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A B S T R A C T

Context: Maize is a key staple crop in Ghana, yet yields remain low (20–40 % of potential). Although fertilizer is 
promoted to enhance productivity, adoption is limited by highly variable yield responses.
Objective: This study analyzed spatial and environmental drivers of fertilizer effect heterogeneity using 2854 
yield observations from randomized controlled trials and 10,916 pairwise absolute yield response to fertilizer 
(AR) estimates.
Methods: Causal forest (CF) and boosted random forest (BRF) models to estimated fertilizer effects, with BRF 
performance evaluated via a 10 × 10 nested cross-validation and grid search. SHapley Additive exPlanations and 
Accumulated Local Effects analyses identified key drivers of fertilizer effect heterogeneity and quantified the 
magnitude of their influence on fertilizer yield effect.
Results and conclusions: Fertilizer effect varied widely (–4.7–8.9 t ha–1), with the Sudan Savannah showing the 
highest median AR (2.8 t ha–1) and the Forest-Savannah Transition the lowest (0.9 t ha–1). BRF outperformed CF 
in predicting fertilizer effects (ME: –0.06–0.05 t ha–1 vs. –0.19 t ha–1, RMSE: 1.17–1.23 t ha–1 vs. 1.3 t ha– 1, MEC: 
0.32–0.38 vs. 0.24 and CCC: 0.46–0.54 vs. 0.34). Key determinants of fertilizer effect heterogeneity included 
both climatic variables (Palmer Drought Severity Index [PDSI], vapor pressure deficit, rainfall) and soil prop
erties (silt content, exchangeable aluminum). PDSI emerged as the dominant driver of fertilizer effect hetero
geneity in the entire data set. However, the relative importance of soil versus climate varied spatially: soil 
properties were the main drivers of fertilizer effect in the Semi-Deciduous Forest and the Forest-Savannah 
Transition, whereas climatic variables played a stronger role in northern zones. Fertilizer yield effect 
increased by 0.4–1.6 t ha–1 with increasing PDSI, indicating that improved moisture availability enhances fer
tilizer use efficiency. Overall, optimal moisture conditions (PDSI > –2.0), the use of hybrid seeds, and the 
application of briquette fertilizer all contributed to higher fertilizer effects, whereas drought conditions sub
stantially reduced them. Furthermore, fertilizer effect decreased by 0.2–1.4 t ha–1 as silt increased from 9 % to 
30 %, and by 0.3–0.6 t ha–1 as exchangeable aluminum increased from 36 to 221 mg kg–1.
Significance: This study presents the first large-scale, data-driven assessment of fertilizer yield effects heteroge
neity in Ghana, integrating causal and predictive machine learning with explainable AI. Findings support tailored 
fertilizer strategies by agro-ecological zones to reduce farmer risk and promote sustainable intensification.

1. Introduction

Maize is the most important cereal crop in Ghana, playing a critical 
role in the country’s agriculture sector (SRID/MoFA, 2021). It is a vital 
food source for millions of people and contributes significantly to both 
the national economy and food security. The importance of maize to 

Ghana’s agricultural sector cannot be overstated, yet local maize grain 
yields remain low, averaging ~ 2.4 t ha− 1 (SRID/MoFA, 2021), signifi
cantly below the potential grain yield of 7–9 t ha–1 (Boullouz et al., 
2022; Simperegui et al., 2023; Donkor et al., 2025). Numerous studies 
have identified declining soil fertility, driven largely by nutrient mining 
and soil erosion, as a primary cause of low maize grain yields in Ghana 
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(Bashagaluke et al., 2018; Essel et al., 2020). For instance, Bationo et al. 
(2018) estimated that soils in Ghana approximately around 35 kg ni
trogen (N), 4 kg phosphorus (P), and 20 kg potassium (K) per hectare 
annually across all Ghana’ agro-ecological zones (AEZs).

Application of fertilizers has been widely advocated as a key inter
vention to increase maize grain yields and has garnered substantial 
attention in both agricultural research and practice (Falconnier et al., 
2023; Kouame et al., 2023; 2025a). Fertilizers play a pivotal role in 
enhancing crop productivity by replenishing soil nutrients depleted 
through crop uptake and erosion (Uwiragiye et al., 2022), while pro
moting both healthy plant growth and maintaining soil health (Dimkpa 
et al., 2023). Although fertilizers are widely used in Ghana, expected 
yield gains from fertilizer application are not consistently achieved. The 
effect of fertilizers on maize yield exhibits significant variability across 
AEZs, increasing investment risks and undermining farmers’ motivation 
and ability to sustain fertilizer use in subsequent seasons (Nziguheba 
et al., 2021).

The observed low and variable fertilizer use efficiency suggests low 
economic returns to farmers and can lead to environmental damage, as 
excess nutrients not taken up by crops are often lost through leaching, 
runoff, or gaseous emissions, contributing to water pollution, soil 
degradation, and greenhouse gas emissions (Penuelas et al., 2023). 
Determining the causes of variability in the effect of fertilizers on yield 
requires analyzing the overall effectiveness of fertilizer application 
across the target area and how the effects vary across diverse 
location-specific conditions. Understanding fertilizer effect variability is 
essential for developing site-specific fertilizer recommendations and 
designing target agronomic interventions for optimizing resource allo
cation. Moreover, by identifying the underlying causes of this vari
ability, one can better understand the drivers of low fertilizer use 
efficiency and thus identify concrete measures to enhance overall fer
tilizer effectiveness. However, the process of isolating the fertilizer effect 
and identifying the main factors influencing it, such as soil character
istics, climatic and weather conditions, microbial activity, and man
agement practices, remains inherently complex due to their non-linear, 
spatial, and temporal interactions (Nziguheba et al., 2021). Agronomists 
have historically assessed the effect of fertilizer application on crop 
grain yield using randomized controlled trials randomized controlled 
trials (RCTs), which are widely regarded as the gold standard for causal 
inference due to their ability to provide robust estimates of treatment 
effects. In RCTs, fertilizer effectiveness is commonly quantified by esti
mating its average treatment effect using analysis of variance, a method 
that partitions the total variability in yield into components attributable 
to treatment and error (Fisher, 1992). However, this implicitly assumes 
that the fertilizer effect is uniformly applicable across all spatially 
distributed individual trials;. it is limited by its reliance on mean effects, 
which may obscure significant heterogeneity in fertilizer effects that can 
occur due to site-specific baseline characteristics. To address this limi
tation, agronomic researchers frequently analyze the grain yield abso
lute response to fertilizer (AR), defined as the pairwise difference 
between yields between yield in fertilized plots (Yf) and yields in control 
plots (Yc) randomized controlled trials, using linear regression models 
(Ronner et al., 2016; Sileshi et al., 2022). Although parametric regres
sion models offer valuable insights into the influence of covariates on 
AR, they depend critically on the correct specification of the model; in 
high-dimensional settings, the assumptions of linearity and additivity 
often fail to capture the complex non-linear effects and interactions 
among fertilizer inputs, soil characteristics, climatic and weather con
ditions, and crop varieties. This inadequacy underscores the need for 
advanced statistical techniques, such as machine learning (ML) models, 
which are better suited to accommodate the intricate and non-linear 
nature of these effects and interactions (Dehghanisanij et al., 2023; 
2024).

Recent studies have increasingly favored predictive ML models over 
traditional linear regression for estimating the effects of fertilizers rates. 
For instance, Coulibali et al. (2020) and Abera et al. (2022) utilized 

agronomic trial data alongside ML techniques, including k-nearest 
neighbors, random forest (RF) model, neural networks, and Gaussian 
processes, to estimate the effects of the rate of nitrogen fertilizer (NF), 
phosphorus fertilizer (PF), and potassium fertilizer (KF) on potato and 
wheat yields, respectively. Similarly, Tanaka et al. (2024) implemented 
a series of predictive ML models to develop fertilizer recommendations 
specifically tailored to the environmental conditions in Gifu, Japan, 
while Heerwaarden et al. (2023) employed RF models to assess the 
variability and predictability of fertilizer effects on grain legume farms 
in East and West Africa. In addition, Kouame et al. (2025b) applied a 
conditional RF model to predict the spatial and seasonal effects of sulfur 
fertilizer (SF) on soybean yields in Ghana.

Despite their growing adoption in agricultural research for tasks such 
as fertilizer recommendation development and yield response estima
tion, predictive ML models are fundamentally designed for correlation- 
based prediction rather than causal inference (Feuerriegel et al., 2024). 
Kakimoto et al. (2022) demonstrated that even highly accurate yield 
predictions with ML models do not necessarily translate into reliable 
estimates of NF effects on yield. Similarly, Thorburn et al. (2024) found 
that estimated crop yields alone are poor proxies for determining 
optimal NF requirements. Moreover, directly incorporating ML pre
dictions into conventional effect estimation formulas can lead to “plu
g-in bias” in the measured effect (Moccia et al., 2024). When predictive 
ML is used to quantify the fertilizer effect and explain its variability, the 
approach typically involves predicting yield or AR in a manner analo
gous to standard regression models, without explicitly accounting for 
the causal structure or treatment allocation mechanism.

This lack of causal interpretability of predictive ML models has 
spurred the development of causal machine learning (CML) methods, 
which are specifically designed to infer causal relationships rather than 
mere correlations (Chernozhukov et al., 2016). In agricultural research, 
CML techniques have been applied to evaluate the effects of tillage 
practices (Deines et al., 2019), to assess the impact of weather on agri
cultural productivity (Stetter and Sauer, 2021), and to investigate the 
influence of digital agriculture on crop yields (Tsoumas et al., 2023). 
Furthermore, CML has been used to quantify the benefits of crop rota
tions (Kluger et al., 2022) and, in simulated wheat yield studies, to 
outperform traditional ML in estimating site-specific economically 
optimal NF rates (Kakimoto et al., 2022). In this study, we combined two 
complementary ML approaches to better understand how maize yield 
responds to fertilizer. First, we used a Boosted Random Forest (BRF) 
model to predict the AR. This helped us predict where fertilizer is likely 
to be most beneficial. We then used a causal forest (CF) (Wager and 
Athey, 2018), which estimates how the effect of fertilizer varies across 
different conditions and provides valid confidence intervals (CI) for 
these estimates. CF builds on the flexibility of RF, handling many vari
ables and complex interactions without needing to predefine the struc
ture of the model. By combining these two approaches – one focused on 
prediction and the other on causal inference, we aimed to address both 
the need for accurate, site-specific fertilizer effect predictions and a 
deeper understanding of where and for whom applied fertilizer is most 
effective.

Our study addressed four primary research questions: (i) To what 
extent do fertilizer effects on maize yield vary across Ghana’s AEZs? (ii) 
How accurately can CF estimate fertilizer effects compared with a strong 
predictive benchmark such as BRF? (iii) How do local climate condi
tions, soil properties, and management practices shape fertilizer 
responsiveness, and which factors exert the strongest influence? and (iv) 
Can these insights be translated into site-specific fertilizer recommen
dations that improve resource efficiency? Leveraging 2854 maize yield 
observations from randomized fertilizer trials across Ghana, combined 
with detailed environmental and management covariates, we integrated 
CML with explainable artificial intelligence techniques to quantify and 
interpret heterogeneity in fertilizer yield responses. Our approach 
moves beyond average treatment effects to provide spatially and 
context-specific insights, supporting both the reduction of fertilizer 
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losses in low-responsive areas and the targeting of investment to high- 
potential regions to improve productivity and sustainability.

2. Materials and methods

2.1. Study locations, climate, and period

Maize fertilizer trials were conducted across four AEZs in Ghana, 
Sudan Savanna (SS), Guinea Savannah (GS), Forest-Savanna Transition 
(FST), and Semi-Deciduous Forest (SDF) (Fig. 1a). These zones together 
form the country’s main maize-producing region and represent its 
agricultural breadbasket (Tetteh et al., 2018). The dataset spans a 
17-year observational period (Fig. 1b). Planting schedules were syn
chronized with the AEZs’ rainfall regimes: the SS and GS zones experi
enced unimodal rainfall patterns, while the FST and SDF exhibited 
bimodal seasonal distributions (Röhrig et al., 2019). Across AEZs, mean 
growing season temperatures ranged from 22.7 ± 0.2◦C to 31.2 
± 0.9◦C, with cumulative rainfall (RAIN) varying between 542 
± 109.3 mm and 741.4 ± 146.1 mm (Table 1, Table S1). Elevation 
gradients differed markedly by AEZ: 218–445 m in the SDF, 129–322 m 
in the FST, 122–342 m in the GS, and 165–360 m in the SS (Table S2). 
Soil properties exhibited pronounced inter-AEZ variability (Table S1). 
Soils in all AEZs featured a sandy texture (SAND; 66.6 ± 5.9 %), and low 
soil organic carbon (SOC; 1.4 ± 0.8 g kg–1) (Table 1, Table S1). Soils in 
the SS and GS zones had a shallow profile (69.8 ± 25.1 cm root zone 
depth), contributing to inherently lower fertility relative to the SDF and 
FST zones, where soils were deeper (113.2 ± 15.9 cm) and more 
chemically fertile (Tables S1 and S2).

2.2. Data collection

Maize grain yields (t ha–1) were sourced from two primary datasets: 
(i) on-station trial data (n = 1622) reported in Bua et al. (2020), and (ii) 
on-station trial data (n = 3346) from experiments conducted by the 
International Fertilizer Development Center (IFDC). Detailed method
ologies for data collection are provided in Methods S1 and Bua et al. 
(2020). Geographic coordinates were recorded for each experimental 
site, all of which were rainfed and involved maize grown in mono
culture. To qualify for inclusion, experiments were required to be 
field-based and include at least one paired dataset (i.e., a control plot 
without fertilizer and a treatment plot with fertilizer) under 
near-identical microclimatic, soil, and vegetation conditions. In addi
tion, experiments were required to have been conducted in terrestrial 
ecosystems with documented application rates for various fertilizers 
(NF, PF, and KF), span at least one full growing season, and involve 
multiple fields with consistent fertilizer treatments and corresponding 
control plots. For experiments with multiple control and treatment plots, 
the AR was estimated for each unique pairing of control and 
fertilizer-treated plots, resulting in 23,040 AR data points derived from 
4968 yield observations.

For the AR analysis, paired control and treatment plots were 
required. However, the available dataset exhibited substantial vari
ability in NF, PF, and KF application rates, with NF having the widest 
variability, ranging from 12 kg ha–1 to 250 kg ha–1 and both PF and KF 
ranging from 8 kg ha–1 to 90 kg ha–1 (Fig. S1 and S2). An ideal experi
mental design would entail a binary treatment structure, comparing 
control plots with uniformly fertilized plots receiving fixed rates of NF, 
PF, and KF. A stringent approach would involve restricting the analysis 
to yield data from experiments where identical fertilizer rates were 

Fig. 1. (a) Spatial distribution of experimental maize fields (n = 2854) across Ghana’s agro-ecological zones (AEZs). Field locations are aggregated into uniform 
16 km radius clusters (red circles), with numerical labels indicating the count of field sites per cluster. Background shading represents distinct AEZs, demonstrating 
national-scale coverage of the experimental network. Many field locations are in close proximity, and the AEZ map was adapted from Yamba et al. (2023). Notably, 
61 % of the experimental data come from the Guinea Savannah zone. (b) Histogram showing the temporal distribution of maize experimentation data in Ghana. The 
majority (71 %) of the data were collected in 2020, 2021, and 2022.
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applied. However, such an approach would drastically reduce the 
sample size, thereby compromizing the robustness of subsequent ML- 
based statistical analyses and inferences. To mitigate the loss of data 
but also avoid having treatment plots with insufficient fertilizer appli
cation rates, a filtering criterion was applied: only treatment plots 
meeting or exceeding NF ≥ 45 kg ha–1, PF ≥ 30 kg ha–1, and KF 
≥ 30 kg ha–1 – along with their corresponding control plots – were 
retained for further analysis. These thresholds were informed by maize 
fertilization recommendations for Ghana, as established in Tetteh et al. 
(2017). Following this selection process, the final dataset comprised 
2854 yield observations (Fig. 1a) and 10,916 AR observations, with 
treatments dichotomized into control (T = 0, n = 501) and fertilized 
(T = 1, n = 2353).

2.3. Covariate sources

In this study, we incorporated a range of covariates – including 
topographical, meteorological, and soil properties; mode of fertilizer 
application; and maize variety (Tables 1 and 2) – to quantify and 
elucidate the variability in fertilizer effects. Experimental site elevation 
(ELV) was obtained from the NASA Digital Elevation Model (~30 m 
resolution) (Farr et al., 2007). From ELV we derived the slope (SLP), 
topographic wetness index (TWI), and stream power index (SPI) using 
the terra package (version 1.8–42) (Hijmans et al., 2022) in R (version 
4.4.3) (R Core Team, 2025) with a 3 × 3 window size. TWI is a proxy of 
the spatial distribution of moisture integrating slope and terrain attri
butes that affect the soil-water balance and erosion, whereas SPI quan
tifies the erosive power of flowing water and its implications for soil 
quality and agricultural viability. Low SPI values denote reduced erosion 

potential, while high SPI values indicate an important risk of soil 
erosion. High TWI values are typically associated with deeper, wetter 
soils that are prone to saturation and water accumulation, in contrast to 
lower TWI values that are indicative of steeper, drier areas.

To account for interannual variability in weather, we computed cu
mulative precipitation (RAIN), cumulative solar radiation (SRAD), 
minimum (TMIN) and maximum (TMAX) temperatures, mean wind 
speed (MWS), vapor pressure deficit (VPD), long-term mean soil mois
ture (SMgp), and the Palmer drought severity index (PDSI) (Palmer, 
1965) during the maize growing season, which differed from AEZ to 
AEZ. Weather data were sourced from ERA5 at ~11 km resolution 
(Hersbach et al., 2020) and TerraClimate at ~4 km resolution 
(Abatzoglou et al., 2018). Additionally, for each plot-level observation, 
soil chemical and physical properties were extracted from the Innova
tive Solutions for Decision Agriculture (iSDA) map at 30 m resolution for 
the 0–20 cm topsoil layer, while root zone depth (RD), root zone 
water-holding capacity (WHC), soil drainage status (DRAIN), soil 
moisture content at wilting point (SMWP), and soil moisture content at 
saturation (SMS) were retrieved from SoilGrids at ~250 m resolution 
(Poggio et al., 2021; Turek et al., 2023).

The maize cultivars evaluated in this study comprised 15 distinct 
varieties, stratified into two categories: open-pollinated varieties 
(OPVs), which constituted 93 % of the dataset, and hybrid varieties, 
representing 7 % (Table 2). Fertilizers were administered through two 
distinct application modalities: 25 % as subsurface briquettes placed in 
planting holes and 75 % as broadcast granular applications on the soil 
surface. Experimental sites were predominantly imperfectly drained 
(57 %), with the remainder classified as well-drained (43 %). Categor
ical variables – including cultivar type (VAR), fertilizer placement 

Table 1 
Summary of continuous covariate (gridded climate, soil, and terrain) data used in the boosted random forest and causal forest model.

Continuous covariates† Acronym Unit Min Max Mean ± SD Median Source

Climate ​ ​ ​ ​
Cumulative rainfall RAIN mm 285.4 1031.4 684.5 ± 160 660.4

ERA5
Maximum temperature TMAX ◦C 28.9 34.3 30.7 ± 0.9 30.6
Minimum temperature TMIN ◦C 21.9 24.7 23 ± 0.5 23
Cumulative solar radiation SRAD kWh m–2 645.8 1091.8 836.5 ± 56.3 847.9
Mean wind speed MWS m s–1 1 2.1 1.7 ± 0.2 1.8
Vapor pressure deficit VPD kPa 0.6 1.5 0.9 ± 0.2 0.9 TerraClimate
Palmer Drought Severity Index PDSI - -6.3 1.9 -3 ± 2 -3.2
Soil chemical property ​ ​ ​
pH pH - 5.3 6.4 6 ± 0.2 6

iSDAsoil

Exchangeable phosphorus P mg kg–1 5 12.5 7.3 ± 1 7.2
Exchangeable sulfur S mg kg–1 4 8 4.8 ± 0.8 4.5
Total N N g kg–1 0 0.3 0.1 ± 0 0.1
Organic carbon SOC g kg–1 0.7 3.9 1.4 ± 0.8 1.2
Exchangeable calcium Ca mEq 100 g–1 1.6 5.5 2.8 ± 0.7 2.7
Exchangeable magnesium Mg mEq 100 g–1 0.5 2.4 1 ± 0.2 0.9
Exchangeable potassium K mEq 100 g–1 0.1 0.3 0.2 ± 0 0.2
Effective cation exchange capacity ECEC cmol (+) kg–1 5 12.5 7.3 ± 1.3 7.2
Exchangeable iron Fe mg kg–1 53.6 98.5 68.9 ± 5.6 65.7
Exchangeable aluminum Al mg kg–1 36.6 221.4 121.1 ± 30.8 109.9
Exchangeable zinc Zn mg kg–1 0.5 3.5 1 ± 0.8 0.6
Base saturation BS % 29.8 84.3 53.7 ± 12.1 53.7
Soil physical property ​ ​ ​
Clay CLAY % 6 25 13.9 ± 3.5 13

iSDAsoilSand SAND % 49 83 66.6 ± 5.9 68
Silt SILT % 9 31 19.5 ± 3.7 19
Long term mean soil moisture SMgp mm 26.7 249.2 132.3 ± 45.2 134.2 TerraClimate
Root zone depth RD cm 24 150 84.8 ± 30.4 82

SoilGrids
Soil moisture content at saturation SMS %v (volumetric) 33 48 40.2 ± 3.2 39
Soil moisture content at wilting point SMWP %v (volumetric) 12 22 15.5 ± 2.1 15
Water holding capacity WHC mm 23 135 64.7 ± 23.9 62
Terrain ​ ​ ​
Elevation ELV m 116 445 211.7 ± 63.8 182

SRTM Plus V3
Topography wetness index TWI - 5.7 11.7 9.4 ± 1.1 9.6
Stream power index SPI - 0 12.8 1.1 ± 1.5 0.7
Slope SLP ◦ 0.1 2.7 0.5 ± 0.4 0.4

† the description of each continuous variable is reported in the supplementary Table S3
SD: standard deviations
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method (FPLACE), and soil drainage status (DRAIN) – were transformed 
into multiple binary variables via one-hot encoding using the “dum
myVars()” function in the caret R package (version 7.0–1) (Kuhn, 2008).

2.4. Machine learning inference

The primary objective of this study was to estimate the effect of 
fertilizer application on maize grain yield, analyze the variability of this 
effect, and identify the factors influencing it. To achieve this, we 
employed three distinct approaches, using BRF and CF.

2.4.1. Approach 1 – traditional absolute yield response
A BRF is an ensemble learning method that combines the strengths of 

RF and boosting to improve prediction accuracy (Ghosal and Hooker, 
2020). It builds a sequence of regression forests, where each forest is 
trained to correct the residual errors of the previous one, thereby 
reducing bias iteratively. BRF was implemented as a stagewise additive 
model using gradient boosting with forests as base learners though the 
grf R package (version 2.5.0) (Tibshirani et al., 2024). We first calcu
lated the AR for each paired control-treatment observation, defined as 
the difference in yield between fertilized and control plots, which could 
be done because the data are from randomized controlled trials. We then 
constructed a predictive BRF model that predicts AR (ÂRBRFy) using the 
covariates (X, the pre-treatment characteristics) in Tables 1 and 2, 
excluding the binary fertilizer treatment indicator T (where T ∈ {0, 1}). 
The model predicts AR, thereby capturing fertilizer effect variability 
attributable solely to factors other than the fertilizer treatment.

2.4.2. Approach 2 – predictive BRF fertilizer effect estimation
In this approach, a BRF model was developed to predict maize grain 

yield (Y) using all yield data (control as well as treatment) and the full 
set of covariates X, including the binary fertilizer treatment variable T. 
The fertilizer effect was next quantified using Eq. (1), which computes 
the difference between the predicted yield with fertilization (Ŷi(1)) and 
without (Ŷi(0)), conditional on the observed covariates Xi = xi: 

ÂRBRFΔy,i = (Ŷi(1) − Ŷi(0)) | Xi = xi, i ​ = 1,…,n (1) 

where, n denotes the number of observations. This formulation is 
analogous to the individual treatment effect in causal inference but 
adapted to quantify fertilizer-induced yield gains.

This method leverages the BRF model’s ability to model non-linear 
interactions and heterogeneity, providing an estimate of the fertilizer 
effect that also accounts for the influence of other covariates. To fine- 
tune the BRF models in Approach 1 and Approach 2, a nested 10 × 10 
cross-validation was employed, which included an inner loop for 
hyperparameter optimization and an outer loop for evaluating gener
alization performance (Krstajic et al., 2014). First, the pooled dataset 

was randomly split into 10 equal parts using the “createFolds()” function 
of the caret R package (version 7.0–1) (Kuhn, 2008), which constituted 
the outer loop of ten folds. Each fold of the outer loop was used once as a 
test set, while the remaining nine served as the training set. Within each 
of these training sets, an inner loop performed its own cross-validation – 
in our case, also 10-fold – to optimize a model’s hyperparameters. This 
dual-layer structure ensured that the test sets from the outer loop were 
never used for model calibration or hyperparameter tuning. This pre
vents data leakage, minimizes overfitting, and provides an unbiased 
assessment of a model’s predictive capabilities (Rosenblatt et al., 2024). 
Mean Squared Error (MSE) was considered as the loss function in the 
BRF models training. For each BRF model, we performed a grid search to 
optimize the hyperparameters of interest: the number of covariates to 
consider at each split (mtry, tested at values of 15, 26, and 34), and the 
minimum number of observations allowed in each terminal node (min. 
node.size, tested at values of 5, 10, 15, and 20). The number of trees was 
set to 5000.

2.4.3. Approach 3 - causal forest fertilizer effect estimation
To explicitly estimate the causal effect of fertilizer on maize yield, we 

applied the CF model. Although CF shares structural similarities with 
RF, both being tree-based methods, their objectives differ fundamen
tally. RF is designed to build a predictive model by partitioning the data 
into subsets where yield variability is minimized, thus enhancing pre
diction accuracy. In contrast, CF specifically targets causal inference by 
dividing the data into subsets based on similar covariate profiles, where 
differences in fertilizer response are maximized. Detailed descriptions of 
CF are provided in (Wager and Athey, 2018). The CF method addresses 
the fundamental challenge of causal inference – the fact that we cannot 
simultaneously observe both the treated and untreated yield for the 
same plot (Holland, 1986). According to the Splawa-Neyman (1923) and 
Rubin (1974) potential outcomes’ framework, also called the Rubin 
Causal Model (Imbens and Rubin, 2015), we denote Y(1)

i as the coun
terfactual potential yield with fertilizer and Y(0)

i as the counterfactual 
potential yield without it for plot i. The CF model estimates the condi
tional average fertilizer effect for a given set of covariates xi as: 

ÂRCF,i = E
[
Y(1)

i − Y(0)
i | Xi = xi

]
, i = 1, ..., n (2) 

where, E represents mathematical expectation and n denotes the number 
of observations.

For the prediction of ÂRCF, CF relies on several key assumptions 
(Wager and Athey, 2018). First, it assumes unconfoundedness – that is, it 
assumes that after conditioning on covariates, the assignment of fertil
izer is effectively random. Second, it requires an overlap assumption, 
which ensures that each field has a positive probability of both receiving 
the fertilizer treatment and serving as control plot, meaning that the 

Table 2 
Categorical covariates with their category level used in the boosted random forest and causal forest models.

Categorical 
variables

Acronym Description and rationality Levels Source

Management ​ ​ ​ ​

Variety VAR
Maize varieties differ in their genetic makeup, growth characteristics, yield potential, and resilience to 
environmental stresses (e.g., drought, pests, and diseases). So, different varieties can respond differently to 
fertilizers and environmental conditions, which can significantly influence impact yield outcomes.

Hybrid 
OPV

Bua et al. 
(2020); IFDC

Fertilizer 
placement

FPLACE

Fertilizer can be applied in various ways, including broadcasting, banding, side-dressing, or foliarly. The mode 
of application affects how nutrients are distributed and absorbed by plants. The efficiency of nutrient uptake 
can vary with the method of application, influencing maize growth and yield. For instance, banding fertilizer 
near the root zone can improve nutrient availability and reduce losses compared to broadcasting

Hole 
Soil 
surface

Bua et al. 
(2020); IFDC

Soil physical 
property

​ ​ ​ ​

Drainage status DRAIN
Drainage refers to the soil’s ability to remove excess water, which prevents waterlogging. Good drainage is 
essential for root health and nutrient absorption, especially in regions with heavy rainfall. Poor drainage can 
lead to waterlogging, reducing root oxygen availability and nutrient uptake, ultimately affecting yield.

Imperfect 
Well

SoilGrids
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so-called propensity scores for all plots are higher than zero and lower 
than one. Third, the Stable Unit Treatment Value Assumption is 
assumed, which stipulates that the potential outcomes of any field are 
not influenced by the treatment assignments of other units (Wager and 
Athey, 2018). In our study, all three assumptions are met because the 
data are from randomized controlled trials.

For CF implementation, we used the grf R package (version 2.4.0) 
(Tibshirani et al., 2024). The analysis started with fitting two RF models 
to estimate the conditional expected maize grain yield and propensity 
score based on the available covariates. These estimates were then input 
into the grf “causal_forest()” function to estimate ÂRCF. To account for 
the imbalance in the treatment allocation, where the number of fertil
ized plots (treated units) exceeded the non-fertilized plots (control 
units), sample weights were applied to ensure balanced representation 
during CF model fertilizer effect estimation. Specifically, each treated 
unit (T = 1) was assigned a weight of 1, while control units (T = 0) were 
weighted by the ratio of treated to control observations. This 
upweighting of control observations helped mitigate potential bias 
arising from unequal group sizes, ensuring that the CF estimator 
accounted for disparity in the dataset. CF implementation in this paper 
adheres to the CF methodology outlined in Athey and Wager (2019).

The CF model was built over 5000 causal trees (“num.trees”) and 
used the “tune.parameters” option in the grf package to allow automatic 
tuning of the “mtry” hyperparameters using cross-validation (Table S4). 
However, we set the hyperparameter “alpha” to 0.001 instead of keeping 
the default value of 0.05, as recommended in Jakobsen (2023) when 
some of the categorical covariates are very unbalanced. CF inherently 
employs cross-fitting to ensure robust and unbiased treatment effect 
estimates (Chernozhukov et al., 2016). Cross-fitting ensures that the 
data used to create splits are distinct from the data used to estimate 
ÂRCF. By default, the grf package applies twofold cross-fitting when the 
“honesty” option is set to “TRUE”. In this study, we complemented this 
by employing a leave-one-out cross-fitting procedure to predict ÂRCF, as 
recommended in Athey et al. (2018), to further enhance the robustness 
of the results.

Notably, the FPLACE covariate was not used in CF. In causal infer
ence frameworks such as CF, covariates must represent pre-treatment 
characteristics applicable to both treated (T = 1) and untreated 
(T = 0) units. Since FPLACE is only observed in treated plots and 
imputed as 0 for controls, it violates the pre-treatment assumption 
required by CF. To ensure comparability among covariates and improve 
model performance, all numerical covariates in Table 1 were stan
dardized using centering and scaling. Centering involved subtracting the 
mean of each covariate from its individual values, resulting in covariates 
with a mean of zero. Scaling then divided each centered variable by its 
standard deviation, yielding variables with unit variance. To improve 
model generalizability across AEZs and years with limited representa
tion (Fig. 1), we applied a weighted sampling during BRF and CF model 
fitting (Kamangir et al., 2024). This approach increases the probability 
that observations from under-sampled AEZ-year strata contribute to 
model training. Specifically, we assigned observation-level weights 
inversely proportional to the joint frequency of their AEZ-yield and 
year-yield groupings, thereby giving greater influence on rare yet 
equally relevant production conditions.

To evaluate the performance of the BRF models in predicting AR, we 
employed several metrics: (i) the root mean squared error (RMSE, in t 
ha− 1); (ii) the mean error (ME), which is the average difference between 
predicted and observed values (with positive values indicating system
atic over-prediction and negative values indicating under-prediction); 
(iii) the model efficiency coefficient (MEC), an analog of the coeffi
cient of determination as described in Nash and Sutcliffe (1970); and (iv) 
the concordance correlation coefficient (CCC), a normalized metric that 
integrates the Pearson correlation coefficient [r, (precision)] with an 
index of accuracy (Lin, 1989) (Methods S2). Model performance metrics 
(ME, RMSE, MEC, and CCC) were averaged across the outer folds of the 

10 × 10 nested cross-validation. To compare fertilizer-effect predictions 
across the three modelling approaches, we used the r, mean absolute 
difference (MAD; t ha–1), and mean deviation (MD; t ha–1) (Methods S3). 
The formulas for all performance metrics are provided in Table S5, and 
the results are visualized using scatter density plots.

2.5. Covariate importance, main effects, and interaction influence

The relative magnitude and directional contributions (positive or 
negative) of covariates to the predictions of AR via BFR in Approach 1 
(ÂRBRFy), fertilizer effect estimates from BRF in Approach 2 (ÂRBRFΔy), 
and CF fertilizer effect (ÂRCF) in Approach 3, were quantified using 
SHapley Additive exPlanations (SHAP) values (Lundberg and Su-In, 
2017). The SHAP value quantifies the marginal contribution of a co
variate to the difference between a model’s prediction for a specific 
instance and the baseline prediction (typically the dataset-wide mean). 
Rooted in coalitional game theory (Shapley, 1953), SHAP values 
conceptualize covariates as “players” collaborating to achieve a collec
tive “payoff,” defined as the deviation of a unit-specific prediction from 
the global mean prediction. In this framework, each covariate’s contri
bution is proportionally allocated based on its marginal influence on 
model outcomes (Lundberg and Su-In, 2017). Mathematically, SHAP 
values satisfy the properties of “efficiency”, “symmetry”, “dummy”, and 
“additivity”, ensuring a consistent and theoretically grounded attribu
tion of predictive variance across covariates (Young, 1985). Computa
tional implementation of SHAP values was performed using the fastshap 
R package (version 0.1.1) (Brandon, 2022), with global (aggregate) and 
local (instance-specific) contributions to the ÂRBRFy, ÂRBRFΔy, and ÂRCF 

visualized via the “plot_shap_bar()” function in the nestedcv R package 
(version 7.12) (Lewis et al., 2023). Covariates identified as having the 
highest SHAP-based importance were further analyzed to quantify and 
illustrate their influence on fertilizer effect heterogeneity. Main effect 
magnitudes were quantified and visualized using SHAP dependence 
plots (SHAPDP) (Lundberg and Su-In, 2017), and accumulated local 
effects (ALE) plots (Apley and Zhu, 2020). SHAPDPs depict the rela
tionship between covariate values and their corresponding SHAP values, 
while ALE plots estimate cumulative marginal effects by averaging 
prediction changes across covariate intervals (Molnar, 2025).

To assess how interactions between covariates influence fertilizer 
effects, two-way interactions were analyzed and visualized using two- 
dimensional 2D ALE plots (Apley and Zhu, 2020). Unlike partial 
dependence plots (PDPs) (Friedman, 2001), ALE plots account for cor
relations among covariates, making them more reliable when covariates 
are interdependent. Therefore, 2D ALE plots were preferred over 2D 
PDPs (Friedman, 2001) for visualizing the interaction effects of cova
riates on fertilizer yield effect. The 2D ALE computations followed the 
methodology described in Apley and Zhu (2020). The 2D ALE plot vi
sualizations were generated using the “FeatureEffect$new()” function 
from the iml R package (version 0.11.3) (Molnar et al., 2018).

3. Results and discussion

3.1. Variability in observed absolute maize yield response to fertilizer

The AR in the pooled dataset (n = 10,916) ranged from –4.7 t ha–1 to 
8.9 t ha–1, with a median of 1.3 t ha–1 and a mean of 1.4 t ha–1, indi
cating considerable variability (coefficient of variation [CV] = 106.7 %; 
Table 3). In the FST and SDF zones, AR exhibited a narrower range 
(–3.1 t ha–1 to 5.6 t ha–1) and lower central tendency values (mean =
0.9 t ha–1; median = 1.2 t ha–1). These results underscore the 
geographically heterogeneous effects of fertilizer on maize grain yield. 
The CV of AR was highest in the FST (146.7 %) and lowest in the SDF 
(82.4 %). In the GS, AR values were identical to those in the pooled 
dataset, as 63 % of the fertilizer trial plots were in this AEZ. While most 
AEZs exhibited mean ARs between 1.0 t ha–1and 1.3 t ha–1, the SS stood 
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out with a higher mean AR (2.9 t ha–1) and the lowest variability (CV =
59.2 %).

3.2. Fertilizer effect prediction

Model tuning showed that the optimal “mtry” was 26 for BRF in 
Approach 1, 15 for BRF in Approach 2, and 26 for CF in Approach 3. The 
minimum node size was 5 for BRF in Approach 1 and CF in Approach 3, 
and 15 for BRF in Approach 2. The “sample.fraction” and “honesty. 
fraction” parameters were maintained at their default value of 0.5 across 
all models.

Based on performance metrics, the BRF models outperformed the CF 
model in predicting fertilizer-induced changes in maize yield (Fig. 2a, b, 
c). In Approach 3, the CF model explained 24 % of the variability in 
fertilizer yield effects (MEC = 0.24), whereas the BRF models accounted 
for 32 % and 38 % in Approaches 1 and 2, respectively (MEC = 0.32 and 
0.38). The CF model also exhibited higher bias (ME = –0.19 t ha– 1) and 
greater prediction error (RMSE = 1.30 t ha–1) than the BRF models in 
Approach 1 (ME = –0.06 t ha– 1, RMSE = 1.17 t ha–1) and Approach 2 
(ME = 0.05 t ha–1, RMSE = 1.23 t ha–1). Similarly, the CCC was also 
lower for CF (0.34) compared with 0.46 and 0.54 for BRF in Approaches 
2 and 1, respectively. Despite these performance differences, the 
fertilizer-effect predictions were highly consistent across the three ap
proaches. Pearson correlation coefficients (r) between predicted fertil
izer effects ranged from 0.79 to 0.87, with MAD of 0.33–0.41 t ha–1 and 
MD of 0.11–0.23 t ha–1 (Fig. 2d, e, f).

In Approach 3, the CF model estimated an average fertilizer effect on 
the treated plots of 1.9 t ha–1 (95 % CI: 1.6–2.1 t ha–1), whereas the BRF 
model predicted mean fertilizer effects of 1.5 t ha–1 (Approach 1) and 
1.3 t ha–1 (Approach 2). Notably, the CF model predicted a narrower 
range of fertilizer effects compared to both the observed AR and the BRF 
model’s fertilizer effect predictions (Fig. S3). The CF model produced a 
narrower range of fertilizer effects than both the observed AR and the 
BRF predictions. It also suggested that 100 % of fertilized plots exhibited 
positive yield responses, compared with 99.1 % in Approach 1 and 
99.7 % in Approach 2 (Fig. S3).

The observed superiority of prediction performance metrics (i.e., 
CCC, MEC, ME, and RMSE) of BRF over CF in predicting fertilizer effect 
aligns with methodological expectations but contradicts findings in 
Kakimoto et al. (2022). Our findings are consistent with recent work by 
Venkatasubramaniam et al. (2023), who found that the LASSO regres
sion model outperformed CF in estimating treatment effect heteroge
neity. The divergence in BRF and CF external validation performance (i. 
e., versus ARObs) arises from fundamental differences in the models 
objectives: BRF is algorithmically optimized to minimize prediction MSE 
across the entire ARObs distribution, whereas CF prioritizes unbiased 
estimation of conditional average treatment effects by explicitly 
modeling causal relationships, often at the expense of predictive 
precision.

The elevated fertilizer effects from ARObs calculations and ÂRBRFy, 
relative to ÂRBRFΔy and ÂRCF, likely result from the binarization of the 
continuous treatment variable. This simplification reduced the CF and 
BRF models’ ability to accurately capture the dose – response relation
ship between fertilizer rates and maize yield. Consequently, both the CF 

(Approach 3) and BRF (Approach 2) may have produced attenuated 
fertilizer effect estimates when relying on this binary treatment repre
sentation. Additionally, the higher ÂRBRFΔy values compared to the 
ÂRCF values may be attributed to the lack of targeted regularization in 
BRF. In contrast, CF applies covariate adjustment and shrinkage tech
niques that reduce bias and tend to produce more conservative treat
ment effect estimates (Caron et al., 2022).

3.3. Key factors influencing fertilizer effect

Globally, PDSI emerged as the most influential covariate of fertilizer 
effects on maize grain yield in Approaches 1 and 3, whereas soil 
exchangeable aluminum (Al) had the greatest contribution in Approach 
2, as indicated by mean SHAP values (Fig. 3a, b, c). PDSI and Al 
exhibited contrasting contributions to fertilizer-induced yield responses, 
with PDSI associated with positive average contributions and Al with 
negative ones (Figs. 3 and S4). On average, PDSI explained 14 %, 9 %, 
and 17 % of the variability in fertilizer yield effects under Approaches 1, 
2, and 3, respectively. In contrast, Al accounted for 5 %, 10 %, and 7 % 
of the variability across the same approaches (Table S6). Beyond PDSI 
and Al, four additional covariates – soil silt content (SILT), RAIN, WHC, 
and ELV – out of the top ten-ranked covariates from variable importance 
were shared between BRF and CF models across all three approaches. 
Several covariates demonstrated model-specific directions of contribu
tion to fertilizer effect variability. For example, in Approaches 1 and 2, 
exchangeable calcium (Ca), magnesium (Mg), sulfur (S), total nitrogen 
(N), DRAIN, and TWI were associated with positive average contribu
tions to fertilizer yield responses. In contrast, under Approach 1, these 
same variables showed negative average contributions to fertilizer ef
fects. Although not among the top ten most influential covariates, two 
agronomic practices consistently showed positive contributions to fer
tilizer effects: (1) the use of hybrid maize varieties (VAR) and (2) the 
localized placement of fertilizer briquettes (FPLACE) directly into 
planting holes (Fig. 3a, b, c). These findings suggest that strategic 
cultivar selection and precision nutrient placement can enhance fertil
izer performance, even if their overall explanatory power remains 
modest relative to dominant soil and climatic variables.

Fig. 4 presents SHAP summary plots for the BRF and CF models 
across the four AEZs, illustrating the influence of the top ten covariates 
on the effect of fertilizer on maize yield. In the SS zone, three covariates 
– PDSI, RAIN, and SMS – were shared among the top ten variables in 
both the CF and BRF models, albeit with differing rankings. PDSI and 
RAIN showed positive contributions to the fertilizer-induced yield 
response, whereas higher SMS values were associated with low fertilizer 
effectiveness. In the GS zone, six covariates – PDSI, VPD, Al, ELV, SILT, 
and RAIN – were consistently ranked among the top ten, though their 
relative importance varied. Notably, increases in PDSI, VPD, ELV, and 
RAIN were associated with enhanced fertilizer response, while higher 
SILT and Al levels corresponded to diminished fertilizer effectiveness. In 
the FST zone, three covariates – WHC, VPD, and ELV – were consistently 
identified among the top ten across models. An increase in WHC was 
associated with a reduction in fertilizer effectiveness, whereas higher 
values of VPD and ELV were linked to improved yield responses to fer
tilizer. In the SDF zone, three covariates – SILT, WHC, and Al – were 
shared among the top ten variables identified by models. Similar to 
trends observed in the GS and FST zones, increases in WHC, SILT, and Al 
were associated with reduced fertilizer effectiveness in the SDF zone. 
Additionally, in the SS zone, the use of briquette-form fertilizer appli
cation was associated with enhanced maize yield response, as indicated 
by the BRF model. However, this practice did not show a notable effect 
in the FST zone according to the same model.

3.4. Contribution of soil environment to fertilizer effect

Across the three methodological approaches used to evaluate fertil

Table 3 
Descriptive statistics for absolute response to fertilizer (t ha–1).

n Min Max Mean±SD Median CV†

Pooled data 10,916 –4.7 8.9 1.4 ± 1.5 1.3 106.7

FST 2141 –3.1 5.6 0.9 ± 1.3 0.9 146.7
GS 6438 –4.7 8.9 1.3 ± 1.4 1.3 105.6
SDF 1315 –2.3 5.0 1.2 ± 1.0 1.2 82.4
SS 1022 –2.2 7.6 2.9 ± 1.7 2.8 59.2

† Coefficient of variation
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izer yield effects, both the CF and BRF models consistently identified 
SILT and Al as critical soil properties influencing fertilizer effectiveness. 
This finding aligns with earlier studies in Bindraban et al. (2015), 
Ouedraogo et al. (2020) and Sileshi et al. (2022), which emphasize the 
central role of soil properties in modulating crop responses to nutrient 
inputs. The SHAPDPs and ALE plots revealed that fertilizer contributed 
positively to maize grain yield when SILT content was below 18 % – 
with ÂRBRFy ranging from 141 kg ha–1 to 991 kg ha–1, and ÂRCF ranging 
from 106 kg ha–1 to 134 kg ha–1. However, this positive fertilizer effect 
diminished or reversed when SILT exceeded 18 %, as both models 
indicated negligible or no yield response to fertilizer in Approaches 1 
and 3 (Fig. 5a, c). In Approach 2, the ALE plots did not exhibit a clear 
monotonic relationship between SILT and fertilizer effect (Fig. 5b). 
Nevertheless, the SHAPDP showed a negative trend, with positive fer
tilizer effects primarily observed when SILT was below 18 %. Similar 
findings were reported in Ichami et al. (2019) and Roobroeck et al. 
(2021) in Kenya and Nigeria, respectively, indicating that this response 
pattern may be widespread in sub-Saharan African (SSA) maize systems.

Soils exhibiting weak fertilizer responses are often described as “non- 
responsive soils” (Vanlauwe et al., 2010), where limited fertilizer effects 
arise either from inherently fertile soils or from local physical con
straints that restrict plant access to nutrients (Kihara et al., 2016; 
Njoroge et al., 2017; Vanlauwe et al., 2023). One possible explanation is 
that soils with higher silt content may inherently supply more nutrients 
(Rex et al., 2021), thereby reducing the marginal benefit of additional 
fertilizer inputs. Another contributing factor may be the interaction 
between SILT and SMS. A moderate positive correlation was observed 
between SILT and SMS (r = 0.38, p < 0.05; Fig. S2), suggesting that 
higher silt levels are associated with increased moisture retention. In 
conditions where both SILT and SMS are elevated, excessive moisture 

may lead to poor soil aeration and root stress, thereby reducing fertilizer 
efficacy. Conversely, when SILT levels ranged from 10 % to 20 % – 
typical of sandy loam soils – and SMS ranged from 38 v% to 48 v% 
(Fig. 6a, b, c), the soil retained adequate moisture without becoming 
waterlogged. This condition allows for optimal root function and 
nutrient uptake, thus enhancing fertilizer effectiveness. This interpre
tation is further supported by findings in Iseki et al. (2023), who re
ported that spatial variability in cowpea (Vigna unguiculata) yield 
response to fertilizer in Burkina Faso was largely driven by excessive soil 
moisture content.

Furthermore, the 2D ALE plots for the SILT × CLAY interaction 
(Fig. S3) demonstrate that soil texture plays a pivotal role in yield 
response to fertilizer. Fertilizer effects were positive and pronounced in 
soils where SILT ranged from 18 % to 25 % and CLAY ranged from 10 % 
to 20 %. This specific range likely supports the optimal balance between 
nutrient retention (influenced by clay) and favorable physical conditions 
for root growth and aeration (influenced by silt and sand). Similar in
teractions have been observed in Argentina (Correndo et al., 2021), 
where soil texture modified the shape and magnitude of nitrogen 
response curves. These findings reinforce the importance of considering 
soil physical properties – alongside fertility indicators – when inter
preting spatial variability in crop responses to fertilizer in smallholder 
systems (Pieri, 1992).

An increase in soil Al concentration was consistently associated with 
a reduction in fertilizer effectiveness, regardless of the modeling 
approach used or the AEZ considered (Figs. 3, 4, 5). SHAPDPs and ALE 
plots further illustrate a positive fertilizer response when soil Al levels 
were below 90–110 mg kg–1, with estimated fertilizer effects ranging 
from 271 kg ha–1 to 626 kg ha–1 in Approach 1, from 38 kg ha–1 to 
168 kg ha–1 in Approach 2, and from 212 kg ha–1 to 463 kg ha–1 in 

Fig. 2. Boosted random forest (BRF) and causal forest (CF) machine learning (ML) model evaluation based on the relationship between the observed absolute 
response (ARObs) and predicted fertilizer effect on maize grain yield and inter-model consistency in fertilizer effect predictions. Panels (a), (b), and (c) compare the 
ARObs to predicted fertilizer effect from the BRF in Approach 1 (ÂRBRFy), BRF in Approach 2 (ÂRBRFΔy), and CF in Approach 3 (ÂRCF), respectively. Panels (d), (e), 
and (f) illustrate inter-model comparisons between predicted fertilizer effects: ÂRBRFy vs. ÂRBRFΔy, ÂRBRFy vs. ÂRCF, and ÂRBRFΔy vs. ÂRCF. In each panel, the black 
dashed line represents the 1:1 line (perfect prediction and agreement). The grey bars at the left and the bottom side of each panel show the distribution of data points. 
The statistical metrics in blue were aggregated using the mean across the outer folds from the 10 × 10 nested cross-validation.
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Approach 3 (Fig. 5 a, b, c). However, beyond this threshold Al 
= 90–110 mg kg–1), the SHAP value and ALE curve declined sharply, 
ultimately resulting in negative yield responses. This finding might be 
explained by Al toxicity – a common occurrence in SSA acidic (pH < 7) 
(Table 1, Table S1 and S2), and phosphorus-depleted (5–12.5 mg kg–1) 
soils (Table 1) (with optimal soil P for maize production in SSA >
25 mg kg–1) – which can restrict crop root development and limit the 
uptake of essential nutrients such as P (Fageria and Baligar, 2008). In 
acidic soils, increased levels of exchangeable Al reduce P bioavailability; 
however, as soil pH rises, P is released and becomes accessible to plants. 
Consequently, the 2D ALE plot for the interaction between pH and Al 
showed a positive fertilizer effect when soil pH is increased from 5.3 to 
6.4 and exchangeable Al is below 120 mg kg–1, whereas low or no fer
tilizer effect is observed when soil pH is below 6 and exchangeable Al 
increases from 120 mg kg–1 to 210 mg kg–1 (Fig. 6d, e, f). These findings 
highlight the dual role of soil pH in controlling Al toxicity and P avail
ability, underscoring how critical edaphic thresholds shape applied 
fertilizer effectiveness (Su et al., 2020).

3.5. Climate-related heterogeneity of fertilizer effects

Both the CF and BRF models identified VPD, RAIN, and PDSI as key 
climatic variables influencing the effectiveness of fertilizer on maize 
grain yield (Fig. 3). On average, higher VPD and PDSI values were 
associated with greater yield gains from fertilizer applications (Fig. 5g, 
h, i, j, k, l). The positive effects of fertilizer were especially pronounced 
in environments where growing season VPD ranged between 0.8 kPa 
and 1.4 kPa and PDSI values were between –2.0 and 1.9, indicative of 
moderately wet conditions. Conversely, in drier environments (i.e., PDSI 
ranging from –6.3 to –2.0), the contribution of fertilizer to maize yield 
was substantially reduced. For example, in experimental plots with PDSI 
values between –2.0 and 1.9, fertilizer-induced yield gains were sub
stantial, ranging from 62 kg ha–1 to 1568 kg ha–1 in Approach 
1.8 kg ha–1 to 463 kg ha–1 in Approach 2, and 166 kg ha–1 to 
1119 kg ha–1 in Approach 3. These results are consistent with previous 

findings that highlight the suppressive effects of drought on fertilizer 
performance. Emery et al. (2020), for instance, reported that drought 
conditions significantly reduced NF efficacy in switchgrass (Panicum 
virgatum) in southwest Michigan, USA. Similarly, Juhász et al. (2024)
showed that drought stress diminished S and N uptake in spring wheat 
(Triticum aestivum L.) in a controlled greenhouse experiment. The posi
tive association between PDSI and fertilizer effectiveness can be attrib
uted to improved moisture conditions in both the soil and atmosphere. 
PDSI was moderately correlated with RAIN (r = 0.38, p < 0.05) and 
growing-season soil moisture (SMgp; r = 0.32, p < 0.05). Rainfall itself 
was strongly correlated with SMgp (r = 0.78, p < 0.05) (Fig. S5). 
Interestingly, increases in SMgp were associated with reduced fertilizer 
effectiveness, possibly due to its negative correlation with RD 
(r = –0.52, p < 0.05), which may impair acquisition of nutrients from 
applied fertilizer. These findings underscore the critical role of water 
availability – not just quantity but also its interaction with root archi
tecture – in modulating nutrient uptake (Li et al., 2009). As a 
well-established indicator of atmospheric drought, higher PDSI values 
reflect wetter conditions that enhance fertilizer dissolution and nutrient 
mobility via mass flow mechanisms (Swann et al., 2016).

In the VPD range of 0.8–1.5 kPa, fertilizer-induced yield responses 
increased from 81 kg ha–1 to 979 kg ha–1 according to BRF in Approach 
1, from 30 kg ha–1 to 505 kg ha–1 according to BRF in Approach 2, and 
from 5 kg ha–1 to 141 kg ha–1 according to CF in Approach 3. This sig
nificant positive contribution of VPD to maize grain yield response 
under fertilization can be attributed to the balance between atmospheric 
moisture demand (driven by higher VPD) and soil moisture availability. 
As shown in Fig. 7, when VPD increased from 0.6 kPa to 1.2 kPa and 
SMgp ranged between 90 mm and 190 mm, fertilizer application 
enhanced maize grain yield by up to 20 kg ha–1 (CF) and 0.6–1.5 t ha–1 

(BRF). By contrast, under drier conditions (SMgp < 90 mm), rising VPD 
did not translate into yield gains due to fertilizer application. These 
patterns can be explained mechanistically: under moderate to high soil 
moisture – maintained by sufficient rainfall – elevated VPD intensifies 
transpiration-driven mass flow, thereby facilitating nutrient dissolution 

Fig. 3. Contributions of covariates to the variability in fertilizer-induced maize yield response in Ghana. Panels (a) and (b) present results from boosted random 
forest (BRF) models based on 10,916 observations under Approaches 1 and 2, respectively, while panel (c) shows results from a causal forest (CF) model using 2854 
observations under Approach 3. The analyses utilize SHapley Additive exPlanations (SHAP) values to assess the relative importance of each covariate and the di
rection of their average contributions to the predicted fertilizer effects. In all panels, each bar represents the contribution of a covariate to the model’s fertilizer effect 
prediction: red bars indicate positive average contributions, while blue bars indicate negative average contributions.
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and uptake (Devi and Reddy, 2020). However, when soil moisture is 
limited, the heightened atmospheric demand imposed by increased VPD 
exacerbates water stress and undermines the crop’s ability to mobilize 
and absorb applied nutrients from fertilizer.

Climate variables were among the most influential factors explaining 
the heterogeneity of fertilizer effects on maize yield across the SS, GS, 
and FST zones (Fig. 4). While the magnitude and direction of their 
contributions varied across AEZs, increases in seasonal RAIN, PDSI, and 
VPD were generally associated with positive fertilizer effect on maize 
grain yield. The SS zone exhibited the highest average and median 
fertilizer-induced yield gains (Table 3). This pronounced response can 

be attributed to a combination of favorable hydroclimatic conditions 
and inherent soil characteristics. During the maize growing season, the 
SS zone received substantial RAIN (~732 mm) and SRAD (~879.6 kWh 
m–2) under moderate atmospheric demand (median VPD ≈ 1.0 kPa) 
(Tables S1 and S2). Together, these conditions promote photosynthesis, 
root growth, and nutrient uptake following fertilizer application. 
Moreover, the relatively low inherent soil fertility in the SS zone 
(Tables S1 and S2) likely amplified maize yield responses, as fertilizer 
inputs helped alleviate existing nutrient deficiencies. Hence, the com
bination of adequate water and energy inputs with fertilizer-induced 
nutrient correction explains the strong fertilizer efficacy observed in 

Fig. 4. SHapley Additive exPlanations (SHAP) summary plots showing the influence and importance of key covariates on fertilizer yield effect predictions across the 
four agroecological zones (AEZs) using causal forest (CF) and boosted random forest (BRF) models. AEZs include the (a, b, c) Sudan Savannah (SS); (d, e, f) Guinea 
Savannah (GS); (g, h, i) Forest-Savannah Transition (FST); and (j, k, l) Semi-Deciduous Forest (SDF). Each plot illustrates the ten most important covariates’ in
dividual SHAP values for each data point in the AEZ, i.e., the contribution of the ten most important covariates to fertilizer effect predictions (t ha–1) according to the 
two machine learning models in Approaches 1, 2, and 3. The color represents the covariate value normalized in the range (0–1), with blue being low and red 
being high.
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SS compared with other AEZs.
In contrast, within the more humid and inherently fertile SDF zone, 

the influence of climatic variables on the fertilizer effect, while still 
positive and significant, was secondary to that of soil properties. Soil 
physical characteristics (e.g., WHC, SILT) and chemical properties (e.g., 
Al) were the dominant factors modulating fertilizer response. This shift 
in driver importance occurs because, in humid and relatively fertile 
environments like SDF, water is less frequently the primary limiting 
factor. Consequently, fertilizer effects are predominantly governed by 
the soil’s nutrient supply and retention capacity, a principle supported 
in Zingore et al. (2007), which demonstrated that low SOC led to poor 
fertilizer responses in Zimbabwe. Conversely, in the drier SS and GS 
zones, moisture availability strongly limits nutrient uptake, making 
climatic factors the predominant drivers of fertilizer responsiveness.

The critical influence of climate on fertilizer efficacy has direct im
plications for smallholder decision-making. Billé and Rogna (2021) and 
Heisse and Morimoto (2024) indicated that fertilizer adoption is highly 
sensitive to climate-related risks. Increased rainfall variability and 
warming could therefore undermine farmer confidence in fertilizer in
vestments, particularly among capital-constrained smallholders, 
creating a cycle of low input use and poor yields. Similarly, Sileshi et al. 
(2008) attributed low fertilizer responsiveness in SSA to high interan
nual rainfall variability, while Ouedraogo et al. (2020) observed that 
yields of millet, sorghum, and maize increased with RAIN when fertilizer 
was applied. Overall, these results underscore that the interaction be
tween hydroclimatic conditions and fertilizer responsiveness is highly 
AEZ-specific. Consequently, improving agronomic efficiency and 
reducing climate-related risks require nutrient management strategies 
tailored to AEZ moisture regimes. Key adaptations include adjusting 
fertilizer rates and application methods (e.g., FPLACE enhanced maize 
yield response in SS but not in FST) (Fig. 3 a, b), adopting 
moisture-conserving amendments, using drought-tolerant cultivars, and 
promoting integrated soil fertility management (Vanlauwe et al., 2015).

3.6. Weaknesses, strengths and future work

This study illustrates the capacity of ML models to estimate the 
causal effect of fertilizer on maize yield while uncovering the underlying 
sources of heterogeneity. These findings demonstrate the utility of 
causal ML in identifying key biophysical drivers of treatment effect 
variability, a critical step toward precision fertilizer management in 
SSA. Nonetheless, several methodological and contextual limitations 
should be acknowledged. A key limitation stems from the use of long- 
term static soil data. Although spatially detailed, these soil layers span 
nearly two decades, during which some properties may have changed 
due to land use dynamics, erosion, or management interventions. Such 
temporal mismatch could introduce or increase bias in model fertilizer 
effect estimates and prediction. Future studies would benefit from lon
gitudinal soil sampling to better reflect current field conditions, though 
this is often constrained by logistical and financial challenges, particu
larly in resource-limited settings such as Ghana. In addition, the climate 
data used in this study may lack sufficient granularity due to the limited 
density of weather stations in Ghana (Kidd et al., 2017). This hampers 
the capacity to fully capture local climatic variability, especially for 
short-term or extreme weather events that strongly affect crop responses 
to fertilizer. Improving the resolution and accuracy of climate inputs 
would likely enhance model performance, but doing so would require 
infrastructural investments that extend beyond the scope of most agro
nomic studies.

Another methodological trade-off involves the dichotomization of 
treatment into fertilized versus control plots, considering only treatment 
plots meeting or exceeding minimum rate thresholds. While this binary 
approach streamlined statistical interpretation within a causal inference 
framework, it can mask the richness of dose-response relationships 
(Zhao et al., 2013). Moreover, this approach does not capture the vari
ation in actual fertilizer rates applied by farmers, which are often far 
below the thresholds considered in this study, nor does it account for 
fertilizer application timing, a factor known to strongly influence fer
tilizer use efficiency (Mosisa et al., 2022). As a result, these limitations 

Fig. 5. Effect size of the four important covariates explaining fertilizer yield effect variability. Panels (a-l) show SHapley Additive exPlanations (SHAP) values (black 
dots) overlaid with accumulated local effects (ALE, red lines) and spline-smoothed trends regression fit to the SHAP values (purple lines) for (a, b, c) soil silt content 
(SILT, %); (d, e, f) soil exchangeable aluminum (Al, mg kg–1); (g, h, i) Palmer Drought Severity Index (PDSI); and (j, k, l) vapor pressure deficit (VPD, kPa) from 
Approaches 1 and 2 (boosted random forest model) and Approach 3 (causal forest model). Marginal distributions of covariate values are visualized as grey density 
bars along the axes.
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not only constrain the capacity to infer optimal input rates but also 
contribute to the unexplained portion of fertilizer effect variability. 
Emerging causal inference approaches that accommodate continuous 
treatment intensities, such as generalized propensity score models 
(Hirano and Imbens, 2004; Imai and Van Dyk, 2004), offer promising 
alternatives for future research.

The dataset was unbalanced; 63 % of observations came from the GS, 
and 71 % were collected between 2020 and 2022 (Fig. 1). This uneven 
distribution may have influenced how well the BRF and CF models 
generalized, as noted in Kowatsch et al. (2024). To limit this effect, we 
used weighting procedures during model training. Model performance 
varied across AEZs (Table S7). The highest model accuracies were 
observed in the SS, which had the fewest observations (Fig. 1a), with 
MEC values between 0.27 and 0.49. In contrast, performances were 
lowest in the FST zone. These differences reflect strong variation in soil 
and climate conditions that shape fertilizer responses. The weaker per
formances in the FST may be due to the higher CV in fertilizer effects 
(146.7 %) compared with 59.2 % in the SS (Table 3). In the SS, FPLACE 
improved fertilizer effect, while in the FST, fertilizer placement had little 
effect. This suggests that some management or environmental factors 
important for explaining fertilizer effect variability in the FST were not 
captured by the BRF and CF models. In this study, we did not pair 
weighting with stratified cross-validation nor did we evaluate the 
broader implications of spatiotemporal data imbalance on a model’s 
capacity to generalize. Consequently, future work should use more 
advanced methods, such as spatiotemporal nested cross-validation, and 
systematic investigations into fertilizer effect prediction within imbal
anced regression frameworks (Roberts et al., 2017; Sweet et al., 2023; 

Kamangir et al., 2024).
Understanding the spatial heterogeneity of yield response to fertil

izers is essential for improving nutrient use efficiency in smallholder 
systems. Earlier studies (Sileshi et al., 2008, 2022; Kihara et al., 2016; 
Ouedraogo et al., 2020) reported this variability and related it to soil and 
climate conditions, though using mainly linear or meta-analytical ap
proaches. More recent applications of ML (Abera et al., 2022; Zingore 
et al., 2022) improved predictive performance but remained correlative 
and did not isolate heterogeneous treatment effects. Kakimoto et al. 
(2022) demonstrated the potential of the CF model, albeit with synthetic 
data. Our study advances these works by applying a causal inference 
framework to extensive multi-year field data from Ghana, by combining 
CF with BRF models to support more context-specific fertilizer 
recommendations.

Further limitations arise from the controlled nature of the experi
mental data. Research-station trials, by design, exclude many con
founding and collider factors encountered in real smallholder 
systems—such as pest outbreaks, labor constraints, and socio-economic 
variability. Consequently, the generalizability of these trial-based find
ings to farmer-managed conditions remains uncertain. Incorporating 
observational data from farmers’ fields into CML frameworks could help 
address this gap, allowing for the estimation of fertilizer treatment ef
fects under more realistic and heterogeneous conditions.

From a model interpretation standpoint, the study highlights notable 
differences in the consistency of ML interpretability tools. SHAPPDs and 
ALE curves yielded broadly aligned insights for the CF model, but less so 
for the BRF model (Fig. 5). This likely reflects the CF model’s focus on 
stable, causally informative relationships, whereas classical ML models 

Fig. 6. Two-dimensional visualization of the contributions of the interactions between (a, b, c) soil silt content (SILT, %) and soil moisture content at saturation 
(SMS, %v) and (d, e, f) soil exchangeable aluminum (Al, mg kg–1) and soil pH to predicted fertilizer effect. The color represents the accumulated local effect (ALE) 
values, with blue colors indicating negative interaction contribution to fertilizer effect and red to orange colors indicating positive interaction contribution. White- 
grey areas refer to covariate value combinations not present in the training dataset, where ALE values were not computed. The surface was obtained by bicubic 
interpolation of the ALE obtained from the calibration dataset. Marginal distributions of covariate values are visualized as grey density bars along the axes.
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are more susceptible to confounding and noise. As such, CF not only 
supports causal inference but also improves transparency and inter
pretability – an advantage that is particularly relevant in data-driven 
agricultural policy and decision support systems. Despite the growing 
use of ML interpretability tools in predictive modeling, their application 
within causal ML remains limited (Svensson et al., 2025). This study 
contributes to a nascent yet critical area of research: interpretable causal 
modeling in agriculture. Further exploration of how interpretability 
methods interact with causal estimators will be vital for developing 
trustworthy, actionable recommendations in precision agronomy.

4. Conclusion

This study demonstrates the critical role of NPK fertilizer in 
enhancing maize grain yields across Ghana’s AEZs while revealing 
substantial variability in fertilizer effects driven by soil, climate, 
topography, and management conditions. Using both predictive and 
causal ML models, we identified soil properties, particularly SILT, Al, 
and SMS, as major determinants of fertilizer responsiveness, alongside 
climatic factors such as RAIN, VPD, and PDSI. The fertilizer effect was 
strongest in the SS zone, where favorable hydroclimatic conditions and 
low inherent soil fertility enhanced yield responses to nutrient inputs. 
While BRF achieved high predictive accuracy, CF provided more inter
pretable causal relationships consistent with agronomic knowledge. The 
integration of predictive and causal ML thus offers a powerful frame
work for understanding site-specific variability in fertilizer effects and 
for supporting data-driven nutrient management strategies. Our findings 
argue against blanket fertilizer recommendations. Instead, they 

advocate for AEZ-specific guidelines that account for local soil and 
climate conditions. In climatically variable zones like the SS and GS, 
policies should promote weather-informed advisory systems and 
moisture-conserving practices to enhance returns on input investment 
and reduce farmer risk. To further improve the relevance of BRF and CF 
models, future work should incorporate dynamic soil data, continuous 
treatment levels, and on-farm observational data. Ultimately, this data- 
driven pathway toward site-specific recommendations can guide agri
cultural policy, optimize subsidy targeting, and support the resilience 
and livelihoods of Ghanaian farmers facing increasing climate 
uncertainty.
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