynamic recognition
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needs; second, it has strong robustness to complex backgrounds (such as occlusion by crop
leaves); third, it has demonstrated superior performance in similar biological detection
tasks. To address these challenges, this study proposes YOLOv5s-LiteAttn, an improved
lightweight detection model based on YOLOv5s. Our work makes the following key
contributions: (1) Constructed a computationally efficient backbone by integrating Ghost-
Conv and Depthwise Convolution modules, significantly reducing the model’s parameter
count and computational load. (2) Introduced a hybrid attention mechanism, combin-
ing CBAM and Coordinate Attention, to enhance the network’s feature representation
capability, leading to improved accuracy in identifying small and occluded pests. (3) Sys-
tematically elucidated the performance trade-offs through comprehensive ablation studies
and benchmark comparisons, demonstrating that our model achieves a superior balance
between high accuracy and lightweight design, making it highly suitable for real-world
agricultural deployment.

2. Materials and Methods
2.1. Overview of the Model Improvements

The structure of YOLOV5 generally consists of four parts: the input end, the backbone
network, the neck (feature fusion network), and the head (prediction layer). According to
different application requirements, YOLOVS5 consists of multiple versions such as YOLOv5s,
YOLOvV5n, YOLOv5m, YOLOV5], and YOLOv5x. Among them, YOLOvV5s is mainly char-
acterized as lightweight and high efficiency, with significantly reduced parameters and
computation time, making it suitable for resource-constrained environments and mobile de-
ployment. While ensuring detection accuracy, YOLOvV5s also has real-time performance and
portability, which can better meet the dual needs of high efficiency and being lightweight
for agricultural pest and disease identification. Therefore, this study selects YOLOv5s as
the basic detection model for the detection and identification of agricultural crop pests
and diseases.

This paper proposes the YOLOv5s-LiteAttn model based on YOLOvV5s, optimizing it
from two aspects: lightweight design and attention mechanism. In terms of lightweighting,
the GhostBottleneck [20] module, as shown in Figure 1, generates intrinsic features through
a small number of convolutions, then expands them into high-dimensional representations
using inexpensive linear transformations, and combines with Depthwise [21] convolution
to provide a local receptive field. This not only significantly reduces FLOPs and parameters
but also retains lesion textures.

In terms of the attention mechanism, CBAM [22] acts in the Backbone stage, suppress-
ing background noise through step-by-step screening of channels and spaces to extract
cleaner features of crops and pests; Coordinate Attention [23] introduces direction aware-
ness and long-range dependence in the Head stage, performing geometric and positional
refinement and re-calibration on the features after multi-scale fusion.

This “first compression then focusing” hierarchical design forms a clear informa-
tion processing path: GhostBottleneck ensures high information density input under the
premise of lightweight, CBAM filters out interference and highlights significant regions
in the Backbone, Coord Att refines the structure and positioning in the Head, and C3 [24]
completes cross-scale residual fusion. Compared with the original YOLOv5s, this de-
sign reduces both the number of parameters and FLOPs, with the incremental overhead
of the attention module being low and controllable. The “cheap-to-rich” generation of
GhostBottleneck improves the effective dimension under unit computing power, CBAM
increases the feature signal-to-noise ratio, Coord Att integrates spatial direction priors, and
the residual path ensures the stability of gradient flow. Finally, this structure, as shown
in Figure 2, significantly enhances the ability to distinguish and locate pest and disease
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targets while maintaining lightweight, achieving a dual improvement in detection accuracy
and efficiency under limited computing power conditions.
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Figure 1. Architecture of the GhostBottleneck Module.

Figure 2. Architecture of the YOLOv5s-LiteAttn Module.

2.2. GhostConv

GhostConv [20] is a lightweight convolution module, as shown in Figure 3, whose
design goal is to improve the computational efficiency of convolutional neural networks.
Compared with traditional convolution layers, GhostConv reduces redundant compu-
tations in convolution operations by generating “ghost features”, thereby significantly
reducing the number of parameters and computational complexity while ensuring the
feature expression ability. Its core idea is to first extract some intrinsic feature maps through
standard convolution, and then generate additional ghost feature maps using cheap linear
transformation operations, so as to expand the feature representation ability and improve
computational efficiency. The structure of GhostConv consists of two stages: the first stage
uses standard convolution to obtain original features, and the second stage generates more
pseudo-features through lightweight operations. These pseudo-features and the original
features together form a complete feature map. Compared with traditional convolution,
this method can significantly reduce the amount of computation while maintaining similar
feature expression capabilities.
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Figure 3. Architecture of the GhostConv.
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2.3. Depthwise Convolution

Depthwise Convolution [21] (DWConv) is a lightweight convolution operation method
aimed at significantly reducing the number of parameters and computational load while
ensuring the feature extraction capability. Unlike traditional convolution, which performs
fully connected calculations between input channels and output channels, DWConv de-
composes convolution into two steps: first, it independently performs spatial convolution
(Depthwise) on each input channel, and then completes information fusion between chan-
nels through pointwise convolution (Pointwise, 1 x 1 convolution). This can effectively
reduce the redundancy of convolution operations and significantly lower FLOPs and
the number of parameters, making it particularly suitable for deployment in mobile and
computing power-constrained scenarios.

Compared with standard convolution, DWConv has significant advantages in terms
of model size and latency, and shows a good trade-off ability in maintaining model ac-
curacy. DWConv is widely used in lightweight networks such as MobileNetV1 and Mo-
bileNetV2 [25], which verifies its core role in efficient model design. The structure of
DWConv is shown in Figure 4.

Depth Convolution
7 @ 17
D,x D, conv

72 A 5 . —~ 1x1 conv 777

(117

Pointwise Convolution

- 7

Figure 4. Architecture of the DWCon.

The calculation process of DWConv can be formally expressed as follows: the in-
put feature map is grouped by channels, and each channel is convolved only with its
corresponding convolution kernel to capture local spatial features; then, cross-channel
linear combination is performed through pointwise convolution to complete feature fusion.
This design maintains the representational capability of convolutional neural networks
while significantly reducing the consumption of computing resources, making it one of the
fundamental operators in lightweight neural networks.
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2.4. CBAM

The attention mechanism CBAM [22] considers two important aspects, namely the
spatial and channel dimensions, when processing features. It simultaneously employs
global average pooling and global max pooling to ensure that key information is not lost.
As shown in Figure 5, the CBAM module includes a Channel Attention Module (CAM)
and a Spatial Attention Module (SAM).

Input CAM SAM Output

7

X X

Figure 5. Architecture of the CBAM.

The channel dimension is mainly used to capture high-level abstract information of
features, while the spatial dimension focuses more on preserving the position information
of objects. Attention mechanisms in both the channel and spatial dimensions are introduced,
respectively, to more comprehensively process the information of feature maps while saving
parameters and computing power. The input feature map F obtains the channel attention
map through the channel attention module. M.(F) and M, (F) are multiplied element-wise
to obtain the feature map F, as shown in Equation (1).

F =M(F)®F (1)

Apply the spatial attention module M;(F’) to F/ and multiply it element-wise with F’
to obtain the final feature map F, as shown in Equation (2)

F' = Ms(F)@F ()

M_(F) the definition includes a multi-layer perceptron (MLP) processing the feature
maps that have undergone average pooling (AvgPool)and max pooling (MaxPool), (F® g
and FC,,,,) as shown in Equation (3).

M:(F) = o(MLP(AvgPool(F))+ MLP(MaxPool(F))) 3
= (W (Wo(ESs ) ) + Wi (Wo(FSx)) ) )

where oc—sigmoid operation; Wy—weight matrix of the 1st layer; Wi;—weight matrix of
the 2nd layer.

M_(F) after processing the feature map with channel attention through global average
pooling (FGm,g) and global max pooling (FCsy),a 7 x 7 convolution operation is used to
generate a spatial attention map, as shown in Equation (4)

Mx(F) = o(f"7([AvgPool(F), MaxPool(F)])) @
= (77 ([Fs e ]))

2.5. Coordinate Attention

Coordinate Attention [23] (CA) is an attention mechanism that balances fine posi-
tioning and efficient representation, aiming to introduce long-range dependencies while
maintaining lightweight feature modeling. Unlike traditional channel attention modules
that only capture global statistics, CA explicitly encodes spatial information into atten-
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tion weights, and realizes the fusion of position perception and channel selection through
decomposed direction-sensitive modeling. Its structure is shown in Figure 6.

. X AVG POOL
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9-9 -
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Figure 6. Architecture of the CA.

In terms of design, CA first performs global average pooling on the input features in
the horizontal and vertical directions, respectively, to obtain two sets of one-dimensional
descriptors containing directional position information. Subsequently, these descriptors
are compressed into a low-dimensional space through a shared transformation network to
reduce computational overhead and capture cross-channel correlations. Then, the original
number of channels is restored through branch mapping, and position-sensitive attention
weights are generated by broadcasting in the horizontal and vertical directions, respectively.
Finally, it is multiplied point by point with the original features to complete the channel-
position joint recalibration.

The advantages of CA are reflected in two aspects: first, it uses decomposed di-
rection modeling to explicitly introduce spatial position information into channel atten-
tion, thereby enhancing the network’s ability to express target geometric structures and
long-range dependencies while maintaining lightweight; second, the module design is
concise and can be seamlessly embedded into existing convolutional networks, bringing
stable accuracy improvements in tasks such as image classification, object detection, and
semantic segmentation.

2.6. Dataset

The dataset used in this study is constructed by combining the PlantDoc [26] dataset
with additional images collected through Google and Bing. Only images from webpages
that explicitly permit academic or non-commercial research use, or that do not include
restrictive copyright statements, were downloaded; for webpages with unclear licensing,
only URLs were recorded and the raw images were not included in the dataset. Images
captured through search engines, covering 9 major categories, including 9 types of healthy
conditions and 20 types of disease and pest conditions, involving common cash crops
such as apples, tomatoes, strawberries, and potatoes. To ensure data quality and avoid
redundancy, perceptual hashing (pHash) was applied to detect duplicate or near-duplicate
images between PlantDoc and web-collected samples. All automatically detected cases
were manually verified by two researchers. Images with low resolution, severe blur,
overexposure, large occlusion, or prominent watermarking were removed. The dataset
contains 28,721 images, each with a resolution of 640 x 640 pixels. Use the Labellmg
annotation tool to annotate the target positions and categories of diseases and pests in
the filtered images. Approximately 15% of all annotations were independently reviewed
by two plant protection experts. For images with annotation inconsistencies, the final
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labels were determined through consensus discussion to ensure biological correctness and
minimize systematic labeling errors. Refer to PASCALVOC2007 to generate annotation files
in xml format, which record the image name, image size, types of diseases and pests, and
location information of diseases and pests, as shown in Table 1.

Table 1. Dataset Category Details.

Species Class Num Category
Apple Healthy 949 Healthy Plant
Avple Apple Black Rot 943
PP Apple Scab 945 Fungal Disease
Cedar Apple Rust 948
) Bell-pepper Healthy 945 Healthy Plant
Bell-pepper Bell pepper Bacterial Spot 944 Bacterial Disease
Cherr Cherry Healthy 940 Healthy Plant
y Cherry Powdery Mildew 941 Fungal Disease
Corn Healthy 940 Healthy Plant
C Corn Cercospora Leaf Spot 953
om Corn Common Rust 964 Fungal Disease
Northern Leaf Blight 1003
Grape Healthy 946 Healthy Plant
Grape Black Rot 945 .
Grape Grape Leaf Blight 966 Fungal Disease
Grape Esca 942 Other Diseases/Conditions
Peach Peach Healthy 941 Healthy Plant
eac Peach Bacterial Spot 946 Bacterial Disease
Potato Healthy 934 Healthy Plant
Potato Potato Early Blight 947 .
Potato Late Blight 947 Fungal Disease
Strawberr Strawberry Healthy 946 Healthy Plant
y Strawberry Leaf Scorch 1048 Other Diseases/Conditions
Tomato Leaf Healthy 946 Healthy Plant
Tomato Bacterial Spot 956 Bacterial Disease
T Tomato Leaf Mould 944
omato Tomato Early Blight 967 Funeal Disease
Tomato Late Blight 1067 &

Tomato Septoria Leaf Spot 952

2.7. Implementation Details

The number of training epochs is set to 100 and the batch size is 64. To enhance the
model’s generalization capability under complex field conditions, multiple data augmen-
tation strategies were employed during training, including random horizontal flipping,
random rotation (£10°), random scaling (0.8-1.2), brightness and contrast perturbation,
HSV jittering, and Gaussian noise injection. Mosaic and MixUp augmentation were addi-
tionally applied during early training epochs to further increase sample diversity. The data
is divided into a training set and a valid set in an approximate ratio of 7:3. The experiment
was conducted in an environment built on Ubuntu 22.04 operating system with Python 3.9
and Pytorch 2.6.0. The CPU model is Intel Xeon Platinum 8352V @ 2.10 GHz, and the GPU
model is NVIDIA RTX 4090 (24 GB). Meanwhile, CUDA 12.4 was used to accelerate the
computations. The optimizer was SGD with a momentum of 0.937, an initial learning rate
of 0.01, a cosine annealing learning rate scheduler with a three-epoch warm-up, and a
weight decay of 0.0005. No pretrained weights were used to ensure full reproducibility.
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2.8. Evaluation Metrics

This study mainly uses precision P, R, F; scores, and mean average precision (mAP)
to measure model accuracy, and it uses parameter count (Params) and computational
complexity (FLOPs) to evaluate model performance (Equations (5)—(8)).

TP

P=Tp1Fp ®)
TP

R= TP +FN ©)
P xR

F =2 7

1" PR @

N 4

Y. [y P(R)dR

mAP = lle x 100% (8)

where TP is the number of positive samples correctly predicted as positive samples; FP
is the number of negative samples incorrectly predicted as positive samples; FN is the
number of positive samples incorrectly predicted as negative samples; N is the number
of categories.

3. Results and Discussion
3.1. Ablation Study

To systematically validate the independent effects of individual lightweight modules
and attention mechanisms within the YOLOvV5s framework, as well as the advantages of
multi-module collaborative fusion, this section designs and implements a set of ablation
experiments. YOLOv5s was adopted as the baseline model. First, single lightweight mod-
ules (including GhostConv and Depthwise Convolution) and single attention mechanisms
(including the CBAM channel-spatial attention mechanism and Coordinate Attention) were
separately embedded into either the Backbone or Neck components of the baseline model.
Under the premise of preserving the overall topological structure of the network, a series
of improved single-module models were constructed via module replacement or insertion.
Subsequently, the performance of each single-module model was compared and analyzed
against that of the target model (YOLOvb5s-LiteAttn), which integrates multiple modules
through collaborative fusion.

The evaluation process centered on both the core performance metrics for object detec-
tion tasks and the lightweight properties of the model, specifically encompassing precision,
recall, mean average precision (mAP@0.5-0.95), floating-point operations (FLOPs), and
parameter count. By quantitatively assessing the contribution of each individual module
to the model’s detection accuracy and efficiency, the functional roles of different modules
were clearly defined. Concurrently, this study verified the necessity and superiority of
multi-module collaborative fusion in enhancing the model’s comprehensive performance—
particularly in balancing detection accuracy and computational efficiency. These findings
provide experimental evidence to support the rationality of the structural design of the
YOLOv5s-LiteAttn model. It can be seen from the training loss curve shown in Figure 7. It
illustrates the variation trends of different loss components during the training process of
the model. The horizontal axis represents the number of training epochs, while the vertical
axis denotes the corresponding loss values. As shown in the figure, the Box Loss, Object
Loss, and Class Loss all exhibit a rapid decline in the early training stages, followed by a
gradual stabilization as the number of epochs increases.
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Figure 7. Training loss curve.

Specifically, the Box Loss (purple curve) decreases sharply within the first few epochs
and then converges to a stable level around 0.01, indicating that the model quickly learns
accurate bounding box regression. The Object Loss (green curve) shows the lowest magni-
tude among the three, demonstrating that the model effectively captures the confidence in
objects and achieves good localization capability. Meanwhile, the Class Loss (blue curve)
initially presents the highest value but undergoes the most significant reduction, eventually
stabilizing at a low level, reflecting the model’s enhanced ability to distinguish different
categories as training progresses.

Overall, the declining and stable trends of all loss components suggest that the model
training process converges effectively, and the proposed network achieves a balance be-
tween classification and localization performance.

YOLOv5s-Ghost replaces the standard convolution in the Backbone with GhostConv to
test its effect in reducing redundant computations and the number of parameters; YOLOv5s-
DW uses Depthwise Convolution to replace some standard convolutions to evaluate its
performance in reducing FLOPs while maintaining feature extraction capability; YOLOv5s-
CBAM embeds the CBAM module in the Backbone to verify the contribution of channel and
spatial attention in feature screening and suppressing background interference; YOLOv5s-
CoordAtt introduces Coordinate Attention in the fusion stage of Neck and Head to test the
improvement effect of position perception and direction-sensitive modeling on fine-grained
target detection. Through the above experimental design, the impact of a single module
on model performance can be comprehensively evaluated, and a comparison basis can be
provided for the finally proposed “dual lightweight + dual attention” YOLOvbs-LiteAttn,
thereby proving the necessity and superiority of multi-module collaborative fusion.

Compared to the YOLOv5-CBAM-C3TR [27] model, which achieved mAP@0.5:0.95 of
40.9%, precision of 70.9%, and recall of 69.5% in apple leaf disease detection, the proposed
YOLOvbs-LiteAttn model demonstrates significantly higher performance, with a mAP@0.5—-
0.95 of 97.1% and a recall rate of 97.9%. Furthermore, YOLOv5s-LiteAttn reduces the
model parameters to 5.50 M, a 23% reduction compared to YOLOv5-CBAM-C3TR (7.12
M), and decreases the computational load (FLOPs) by 13.40%. These results indicate that
YOLOv5s-LiteAttn not only outperforms YOLOv5-CBAM-C3TR in terms of detection
accuracy but also effectively reduces the computational cost, making it more suitable for
practical deployment in resource-constrained environments.
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As shown in Table 2, the baseline YOLOvV5s achieves a precision of 95.1%, a recall
of 96.8%, and an mAP@0.5-0.95 of 93.8%, with 7.12 M parameters and 16.10 GFLOPs.
Replacing standard convolution with GhostConv substantially reduces the parameters
to 5.89 M and lowers FLOPs to 13.30 G, while improving mAP to 96.1%, demonstrating
that GhostConv effectively removes redundant computation without degrading detec-
tion quality. Depthwise Convolution further reduces computation to 11.46 GFLOPs and
maintains competitive accuracy, confirming its advantage for lightweight model design.
Regarding attention mechanisms, CBAM increases recall but slightly decreases overall
mAP, whereas Coordinate Attention achieves a more notable gain (95.7% mAP), indicating
better performance in fine-grained spatial feature refinement.

Table 2. Ablation results.

Model Layers Params (M) FLOPs(GF) P (%) R (%) mAP@0.5-0.95(%) FPS Size (MB)
YOLOvb5s Baseline 157 7.12 16.10 95.1 96.8 93.8 121.00 13.90
YOLOv5s-Ghost 184 5.89 13.30 96.1 96.2 96.1 147.00 11.58
YOLOv5s-CBAM 185 6.15 14.10 94.1 97.2 91.3 133.00 12.13
YOLOv5s-CoordAtt 245 7.15 16.20 95.0 94.0 95.7 112.00 14.02
YOLOv5s-DW 223 5.09 11.46 96.0 96.0 92.6 167.00 10.00
YOLOvb5s-LiteAtten 394 5.50 13.40 98.4 97.9 97.1 142.00 11.00

Among all variants, YOLOv5s-LiteAttn—combining GhostConv, Depthwise Convolu-
tion, CBAM, and Coordinate Attention—achieves the best overall performance. It attains
97.1% mAP@0.5-0.95 and 97.9% recall while reducing parameters to 5.50 M and FLOPs to
13.40 G. Compared with the baseline, this corresponds to a 3.3-point increase in mAP and a
1.1-point improvement in recall, along with 22.75% fewer parameters and 16.77% fewer
FLOPs. These results clearly demonstrate the effectiveness of multi-module collaborative
fusion and highlight the superior balance between accuracy and efficiency achieved by the
proposed YOLOvb5s-LiteAttn model.

3.2. Comparison Between Baseline YOLOuvbs and YOLOuvbs-LiteAttn

In complex crop pest and disease identification scenarios, by comparing the detection
performance of YOLOv5s and YOLOvb5s-LiteAttn in Figure 8, the differences between the
models can be intuitively observed.

The original YOLOV5s is prone to interference from the background when multiple
types of pests and diseases are densely distributed, and some small targets have positioning
deviations or category confusion. However, YOLOv5s-LiteAttn achieves efficient feature
extraction by introducing GhostBottleneck and Depthwise convolution into the backbone
network, and combines CBAM and Coordinate Attention to enhance the expressive ability
of significant regions, making the detection results more stable and accurate. Especially
when there is mutual interference between disease spots and leaf textures, the improved
model can more clearly distinguish the boundaries of pest and disease targets and reduce
misidentifications. At the same time, under conditions of light changes or strong image
noise, the attention mechanism effectively suppresses irrelevant features and improves
the robustness of the model in complex backgrounds. Overall, YOLOv5s-LiteAttn outper-
forms YOLOv5s in both small target detection accuracy and positioning accuracy, showing
stronger adaptability and practical value. Combined with the quantitative indicators in
Table 2, the improved model increases mAP@0.5-0.95 by 3.3 percentage points and recall
by 1.1 percentage points compared with YOLOV5s, further confirming its advantages in
detection performance. This is generally consistent with the findings reported in Vegetable
Disease Detection Using an Improved YOLOv8 Algorithm in the Greenhouse Plant Envi-
ronment [28]. However, the independently developed YOLOv5s-LiteAttn model in this
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study demonstrates superior detection performance under a more stringent mAP@0.5-0.95
evaluation criterion and with a greater number of detection categories.

(a) Class P R mAP50-95 (b) Class P R mAP50-95
Apple Healthy 95.2% 98.0% 89.4% Apple Healthy 98.9% 94.1% 94.4%
Apple Black Rot 96.4% 100.0% 94.6% Apple Black Rot 99.4% 100.0% 97.3%
Apple Scab 99.0% 100.0% 96.1% Apple Scab 98.6%  100.0% 97.7%
Cedar Apple Rust 98.2% 100.0% 95.6% Cedar Apple Rust 100.0% 100.0% 97.8%
Bell-pepper Healthy 91.4% 100.0% 98.6% Bell-pepper Healthy 97.1% 100.0% 99.1%
Bell pepper Bacterial Spot 94.0% 100.0% 95.8% Bell pepper Bacterial Spot 99.2% 100.0% 97.9%
Cherry Healthy 99.4% 100.0% 97.0% Cherry Healthy 98.6% 100.0% 99.0%
Cherry Powdery Mildew 96.9% 100.0% 94.6% Cherry Powdery Mildew 99.3% 100.0% 96.1%
Corn Healthy 98.9% 98.0% 99.5% Corn Healthy 99.7% 100.0% 99.5%
Corn Cercospora Leaf Spot 92.0% 92.4% 91.2% Corn Cercospora Leaf Spot 95.6% 96.0% 94.9%
Corn Common Rust 96.5% 100.0% 97.1% Corn Common Rust 99.0% 100.0% 98.9%
Northern Leaf Blight 81.8% 90.9% 83.2% Northern Leaf Blight 98.0% 87.1% 88.6%
Grape Healthy 97.0% 100.0% 97.4% Grape Healthy 99.2%  100.0% 99.5%
Grape Black Rot 99.0% 100.0% 95.5% Grape Black Rot 99.9% 100.0% 99.0%
Grape Leaf Blight 100.0% 97.5% 96.4% Grape Leaf Blight 99.1% 98.0% 98.3%
Grape Esca 95.2% 100.0% 93.0% Grape Esca 98.0% 100.0% 96.2%
Peach Healthy 96.6% 100.0% 86.6% Peach Healthy 99.8% 100.0% 95.0%
Peach Bacterial Spot 94.2% 100.0% 92.5% Peach Bacterial Spot 99.0% 100.0% 97.9%
Potato Healthy 95.2% 100.0% 96.8% Potato Healthy 94.1% 100.0% 98.3%
Potato Early Blight 95.9% 100.0% 97.8% Potato Early Blight 99.4% 100.0% 99.2%
Potato Late Blight 93.7% 98.0% 94.4% Potato Late Blight 98.0% 97.2% 96.0%
Strawberry Healthy 95.5% 100.0% 98.9% Strawberry Healthy 99.2% 100.0% 98.6%
Strawberry Leaf Scorch 85.8% 90.4% 90.7% Strawberry Leaf Scorch 96.0% 86.5% 94.4%
Tomato Leaf Healthy 99.1% 100.0% 95.1% Tomato Leaf Healthy 99.4% 100.0% 98.0%
Tomato Bacterial Spot 97.9% 100.0% 91.7% Tomato Bacterial Spot 99.7% 100.0% 96.7%
Tomato Leaf Mould 90.9% 98.0% 95.8% Tomato Leaf Mould 95.2% 98.0% 98.7%
Tomato Early Blight 98.0% 99.9% 93.2% Tomato Early Blight 100.0% 98.5% 98.5%
Tomato Late Blight 91.6% 82.8% 80.2% Tomato Late Blight 94.6% 84.9% 92.1%
Tomato Septoria Leaf Spot 92.2% 100.0% 92.6% Tomato Septoria Leaf Spot 99.4%  100.0% 97.7%

Figure 8. Comparison chart of mAP@0.5-0.95; (a) YOLOv5s; (b) YOLOv5—LIteAttn.

3.3. Comparative Experiment

To further verify the performance advantages of the proposed YOLOv5s-LiteAttn
model, this study compares it with various classic and mainstream object detection algo-
rithms in Table 3. For a fair comparison, all models in Table 3 were trained from scratch
under identical training settings for 100 epochs, without using any COCO or externally
pre-trained weights.

Table 3. Comparison of results of different target detection models.

Model Params/M FLOPs/G mAP@0.5-0.95/% R/% Size/MB FPS
YOLOvV5s 7.12 16.10 93.8 96.8 13.9 121.0
YOLOvV7-tiny 6.12 13.40 89.2 91.2 47.1 105.0
YOLOX-s 8.95 26.84 91.6 91.6 68.6 70.0
YOLOv11-s 9.42 21.40 98.3 98.4 18.8 88.0
SSD-MobileNetV3 large 2.76 2.09 82.1 92.5 10.8 235.0
Faster R-CNN(R50-FPN) 41.55 182.54 73.8 85.3 158.0 12.0
EfficientDet-D0 3.85 7.79 70.4 86.2 15.1 195.0
YOLOv5s-LiteAttn 5.50 13.40 97.1 97.9 11.0 142.0

To ensure the scientificity and fairness of the comparison, lightweight detection mod-
els that are widely used and representative in agricultural scenarios, as well as some
mainstream models with high accuracy, are selected, including YOLOv5s, YOLOv7-tiny,
YOLOX-s, YOLOv11-s, SSD-MobileNetV3 [29,30] large, Faster RCNN (R50-FPN) [31], and
EfficientDet-DO0 [32]. These models have been widely applied and verified in crop pest
and disease detection tasks, and can well reflect the actual effects of lightweight and
high-precision models in the agricultural field, as shown in Figure 9.

As summarized in Table 3, YOLOv5s-LiteAttn achieves a mAP@0.5-0.95 of 97.1% and
a recall of 97.9%, outperforming all lightweight competitors. Compared with YOLOv7-tiny
(89.2% mAP) and YOLOX-s (91.6% mAP), the proposed model demonstrates substantially
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(b) tomato lote blight 0.73

stronger discriminative ability for small and subtle lesion targets. Although YOLOv11-s
attains the highest mAP (98.3%), it requires more parameters (9.42 M), higher computational
cost (21.40 GFLOPs), and exhibits a slower inference speed (88 FPS). This indicates that
YOLOv11-s prioritizes accuracy at the expense of deployment efficiency.

(c) tomato lote biight 0.88 (d) tomato late blight 0.96 (e) tomato late blignt 0.94

Figure 9. Comparison of visualization results from different models. (a) YOLOv5s; (b) YOLOvV7-tiny;
(c) YOLOX-s; (d) YOLOvV11-s; (e) YOLOvb5s-LiteAttn.

In contrast, YOLOvbs-LiteAttn achieves the best overall balance between accuracy and
efficiency. With only 5.50 M parameters and 13.40 GFLOPs, the model delivers the fastest
inference speed among all tested models (142 FPS). Notably, it improves detection accuracy
over YOLOvb5s by 3.3 percentage points while simultaneously reducing parameters by
22.75% and FLOPs by 16.77%. This demonstrates that the combination of lightweight
convolution modules and the hybrid attention mechanism enhances feature representation
without increasing computation burden.

Overall, the comparative experiments clearly show that YOLOvb5s-LiteAttn offers the
highest comprehensive performance across detection accuracy, computational efficiency,
and real-time capability. Its ability to deliver near-YOLOv11-s accuracy at substantially
lower computational cost underscores its strong deployment potential for field-based
agricultural monitoring systems where both precision and speed are critical.

3.4. Per-Class Performance Analysis

To further assess class-level performance regarding per-category behavior, the con-
fusion matrix and precision-recall (PR) curves of YOLOvbs-LiteAttn are presented in
Figures 10 and 11.

The confusion matrix shows that most categories achieve very high true-positive
rates (generally above 0.95), indicating strong class separability across diverse crops and
diseases. Only a few visually similar categories—such as Apple Scab vs. Apple Black Rot
and Potato Healthy vs. Potato Early Blight-exhibit minor confusion, which is expected due
to overlapping lesion patterns or subtle early-stage symptoms.

The PR curves further confirm the model’s robustness. The macro-average curve
remains close to the upper boundary, and most categories maintain high precision even at
large recall values. Lesion-rich categories such as Northern Leaf Blight, Strawberry Leaf
Scorch, and Tomato Late Blight demonstrate particularly strong PR profiles, consistent with
their notable per-class improvements. A few healthy-class categories display slightly lower
recall, likely due to their greater similarity to early disease symptoms.

Overall, the per-class results demonstrate that YOLOv5s-LiteAttn achieves stable
and reliable detection across most categories, with limited confusion among difficult
classes. These findings support the effectiveness of the proposed lightweight and attention-
enhanced structure in improving fine-grained feature discrimination and maintaining
strong generalization in practical agricultural environments.
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Figure 10. The confusion matrix.

3.5. Application Evaluation Based on an Independent Test Set

To further assess the cross-domain robustness and field applicability of the proposed
model, an independent test set containing 4328 in-field images was constructed. All images
were collected at the Modern Agricultural R&D Base of Sichuan Agricultural University
(Chongzhou, Chengdu, Sichuan Province) between March and June 2025 using an iPhone
13 under natural lighting, occlusion, and background conditions. All images in the inde-
pendent test set were annotated following the same protocol as the main dataset. Initial
bounding boxes and category labels were produced by three trained annotators. Subse-
quently, a stratified sample of 600 images (approximately 14% of the set) was independently
reviewed by two plant pathology experts. For cases with inconsistent labels, the annotators
and experts jointly discussed and revised the annotations until consensus was reached,
ensuring biological correctness and reducing systematic labeling bias. This independent
dataset covers a wide range of real field scenarios and thus provides a rigorous evaluation
of generalization performance.

As shown in Table 4, both YOLOv5s and YOLOv5s-LiteAttn experience performance
drops compared with the validation results, which is expected due to the clear distribu-
tion shift between controlled dataset conditions and real in-field images. Nevertheless,
YOLOvbs-LiteAttn maintains strong detection capability, achieving 95.8% mAP@0.5-0.95,
97.1% recall, and 140 FPS, all of which remain consistently superior to the baseline YOLOv5s
(91.2% mAP@0.5-0.95, 95.9% recall, 118 FPS). The improved robustness demonstrates that
the proposed lightweight structure and hybrid attention mechanism effectively mitigate
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background noise, illumination variation, and fine-grained lesion ambiguity present in
actual field sampling environments.

Precision-Recall Curve
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Nl

I

0.6 A
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Figure 11. PR.

Table 4. Comparison of results of the baseline model.

Model Params/M FLOPs/G mAP@0.5-0.95/% R/% FPS Size/MB
YOLOvV5s 7.12 16.10 91.2 959 118.0 13.9
YOLOvb5s-LiteAttn 5.50 13.40 95.8 97.1 140.0 11.0

These results further confirm that YOLOv5s-LiteAttn is not only accurate and effi-
cient during validation but also exhibits stable transferability when exposed to previously
unseen real-world distributions. Therefore, the model has significant potential for prac-
tical deployment in intelligent agricultural monitoring systems and field-based pest and
disease diagnosis.

Notably, despite the minor performance degradation, the YOLOv5s-LiteAttn model
consistently outperformed the baseline YOLOvS5s, highlighting the effectiveness of the
proposed lightweight structure and hybrid attention mechanism in maintaining robustness
and transferability under complex backgrounds and variable acquisition conditions. There-
fore, the independent test results further substantiate the stability, generalization ability,
and deployment potential of the YOLOv5s-LiteAttn model for real-world agricultural pest
and disease detection scenarios.

4. Conclusions

The accurate identification of pests and diseases remains a critical requirement for
modern precision agriculture. This study addressed the challenge of developing a detec-
tion model that balances performance with computational efficiency for practical deploy-
ment. An improved lightweight model, YOLOv5s-LiteAttn, was introduced based on the
YOLOV5s architecture. The main contributions of this work were fourfold:
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(1) A lightweight model architecture was constructed through the integration of the
GhostConv and Depthwise Convolution modules. This design effectively reduced the
model’s computational complexity and parameter count.

(2) The model’s superior trade-off between detection accuracy and operational effi-
ciency was demonstrated through comparative analyses. The proposed model achieved
enhanced performance in key metrics compared to the baseline and other mainstream
lightweight models.

(3) The critical role of a hybrid attention mechanism in improving feature representa-
tion was elucidated. This integration was shown to enhance the model’s robustness.

(4) To further verify generalization performance, an independent test set of 4328 newly
collected field images was employed. Although the model exhibited a slight performance
decline, its mAP@0.5-0.95 remained at 95.8%, still markedly outperforming the baseline,
thus confirming the model’s robustness and cross-domain adaptability.

Nevertheless, this study still has certain limitations. On the one hand, the dataset is
mainly derived from a limited number of crop categories, so the cross-regional general-
ization ability of the model remains to be verified; on the other hand, this paper focuses
on the optimization of algorithm performance and lacks in-depth research on the bio-
logical connections between different diseases and pests and their dynamic evolution in
agricultural ecosystems.

Therefore, future research will mainly proceed in three directions: first, further expand-
ing the dataset by incorporating more crop types and samples from complex environments
to enhance the robustness and adaptability of the model in different scenarios [33]; second,
exploring multimodal information fusion, such as integrating hyperspectral data, infrared
imaging, and meteorological data, to improve the comprehensiveness and accuracy of pest
and disease identification [34]; third, focusing on time-series behavior modeling to poten-
tially introduce LSTM, 3D convolution, or Transformer modules to predict the dynamic
changes and development trends of pests and diseases [35]. Through these expansions,
the YOLOvbs-LiteAttn model proposed in this study is expected to become a core tool in
agricultural intelligent monitoring and precise prevention and control in the future, pro-
moting the development of pest and disease management towards automation, intelligence,
and sustainability.
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