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Graphical Abstract

Summary
Several methane phenotypes have been proposed in recent years. When measuring methane using breath 
analyzers (sniffers), 2 commonly used phenotypes are methane concentration (CH4c; ppm) and methane 
production (CH4p; g/d). However, even within these phenotypes, different definitions exist. For example, for 
CH4c, the average per visit is commonly used, but other phenotypes involving the identification of “eructation” 
peaks have been proposed. For CH4p, there are several available formulas to calculate it, using methane 
concentration or ratio as input, together with other production traits. Additionally, methane intensity is another 
phenotype that has interest, as it represents the amount of methane per production unit (in dairy cattle, milk). 
Genetic correlations within each group of phenotypes (CH4c and CH4p) were highly positive, except for the 
formula of the Intergovernmental Panel on Climate Change (IPCC) to predict methane that was used as a 
benchmark (Tier2). Methane intensity had negative genetic correlations with the majority of the phenotypes.

Highlights
•	 Average CH4c is positively correlated with most of the phenotypes except for ratio (CH4c and CO2 

concentration).
•	 Methane production phenotypes derived by formulas are highly positively correlated among them.
•	 Methane intensity is positively correlated with most methane phenotypes.
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Abstract One of the most promising strategies to permanently reduce methane emissions in dairy cattle is through genomic selection, 
where the primary goal is to identify and selectively breed low-emitting ruminants. An important step is to define which trait definition 
to use. Several methane phenotypes have been proposed in recent years. When measuring methane using breath analyzers (sniffers), 2 
commonly used phenotypes are methane concentration (CH4c; ppm) and methane production (CH4p; g/d). However, different definitions 
exist for both phenotypes. For example, for CH4c, the average per visit is commonly used, but other phenotypes involving the identifica-
tion of eructation peaks have been suggested. Several formulas are available to calculate CH4p, using CH4c or the ratio between CH4c and 
CO2 concentrations as input, together with other production traits. Additionally, methane intensity (MeI), another phenotype of interest, 
is the amount of methane produced per milk unit (kg). Therefore, the aims of this study were (1) to estimate genetic parameters for 11 
distinct phenotypes, including 3 CH4c definitions, carbon dioxide concentration per visit (CO2c), the ratio between CH4c and CO2c, 5 
phenotypes for CH4p based on different formulas (Madsen, Chagunda, 2 of Kjeldsen, and IPCC Tier2 as a benchmark), and MeI; and 
(2) to estimate genetic correlations between these methane phenotypes and milk yield (MY) and BW. A total of 149,726 sniffer (CH4c 
and CO2c) records were available from 7,600 Dutch Holstein cows measured between 2019 and 2024 on 68 farms. Data were analyzed 
with an animal repeatability model with fixed effects, including herd-year-season, week of lactation, and lactation number with age of 
cow at calving nested. Estimated heritability values ranged from 0.16 to 0.30 for CH4c phenotypes, with the number of eructation peaks 
having the highest heritability. For CH4p, heritabilities ranged from 0.03 to 0.27, with Tier2 having the highest value. Heritabilities for 
the CH4c/CO2c ratio and CO2c were 0.08 and 0.13, respectively. Genetic correlations between CH4c phenotypes were moderate to highly 
positive, ranging between 0.49 and 0.85. Likewise, highly positive genetic correlations (between 0.89 and 1) were estimated for CH4p 
phenotypes, except for Tier2, which presented correlations between 0.04 and 0.37 with the other CH4p phenotypes. Average CH4c (avg) 
per visit and sum of maximum peaks of CH4c (speaks) had moderate to high positive correlations (0.36–0.95) with the majority of the 
CH4p phenotypes (except Tier2). Methane intensity had moderate to high positive genetic correlations (0.38 to 0.80) with the majority 
of the phenotypes except for Kjeldsen2 (0.03) and Tier2 (−0.90). Milk yield had positive genetic correlations with all the methane 
phenotypes (0.04 to 0.94) except for MeI (−0.66) and Kjeldsen2 (−0.69). Body weight had close to zero genetic correlations with CH4c 
phenotypes (−0.09 to 0.07), and a moderate positive to moderate negative correlation (−0.72 to 0.57) for CH4p phenotypes. Given their 
strong correlations with the other methane phenotypes, close to zero correlation with body weight, and no induced dependencies with 
BW and MY, as seen with the CH4p phenotypes, avg and speaks appear to suitable proxies for methane emissions when using sniffers.

Methane emissions in dairy cattle have been investigated in-
tensively over the past decade due to the 2030–2050 climate 

targets, where the European Union aims for a 55% reduction 
up to neutrality in greenhouse gas emissions (EEA, 2023). One 
of the mitigation options is through genetic and genomic selec-
tion, where the primary goal is to identify and selectively breed 
low-emitting animals. As a result, several countries are currently 
monitoring enteric methane from ruminants. A widely employed 
phenotyping method involves breath sampling during milking by 
a breath analyzer device commonly referred to as a sniffer. This 
device samples breath at regular intervals (often between 1 and 
15 s) during milking, reporting methane concentration (CH4c) 
in parts per million. Although CH4c has been proposed as an 
indicator for gross methane emissions (referred to as methane 
production [CH4p]; CH4 g/d) due to its high correlation (0.76; 
van Breukelen et al., 2023), there is a lack of consensus on which 

phenotype to use for estimating breeding values. Several pheno-
types have been proposed over the past years; one that is largely 
used is the average CH4c per visit or per minute averaged daily or 
weekly, but other CH4c phenotypes involving the identification 
of eructation peaks have also been suggested (Garnsworthy et al., 
2012; Rey et al., 2019; Reintke et al., 2020). Both studies that 
investigated peaks used CH4c measured by mobile laser meth-
ane detectors. Rey et al. (2019) defined the peaks as the number 
of peaks or eructation events presented in 5 min. Reintke et al. 
(2020) proposed the sum of CH4c per minute during eructation 
peaks, maximum CH4c during eructation peaks, and the number 
of eructation events per minute as possible CH4c phenotypes in 
ewe breeding. The rationale behind the use of eructation peaks 
as a phenotype is to try to disentangle CH4c that comes from a 
respiration event from the one that comes from an eructation 
event (i.e., the peaks). Previous studies by nutritionists (Blaxter 
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and Joyce, 1963; Murray et al., 1976) showed that ~17% of the 
methane exhaled originates from the lungs, and the remaining 
83% is produced by eructation. Additionally, eructation peak 
detection could adjust for barn ambient CH4c, as well as for 
build-up of CH4c in the automated milking system (AMS) feed 
bin during milking (Bell, et al., 2014). Although no literature has 
been published on the heritability of eructation peaks in cows, 
several studies have reported the detection of methane peaks us-
ing sniffers (Rey et al., 2019; Hardan et al., 2022). Additionally, 
sniffers traditionally rely on formulas to convert CH4c (ppm) to 
CH4p (g/d). Currently, several formulas are available to calculate 
CH4p using CH4c and BW (Chagunda et al., 2009) or predicting 
carbon dioxide (CO2 g/d; via heat production using BW, ECM, 
and days in pregnancy) and multiplying it by the ratio between 
CH4c and CO2 concentration (CO2c) to predict CH4p (Pedersen et 
al., 2008; Madsen et al., 2010). Although some of these formulas 
are extensively used, they were originally developed to predict 
CH4p in barns, not individual animal CH4p. Recently, Kjeldsen 
et al. (2024) developed 3 formulas to predict CO2 (g/d) using an 
international dataset of more than 2,000 cows with recorded CH4p 
using either respiration chambers or GreenFeed units (C-Lock, 
Inc.). Finally, the IPCC (2019) has proposed several approaches 
(designated Tier1 to Tier3) to calculate methane emission factors 
per species, where the Tier2 formula is extensively used for dairy 
cattle, as it uses an energy balance approach. Therefore, the aims 
of this study were to (1) estimate genetic parameters for 11 dis-
tinct phenotypes, including 3 CH4c definitions, CO2c per visit, the 
ratio between average CH4c and CO2c, 5 phenotypes for CH4p 
based on different formulas (Madsen, Chagunda, Kjeldsen, and 
Tier2), and methane intensity (MeI); and (2) estimate genetic cor-
relations between these methane phenotypes and milk yield (MY; 
kg) and BW.

The original data included a total of 149,726 sniffer CH4c 
and CO2c records from roughly 7,600 primi- and multiparous 
Dutch Holstein cows. The data have been previously described 
in van Breukelen et al. (2023, 2024). Methane concentration was 
measured using sniffers located in the AMS (WD-WUR v2.0, 
Carltech BV), sampling CH4c and CO2c every 5 s. Based on the 
sniffer CH4c and CO2c (ppm) measurements, 11 phenotypes were 
derived. We divided the phenotypes into groups: CH4c (in ppm), 
CH4p (in g/d), and MeI (in g CH4/kg MY). Methane concentration 
phenotypes included (1) the average CH4c per visit (avg), (2) the 
number of eructation peaks per minute (npeaks), and (3) the sum 
of maximum eructation peaks (speaks), defined as the sum of the 
average of the 2 top values within each peak (for all peaks within 
visit). Methane production phenotypes were calculated with 5 
formulas available in the literature: (4) Madsen (Madsen et al., 
2010), based on the prediction of CO2 using ECM and BW to 
posteriorly multiply it by ratio; (5) Chagunda (Chagunda et al., 
2009), based on the tidal volume that uses BW as a predictor and 
the average CH4c; (6) and (7) Kjeldsen2 and Kjeldsen3 (Kjeldsen 
et al., 2024), based on the prediction of CO2 using ECM and BW 
or only ECM, and multiplied by the ratio between CH4c and CO2c; 
and (8) Tier2 (IPCC, 2019), based on the prediction of CH4p using 
MY and BW. Tier 2 was used as a benchmark scenario incorporat-
ing information on MY, BW, and diet, without relying on sniffer-
based measurements, and was not treated as a selection phenotype. 
Additionally, we included as phenotypes (9) the ratio of CH4c to 
CO2c (ratio), (10) CO2c, and (11) MeI, defined as CH4p divided 

by MY (g CH4p/kg MY), where CH4p was calculated using the 
Kjeldsen3 formula (as it was the phenotype with the largest 
number of records and animals). Each of the 11 phenotypes was 
calculated at the visit level. Weekly CH4c and CH4p phenotypes 
were calculated by averaging visit phenotypes (with a minimum 
number of 5 visits) per calendar week. All CH4c phenotypes had 
a background level subtracted, where the background was calcu-
lated as the 5 lowest measurements during the entire visit, in order 
to account for the CH4c level in the barn. Furthermore, visit CH4c 
and CH4p were defined as the concentrations present in a window 
of 240 s (between 60 and 300 s after the entrance time of the 
cow in the AMS). The first 60 s were removed to account for the 
gas traveling through the tube until the gas sensor. Visits were 
cut at 300 s, and visits shorter than 300 s were discarded to avoid 
erratic data due to head movement, as shown by Løvendahl et al. 
(2024), as pellets are dropped in the AMS and consumed (mainly) 
in the first minutes of the milking. Eructation peaks were defined 
using R, detecting a local maxima by computing the first and the 
second differences of the signal (0.0005). The function calculates 
the change between consecutive values. A peak is defined as a 
point where the signal transitions from increasing to decreasing 
(i.e., where the first derivative is positive followed by a negative 
slope). Once eructation peaks were defined, 2 phenotypes were 
calculated: (1) the number of peaks per minute, which is the total 
number of peaks per visit divided by visit length, and (2) the 2 
maximum values per peak, which were detected, averaged, and 
then summed across all the peaks per visit. The majority of ani-
mals had MY and milk content information, however, only ~10% 
of the animals had BW. For this reason, phenotypes that used BW 
or metabolic BW (MBW) had a smaller number of records and 
animals. The number of records and animals per phenotype after 
editing is presented in Table 1.

The CH4p phenotypes were calculated according to the follow-
ing formulas. Madsen was calculated as 

CO2 (g/d) = 180 × 24 × (5.6 MBW + 22 ECM  

+ 1.6 × 10−5 × number of days in gestation),

Chagunda was calculated as 

CH4p (g/d) = mean CH4c/106 μL × tidal volume (L/breath)  

× 30 breaths/min × 1,440 min/d × 16.04 (g/mol)/22.4 (L/mol),

where tidal volume (L) = 7.5 mL/kg of BW × BW (kg)/1,000 
(mL/L). Kjeldsen2 was calculated as

CO2 (g/d) = −6134 + (213 × ECM) + (126 × MBW)  

+ (52.5 × Milk CF) + (−5.13 × DIM) + 2117 + (−0.122 × DIM  

× Diet CF) + (0.386 × ECM × DIM) + (−1.18 × ECM × MBW)  

+ (−0.614 × Milk CF × MBW) + (−5.96 × MBW)  

+ (−1.18 × DIM) + (−0.614 × MBW),

where Milk CF is crude fat in milk, Diet CF is crude fat in the diet. 
Kjeldsen3 was calculated as
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CO2 (g/d) = 8781 + (80.3 × ECM) + (−4.66 × DIM) + −49.0  

+ parity coefficient + breed-parity coefficient + (−0.149 × DIM  

× Diet CF) + (0.338 × ECM × DIM) + (206 × DIM)  

+ (Milk CF-parity coefficient × Milk CF),

where parity coefficients (Kjeldsen et al., 2024) are 0 for first, 511 
for second, and 1,587 for third and higher parities; breed-parity 
coefficients are for Holstein 0 for first, 775 for second, and 803 for 
third and higher; and MilkCF-parity coefficients are −4.18 for first, 
−10.5 for second, and −28.8 for third and higher parities. Tier2 
(Equation 10.21; IPCC, 2019) was calculated as

CH4p (g/d) = (GE × 0.065/55.65) × 1,000,

GE = (NEm + NEa + NEl + NEP)/REM/DE/100, 

REM = 1.123 − (0.004092) × DE + 0.00001126  

× (DE2 − 25.4/DE),

where gross energy (GE) was calculated with Equation 10.16 
(IPCC, 2019), ignoring the net energy (NE) for growth, as we are 
using grown animals, and NE for wool, as it is not applicable. The 
NEl = Milk × (1.47 + 0.4 × kg fat) and NEm is net energy for main-
tenance, NEa is net energy for activity, NEl is net energy for lacta-
tion, REM (based on Equation 10.14, IPCC, 2019) is the ratio of 
net energy available in a diet for maintenance to digestible energy, 
DE is digestible energy as a percentage of GE, and CF is crude fat.

The Madsen and Kjeldsen formulas predicted CO2 (g/d), and this 
prediction was multiplied by the ratio of CH4c to CO2c to calculate 
CH4p. Variance components were estimated with a repeatability 
animal model in ASReml v. 4.2.1 (VSN International Ltd.). The 
model was as follows:

y = Xb + Zaa + Zppe + e,

where y is the vector of phenotypes; b is the vector of fixed effects: 
herd-year-season interaction (n = 145), week of lactation (1–60), 
age of cow at calving (21–122 mo) nested within parity (1, 2, ≥3); 
a is the vector of direct additive genetic effects; pe is the vector of 
random permanent environment effects; and e is the vector of re-
sidual effects. The matrices X, Za, and Zp are the incidence matri-
ces relating observations with the fixed effects, random genetic 
effects, and random permanent environment effects, respectively. 
Distributions of the random effects are var(a) = Aσa

2, where A is 
the pedigree relationship matrix and σa

2  is the animal additive ge-
netic variance; var(pe) = Iσpe

2 , where I is an identity matrix of an 
order equal to the number of observations and σpe

2  is the permanent 
environmental variance; and var(e) = Iσe

2, where I is an identity 
matrix of an order equal to the number of observations and σe

2 is the 
residual variance. Pedigree included 64,334 animals with on aver-
age 14 generations. Bivariate analyses were conducted to estimate 
the genetic correlations among the different phenotypes. Due to the 
imbalance in record numbers of animals and records between 
traits, estimates of some pairwise bivariate analyses may be less 
precise and have reported large standard errors. Therefore, genetic 
parameters involving these traits (Madsen and Kjeldsen2) should 
be interpreted with caution.

Descriptive statistics for the different phenotypes are summa-
rized in Table 1. The average CH4c phenotypes were 401.8 ppm for 
avg, 1.5 for npeaks, and 954.1 ppm for speaks. The average CH4p 
(g/d) varied depending on the formula, ranging from 189.0 ± 101.8 
(Chagunda) to 355.1 ± 68.1 (Tier2). The average CH4p (g/d) was 
296.1 ± 132.0 for Madsen, 309.3 ± 135.1 for Kjeldsen2, and 318.5 
± 128.8 for Kjeldsen3, indicating that these formulas predicted 
similar values for CH4p, which was expected as their formulas are 
the most similar. The average MeI was 9.9 g CH4p per kg of MY.

Estimated variance components are presented in Table 2. 
Heritabilities for CH4c phenotypes were 0.16 for avg, 0.29 for 
speaks, and 0.30 for npeaks. Heritabilities for average CH4c have 
been widely reported in the literature, ranging between 0.11 and 
0.18 (López-Paredes et al., 2020; Manzanilla-Pech et al., 2022b; 
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Table 1. Descriptive statistics for the CH4c per visit (avg); number of peaks per minute (npeaks); sum of maximum peaks 
per minute (speaks); CH4p calculated by Madsen, Chagunda, Kjeldsen2, Kjeldsen3, and Tier2; ratio between CH4c and 
CO2c; carbon dioxide per visit (CO2c); methane intensity (MeI); and milk yield (MY) and BW

Trait Cows (n) Records (n) Mean SD CV (%)

CH4c (ppm)
  avg 7,110 114,574 401.8 179.1 44
  npeaks 7,129 114,744 1.5 0.4 26
  speaks 7,018 114,244 954.1 458.9 48
CH4p (g/d)
  Madsen 806 10,668 296.1 132.0 44
  Chagunda 868 16,822 189.0 101.8 54
  Kjeldsen2 798 10,676 309.3 135.1 44
  Kjeldsen3 6,608 73,799 318.5 128.8 40
  Tier2 855 14,635 355.1 68.1 19
Ratio 6,945 99,931 0.07 0.02 28
CO2c 7,529 141,591 5,376.0 1,846.0 34
Intensity (g CH4p/kg MY)
  MeI 6,608 73,799 9.9 4.8 48
Production trait
  MY (kg/d) 6,774 84,287 34.4 9.6 28
  BW (kg) 868 16,868 697.6 82.7 12
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van Breukelen et al., 2023). Unlike these studies, Reintke et al. 
(2020) was the only study reporting heritability for the number of 
eructation peaks, which was 0.02 with an SE of 0.05. This study 
was conducted in ewes, and the lower heritability may be due to 
the method (laser methane detector) rather than the phenotype. 
Heritabilities for CH4p ranged from 0.03 (Madsen) to 0.27 (Tier2). 
The heritabilities for the ratio and MeI were 0.08, and was 0.13 
for CO2c. Larger heritabilities (0.11–0.47) have been reported for 
CH4p using the Madsen formula by Manzanilla et al. (2022a,b) 
in a Danish Holstein population and by Sypniewski et al. (2021) 
in a Polish Holstein population. Genetic correlations between 
CH4c phenotypes (Figure 1) ranged from moderate between avg 
and npeaks (0.49, SE = 0.06) to highly positive between avg and 
speaks (0.85, SE = 0.02). As expected, the npeaks is moderately 
correlated with the 2 other CH4c phenotypes. However, because it 
does not reflect the intensity of the eructation, only the number, it 
is not a good candidate for a breeding goal trait. Conversely, speaks 
is highly correlated with avg, meaning that an animal with a high 
CH4c during the entire period also has a high value during the eruc-
tation peaks. Genetic correlations between CH4p phenotypes were 
highly positive (0.89–1.0), except for Tier2, indicating that despite 
numerical differences in the mean values, they rank the animals 
similarly (high and low emitters). Tier2 presented low to moderate 
(0.04–0.37) genetic correlations with the other CH4p phenotypes. 
Tier2 is used more as a control because it does not involve any 
input from the sniffers, but relies entirely on MY and BW. It has 
been developed to predict CH4p from a group of animals rather 
than individually (IPCC, 2019). However, it is important to men-
tion that due to the low number of animals for some of the formulas 
that include BW in their calculation, some of the SE were high 
(0.06 to 0.30). Currently, there is no published information on the 
genetic correlations between the methane phenotypes presented in 
this study for either CH4c or CH4p, except for avg and CH4p with 
the Madsen formula. Genetic correlations between avg and CH4p 
were high (0.77–0.93), except for Tier2 (−0.08). Genetic correla-
tions between speaks and CH4p were positive, ranging from 0.36 
(Kjeldsen2) to 0.95 (Chagunda), and negative for Tier2 (−0.19). 
Similarly, npeaks correlations were positive, ranging from 0.52 
(Kjeldsen3) to 0.99 (Kjeldsen2), and negative for Tier2 (−0.39). 
Genetic correlations between ratio and CH4c ranged from low 

negative (−0.18 to −0.08; speaks and avg) to moderate positive 
(0.59; npeaks). In contrast, the majority of genetic correlations 
between CH4p phenotypes and ratio were positive, ranging from 
0.35 (Madsen) to 0.98 (Kjeldsen3), except for Tier2 (−0.25). No 
genetic correlation was estimated between CO2c and npeaks; 
however, moderate positive genetic correlations from 0.49 (CO2c 
and speaks) to high correlations of 0.84 (CO2c and avg) were esti-
mated. Genetic correlations between CO2c and CH4p phenotypes 
were mostly moderate positive (0.18–0.58), except for Kjeldsen2 
(−0.73), with a large SE (0.17).

Methane intensity presented the largest correlations with avg 
(0.77) and the smallest with npeaks (0.29), whereas for CH4p phe-
notypes, the largest positive correlation was with Madsen (0.57) 
and the smallest with Kjeldsen2 (0.03). However, because CH4p 
itself is derived from ECM alone or with BW, mathematical de-
pendencies may artificially affect genetic correlations with MeI. 
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Table 2. Estimated genetic σa
2( ), permanent environmental σpe

2( ), and phenotypic variance σp
2( ), along with h2 and 

repeatability (rep) with SE in parentheses for the average CH4c per visit (avg); sum of maximum peaks per minute (speaks); 
number of peaks per minute (npeaks); CH4p calculated by Madsen, Chagunda, Kjeldsen2, Kjeldsen3, and Tier2; carbon 
dioxide concentration per visit (CO2c); milk yield (MY); methane intensity (MeI); and BW

Trait σa
2 σpe

2 σp
2 h2 rep

avg 3,540.4 6,049.40 21,979.0 0.16 (0.02) 0.43 (0.01)
speaks 49,496.8 37,027.6 171,040.0 0.29 (0.02) 0.51 (0.02)
npeaks 567.7 425.558 1,889.2 0.30 (0.02) 0.52 (0.02)
Madsen 245.1 2,585.2 8,369.8 0.03 (0.03) 0.34 (0.03)
Chagunda 1,670.0 2,548.9 7,914.0 0.21 (0.06) 0.53 (0.05)
Kjeldsen2 224.1 2,377.39 8,062.0 0.03 (0.03) 0.32 (0.03)
Kjeldsen3 707.6 1,504.6 8,465.7 0.08 (0.01) 0.26 (0.01)
Tier2 704.8 1,066.2 2,608.7 0.27 (0.07) 0.68 (0.06)
Ratio 0.28 0.46 3.53 0.08 (0.01) 0.21 (0.01)
CO2c 2,649.1 6,448.6 20,725.0 0.13 (0.02) 0.44 (0.01)
MY 12.2 22.1 54.6 0.22 (0.02) 0.62 (0.02)
MeI 1.1 3.1 13.5 0.08 (0.01) 0.31 (0.01)
BW 2,109.2 1,313.2 3,760.1 0.56 (0.08) 0.91 (0.08)

Figure 1. Genetic correlations among the average CH4c per visit (avg); sum of 
maximum peaks per minute (speaks); number of peaks per minute (npeaks); 
CH4p calculated by Madsen, Chagunda, Kjeldsen2, Kjeldsen3, and Tier2; car-
bon dioxide concentration per visit (CO2c); milk yield (MY); methane intensity 
(MeI); and BW.
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Further, the genetic correlation between MeI and Tier2 was the 
largest negative (−0.90), which may also be affected by the shared 
use of MY in the calculation of both traits. Genetic correlations 
between MY and avg (0.30) and between MY and speaks (0.46) 
were moderately positive, whereas with npeaks, it was close to 
zero. This means that CH4c phenotypes such as avg and speaks are 
not entirely independent of milk yield. Most of the genetic correla-
tions between MY and CH4p were positive (0.32–0.94), except for 
Kjeldsen2 (−0.69), with a large SE (0.97).

Finally, genetic correlations between BW and all CH4c phe-
notypes were close to zero, meaning that BW is independent of 
CH4c, as expected. For CH4p, the genetic correlations with BW 
were negative for Madsen (−0.30), Kjeldsen2 (−0.72), and Kjeld-
sen3 (−0.23), which can be explained by the indirect use of BW 
(in combination with ECM) in the prediction of CO2 for Madsen 
and Kjeldsen2. Positive genetic correlations between BW and Cha-
gunda (0.36) and Tier2 (0.57) could be explained by the use of BW 
in the calculation of CH4p. Unlike the positive genetic correlation 
(0.65) between MeI and BW previously reported by Manzanilla-
Pech et al. (2021) in an international dataset, in this study, this 
correlation was moderately negative (−0.45). One disadvantage of 
CH4p phenotypes using the formulas and MeI is the artificially cre-
ated dependency on other traits that are used for their calculation, 
such as ECM and BW.

All phenotypes exhibited varying degrees of heritability. Average 
CH4c showed consistently high positive genetic correlations with 
all other methane phenotypes except for ratio and Tier 2 (bench-
mark). The CH4p phenotypes calculated using the formulas also 
presented strong positive correlations among themselves and with 
other methane traits. Given these results, avg and speaks appear to 
be good proxies for methane emissions, especially as they showed 
minimal correlation with body weight and no induced dependencies 
as the CH4p based on formulas. Overall, selecting for low-emitting 
animals is possible, regardless of the phenotype selected. The aim 
of this study is not to propose selection indicators, but rather to pro-
vide a fair comparison of different methane phenotypes that could 
potentially be used in future selection strategies for lower methane 
emissions when recording with sniffers. In this context, CH4c is 
considered the reference trait for methane emissions.
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Nonstandard abbreviations used: AMS = automated milking system; avg = 
average CH4c per visit; Chagunda = CH4p based on Chagunda et al. (2009) 
equation; CH4c = CH4 concentration; CH4p = CH4 production; CO2c = CO2 
concentration; GE = gross energy; Kjeldsen2 = CH4p based on Kjeldsen et al. 
(2024) equation 2; Kjelsen3 = CH4p based on Kjelsen et al. (2024) equation 3; 
Madsen = CH4p based on Madsen et al. (2010) equation; MBW = metabolic 
BW; MeI = methane intensity; MY = milk yield; NE = net energy; npeaks = 
number of eructation peaks per minute; ratio = ratio of CH4c to CO2c; rep = 
repeatability; speaks = sum of maximum peaks for CH4c; Tier2 = CH4p based 
on IPCC (2019) equations.
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