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ARTICLE INFO ABSTRACT
Keywords: Context: Maize is a key staple crop in Ghana, yet yields remain low (20-40 % of potential). Although fertilizer is
Yield response promoted to enhance productivity, adoption is limited by highly variable yield responses.

Fertilizer use efficiency
Agro-ecological zones
Precision agriculture

. . (AR) estimates.
Causal machine learning . . .
Data-driven modeling Methods: Causal forest (CF) and boosted random forest (BRF) models to estimated fertilizer effects, with BRF

Exchangeable aluminum performance evaluated via a 10 x 10 nested cross-validation and grid search. SHapley Additive exPlanations and
Accumulated Local Effects analyses identified key drivers of fertilizer effect heterogeneity and quantified the
magnitude of their influence on fertilizer yield effect.

Results and conclusions: Fertilizer effect varied widely (-4.7-8.9t ha’l), with the Sudan Savannah showing the
highest median AR (2.8t ha™) and the Forest-Savannah Transition the lowest (0.9 t ha™'). BRF outperformed CF
in predicting fertilizer effects (ME: —0.06-0.05 t ha™* vs. —0.19 t ha™}, RMSE: 1.17-1.23 t ha! vs. 1.3t ha™ !, MEC:
0.32-0.38 vs. 0.24 and CCC: 0.46-0.54 vs. 0.34). Key determinants of fertilizer effect heterogeneity included
both climatic variables (Palmer Drought Severity Index [PDSI], vapor pressure deficit, rainfall) and soil prop-
erties (silt content, exchangeable aluminum). PDSI emerged as the dominant driver of fertilizer effect hetero-
geneity in the entire data set. However, the relative importance of soil versus climate varied spatially: soil
properties were the main drivers of fertilizer effect in the Semi-Deciduous Forest and the Forest-Savannah
Transition, whereas climatic variables played a stronger role in northern zones. Fertilizer yield effect
increased by 0.4-1.6 t ha™! with increasing PDSI, indicating that improved moisture availability enhances fer-
tilizer use efficiency. Overall, optimal moisture conditions (PDSI > -2.0), the use of hybrid seeds, and the
application of briquette fertilizer all contributed to higher fertilizer effects, whereas drought conditions sub-
stantially reduced them. Furthermore, fertilizer effect decreased by 0.2-1.4t ha™! as silt increased from 9 % to
30 %, and by 0.3-0.6 t ha™! as exchangeable aluminum increased from 36 to 221 mgkg ™.

Significance: This study presents the first large-scale, data-driven assessment of fertilizer yield effects heteroge-
neity in Ghana, integrating causal and predictive machine learning with explainable Al Findings support tailored
fertilizer strategies by agro-ecological zones to reduce farmer risk and promote sustainable intensification.

Objective: This study analyzed spatial and environmental drivers of fertilizer effect heterogeneity using 2854
yield observations from randomized controlled trials and 10,916 pairwise absolute yield response to fertilizer

1. Introduction Ghana’s agricultural sector cannot be overstated, yet local maize grain
yields remain low, averaging ~ 2.4t ha~! (SRID/MOoFA, 2021), signifi-

Maize is the most important cereal crop in Ghana, playing a critical cantly below the potential grain yield of 7-9t ha™ (Boullouz et al.,
role in the country’s agriculture sector (SRID/MoFA, 2021). It is a vital 2022; Simperegui et al., 2023; Donkor et al., 2025). Numerous studies
food source for millions of people and contributes significantly to both have identified declining soil fertility, driven largely by nutrient mining
the national economy and food security. The importance of maize to and soil erosion, as a primary cause of low maize grain yields in Ghana
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(Bashagaluke et al., 2018; Essel et al., 2020). For instance, Bationo et al.
(2018) estimated that soils in Ghana approximately around 35kg ni-
trogen (N), 4 kg phosphorus (P), and 20 kg potassium (K) per hectare
annually across all Ghana’ agro-ecological zones (AEZs).

Application of fertilizers has been widely advocated as a key inter-
vention to increase maize grain yields and has garnered substantial
attention in both agricultural research and practice (Falconnier et al.,
2023; Kouame et al., 2023; 2025a). Fertilizers play a pivotal role in
enhancing crop productivity by replenishing soil nutrients depleted
through crop uptake and erosion (Uwiragiye et al., 2022), while pro-
moting both healthy plant growth and maintaining soil health (Dimkpa
et al., 2023). Although fertilizers are widely used in Ghana, expected
yield gains from fertilizer application are not consistently achieved. The
effect of fertilizers on maize yield exhibits significant variability across
AEZs, increasing investment risks and undermining farmers’ motivation
and ability to sustain fertilizer use in subsequent seasons (Nziguheba
et al., 2021).

The observed low and variable fertilizer use efficiency suggests low
economic returns to farmers and can lead to environmental damage, as
excess nutrients not taken up by crops are often lost through leaching,
runoff, or gaseous emissions, contributing to water pollution, soil
degradation, and greenhouse gas emissions (Penuelas et al., 2023).
Determining the causes of variability in the effect of fertilizers on yield
requires analyzing the overall effectiveness of fertilizer application
across the target area and how the effects vary across diverse
location-specific conditions. Understanding fertilizer effect variability is
essential for developing site-specific fertilizer recommendations and
designing target agronomic interventions for optimizing resource allo-
cation. Moreover, by identifying the underlying causes of this vari-
ability, one can better understand the drivers of low fertilizer use
efficiency and thus identify concrete measures to enhance overall fer-
tilizer effectiveness. However, the process of isolating the fertilizer effect
and identifying the main factors influencing it, such as soil character-
istics, climatic and weather conditions, microbial activity, and man-
agement practices, remains inherently complex due to their non-linear,
spatial, and temporal interactions (Nziguheba et al., 2021). Agronomists
have historically assessed the effect of fertilizer application on crop
grain yield using randomized controlled trials randomized controlled
trials (RCTs), which are widely regarded as the gold standard for causal
inference due to their ability to provide robust estimates of treatment
effects. In RCTs, fertilizer effectiveness is commonly quantified by esti-
mating its average treatment effect using analysis of variance, a method
that partitions the total variability in yield into components attributable
to treatment and error (Fisher, 1992). However, this implicitly assumes
that the fertilizer effect is uniformly applicable across all spatially
distributed individual trials;. it is limited by its reliance on mean effects,
which may obscure significant heterogeneity in fertilizer effects that can
occur due to site-specific baseline characteristics. To address this limi-
tation, agronomic researchers frequently analyze the grain yield abso-
lute response to fertilizer (AR), defined as the pairwise difference
between yields between yield in fertilized plots (Y¢) and yields in control
plots (Y.) randomized controlled trials, using linear regression models
(Ronner et al., 2016; Sileshi et al., 2022). Although parametric regres-
sion models offer valuable insights into the influence of covariates on
AR, they depend critically on the correct specification of the model; in
high-dimensional settings, the assumptions of linearity and additivity
often fail to capture the complex non-linear effects and interactions
among fertilizer inputs, soil characteristics, climatic and weather con-
ditions, and crop varieties. This inadequacy underscores the need for
advanced statistical techniques, such as machine learning (ML) models,
which are better suited to accommodate the intricate and non-linear
nature of these effects and interactions (Dehghanisanij et al., 2023;
2024).

Recent studies have increasingly favored predictive ML models over
traditional linear regression for estimating the effects of fertilizers rates.
For instance, Coulibali et al. (2020) and Abera et al. (2022) utilized
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agronomic trial data alongside ML techniques, including k-nearest
neighbors, random forest (RF) model, neural networks, and Gaussian
processes, to estimate the effects of the rate of nitrogen fertilizer (NF),
phosphorus fertilizer (PF), and potassium fertilizer (KF) on potato and
wheat yields, respectively. Similarly, Tanaka et al. (2024) implemented
a series of predictive ML models to develop fertilizer recommendations
specifically tailored to the environmental conditions in Gifu, Japan,
while Heerwaarden et al. (2023) employed RF models to assess the
variability and predictability of fertilizer effects on grain legume farms
in East and West Africa. In addition, Kouame et al. (2025b) applied a
conditional RF model to predict the spatial and seasonal effects of sulfur
fertilizer (SF) on soybean yields in Ghana.

Despite their growing adoption in agricultural research for tasks such
as fertilizer recommendation development and yield response estima-
tion, predictive ML models are fundamentally designed for correlation-
based prediction rather than causal inference (Feuerriegel et al., 2024).
Kakimoto et al. (2022) demonstrated that even highly accurate yield
predictions with ML models do not necessarily translate into reliable
estimates of NF effects on yield. Similarly, Thorburn et al. (2024) found
that estimated crop yields alone are poor proxies for determining
optimal NF requirements. Moreover, directly incorporating ML pre-
dictions into conventional effect estimation formulas can lead to “plu-
g-in bias” in the measured effect (Moccia et al., 2024). When predictive
ML is used to quantify the fertilizer effect and explain its variability, the
approach typically involves predicting yield or AR in a manner analo-
gous to standard regression models, without explicitly accounting for
the causal structure or treatment allocation mechanism.

This lack of causal interpretability of predictive ML models has
spurred the development of causal machine learning (CML) methods,
which are specifically designed to infer causal relationships rather than
mere correlations (Chernozhukov et al., 2016). In agricultural research,
CML techniques have been applied to evaluate the effects of tillage
practices (Deines et al., 2019), to assess the impact of weather on agri-
cultural productivity (Stetter and Sauer, 2021), and to investigate the
influence of digital agriculture on crop yields (Tsoumas et al., 2023).
Furthermore, CML has been used to quantify the benefits of crop rota-
tions (Kluger et al., 2022) and, in simulated wheat yield studies, to
outperform traditional ML in estimating site-specific economically
optimal NF rates (Kakimoto et al., 2022). In this study, we combined two
complementary ML approaches to better understand how maize yield
responds to fertilizer. First, we used a Boosted Random Forest (BRF)
model to predict the AR. This helped us predict where fertilizer is likely
to be most beneficial. We then used a causal forest (CF) (Wager and
Athey, 2018), which estimates how the effect of fertilizer varies across
different conditions and provides valid confidence intervals (CI) for
these estimates. CF builds on the flexibility of RF, handling many vari-
ables and complex interactions without needing to predefine the struc-
ture of the model. By combining these two approaches — one focused on
prediction and the other on causal inference, we aimed to address both
the need for accurate, site-specific fertilizer effect predictions and a
deeper understanding of where and for whom applied fertilizer is most
effective.

Our study addressed four primary research questions: (i) To what
extent do fertilizer effects on maize yield vary across Ghana’s AEZs? (ii)
How accurately can CF estimate fertilizer effects compared with a strong
predictive benchmark such as BRF? (iii) How do local climate condi-
tions, soil properties, and management practices shape fertilizer
responsiveness, and which factors exert the strongest influence? and (iv)
Can these insights be translated into site-specific fertilizer recommen-
dations that improve resource efficiency? Leveraging 2854 maize yield
observations from randomized fertilizer trials across Ghana, combined
with detailed environmental and management covariates, we integrated
CML with explainable artificial intelligence techniques to quantify and
interpret heterogeneity in fertilizer yield responses. Our approach
moves beyond average treatment effects to provide spatially and
context-specific insights, supporting both the reduction of fertilizer
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losses in low-responsive areas and the targeting of investment to high-
potential regions to improve productivity and sustainability.

2. Materials and methods
2.1. Study locations, climate, and period

Maize fertilizer trials were conducted across four AEZs in Ghana,
Sudan Savanna (SS), Guinea Savannah (GS), Forest-Savanna Transition
(FST), and Semi-Deciduous Forest (SDF) (Fig. 1a). These zones together
form the country’s main maize-producing region and represent its
agricultural breadbasket (Tetteh et al., 2018). The dataset spans a
17-year observational period (Fig. 1b). Planting schedules were syn-
chronized with the AEZs’ rainfall regimes: the SS and GS zones experi-
enced unimodal rainfall patterns, while the FST and SDF exhibited
bimodal seasonal distributions (Rohrig et al., 2019). Across AEZs, mean
growing season temperatures ranged from 22.7 +0.2°C to 31.2
+ 0.9°C, with cumulative rainfall (RAIN) varying between 542
+109.3 mm and 741.4 + 146.1 mm (Table 1, Table S1). Elevation
gradients differed markedly by AEZ: 218-445 m in the SDF, 129-322 m
in the FST, 122-342 m in the GS, and 165-360 m in the SS (Table S2).
Soil properties exhibited pronounced inter-AEZ variability (Table S1).
Soils in all AEZs featured a sandy texture (SAND; 66.6 + 5.9 %), and low
soil organic carbon (SOC; 1.4 + 0.8 g kg’l) (Table 1, Table S1). Soils in
the SS and GS zones had a shallow profile (69.8 &+ 25.1 cm root zone
depth), contributing to inherently lower fertility relative to the SDF and
FST zones, where soils were deeper (113.2 +15.9 cm) and more
chemically fertile (Tables S1 and S2).
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2.2. Data collection

Maize grain yields (t ha™') were sourced from two primary datasets:
(i) on-station trial data (n = 1622) reported in Bua et al. (2020), and (ii)
on-station trial data (n = 3346) from experiments conducted by the
International Fertilizer Development Center (IFDC). Detailed method-
ologies for data collection are provided in Methods S1 and Bua et al.
(2020). Geographic coordinates were recorded for each experimental
site, all of which were rainfed and involved maize grown in mono-
culture. To qualify for inclusion, experiments were required to be
field-based and include at least one paired dataset (i.e., a control plot
without fertilizer and a treatment plot with fertilizer) under
near-identical microclimatic, soil, and vegetation conditions. In addi-
tion, experiments were required to have been conducted in terrestrial
ecosystems with documented application rates for various fertilizers
(NF, PF, and KF), span at least one full growing season, and involve
multiple fields with consistent fertilizer treatments and corresponding
control plots. For experiments with multiple control and treatment plots,
the AR was estimated for each unique pairing of control and
fertilizer-treated plots, resulting in 23,040 AR data points derived from
4968 yield observations.

For the AR analysis, paired control and treatment plots were
required. However, the available dataset exhibited substantial vari-
ability in NF, PF, and KF application rates, with NF having the widest
variability, ranging from 12 kg ha™! to 250 kg ha™ and both PF and KF
ranging from 8 kg ha™! to 90 kg ha™! (Fig. S1 and S2). An ideal experi-
mental design would entail a binary treatment structure, comparing
control plots with uniformly fertilized plots receiving fixed rates of NF,
PF, and KF. A stringent approach would involve restricting the analysis
to yield data from experiments where identical fertilizer rates were
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Fig. 1. (a) Spatial distribution of experimental maize fields (n = 2854) across Ghana’s agro-ecological zones (AEZs). Field locations are aggregated into uniform
16 km radius clusters (red circles), with numerical labels indicating the count of field sites per cluster. Background shading represents distinct AEZs, demonstrating
national-scale coverage of the experimental network. Many field locations are in close proximity, and the AEZ map was adapted from Yamba et al. (2023). Notably,
61 % of the experimental data come from the Guinea Savannah zone. (b) Histogram showing the temporal distribution of maize experimentation data in Ghana. The

majority (71 %) of the data were collected in 2020, 2021, and 2022.
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Table 1
Summary of continuous covariate (gridded climate, soil, and terrain) data used in the boosted random forest and causal forest model.
Continuous covariatesf Acronym Unit Min Max Mean + SD Median Source
Climate
Cumulative rainfall RAIN mm 285.4 1031.4 684.5 + 160 660.4
Maximum temperature TMAX °C 28.9 34.3 30.7 £ 0.9 30.6
Minimum temperature TMIN °C 219 24.7 23+0.5 23 ERAS5
Cumulative solar radiation SRAD kWh m2 645.8 1091.8 836.5 + 56.3 847.9
Mean wind speed MWS mst 1 2.1 1.7 +0.2 1.8
Vapor pressure deficit VPD kPa 0.6 1.5 0.9+0.2 0.9 TerraClimate
Palmer Drought Severity Index PDSI - -6.3 1.9 3+2 -3.2
Soil chemical property
pH pH - 5.3 6.4 6+ 0.2 6
Exchangeable phosphorus P mg kg™ 5 12.5 73+1 7.2
Exchangeable sulfur S mg kg! 4 8 4.8 +£0.8 4.5
Total N N gkg! 0 0.3 0.1+0 0.1
Organic carbon SOC g kg™ 0.7 3.9 1.4+0.8 1.2
Exchangeable calcium Ca mEq 100 g! 1.6 5.5 2.8+0.7 2.7
Exchangeable magnesium Mg mEq 100 g* 0.5 2.4 1+0.2 0.9 iSDAsoil
Exchangeable potassium K mEq 100 g~* 0.1 0.3 0.2+0 0.2
Effective cation exchange capacity ECEC cmol (4) kg™! 5 12.5 7.3+13 7.2
Exchangeable iron Fe mg kg ! 53.6 98.5 68.9 + 5.6 65.7
Exchangeable aluminum Al mg kg™! 36.6 221.4 121.1 +30.8 109.9
Exchangeable zinc Zn mg kg™ 0.5 3.5 1+08 0.6
Base saturation BS % 29.8 84.3 53.7 £12.1 53.7
Soil physical property
Clay CLAY % 6 25 13.9+35 13
Sand SAND % 49 83 66.6 +£ 5.9 68 iSDAsoil
Silt SILT % 9 31 19.5+3.7 19
Long term mean soil moisture SMgp mm 26.7 249.2 132.3 £ 45.2 134.2 TerraClimate
Root zone depth RD cm 24 150 84.8 + 30.4 82
Soil moisture content at saturation SMS %v (volumetric) 33 48 40.2 £+ 3.2 39 SoilGrids
Soil moisture content at wilting point SMWP %v (volumetric) 12 22 155 +2.1 15 i
Water holding capacity WHC mm 23 135 64.7 £ 23.9 62
Terrain
Elevation ELV m 116 445 211.7 + 63.8 182
Topography wetness index TWI - 5.7 11.7 94+1.1 9.6 - )
Stream power index SPI ; 0 12.8 11+15 0.7 SRTM Plus V3
Slope SLP ° 0.1 2.7 0.5+ 0.4 0.4

t the description of each continuous variable is reported in the supplementary Table S3

SD: standard deviations

applied. However, such an approach would drastically reduce the
sample size, thereby compromizing the robustness of subsequent ML-
based statistical analyses and inferences. To mitigate the loss of data
but also avoid having treatment plots with insufficient fertilizer appli-
cation rates, a filtering criterion was applied: only treatment plots
meeting or exceeding NF > 45 kg ha™', PF > 30 kg ha™!, and KF
> 30kgha? — along with their corresponding control plots — were
retained for further analysis. These thresholds were informed by maize
fertilization recommendations for Ghana, as established in Tetteh et al.
(2017). Following this selection process, the final dataset comprised
2854 yield observations (Fig. 1a) and 10,916 AR observations, with
treatments dichotomized into control (T = 0, n = 501) and fertilized
(T=1,n=2353).

2.3. Covariate sources

In this study, we incorporated a range of covariates — including
topographical, meteorological, and soil properties; mode of fertilizer
application; and maize variety (Tables 1 and 2) - to quantify and
elucidate the variability in fertilizer effects. Experimental site elevation
(ELV) was obtained from the NASA Digital Elevation Model (~30 m
resolution) (Farr et al., 2007). From ELV we derived the slope (SLP),
topographic wetness index (TWI), and stream power index (SPI) using
the terra package (version 1.8-42) (Hijmans et al., 2022) in R (version
4.4.3) (R Core Team, 2025) with a 3 x 3 window size. TWI is a proxy of
the spatial distribution of moisture integrating slope and terrain attri-
butes that affect the soil-water balance and erosion, whereas SPI quan-
tifies the erosive power of flowing water and its implications for soil
quality and agricultural viability. Low SPI values denote reduced erosion

potential, while high SPI values indicate an important risk of soil
erosion. High TWI values are typically associated with deeper, wetter
soils that are prone to saturation and water accumulation, in contrast to
lower TWI values that are indicative of steeper, drier areas.

To account for interannual variability in weather, we computed cu-
mulative precipitation (RAIN), cumulative solar radiation (SRAD),
minimum (TMIN) and maximum (TMAX) temperatures, mean wind
speed (MWS), vapor pressure deficit (VPD), long-term mean soil mois-
ture (SMgp), and the Palmer drought severity index (PDSI) (Palmer,
1965) during the maize growing season, which differed from AEZ to
AEZ. Weather data were sourced from ERA5 at ~11 km resolution
(Hersbach et al., 2020) and TerraClimate at ~4 km resolution
(Abatzoglou et al., 2018). Additionally, for each plot-level observation,
soil chemical and physical properties were extracted from the Innova-
tive Solutions for Decision Agriculture (iISDA) map at 30 m resolution for
the 0-20 cm topsoil layer, while root zone depth (RD), root zone
water-holding capacity (WHC), soil drainage status (DRAIN), soil
moisture content at wilting point (SMWP), and soil moisture content at
saturation (SMS) were retrieved from SoilGrids at ~250 m resolution
(Poggio et al., 2021; Turek et al., 2023).

The maize cultivars evaluated in this study comprised 15 distinct
varieties, stratified into two categories: open-pollinated varieties
(OPVs), which constituted 93 % of the dataset, and hybrid varieties,
representing 7 % (Table 2). Fertilizers were administered through two
distinct application modalities: 25 % as subsurface briquettes placed in
planting holes and 75 % as broadcast granular applications on the soil
surface. Experimental sites were predominantly imperfectly drained
(57 %), with the remainder classified as well-drained (43 %). Categor-
ical variables — including cultivar type (VAR), fertilizer placement
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Table 2
Categorical covariates with their category level used in the boosted random forest and causal forest models.
Categorical . . .
. Acronym  Description and rationality Levels Source
variables
Management
Maize varieties differ in their genetic makeup, growth characteristics, yield potential, and resilience to Hybrid Bua ot al
Variety VAR environmental stresses (e.g., drought, pests, and diseases). So, different varieties can respond differently to . .
. . . . . . . . OPV (2020); IFDC
fertilizers and environmental conditions, which can significantly influence impact yield outcomes.
Fertilizer can be applied in various ways, including broadcasting, banding, side-dressing, or foliarly. The mode Hole
Fertilizer FPLACE of application affects how nutrients are distributed and absorbed by plants. The efficiency of nutrient uptake Soil Bua et al.
placement can vary with the method of application, influencing maize growth and yield. For instance, banding fertilizer (2020); IFDC
near the root zone can improve nutrient availability and reduce losses compared to broadcasting surface
Soil physical
property
Drainage refers to the soil’s ability to remove excess water, which prevents waterlogging. Good drainage is Imperfect
Drainage status DRAIN essential for root health and nutrient absorption, especially in regions with heavy rainfall. Poor drainage can Well SoilGrids

lead to waterlogging, reducing root oxygen availability and nutrient uptake, ultimately affecting yield.

method (FPLACE), and soil drainage status (DRAIN) — were transformed
into multiple binary variables via one-hot encoding using the “dum-
myVars()” function in the caret R package (version 7.0-1) (Kuhn, 2008).

2.4. Machine learning inference

The primary objective of this study was to estimate the effect of
fertilizer application on maize grain yield, analyze the variability of this
effect, and identify the factors influencing it. To achieve this, we
employed three distinct approaches, using BRF and CF.

2.4.1. Approach 1 - traditional absolute yield response

A BRF is an ensemble learning method that combines the strengths of
RF and boosting to improve prediction accuracy (Ghosal and Hooker,
2020). It builds a sequence of regression forests, where each forest is
trained to correct the residual errors of the previous one, thereby
reducing bias iteratively. BRF was implemented as a stagewise additive
model using gradient boosting with forests as base learners though the
grf R package (version 2.5.0) (Tibshirani et al., 2024). We first calcu-
lated the AR for each paired control-treatment observation, defined as
the difference in yield between fertilized and control plots, which could
be done because the data are from randomized controlled trials. We then

constructed a predictive BRF model that predicts AR (A\RBRFY) using the
covariates (X, the pre-treatment characteristics) in Tables 1 and 2,
excluding the binary fertilizer treatment indicator T (where T € {0, 1}).
The model predicts AR, thereby capturing fertilizer effect variability
attributable solely to factors other than the fertilizer treatment.

2.4.2. Approach 2 - predictive BRF fertilizer effect estimation

In this approach, a BRF model was developed to predict maize grain
yield (Y) using all yield data (control as well as treatment) and the full
set of covariates X, including the binary fertilizer treatment variable T.
The fertilizer effect was next quantified using Eq. (1), which computes

the difference between the predicted yield with fertilization (¥;(1)) and

without (Y;(0)), conditional on the observed covariates X; = xi:
ARpresys = (Yi(1) = Yi(0)) | X =x;,1 =1,...n €]

where, n denotes the number of observations. This formulation is
analogous to the individual treatment effect in causal inference but
adapted to quantify fertilizer-induced yield gains.

This method leverages the BRF model’s ability to model non-linear
interactions and heterogeneity, providing an estimate of the fertilizer
effect that also accounts for the influence of other covariates. To fine-
tune the BRF models in Approach 1 and Approach 2, a nested 10 x 10
cross-validation was employed, which included an inner loop for
hyperparameter optimization and an outer loop for evaluating gener-
alization performance (Krstajic et al., 2014). First, the pooled dataset

was randomly split into 10 equal parts using the “createFolds()” function
of the caret R package (version 7.0-1) (Kuhn, 2008), which constituted
the outer loop of ten folds. Each fold of the outer loop was used once as a
test set, while the remaining nine served as the training set. Within each
of these training sets, an inner loop performed its own cross-validation —
in our case, also 10-fold - to optimize a model’s hyperparameters. This
dual-layer structure ensured that the test sets from the outer loop were
never used for model calibration or hyperparameter tuning. This pre-
vents data leakage, minimizes overfitting, and provides an unbiased
assessment of a model’s predictive capabilities (Rosenblatt et al., 2024).
Mean Squared Error (MSE) was considered as the loss function in the
BRF models training. For each BRF model, we performed a grid search to
optimize the hyperparameters of interest: the number of covariates to
consider at each split (mtry, tested at values of 15, 26, and 34), and the
minimum number of observations allowed in each terminal node (min.
node.size, tested at values of 5, 10, 15, and 20). The number of trees was
set to 5000.

2.4.3. Approach 3 - causal forest fertilizer effect estimation

To explicitly estimate the causal effect of fertilizer on maize yield, we
applied the CF model. Although CF shares structural similarities with
RF, both being tree-based methods, their objectives differ fundamen-
tally. RF is designed to build a predictive model by partitioning the data
into subsets where yield variability is minimized, thus enhancing pre-
diction accuracy. In contrast, CF specifically targets causal inference by
dividing the data into subsets based on similar covariate profiles, where
differences in fertilizer response are maximized. Detailed descriptions of
CF are provided in (Wager and Athey, 2018). The CF method addresses
the fundamental challenge of causal inference — the fact that we cannot
simultaneously observe both the treated and untreated yield for the
same plot (Holland, 1986). According to the Splawa-Neyman (1923) and
Rubin (1974) potential outcomes’ framework, also called the Rubin

Causal Model (Imbens and Rubin, 2015), we denote Yi(l) as the coun-

terfactual potential yield with fertilizer and Yi(o) as the counterfactual
potential yield without it for plot i. The CF model estimates the condi-
tional average fertilizer effect for a given set of covariates x; as:

ARcr; = [E[Y?LYP) |xi:xi], i=1,..n @

where, [ represents mathematical expectation and n denotes the number
of observations.

For the prediction of JK\RCF, CF relies on several key assumptions
(Wager and Athey, 2018). First, it assumes unconfoundedness — that is, it
assumes that after conditioning on covariates, the assignment of fertil-
izer is effectively random. Second, it requires an overlap assumption,
which ensures that each field has a positive probability of both receiving
the fertilizer treatment and serving as control plot, meaning that the
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so-called propensity scores for all plots are higher than zero and lower
than one. Third, the Stable Unit Treatment Value Assumption is
assumed, which stipulates that the potential outcomes of any field are
not influenced by the treatment assignments of other units (Wager and
Athey, 2018). In our study, all three assumptions are met because the
data are from randomized controlled trials.

For CF implementation, we used the grf R package (version 2.4.0)
(Tibshirani et al., 2024). The analysis started with fitting two RF models
to estimate the conditional expected maize grain yield and propensity
score based on the available covariates. These estimates were then input

into the grf “causal_forest()” function to estimate Af{cp. To account for
the imbalance in the treatment allocation, where the number of fertil-
ized plots (treated units) exceeded the non-fertilized plots (control
units), sample weights were applied to ensure balanced representation
during CF model fertilizer effect estimation. Specifically, each treated
unit (T = 1) was assigned a weight of 1, while control units (T = 0) were
weighted by the ratio of treated to control observations. This
upweighting of control observations helped mitigate potential bias
arising from unequal group sizes, ensuring that the CF estimator
accounted for disparity in the dataset. CF implementation in this paper
adheres to the CF methodology outlined in Athey and Wager (2019).
The CF model was built over 5000 causal trees (“num.trees”) and
used the “tune.parameters” option in the grf package to allow automatic
tuning of the “mtry” hyperparameters using cross-validation (Table S4).
However, we set the hyperparameter “alpha” to 0.001 instead of keeping
the default value of 0.05, as recommended in Jakobsen (2023) when
some of the categorical covariates are very unbalanced. CF inherently
employs cross-fitting to ensure robust and unbiased treatment effect
estimates (Chernozhukov et al., 2016). Cross-fitting ensures that the
data used to create splits are distinct from the data used to estimate

ARgy. By default, the grf package applies twofold cross-fitting when the
“honesty” option is set to “TRUE”. In this study, we complemented this

by employing a leave-one-out cross-fitting procedure to predict ARgy, as
recommended in Athey et al. (2018), to further enhance the robustness
of the results.

Notably, the FPLACE covariate was not used in CF. In causal infer-
ence frameworks such as CF, covariates must represent pre-treatment
characteristics applicable to both treated (T =1) and untreated
(T =0) units. Since FPLACE is only observed in treated plots and
imputed as O for controls, it violates the pre-treatment assumption
required by CF. To ensure comparability among covariates and improve
model performance, all numerical covariates in Table 1 were stan-
dardized using centering and scaling. Centering involved subtracting the
mean of each covariate from its individual values, resulting in covariates
with a mean of zero. Scaling then divided each centered variable by its
standard deviation, yielding variables with unit variance. To improve
model generalizability across AEZs and years with limited representa-
tion (Fig. 1), we applied a weighted sampling during BRF and CF model
fitting (Kamangir et al., 2024). This approach increases the probability
that observations from under-sampled AEZ-year strata contribute to
model training. Specifically, we assigned observation-level weights
inversely proportional to the joint frequency of their AEZ-yield and
year-yield groupings, thereby giving greater influence on rare yet
equally relevant production conditions.

To evaluate the performance of the BRF models in predicting AR, we
employed several metrics: (i) the root mean squared error (RMSE, in t
ha’l); (ii) the mean error (ME), which is the average difference between
predicted and observed values (with positive values indicating system-
atic over-prediction and negative values indicating under-prediction);
(iii) the model efficiency coefficient (MEC), an analog of the coeffi-
cient of determination as described in Nash and Sutcliffe (1970); and (iv)
the concordance correlation coefficient (CCC), a normalized metric that
integrates the Pearson correlation coefficient [r, (precision)] with an
index of accuracy (Lin, 1989) (Methods S2). Model performance metrics
(ME, RMSE, MEC, and CCC) were averaged across the outer folds of the
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10 x 10 nested cross-validation. To compare fertilizer-effect predictions
across the three modelling approaches, we used the r, mean absolute
difference (MAD; t ha’l), and mean deviation (MD; t ha™!) (Methods $3).
The formulas for all performance metrics are provided in Table S5, and
the results are visualized using scatter density plots.

2.5. Covariate importance, main effects, and interaction influence

The relative magnitude and directional contributions (positive or
negative) of covariates to the predictions of AR via BFR in Approach 1

([\ﬁBRFy), fertilizer effect estimates from BRF in Approach 2 (@BRFAY),

and CF fertilizer effect (ﬁcp) in Approach 3, were quantified using
SHapley Additive exPlanations (SHAP) values (Lundberg and Su-In,
2017). The SHAP value quantifies the marginal contribution of a co-
variate to the difference between a model’s prediction for a specific
instance and the baseline prediction (typically the dataset-wide mean).
Rooted in coalitional game theory (Shapley, 1953), SHAP values
conceptualize covariates as “players” collaborating to achieve a collec-
tive “payoff,” defined as the deviation of a unit-specific prediction from
the global mean prediction. In this framework, each covariate’s contri-
bution is proportionally allocated based on its marginal influence on
model outcomes (Lundberg and Su-In, 2017). Mathematically, SHAP
values satisfy the properties of “efficiency”, “symmetry”, “dummy”, and
“additivity”, ensuring a consistent and theoretically grounded attribu-
tion of predictive variance across covariates (Young, 1985). Computa-
tional implementation of SHAP values was performed using the fastshap
R package (version 0.1.1) (Brandon, 2022), with global (aggregate) and

local (instance-specific) contributions to the Kf{Bpr, [\ﬁBRFAy, and Kf{cp
visualized via the “plot_shap_bar()” function in the nestedcv R package
(version 7.12) (Lewis et al., 2023). Covariates identified as having the
highest SHAP-based importance were further analyzed to quantify and
illustrate their influence on fertilizer effect heterogeneity. Main effect
magnitudes were quantified and visualized using SHAP dependence
plots (SHAPDP) (Lundberg and Su-In, 2017), and accumulated local
effects (ALE) plots (Apley and Zhu, 2020). SHAPDPs depict the rela-
tionship between covariate values and their corresponding SHAP values,
while ALE plots estimate cumulative marginal effects by averaging
prediction changes across covariate intervals (Molnar, 2025).

To assess how interactions between covariates influence fertilizer
effects, two-way interactions were analyzed and visualized using two-
dimensional 2D ALE plots (Apley and Zhu, 2020). Unlike partial
dependence plots (PDPs) (Friedman, 2001), ALE plots account for cor-
relations among covariates, making them more reliable when covariates
are interdependent. Therefore, 2D ALE plots were preferred over 2D
PDPs (Friedman, 2001) for visualizing the interaction effects of cova-
riates on fertilizer yield effect. The 2D ALE computations followed the
methodology described in Apley and Zhu (2020). The 2D ALE plot vi-
sualizations were generated using the “FeatureEffect$new()” function
from the iml R package (version 0.11.3) (Molnar et al., 2018).

3. Results and discussion
3.1. Variability in observed absolute maize yield response to fertilizer

The AR in the pooled dataset (n = 10,916) ranged from -4.7 thalto
8.9t ha'!, with a median of 1.3 t ha! and a mean of 1.4 t ha™, indi-
cating considerable variability (coefficient of variation [CV] = 106.7 %,
Table 3). In the FST and SDF zones, AR exhibited a narrower range
(-3.1tha! to 5.6 t ha™") and lower central tendency values (mean =
09t ha'l; median = 1.2t ha‘l). These results underscore the
geographically heterogeneous effects of fertilizer on maize grain yield.
The CV of AR was highest in the FST (146.7 %) and lowest in the SDF
(82.4 %). In the GS, AR values were identical to those in the pooled
dataset, as 63 % of the fertilizer trial plots were in this AEZ. While most
AEZs exhibited mean ARs between 1.0 t ha'and 1.3 t ha’l, the SS stood
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out with a higher mean AR (2.9t ha™!) and the lowest variability (CV =
59.2 %).

3.2. Fertilizer effect prediction

Model tuning showed that the optimal “mtry” was 26 for BRF in
Approach 1, 15 for BRF in Approach 2, and 26 for CF in Approach 3. The
minimum node size was 5 for BRF in Approach 1 and CF in Approach 3,
and 15 for BRF in Approach 2. The “sample.fraction” and “honesty.
fraction” parameters were maintained at their default value of 0.5 across
all models.

Based on performance metrics, the BRF models outperformed the CF
model in predicting fertilizer-induced changes in maize yield (Fig. 2a, b,
c). In Approach 3, the CF model explained 24 % of the variability in
fertilizer yield effects (MEC = 0.24), whereas the BRF models accounted
for 32 % and 38 % in Approaches 1 and 2, respectively (MEC = 0.32 and
0.38). The CF model also exhibited higher bias (ME = -0.19 t ha™ 1y and
greater prediction error (RMSE = 1.30 t ha™1) than the BRF models in
Approach 1 (ME = -0.06 t ha™ !, RMSE = 1.17 t ha™!) and Approach 2
(ME = 0.05t ha'l, RMSE = 1.23t ha™!). Similarly, the CCC was also
lower for CF (0.34) compared with 0.46 and 0.54 for BRF in Approaches
2 and 1, respectively. Despite these performance differences, the
fertilizer-effect predictions were highly consistent across the three ap-
proaches. Pearson correlation coefficients (r) between predicted fertil-
izer effects ranged from 0.79 to 0.87, with MAD of 0.33-0.41 t ha™' and
MD of 0.11-0.23 t ha™! (Fig. 2d, e, f).

In Approach 3, the CF model estimated an average fertilizer effect on
the treated plotsof 1.9 t ha™! (95 % CI: 1.6-2.1 t ha’l), whereas the BRF
model predicted mean fertilizer effects of 1.5 t ha™! (Approach 1) and
1.3t ha! (Approach 2). Notably, the CF model predicted a narrower
range of fertilizer effects compared to both the observed AR and the BRF
model’s fertilizer effect predictions (Fig. S3). The CF model produced a
narrower range of fertilizer effects than both the observed AR and the
BRF predictions. It also suggested that 100 % of fertilized plots exhibited
positive yield responses, compared with 99.1 % in Approach 1 and
99.7 % in Approach 2 (Fig. S3).

The observed superiority of prediction performance metrics (i.e.,
CCC, MEC, ME, and RMSE) of BRF over CF in predicting fertilizer effect
aligns with methodological expectations but contradicts findings in
Kakimoto et al. (2022). Our findings are consistent with recent work by
Venkatasubramaniam et al. (2023), who found that the LASSO regres-
sion model outperformed CF in estimating treatment effect heteroge-
neity. The divergence in BRF and CF external validation performance (i.
e., versus ARqps) arises from fundamental differences in the models
objectives: BRF is algorithmically optimized to minimize prediction MSE
across the entire ARqps distribution, whereas CF prioritizes unbiased
estimation of conditional average treatment effects by explicitly
modeling causal relationships, often at the expense of predictive
precision.

The elevated fertilizer effects from ARqps calculations and A\RBRF),,
relative to A\RBRFAy and XI\KCF, likely result from the binarization of the
continuous treatment variable. This simplification reduced the CF and

BRF models’ ability to accurately capture the dose — response relation-
ship between fertilizer rates and maize yield. Consequently, both the CF

Table 3
Descriptive statistics for absolute response to fertilizer (t ha™).

n Min Max Mean+SD Median CVy
Pooled data 10,916 -4.7 8.9 1.4+1.5 1.3 106.7
FST 2141 -3.1 5.6 09+1.3 0.9 146.7
GS 6438 -4.7 8.9 1.3+1.4 1.3 105.6
SDF 1315 -2.3 5.0 1.2+1.0 1.2 82.4
SS 1022 -2.2 7.6 29+17 2.8 59.2

t Coefficient of variation
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(Approach 3) and BRF (Approach 2) may have produced attenuated
fertilizer effect estimates when relying on this binary treatment repre-

sentation. Additionally, the higher A\RBRFAY values compared to the

ARgy values may be attributed to the lack of targeted regularization in
BRF. In contrast, CF applies covariate adjustment and shrinkage tech-
niques that reduce bias and tend to produce more conservative treat-
ment effect estimates (Caron et al., 2022).

3.3. Key factors influencing fertilizer effect

Globally, PDSI emerged as the most influential covariate of fertilizer
effects on maize grain yield in Approaches 1 and 3, whereas soil
exchangeable aluminum (Al) had the greatest contribution in Approach
2, as indicated by mean SHAP values (Fig. 3a, b, ¢). PDSI and Al
exhibited contrasting contributions to fertilizer-induced yield responses,
with PDSI associated with positive average contributions and Al with
negative ones (Figs. 3 and S4). On average, PDSI explained 14 %, 9 %,
and 17 % of the variability in fertilizer yield effects under Approaches 1,
2, and 3, respectively. In contrast, Al accounted for 5 %, 10 %, and 7 %
of the variability across the same approaches (Table S6). Beyond PDSI
and Al, four additional covariates — soil silt content (SILT), RAIN, WHC,
and ELV - out of the top ten-ranked covariates from variable importance
were shared between BRF and CF models across all three approaches.
Several covariates demonstrated model-specific directions of contribu-
tion to fertilizer effect variability. For example, in Approaches 1 and 2,
exchangeable calcium (Ca), magnesium (Mg), sulfur (S), total nitrogen
(N), DRAIN, and TWI were associated with positive average contribu-
tions to fertilizer yield responses. In contrast, under Approach 1, these
same variables showed negative average contributions to fertilizer ef-
fects. Although not among the top ten most influential covariates, two
agronomic practices consistently showed positive contributions to fer-
tilizer effects: (1) the use of hybrid maize varieties (VAR) and (2) the
localized placement of fertilizer briquettes (FPLACE) directly into
planting holes (Fig. 3a, b, ¢). These findings suggest that strategic
cultivar selection and precision nutrient placement can enhance fertil-
izer performance, even if their overall explanatory power remains
modest relative to dominant soil and climatic variables.

Fig. 4 presents SHAP summary plots for the BRF and CF models
across the four AEZs, illustrating the influence of the top ten covariates
on the effect of fertilizer on maize yield. In the SS zone, three covariates
— PDSI, RAIN, and SMS - were shared among the top ten variables in
both the CF and BRF models, albeit with differing rankings. PDSI and
RAIN showed positive contributions to the fertilizer-induced yield
response, whereas higher SMS values were associated with low fertilizer
effectiveness. In the GS zone, six covariates — PDSI, VPD, Al, ELV, SILT,
and RAIN - were consistently ranked among the top ten, though their
relative importance varied. Notably, increases in PDSI, VPD, ELV, and
RAIN were associated with enhanced fertilizer response, while higher
SILT and Al levels corresponded to diminished fertilizer effectiveness. In
the FST zone, three covariates —- WHC, VPD, and ELV — were consistently
identified among the top ten across models. An increase in WHC was
associated with a reduction in fertilizer effectiveness, whereas higher
values of VPD and ELV were linked to improved yield responses to fer-
tilizer. In the SDF zone, three covariates — SILT, WHC, and Al — were
shared among the top ten variables identified by models. Similar to
trends observed in the GS and FST zones, increases in WHC, SILT, and Al
were associated with reduced fertilizer effectiveness in the SDF zone.
Additionally, in the SS zone, the use of briquette-form fertilizer appli-
cation was associated with enhanced maize yield response, as indicated
by the BRF model. However, this practice did not show a notable effect
in the FST zone according to the same model.

3.4. Contribution of soil environment to fertilizer effect

Across the three methodological approaches used to evaluate fertil-
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Fig. 2. Boosted random forest (BRF) and causal forest (CF) machine learning (ML) model evaluation based on the relationship between the observed absolute
response (ARops) and predicted fertilizer effect on maize grain yield and inter-model consistency in fertilizer effect predictions. Panels (a), (b), and (c¢) compare the
ARops to predicted fertilizer effect from the BRF in Approach 1 (AﬁBRFy), BRF in Approach 2 (ARBRFAY), and CF in Approach 3 (Aﬁcp), respectively. Panels (d), (e),
and (f) illustrate inter-model comparisons between predicted fertilizer effects: Kﬁmy vS. ARBRFA},, ﬁ{BRFy vs. ARcr, and ARBRFA}, vs. ARgr. In each panel, the black
dashed line represents the 1:1 line (perfect prediction and agreement). The grey bars at the left and the bottom side of each panel show the distribution of data points.
The statistical metrics in blue were aggregated using the mean across the outer folds from the 10 x 10 nested cross-validation.

izer yield effects, both the CF and BRF models consistently identified
SILT and Al as critical soil properties influencing fertilizer effectiveness.
This finding aligns with earlier studies in Bindraban et al. (2015),
Ouedraogo et al. (2020) and Sileshi et al. (2022), which emphasize the
central role of soil properties in modulating crop responses to nutrient
inputs. The SHAPDPs and ALE plots revealed that fertilizer contributed
positively to maize grain yield when SILT content was below 18 % —
with @BRFY ranging from 141 kg ha™ to 991 kg ha™!, and ARcr ranging
from 106 kg ha™ to 134 kg ha™'. However, this positive fertilizer effect
diminished or reversed when SILT exceeded 18 %, as both models
indicated negligible or no yield response to fertilizer in Approaches 1
and 3 (Fig. 5a, c¢). In Approach 2, the ALE plots did not exhibit a clear
monotonic relationship between SILT and fertilizer effect (Fig. 5b).
Nevertheless, the SHAPDP showed a negative trend, with positive fer-
tilizer effects primarily observed when SILT was below 18 %. Similar
findings were reported in Ichami et al. (2019) and Roobroeck et al.
(2021) in Kenya and Nigeria, respectively, indicating that this response
pattern may be widespread in sub-Saharan African (SSA) maize systems.

Soils exhibiting weak fertilizer responses are often described as “non-
responsive soils” (Vanlauwe et al., 2010), where limited fertilizer effects
arise either from inherently fertile soils or from local physical con-
straints that restrict plant access to nutrients (Kihara et al., 2016;
Njoroge et al., 2017; Vanlauwe et al., 2023). One possible explanation is
that soils with higher silt content may inherently supply more nutrients
(Rex et al., 2021), thereby reducing the marginal benefit of additional
fertilizer inputs. Another contributing factor may be the interaction
between SILT and SMS. A moderate positive correlation was observed
between SILT and SMS (r = 0.38, p < 0.05; Fig. S2), suggesting that
higher silt levels are associated with increased moisture retention. In
conditions where both SILT and SMS are elevated, excessive moisture

may lead to poor soil aeration and root stress, thereby reducing fertilizer
efficacy. Conversely, when SILT levels ranged from 10 % to 20 % —
typical of sandy loam soils — and SMS ranged from 38 v% to 48 v%
(Fig. 6a, b, c), the soil retained adequate moisture without becoming
waterlogged. This condition allows for optimal root function and
nutrient uptake, thus enhancing fertilizer effectiveness. This interpre-
tation is further supported by findings in Iseki et al. (2023), who re-
ported that spatial variability in cowpea (Vigna unguiculata) yield
response to fertilizer in Burkina Faso was largely driven by excessive soil
moisture content.

Furthermore, the 2D ALE plots for the SILT x CLAY interaction
(Fig. S3) demonstrate that soil texture plays a pivotal role in yield
response to fertilizer. Fertilizer effects were positive and pronounced in
soils where SILT ranged from 18 % to 25 % and CLAY ranged from 10 %
to 20 %. This specific range likely supports the optimal balance between
nutrient retention (influenced by clay) and favorable physical conditions
for root growth and aeration (influenced by silt and sand). Similar in-
teractions have been observed in Argentina (Correndo et al., 2021),
where soil texture modified the shape and magnitude of nitrogen
response curves. These findings reinforce the importance of considering
soil physical properties — alongside fertility indicators — when inter-
preting spatial variability in crop responses to fertilizer in smallholder
systems (Pieri, 1992).

An increase in soil Al concentration was consistently associated with
a reduction in fertilizer effectiveness, regardless of the modeling
approach used or the AEZ considered (Figs. 3, 4, 5). SHAPDPs and ALE
plots further illustrate a positive fertilizer response when soil Al levels
were below 90-110 mg kg™!, with estimated fertilizer effects ranging
from 271kgha™! to 626 kgha™! in Approach 1, from 38kgha™! to
168 kg ha™ in Approach 2, and from 212 kgha™! to 463 kgha™ in
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Fig. 3. Contributions of covariates to the variability in fertilizer-induced maize yield response in Ghana. Panels (a) and (b) present results from boosted random
forest (BRF) models based on 10,916 observations under Approaches 1 and 2, respectively, while panel (c) shows results from a causal forest (CF) model using 2854
observations under Approach 3. The analyses utilize SHapley Additive exPlanations (SHAP) values to assess the relative importance of each covariate and the di-
rection of their average contributions to the predicted fertilizer effects. In all panels, each bar represents the contribution of a covariate to the model’s fertilizer effect
prediction: red bars indicate positive average contributions, while blue bars indicate negative average contributions.

Approach 3 (Fig. 5 a, b, c¢). However, beyond this threshold Al
=90-110 mg kg™1), the SHAP value and ALE curve declined sharply,
ultimately resulting in negative yield responses. This finding might be
explained by Al toxicity — a common occurrence in SSA acidic (pH < 7)
(Table 1, Table S1 and S2), and phosphorus-depleted (5-12.5 mg kg’l)
soils (Table 1) (with optimal soil P for maize production in SSA >
25 mg kg™!) — which can restrict crop root development and limit the
uptake of essential nutrients such as P (Fageria and Baligar, 2008). In
acidic soils, increased levels of exchangeable Al reduce P bioavailability;
however, as soil pH rises, P is released and becomes accessible to plants.
Consequently, the 2D ALE plot for the interaction between pH and Al
showed a positive fertilizer effect when soil pH is increased from 5.3 to
6.4 and exchangeable Al is below 120 mg kg, whereas low or no fer-
tilizer effect is observed when soil pH is below 6 and exchangeable Al
increases from 120 mg kg™ to 210 mg kg! (Fig. 6d, e, f). These findings
highlight the dual role of soil pH in controlling Al toxicity and P avail-
ability, underscoring how critical edaphic thresholds shape applied
fertilizer effectiveness (Su et al., 2020).

3.5. Climate-related heterogeneity of fertilizer effects

Both the CF and BRF models identified VPD, RAIN, and PDSI as key
climatic variables influencing the effectiveness of fertilizer on maize
grain yield (Fig. 3). On average, higher VPD and PDSI values were
associated with greater yield gains from fertilizer applications (Fig. 5g,
h, i, j, k, 1). The positive effects of fertilizer were especially pronounced
in environments where growing season VPD ranged between 0.8 kPa
and 1.4 kPa and PDSI values were between -2.0 and 1.9, indicative of
moderately wet conditions. Conversely, in drier environments (i.e., PDSI
ranging from —6.3 to —2.0), the contribution of fertilizer to maize yield
was substantially reduced. For example, in experimental plots with PDSI
values between -2.0 and 1.9, fertilizer-induced yield gains were sub-
stantial, ranging from 62 kg hal to 1568 kg ha! in Approach
1.8kgha? to 463kgha’ in Approach 2, and 166kgha to
1119 kg ha™! in Approach 3. These results are consistent with previous

findings that highlight the suppressive effects of drought on fertilizer
performance. Emery et al. (2020), for instance, reported that drought
conditions significantly reduced NF efficacy in switchgrass (Panicum
virgatum) in southwest Michigan, USA. Similarly, Juhdsz et al. (2024)
showed that drought stress diminished S and N uptake in spring wheat
(Triticum aestivum L.) in a controlled greenhouse experiment. The posi-
tive association between PDSI and fertilizer effectiveness can be attrib-
uted to improved moisture conditions in both the soil and atmosphere.
PDSI was moderately correlated with RAIN (r = 0.38, p < 0.05) and
growing-season soil moisture (SMgp; r = 0.32, p < 0.05). Rainfall itself
was strongly correlated with SMgp (r =0.78, p < 0.05) (Fig. S5).
Interestingly, increases in SMgp were associated with reduced fertilizer
effectiveness, possibly due to its negative correlation with RD
(r =-0.52, p < 0.05), which may impair acquisition of nutrients from
applied fertilizer. These findings underscore the critical role of water
availability — not just quantity but also its interaction with root archi-
tecture — in modulating nutrient uptake (Li et al, 2009). As a
well-established indicator of atmospheric drought, higher PDSI values
reflect wetter conditions that enhance fertilizer dissolution and nutrient
mobility via mass flow mechanisms (Swann et al., 2016).

In the VPD range of 0.8-1.5 kPa, fertilizer-induced yield responses
increased from 81 kg ha™! to 979 kg ha™! according to BRF in Approach
1, from 30 kg ha™! to 505 kg ha™* according to BRF in Approach 2, and
from 5 kg ha™! to 141 kg ha™! according to CF in Approach 3. This sig-
nificant positive contribution of VPD to maize grain yield response
under fertilization can be attributed to the balance between atmospheric
moisture demand (driven by higher VPD) and soil moisture availability.
As shown in Fig. 7, when VPD increased from 0.6 kPa to 1.2 kPa and
SMgp ranged between 90 mm and 190 mm, fertilizer application
enhanced maize grain yield by up to 20 kg ha™! (CF) and 0.6-1.5 t ha™!
(BRF). By contrast, under drier conditions (SMgp < 90 mm), rising VPD
did not translate into yield gains due to fertilizer application. These
patterns can be explained mechanistically: under moderate to high soil
moisture — maintained by sufficient rainfall — elevated VPD intensifies
transpiration-driven mass flow, thereby facilitating nutrient dissolution
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Fig. 4. SHapley Additive exPlanations (SHAP) summary plots showing the influence and importance of key covariates on fertilizer yield effect predictions across the
four agroecological zones (AEZs) using causal forest (CF) and boosted random forest (BRF) models. AEZs include the (a, b, ¢) Sudan Savannah (SS); (d, e, f) Guinea
Savannah (GS); (g, h, i) Forest-Savannah Transition (FST); and (j, k, 1) Semi-Deciduous Forest (SDF). Each plot illustrates the ten most important covariates’ in-
dividual SHAP values for each data point in the AEZ, i.e., the contribution of the ten most important covariates to fertilizer effect predictions (t ha™) according to the
two machine learning models in Approaches 1, 2, and 3. The color represents the covariate value normalized in the range (0-1), with blue being low and red

being high.

and uptake (Devi and Reddy, 2020). However, when soil moisture is
limited, the heightened atmospheric demand imposed by increased VPD
exacerbates water stress and undermines the crop’s ability to mobilize
and absorb applied nutrients from fertilizer.

Climate variables were among the most influential factors explaining
the heterogeneity of fertilizer effects on maize yield across the SS, GS,
and FST zones (Fig. 4). While the magnitude and direction of their
contributions varied across AEZs, increases in seasonal RAIN, PDSI, and
VPD were generally associated with positive fertilizer effect on maize
grain yield. The SS zone exhibited the highest average and median
fertilizer-induced yield gains (Table 3). This pronounced response can
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be attributed to a combination of favorable hydroclimatic conditions
and inherent soil characteristics. During the maize growing season, the
SS zone received substantial RAIN (~732 mm) and SRAD (~879.6 kWh
m2) under moderate atmospheric demand (median VPD ~ 1.0 kPa)
(Tables S1 and S2). Together, these conditions promote photosynthesis,
root growth, and nutrient uptake following fertilizer application.
Moreover, the relatively low inherent soil fertility in the SS zone
(Tables S1 and S2) likely amplified maize yield responses, as fertilizer
inputs helped alleviate existing nutrient deficiencies. Hence, the com-
bination of adequate water and energy inputs with fertilizer-induced
nutrient correction explains the strong fertilizer efficacy observed in
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Fig. 5. Effect size of the four important covariates explaining fertilizer yield effect variability. Panels (a-1) show SHapley Additive exPlanations (SHAP) values (black
dots) overlaid with accumulated local effects (ALE, red lines) and spline-smoothed trends regression fit to the SHAP values (purple lines) for (a, b, ¢) soil silt content
(SILT, %); (d, e, f) soil exchangeable aluminum (Al, mg kg’l); (g, h, i) Palmer Drought Severity Index (PDSI); and (j, k, 1) vapor pressure deficit (VPD, kPa) from
Approaches 1 and 2 (boosted random forest model) and Approach 3 (causal forest model). Marginal distributions of covariate values are visualized as grey density

bars along the axes.

SS compared with other AEZs.

In contrast, within the more humid and inherently fertile SDF zone,
the influence of climatic variables on the fertilizer effect, while still
positive and significant, was secondary to that of soil properties. Soil
physical characteristics (e.g., WHC, SILT) and chemical properties (e.g.,
Al) were the dominant factors modulating fertilizer response. This shift
in driver importance occurs because, in humid and relatively fertile
environments like SDF, water is less frequently the primary limiting
factor. Consequently, fertilizer effects are predominantly governed by
the soil’s nutrient supply and retention capacity, a principle supported
in Zingore et al. (2007), which demonstrated that low SOC led to poor
fertilizer responses in Zimbabwe. Conversely, in the drier SS and GS
zones, moisture availability strongly limits nutrient uptake, making
climatic factors the predominant drivers of fertilizer responsiveness.

The critical influence of climate on fertilizer efficacy has direct im-
plications for smallholder decision-making. Billé and Rogna (2021) and
Heisse and Morimoto (2024) indicated that fertilizer adoption is highly
sensitive to climate-related risks. Increased rainfall variability and
warming could therefore undermine farmer confidence in fertilizer in-
vestments, particularly among capital-constrained smallholders,
creating a cycle of low input use and poor yields. Similarly, Sileshi et al.
(2008) attributed low fertilizer responsiveness in SSA to high interan-
nual rainfall variability, while Ouedraogo et al. (2020) observed that
yields of millet, sorghum, and maize increased with RAIN when fertilizer
was applied. Overall, these results underscore that the interaction be-
tween hydroclimatic conditions and fertilizer responsiveness is highly
AEZ-specific. Consequently, improving agronomic efficiency and
reducing climate-related risks require nutrient management strategies
tailored to AEZ moisture regimes. Key adaptations include adjusting
fertilizer rates and application methods (e.g., FPLACE enhanced maize
yield response in SS but not in FST) (Fig. 3 a, b), adopting
moisture-conserving amendments, using drought-tolerant cultivars, and
promoting integrated soil fertility management (Vanlauwe et al., 2015).
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3.6. Weaknesses, strengths and future work

This study illustrates the capacity of ML models to estimate the
causal effect of fertilizer on maize yield while uncovering the underlying
sources of heterogeneity. These findings demonstrate the utility of
causal ML in identifying key biophysical drivers of treatment effect
variability, a critical step toward precision fertilizer management in
SSA. Nonetheless, several methodological and contextual limitations
should be acknowledged. A key limitation stems from the use of long-
term static soil data. Although spatially detailed, these soil layers span
nearly two decades, during which some properties may have changed
due to land use dynamics, erosion, or management interventions. Such
temporal mismatch could introduce or increase bias in model fertilizer
effect estimates and prediction. Future studies would benefit from lon-
gitudinal soil sampling to better reflect current field conditions, though
this is often constrained by logistical and financial challenges, particu-
larly in resource-limited settings such as Ghana. In addition, the climate
data used in this study may lack sufficient granularity due to the limited
density of weather stations in Ghana (Kidd et al., 2017). This hampers
the capacity to fully capture local climatic variability, especially for
short-term or extreme weather events that strongly affect crop responses
to fertilizer. Improving the resolution and accuracy of climate inputs
would likely enhance model performance, but doing so would require
infrastructural investments that extend beyond the scope of most agro-
nomic studies.

Another methodological trade-off involves the dichotomization of
treatment into fertilized versus control plots, considering only treatment
plots meeting or exceeding minimum rate thresholds. While this binary
approach streamlined statistical interpretation within a causal inference
framework, it can mask the richness of dose-response relationships
(Zhao et al., 2013). Moreover, this approach does not capture the vari-
ation in actual fertilizer rates applied by farmers, which are often far
below the thresholds considered in this study, nor does it account for
fertilizer application timing, a factor known to strongly influence fer-
tilizer use efficiency (Mosisa et al., 2022). As a result, these limitations
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Fig. 6. Two-dimensional visualization of the contributions of the interactions between (a, b, ¢) soil silt content (SILT, %) and soil moisture content at saturation
(SMS, %v) and (d, e, f) soil exchangeable aluminum (Al, mg kg’l) and soil pH to predicted fertilizer effect. The color represents the accumulated local effect (ALE)
values, with blue colors indicating negative interaction contribution to fertilizer effect and red to orange colors indicating positive interaction contribution. White-
grey areas refer to covariate value combinations not present in the training dataset, where ALE values were not computed. The surface was obtained by bicubic
interpolation of the ALE obtained from the calibration dataset. Marginal distributions of covariate values are visualized as grey density bars along the axes.

not only constrain the capacity to infer optimal input rates but also
contribute to the unexplained portion of fertilizer effect variability.
Emerging causal inference approaches that accommodate continuous
treatment intensities, such as generalized propensity score models
(Hirano and Imbens, 2004; Imai and Van Dyk, 2004), offer promising
alternatives for future research.

The dataset was unbalanced; 63 % of observations came from the GS,
and 71 % were collected between 2020 and 2022 (Fig. 1). This uneven
distribution may have influenced how well the BRF and CF models
generalized, as noted in Kowatsch et al. (2024). To limit this effect, we
used weighting procedures during model training. Model performance
varied across AEZs (Table S7). The highest model accuracies were
observed in the SS, which had the fewest observations (Fig. 1a), with
MEC values between 0.27 and 0.49. In contrast, performances were
lowest in the FST zone. These differences reflect strong variation in soil
and climate conditions that shape fertilizer responses. The weaker per-
formances in the FST may be due to the higher CV in fertilizer effects
(146.7 %) compared with 59.2 % in the SS (Table 3). In the SS, FPLACE
improved fertilizer effect, while in the FST, fertilizer placement had little
effect. This suggests that some management or environmental factors
important for explaining fertilizer effect variability in the FST were not
captured by the BRF and CF models. In this study, we did not pair
weighting with stratified cross-validation nor did we evaluate the
broader implications of spatiotemporal data imbalance on a model’s
capacity to generalize. Consequently, future work should use more
advanced methods, such as spatiotemporal nested cross-validation, and
systematic investigations into fertilizer effect prediction within imbal-
anced regression frameworks (Roberts et al., 2017; Sweet et al., 2023;
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Kamangir et al., 2024).

Understanding the spatial heterogeneity of yield response to fertil-
izers is essential for improving nutrient use efficiency in smallholder
systems. Earlier studies (Sileshi et al., 2008, 2022; Kihara et al., 2016;
Ouedraogo et al., 2020) reported this variability and related it to soil and
climate conditions, though using mainly linear or meta-analytical ap-
proaches. More recent applications of ML (Abera et al., 2022; Zingore
et al., 2022) improved predictive performance but remained correlative
and did not isolate heterogeneous treatment effects. Kakimoto et al.
(2022) demonstrated the potential of the CF model, albeit with synthetic
data. Our study advances these works by applying a causal inference
framework to extensive multi-year field data from Ghana, by combining
CF with BRF models to support more context-specific fertilizer
recommendations.

Further limitations arise from the controlled nature of the experi-
mental data. Research-station trials, by design, exclude many con-
founding and collider factors encountered in real smallholder
systems—such as pest outbreaks, labor constraints, and socio-economic
variability. Consequently, the generalizability of these trial-based find-
ings to farmer-managed conditions remains uncertain. Incorporating
observational data from farmers’ fields into CML frameworks could help
address this gap, allowing for the estimation of fertilizer treatment ef-
fects under more realistic and heterogeneous conditions.

From a model interpretation standpoint, the study highlights notable
differences in the consistency of ML interpretability tools. SHAPPDs and
ALE curves yielded broadly aligned insights for the CF model, but less so
for the BRF model (Fig. 5). This likely reflects the CF model’s focus on
stable, causally informative relationships, whereas classical ML models
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Fig. 7. Two-dimensional visualization of the contributions of the interactions between (a, b, ¢) vapor pressure deficit (VPD, kPa) and long-term soil moisture content
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the axes.

are more susceptible to confounding and noise. As such, CF not only
supports causal inference but also improves transparency and inter-
pretability — an advantage that is particularly relevant in data-driven
agricultural policy and decision support systems. Despite the growing
use of ML interpretability tools in predictive modeling, their application
within causal ML remains limited (Svensson et al., 2025). This study
contributes to a nascent yet critical area of research: interpretable causal
modeling in agriculture. Further exploration of how interpretability
methods interact with causal estimators will be vital for developing
trustworthy, actionable recommendations in precision agronomy.

4. Conclusion

This study demonstrates the critical role of NPK fertilizer in
enhancing maize grain yields across Ghana’s AEZs while revealing
substantial variability in fertilizer effects driven by soil, climate,
topography, and management conditions. Using both predictive and
causal ML models, we identified soil properties, particularly SILT, Al,
and SMS, as major determinants of fertilizer responsiveness, alongside
climatic factors such as RAIN, VPD, and PDSI. The fertilizer effect was
strongest in the SS zone, where favorable hydroclimatic conditions and
low inherent soil fertility enhanced yield responses to nutrient inputs.
While BRF achieved high predictive accuracy, CF provided more inter-
pretable causal relationships consistent with agronomic knowledge. The
integration of predictive and causal ML thus offers a powerful frame-
work for understanding site-specific variability in fertilizer effects and
for supporting data-driven nutrient management strategies. Our findings
argue against blanket fertilizer recommendations. Instead, they
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advocate for AEZ-specific guidelines that account for local soil and
climate conditions. In climatically variable zones like the SS and GS,
policies should promote weather-informed advisory systems and
moisture-conserving practices to enhance returns on input investment
and reduce farmer risk. To further improve the relevance of BRF and CF
models, future work should incorporate dynamic soil data, continuous
treatment levels, and on-farm observational data. Ultimately, this data-
driven pathway toward site-specific recommendations can guide agri-
cultural policy, optimize subsidy targeting, and support the resilience
and livelihoods of Ghanaian farmers facing increasing climate
uncertainty.
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