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ABSTRACT
Despite their potential to inform sustainable regional harvest and climate-resilient fisheries management, spatial stock assess-
ment models remain underused for management advice. To identify barriers that inhibit broader use of these methods, we con-
ducted a blinded international simulation experiment mimicking real-world stock assessment development when confronting 
spatial complexity. Seven analyst teams built spatially aggregated and spatially explicit assessment models using data simulated 
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from high-resolution operating models based on Indian Ocean yellowfin tuna and Ross Sea Antarctic toothfish dynamics. Each 
team documented how assessment software platform, data analyses, model building approach, and diagnostics influenced model 
complexity and realism. A consensus emerged on key assessment building approaches: (1) conduct high-resolution data analy-
ses to identify appropriate spatial structure; (2) start with simplified models and incrementally add complexity; (3) iteratively 
evaluate diagnostics to determine necessary spatial complexity; and (4) maintain models with different spatial structures to aid 
interpretation. The experiment also revealed several valuable insights for parameterising assessments, including consideration 
of data pre-processing with spatiotemporal models to better inform data-sparse regions; regression trees to identify fleet and 
spatial structure; trade-offs in complexity between productivity and movement dynamics to achieve tractable and stable model 
structures; and ensemble modelling approaches to address structural uncertainty. Our findings demonstrate that international 
collaborations and simulation experiments are crucial for addressing challenges in implementing spatial stock assessments and 
for evaluating whether their added complexity is justified given management objectives. Broader collaborations are encour-
aged to foster innovation in fisheries management and to help recognise the practical trade-offs between model parsimony and 
complexity.

1   |   Introduction

Space is a fundamental dimension of most ocean manage-
ment decisions (van den Burg et al. 2019; Pittman et al. 2021). 
Sustainable harvest of living marine resources requires scien-
tifically informed management decisions that integrate myr-
iad dynamic biological and fishery processes (Goethel, Omori, 
et  al.  2023) across a progressively demanding ocean-use land-
scape (Rea et al. 2017). Hence, there has been growing recog-
nition that stock assessments, which provide the scientific 
basis to support fisheries management, must more explicitly 
incorporate spatial marine information into species harvest 
and ecosystem health decision processes. While there has been 
increased development of spatial stock assessment models and 
software applications to inform spatiotemporal management 
actions (Punt  2019b; Goethel, Berger, and Cadrin  2023; see 
Berger et al. 2024 for a description of the spatial capabilities of 
the most widely implemented assessment platforms), utilisation 
of spatial assessments within management frameworks remains 
scarce despite a clear need to ensure sustainable regional har-
vest and protect biocomplexity. Primary impediments to wider 
operational use of spatial assessments include increased data 
requirements, added model complexity, expanded model spec-
ification decisions (e.g., multiplicative effects of dimensionality 
and uncertainty; Evans et  al.  2015), and institutional inertia 
(Berger et  al.  2017; Punt  2019a, 2019b; Goethel, Berger, and 
Cadrin 2023).

The choice between spatially aggregated (single popula-
tion), spatially implicit (e.g., fleets-as-areas), or spatially 
explicit (mechanistic account of spatial dynamics) models 
often hinges on data availability and the underlying spatial 
complexity of the modelled population (Berger et  al.  2024). 
Ideally, spatial model complexity should be guided by sim-
ulation testing, which can evaluate variance-bias tradeoffs 
and assess performance related to management objectives. 
Previous studies have demonstrated that ignoring spatial pro-
cesses in stock assessments can bias estimates of stock status 
and management quantities (McGilliard et  al.  2015; Goethel 
et  al.  2021; Bosley et  al.  2022). However, spatially explicit 
models may perform worse than their spatially implicit or 
spatially aggregated counterparts when spatial dynamics are 

uncertain or unknown (Li et al. 2015; Lee et al.  2017; Guan 
et al. 2019). Despite the obvious recognition that model perfor-
mance depends on how well it reflects population structure, 
the influence of the analyst and their decisions—prior knowl-
edge, model development approach, and assessment platform 
choice—on model robustness remains poorly understood (e.g., 
NRC  1998; Deroba et  al.  2015). Spatial structure increases 
the dimensionality and uncertainty associated with these is-
sues. This underscores the need for more realistic simulation 
studies that emulate the real-world uncertainties associated 
with developing and implementing spatial assessment mod-
els (Goethel et al. 2024). In particular, studies where the true 
spatial structure is unknown to analysts (i.e., a blinded study 
design) can help identify biases arising from incorrect struc-
tural assumptions and evaluate whether incorporating spatial 
structure is necessary.

Simulation studies are an ideal tool to explore barriers and 
solutions to including spatial structure in stock assessments for 
management (Goethel et al. 2024; Punt et al. 2025). However, 
no previous studies have applied multiple spatial stock assess-
ment software packages to the data simulated by spatially 
explicit operating models (OMs). To address this gap, we de-
signed a collaborative, blinded, team-oriented simulation ex-
periment to elicit how expert analysts navigate the assessment 
process when confronting spatial complexity, with emphasis 
on key successes, barriers, uncertainties, and novel approaches 
during model development. The objective of the experiment 
was to identify practical strategies to support broader adoption 
of spatial stock models in operational fisheries advice.

Multiple assessment analyst teams developed stock assessments 
based on the same high-resolution OM data, but were blinded 
to the true underlying spatial structure and dynamics. Here, we 
document and synthesise the analytical processes of each team, 
including workflows, model structures, and decision-making 
processes, to explore how spatial complexity was interpreted 
and addressed across teams. As spatial stock assessments gain 
traction in management contexts, this study provides a template 
for robust spatial simulation testing and identifies key consid-
erations for integrating spatial dynamics into decision-making 
frameworks.
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2   |   Methods

A high-resolution, spatially explicit OM was used to simulate 
data conditioned on real-world biology and fishery dynam-
ics for two case studies, Indian Ocean yellowfin tuna (YFT; 
Thunnus albacares) and Ross Sea region Antarctic toothfish 
(TOA; Dissostichus mawsoni; see Figure 1). The two exemplar 
stocks were identified as economically and internationally im-
portant case studies with spatial structure driven by unique 
processes. Yellowfin tuna is a highly migratory species with a 
broad-scale distribution that is harvested using multiple gear 
types. Antarctic toothfish is a deep-dwelling demersal species 
that exhibits ontogenetic migration patterns and is harvested 
by a single gear-type fishery in the Ross Sea region. The gen-
eral population and fishery dynamics for these two species 
offered a way to simulate some real-world spatial population 
structure situations for this experiment. The study design is 
not intended to address specific management concerns for 
these species.

An international group of stock assessment analysts was con-
vened to develop stock assessments for the simulated datasets 
using various software platforms with spatial modelling ca-
pabilities. We compared model-building processes across the 
analyst teams and assessment spatial structures. By emulating 
the data and knowledge gaps of real-world assessment appli-
cations, the simulation experimental design was able to repre-
sent the entire stock assessment process from high-resolution 
data analysis to model development and diagnostic testing. 
The primary goals of the experiment were to document how 
each analyst team approached the building of a spatially ex-
plicit stock assessment model, record how various modelling 
assumptions and parametrisations were decided, and then 
compare overall performance across model spatial structures. 
The experiment concluded with an in-person workshop to dis-
cuss and interpret the simulation results, summarise lessons 
learned, and provide recommendations for similar simulation 
studies in the future.

The design and results of the experiment are presented across 
four research products. A review manuscript summarised the 
spatial capabilities of current generalised assessment platforms 
(Berger et al. 2024). The utility and development of the spatially 
explicit, high-resolution, data-conditioned OMs are forthcoming 
(based upon earlier work by Dunn, Hoyle, and Datta 2020). The 
simulation results based on the comparison of model outputs 
across spatial structures for the yellowfin tuna case study, along 
with general conclusions from the simulation experiment, are 
provided in Goethel et al. (2024). In this article, we describe the 
development process undertaken by each team to implement 
a spatial assessment model, including the decisions and ap-
proaches that analyst teams confronted. We provide an overview 
of the experimental design, describe each OM and EM (assess-
ment platform), and describe the criteria used to contrast each 
team's model building process and resultant model complexity.

2.1   |   Experimental Study Design

The experiment organising committee developed and condi-
tioned the OMs, simulated replicate data sets, disseminated data 
and guidance documents to each analyst team, and collated 
experiment results (Figures  1 and 2). Seven assessment ana-
lyst teams, spanning multiple countries and regional fisheries 
management organisations (RFMOs), were each tasked with 
developing a spatially aggregated and spatially explicit stock as-
sessment model using an assessment platform of their choosing. 
Teams received a standard set of base instructions and guidance 
documents1 to ensure consistent and identical information was 
available. Each team was requested to document the model 
building process, including data analysis, parametrisation 
choices, model diagnostics, and model validation approaches. 
Analyst teams could develop an EM for either or both case stud-
ies, but were encouraged to minimally develop a model for the 
yellowfin tuna case study first. EMs were built using a single 
representative dataset first and then applied to the remaining 
99 replicate data sets for a total of 100 simulations for the given 

FIGURE 1    |    A conceptual overview of the simulation study design where the focus of the current article is on objectives one and three (adapted 
from Goethel et al. 2024, which address objective 2).
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case study. Results (including model outputs and descriptions of 
the model building process) were provided to the experiment or-
ganisers for synthesis and comparison (see Goethel et al. 2024, 
for a summary of model performance results; experiment mate-
rials and model outputs are available at the project GitHub2 site). 
Further OM (SM.A and SM.B for YFT and TOA, respectively) 
and EM (SM.C and SM.D) details are provided in the Supporting 
Information.

2.2   |   Operating Models

The OMs were developed with the Spatial Population Model 
(SPM; Dunn, Rasmussen, and Mormede  2020), a spatially ex-
plicit population modelling program written in C++ (source 
code is available3). SPM allows high-resolution modelling of 
populations with complex spatial structure and enables integra-
tion of environmental covariates to inform spatial distribution 
and movement. The SPM implementations for both exemplar 
species were conditioned on empirical data, observed biology, 
and expert judgment to inform important ecological processes.

The general structure (Table 1) and subsequent development of 
each OM followed several steps.

	 i.	 The SPM was tailored for a given species by emulating 
assumptions and dynamics from the most recent stock 
assessment.

	 ii.	 The SPM was then conditioned by running in estimation 
mode and fitting to the available empirical datasets (i.e., 
catch, catch-per-unit effort (CPUE), tagging, and length 
or age frequency data) and estimating key population and 
fishing parameters (e.g., fishery selectivity, catchability, 
fishing mortality, and parameters defining the movement 
preference functions).

	iii.	 Model validation was conducted (see Dunn, Hoyle, and 
Datta  2020) to ensure tractable model performance, in-
cluding fitting the simulated data with an independent 
stock assessment platform (Stock Synthesis 3, or SS3, for 
YFT; C++ Algorithmic Stock Assessment Laboratory, or 
CASAL, for TOA) to ensure that the data was informative 
and sufficient to allow model convergence and satisfactory 
estimation performance (e.g., estimated spawning stock 
biomass trends aligned with the OM reality).

	iv.	 The conditioned OM was then evaluated across one hun-
dred stochastic realisations in simulation mode to gen-
erate simulated (i.e., ‘pseudo’) replicate data sets that 
differed according to observation error (CPUE, matu-
rity, compositional, and tagging data) and process error 
(recruitment).

	 v.	 For the purpose of developing and testing stock assessment 
models with different spatial structures, the pseudo-data 
for each OM realisation was aggregated and made avail-
able to analyst teams at three different spatial resolutions: 
grid cell-specific data (no aggregation) was made available 
for data exploration, a post-factum aggregation of the data 
to four regions, and a post-factum aggregation to a single 
region.

The OMs were uniquely parameterised to calculate abundance-
at-age and biomass-at-age by grid cell, reproductive cate-
gory (immature and mature), and tagged category (tagged, 
untagged) by accounting for spatially explicit recruitment, 
movement, fishing and natural mortality, and demographic 
processes (Figure  3). The primary spatiotemporal popula-
tion and fishery dynamics for the YFT and TOA OMs are de-
scribed next, while the full details of each OM are provided 
in Supporting Informations SM.A and SM.B (YFT and TOA, 
respectively) and on GitHub.4,5

FIGURE 2    |    The key developments, products, and milestones associated with the simulation experiment study design.
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2.2.1   |   Indian Ocean Yellowfin Tuna

Yellowfin tuna is a highly migratory species that ranges across 
the Indian Ocean, exhibiting complex spatial structure, move-
ment, and fishery dynamics. The YFT OM assumes a single pop-
ulation modelled across a spatial grid of 221 equal-sized cells (5° 
latitude × 5° longitude; Figure 3). The model was single-sex and 
age-structured (ages 1 to 7+ years, modelled as 28 quarter-ages) 
with a quarterly time step (i.e., representing quarter-years from 
1952 to 2015), and tracked both immature and mature fish inde-
pendently. The quarterly time step was split into three phases: 
(1) recruitment of fish followed by tag releases and then fish 
movement among cells; (2) fishery operations to achieve cell-
specific catch and all data observations; and (3) biological state-
level transitions (including natural mortality and age, maturity, 
and growth increments). The YFT OM was primarily parame-
trised based on the recent operational spatial assessment built 
in Stock Synthesis 3 (SS3), which modelled four spatial regions 
(Fu et al. 2018).

Recruitment occurred quarterly (i.e., seasonally at 0.25 year 
increments) at the first age group (quarter age 1) and was the 
product of the stock-recruitment relationship (with a one quarter 
year lag from associated SSB), a year-class strength multiplier 
for each cohort, and a geographic apportionment that assigned 
total recruitment to individual grid cells. The base recruitment 
apportionment layer was defined by the average observed dis-
tribution of juvenile fish < 40 cm in the fishery. Movement was 
modelled using habitat-based preference functions that differed 
by maturity stage where grid cell preference included informa-
tion about sea surface temperature, chlorophyll-a concentra-
tions, and the distance between cells.

Seven unique fleets harvest YFT at varying spatiotempo-
ral scales. These fleets were modelled assuming a time- and 
spatially-invariant double-normal selectivity function, except 
for the primary longline fleet, which was assumed to have a lo-
gistic selectivity function and time-invariant catchability (i.e., 
for CPUE calculations). Each fleet had a unique spatiotemporal 
distribution mimicking the real-world catch distributions (Fu 
et al. 2018). The amount and distribution of mark-recapture tag-
ging data and release events also followed the actual data for yel-
lowfin tuna (Fu et al. 2018), with the model adjusting for tag loss, 
tag-related mortality, and reporting rates. Many of the observed 
tag releases were of immature fish in a limited geographic region. 
Collectively, the spatial dynamics of the yellowfin tuna OM led to 
a temporally dynamic distribution of cells with high population 
density, exemplified by high initial spawning stock biomass (SSB) 
in northern cells that rapidly declined due to high fishing pres-
sure (Goethel et al. 2024). The movement preference functions of 
immature fish, which indicated they were more likely to move, 
resulted in broader regional intermixing of juveniles.

Data used to condition the YFT OM included catch, CPUE, 
catch length composition, tag releases, and tag recaptures. 
For the OM simulations, data of the types used for condi-
tioning were simulated assuming observation and process 
error, except that total catch was assumed known without 
error. Recruitment process error was driven temporally by 
quarter-specific year-class strength multipliers that assumed 
lognormally distributed deviations with a variance of 0.6 and Sp
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spatially by quarter-specific weighted random deviations in 
cell-specific apportionment using correlated Gaussian ran-
dom fields (SM.A).

2.2.2   |   Antarctic Toothfish

Spatial dynamics for Antarctic toothfish in the Ross Sea region pri-
marily stem from ontogenetic movement patterns (where fish pro-
gressively move to deeper water as they age) and migrations to and 
from spawning grounds, while exploitation is due to a single long-
line fishery. Population dynamics result in spatial selectivity pat-
terns due to differences in the availability of fish to the fishing gear 
at different locations according to age and season (Hanchet et al. 
2008; Grüss et al. 2021). The TOA OM is based on work originally 
developed to better model toothfish spatiotemporal population and 
management dynamics (Mormede et al. 2014). Parametrisation of 
the OM was informed by an operational spatial assessment built in 
CASAL assuming four spatial regions (Dunn 2019).

The TOA OM assumes a single population modelled across 
a spatial grid of 189 equal-sized cells (156 km × 156 km; 
Figure  3). The model was single-sex and age-structured (i.e., 
ages 2 to 30+) with an annual time step (i.e., representing years 
1995 to 2021). The life cycle of TOA was emulated by tracking 
fish in each grid cell by reproductive state that differed across 
ages and within years, including: immature, mature, pre-
spawning, spawning, or post-spawning (Mormede et al. 2014). 
The yearly time step was split into three seasons, each allowing 
for specific population dynamics. The summer season included 

recruitment, fishing, half of natural mortality, tag releases, and 
the specification of reproductive state. In winter, the other half 
of natural mortality occurred as well as movement of immature 
fish, spawning migrations, reproductive transitions from pre-
spawners to spawners, and spawning. Spring was solely used 
for reproductive transitions from spawners to post-spawners, 
post-spawning migrations, and the annual age increment.

Recruitment occurred at age 2 in all cells with a depth less than 
800 m (i.e., spatially stationary), and total recruitment was the 
product of the stock-recruitment relationship and a year-class 
strength multiplier. Movement was modelled using habitat-based 
preference functions that differed by reproductive state, where 
grid cell preference was based on median depth, temperature at 
500 m depth, proportion of preferred depth habitat in each cell, 
the presence of seamounts, and the distance between cells. The 
fishery was modelled as a single longline fleet operating across 
the model domain represented by a spatiotemporally invariant 
selectivity and catchability (i.e., for CPUE calculations). The 
amount and distribution of mark-recapture tagging data and re-
lease events also mimicked actual data for toothfish, where fish 
were tagged in proportion to the full-size distribution of the catch 
for each age and reproductive state. Tag loss, tag-related mor-
tality, and non-reporting were all assumed to be negligible. The 
general spatial dynamics of the TOA OM was primarily based 
on the movement preference functions, which led to ontogenetic 
distribution patterns according to maturity and spawning states.

Data used to condition the TOA OM included catch, CPUE, catch 
age composition, tag releases, tag recaptures, and proportions 

FIGURE 3    |    Summary of the primary dynamics and spatial drivers of the Indian Ocean yellowfin tuna (A) and Ross Sea region Antarctic tooth-
fish (B) case studies.
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spawning-at-age. The same data types used for conditioning the 
OM were simulated, assuming observation and process error, ex-
cept total catch was assumed to be known without error. Process 
error in recruitment year class strength was implemented for each 
iteration, assuming lognormally distributed deviations with a 
standard deviation of 0.6.

2.3   |   Assessment Models

Seven analyst teams independently developed stock assessment 
model(s) for the experiment using one of four different stock as-
sessment platforms (see Table 1 for model, platform, and team 
descriptions). Six teams developed assessment models applied to 
data generated from the YFT OM. These included models built 
using the Casal2 (C++ algorithmic stock assessment laboratory 
2nd Generation; Doonan et  al.  2016), MFCL (Multiple Length 
Frequency Analysis Catch-at-Length; Fournier et  al.  1990), 
SPASAM (Spatial Processes and Stock Assessment Methods; 
Goethel et al. 2019, 2021), and SS3 (Stock Synthesis; Methot and 
Wetzel 2013) stock assessment platforms. One team developed an 
assessment model applied to data generated from the TOA OM 
using the CASAL (Bull et  al.  2012; the predecessor to Casal2) 
stock assessment platform. All platforms, at minimum, allow 
for a single stratum (panmictic population within a spatially ag-
gregated assessment) and multiple strata (spatial heterogeneity 
among assessment regions) population structures. Each platform 
has many options (and some limitations) for integrating spa-
tial data and parameterising spatial model structure, including 
choices about population structure, recruitment dynamics, con-
nectivity, fleet dynamics, tagging dynamics, and environmental 
covariates. Berger et al.  (2024) provide a detailed review of the 
spatial functionality and capabilities of common stock assess-
ment platforms, including those used here. Detailed descriptions 
of each platform can be obtained from user manuals and associ-
ated web-based code management platforms (Table SM.C.1).

2.4   |   Model Development and Comparison

Documented data analysis and model building steps, including 
specific methods, were considered the observational unit of the 
experiment. Specifically, stepwise choices associated with high-
resolution data analysis, parameterisation of key demographics 
(e.g., recruitment and movement), spatial model approach and 
inference, and spatial diagnostics were compiled for each spatial 
assessment and OM pairing. These choices were then compared 
across teams to identify commonalities and differences in how 
spatial structure and model complexity tradeoffs were confronted 
(and ultimately dealt with) by the analyst teams. Qualitative sum-
maries provide a deeper understanding of how analysts approach 
spatial stock assessment model building when confronted with 
real-world uncertainties, as well as how they address common de-
cision points, particularly those associated with spatial dynamics.

3   |   Results

Across the seven independent analyst teams, consistent patterns 
emerged in the process of developing spatial stock assessment 
models, highlighting both challenges and effective strategies for 

addressing spatial complexity. Regardless of software platform, 
each team converged on similar approaches, prioritising data ex-
ploration, incremental model building, diagnostic-driven com-
plexity, and multiple model structures.

Each of the seven analyst teams implemented at least two assess-
ments with varying spatial structures (i.e., a spatially aggregated 
and either a spatially implicit or spatially explicit assessment) 
and applied each to one of the OMs (Table 1). Typically, groups 
began with a high-resolution data exploration to understand 
the main spatial dynamics and identify data opportunities and 
limitations (e.g., sparsity in length or age compositions), while 
also aiding subsequent spatial model parametrisation decisions. 
All teams implemented a spatially aggregated assessment first, 
adding complexity in a stepwise fashion, as deemed necessary 
(Figure 4). Residual patterns in the fits of each model were used 
to help identify model misspecification, particularly for spatial 
processes. Thus, the general process for each team included 
incremental steps beginning with data exploration, developing 
conceptual models, implementing simple spatially aggregated 
models, adding complexity (e.g., fleet structure) within spatially 
aggregated models to address diagnostic issues, then, incremen-
tally, adding (or simplifying) spatial complexity. Descriptions of 
each analyst team's assessment model development process are 
provided in the Supporting Information (SM.D).

3.1   |   Data Explorations

The exploration of catch, effort, tagging, and composition data at 
the highest resolution available was common (Table 2; Figure 4). 
For example, team Casal2 automated data summary procedures 
to rapidly adjust and evaluate data aggregations at different 
temporal and spatial scales that aligned with a realistic set of 
hypotheses, primarily related to population and fishery spatio-
temporal structures. The exploratory analyses of catch, CPUE, 
and tagging data highlighted the need for seasonal time-steps 
and consideration of movement, while length composition data 
indicated potential scale-dependent sparsity issues leading to 
minimally sufficient spatiotemporal fishery definitions. Team 
SS3_C explicitly categorised data products using regression tree 
models (following Lennert-Cody et al. 2023; Maunder et al. 2022) 
to quantitatively define fleet structure, thereby removing the 
often discretionary (or arbitrary) nature of fleet definitions in 
stock assessment. Two teams used species distribution models to 
develop spatiotemporal CPUE indices of relative abundance and 
to inform regional abundance scaling parameters (following 
Hoyle and Langley  2020). One team additionally used species 
distribution models to develop spatiotemporal compositional 
data. Initial data explorations also informed subsequent model-
ing decisions, such as by providing information on tagging dis-
persion parameters, length composition effective sample sizes, 
and model dimensions (including candidate spatial structures).

3.2   |   Model Development

Spatially explicit models were typically developed much later in 
the process and built iteratively. Each model update was incre-
mental and focused on a specific spatial complexity, after which 
analysts investigated the resultant diagnostics to understand 
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9Fish and Fisheries, 2025

model performance. Often, further data analyses would be ex-
plored based on insights gained or questions arising from a poorly 
performing spatial parametrisation. For instance, tagging analy-
ses were often revisited once initial spatial models were running 
to better understand how best to handle tag nuisance parameters 
(such as the mixing period and reporting rate). Teams also un-
dertook unique approaches to balance fleet and region structure, 
often focusing on parsimony to reduce the number of parameters 
related to movement, recruitment, and fleet selectivity (Table 2).

Residual fits and patterns were the primary diagnostics used by 
all teams to investigate model fit and adequacy (Table 2; Figure 4). 
In particular, persistent residual patterns during the development 
of spatially aggregated models were the driving force behind in-
creases in model complexity. For example, the incorporation of 
tagging data was informed by analysts' interpretation of data rep-
resentativeness and model fit diagnostics. Specifically, the lack of 
spatial, temporal, and age coverage of the tagging data (i.e., tagged 
YFT were mostly immature fish in a small portion of the domain 
during a relatively short time period) led some groups to omit it 
or develop hypotheses about time at liberty for proper tag mixing. 

Sensitivity analyses and profile likelihoods over influential param-
eters were also common tools used to identify alternative plausi-
ble model structures and within-model parameter identifiability. 
Other diagnostic tools included model stability metrics (i.e., jittered 
parameter runs and retrospective model performance), model se-
lection criteria (i.e., AIC and runs tests), and implementation of 
simpler surplus production models. Two teams incorporated 
Bayesian diagnostics (e.g., MCMC convergence criteria, posterior 
trace plots, chain autocorrelation, and posterior predictions) to 
refine model parameterisations that were not identifiable or had 
poor convergence properties. Team SPASAM used run time as an 
implicit diagnostic to reduce fleet and temporal structure in the 
assessment model. In general, teams noted that they would have 
explored more model diagnostics if they had had more time or if 
spatial models were quicker to converge to a solution.

3.3   |   Spatial Model Complexity

Nearly all assessment configurations that attempted to explic-
itly address spatial dynamics (six of eight) incorporated spatial 

FIGURE 4    |    A summary across analytical teams (n = 7) of key decisions made that informed final model complexity (first column), high-resolution 
data analyses utilised (second column), and diagnostic tools implemented (third column). The size and color of the bubble correspond to the number 
of teams that utilised a particular approach or analytical process.
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10 Fish and Fisheries, 2025

TABLE 2    |    A summary of approaches used (common and distinctive) and major impediments encountered across all analyst teams during the 
model building and development process, with emphasis on those that helped inform the final spatial model complexity.

Spatial consideration Common approaches Distinctive approaches Major impedimentsa

Data Analysis and 
Weighting

Evalute raw catch, effort, 
and composion data
Start simple and add 

spatial complexity
Iteratively reweight 

composition data 
(Francis method)

Explored alternative time steps
Spatiotemporal model explorations 

(CPUE, composition data)
Categorise data properties 

(regression tree)
Reweight tagging 

dispersion parameter

Sparse effective sample sizes 
leading to lack of information

Weighting of composition 
data relative to tagging data

Spatial Units Single area with 
multiple fleets

Single area with fleets-
as-areas (FAAs)

Pass on single area 
parameters as starting 

point for multi-
area parameters
Spatially explicit 
multi-area model

Use fleets-as-areas (FAA) 
model to define fleets in 
spatially explicit model

Use four-area model 
diagnostics to build spatially 

explicit two-area model

Reconciling parsimonious 
fleet structure

Increasing spatial areas lead 
to computing time bottlenecks 

and degrading diagnostics

Temporal Structure Time step matching 
the OM as the main 
continuous time step

Aggregated seasonal dynamics 
to more coarse time steps

Nested seasonal time steps 
within annual time steps

Truncated beginning of the time 
series to shorten run times

Implementing temporal 
autocorrelation among seasonal 

time steps across years

Demographics/Biology Specified per the 
structure of the 
operating model

Adjusted operating model 
specifications to align with 

alternative temporal structures

Estimates were sensitive to 
the method used to aggregate 

parameters (e.g., maturity, 
natural mortality, and growth) 

to alternative time steps

Recruitment Dynamics Single (global) set of 
recruitment deviations 

estimated by time 
step matching the 

OM with stationary 
spatial apportionment 

to areas across time

Add time-varying apportionment 
of recruitment to areas

Fixed apportionment based 
on simplier spatial model 
configuration estimates

Reduce apportionment parameters 
to only primary breeding areas

Constrain apportionment 
parameters according to strata-

specific biomass distribution 
(catch-per-unit-effort; CPUE)

Only estimate recruitment 
deviations for periods 

with catch-per-unit-effort 
(CPUE) information

Fleet Structure Single fleet across 
entire domain

Single fleet per area 
with area-based 

selectivity parameters 
(FAA) initialised by 

the single area model
Multiple fleets per area

Fleets with the same gear 
in different areas share 
selectivity parameters

Alternative fleet structure 
models in single area model 

used as diagnostic to idenfity 
spatial model fleet structure

External regression tree 
analysis conducted to inform 

optimal fleet structure

Identifying parsimonious fleet 
structure parameterisation 

(though see distinctive 
regression tree approach)

(Continues)
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11Fish and Fisheries, 2025

population and fleet structure in a unique way (Table 1), result-
ing in a range across teams of selected spatial model complexity 
(where definitions of relative model complexity follow fig. 2 in 
Goethel, Berger, and Cadrin 2023). The simplest spatial models 
(i.e., spatially implicit) used an areas-as-fleets (AAF) approach, 
whereby fleets of each gear type were defined for each region or 
further aggregated according to a machine learning algorithm 
(i.e., a regression tree approach). One team built a spatially dis-
aggregated model, where independent assessment models were 
produced for each region (i.e., including spatial differences in 
recruitment but ignoring movement among regions) with fleets 
for each regional model defined for all gear types.

Four teams produced more complex, regionally linked models 
through the inclusion of explicit spatial recruitment and move-
ment dynamics. Across spatial models, complexity differed ac-
cording to the number of regions modelled and how fleets were 
defined (full complement of region and gear type versus simpli-
fications by mirroring selectivity by gear types across regions). 
While all teams built up complexity from spatially aggregated 
single-region models to spatially explicit multi-region models, 
one team subsequently simplified its spatial assumptions (i.e., 
re-aggregating a four-region to a two-region spatial model). All 
assessment models produced during the experiment included 
region as a primary separator of fleets (and thus selectivity 

patterns). No team found the need to explore alternative pop-
ulation structures (e.g., due to regional demographic variation), 
primarily because demographics were specified for each species 
in the experiment documentation (i.e., each OM assumed a sin-
gle population with spatial heterogeneity in fleet or population 
dynamics and no variability across space in growth, maturity, or 
natural mortality).

The primary axes for parametric exploration beyond fleet selec-
tivity were related to recruitment apportionment and movement 
dynamics for the four assessment models that were explicitly 
spatial (Table 1). Recruitment from a global Beverton-Holt stock-
recruitment relationship was apportioned by region in all four 
cases, but each team applied unique simplifying assumptions. 
The MFCL team used the least restrictive assumption by esti-
mating time-varying recruitment apportionment deviation pa-
rameters for each region. Other teams reduced the number of 
apportionment parameters by restricting full time-variation to 
a subset of regions (SS3_A), including temporally stationary pa-
rameters for each region (SS3_B), and fixing apportionment for 
each region through time (SPASAM). Similarly, all four teams 
considerably restricted the number of estimated movement pa-
rameters across space and time (Table  1). The SPASAM team 
estimated movement parameters for all region combinations 
for two maturity-based age groups and allowed time variation 

Spatial consideration Common approaches Distinctive approaches Major impedimentsa

Movement Reduce movement 
parameters by age, area, 

or time constraints 
for tractability

Model movement 
rates for mature and 

immature fish separately

Only occurs during certain 
time steps (seasonality)
Time-invariant between 

certain areas
Only occurs in major tag data areas

Imply movement through area-
based selectivity parameters

No movement parameters

Tag mixing period assumptions 
and sensitivity models

Non-homogenous distribution 
of tagging data

Overdispersion of tagging data
Large number of movement 
parameters and subsequent 

modelling options

Tagging Dynamics Tags used in one and 
four area models using 

Petersonb or Browniec (or 
both) modelling methods

Nusiance parameters 
either fixed or 

evaluated across 
multiple assumptions 
(sensitivity models)

Estimated tagging 
overdispersion parameter

Used to inform abundance 
only (Peterson method)

Used an ensemble of no tagging 
and tagging models with 

alternative mixing periods
Tag data not used

Identifying appropriate 
tag mixing period and 

maximum at liberty model 
specifications as selected 

approach influenced results
Lack of spatial coverage in 
tag release and recoveries

Diagnostics Pearson residuals 
for composition 

and tagging data
Likelihood profiles
Sensitivity analyses
Model convergence 

through positive 
hessian and gradients

Markov chain Monte Carlo 
(MCMC) trace plots, convergence 

diagnostics, and posterior 
prediction evaluations

Use of Akaike information criterion 
(AIC) for nested model selection
Model stability through model 

parameter jitter tests
Use of simplier production 

models or runs tests

Large number of parameters 
to diagnose for multiple fleets 

and multiple area models

aAs highlighted by analysts, not an exhaustive list.
bBased on the Lincoln-Peterson mark-recapture method (Lincoln 1930; Petersen 1896).
cBased on Brownie dead recovery mark-recapture methods (Brownie et al. 1985).

TABLE 2    |    (Continued)
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12 Fish and Fisheries, 2025

assuming two season time blocks (i.e., movement was estimated 
for every other season in their truncated time period model). 
The MFCL team estimated movement rates between regions 
with shared boundaries and assumed that movement was age- 
and time-invariant except for a seasonal deviation that was 
invariant across all years. The two other teams considerably 
restricted movement to a reduced number of time-invariant re-
gion combinations for two maturity-based age groups based on 
initial explorations of tagging data. In general, teams took dif-
ferent approaches to balancing complexity in productivity and 
movement. Some elected for relatively high complexity in the 
parameterisation of movement at the cost of less complexity in 
recruitment, and vice versa (Table 1).

All teams that integrated tagging data to inform movement 
(YFT OM) did so following the Brownie tag-recovery method 
(Brownie et  al.  1985), which required them to make tag mix-
ing assumptions. Their assumed tag mixing periods ranged 
from 0 to 6 time-steps, which had an important influence on 
model fit and final model complexity. One team (CASAL for the 
TOA OM) elected to integrate tagging data to estimate abso-
lute abundance following the Lincoln-Peterson mark-recapture 
method (Lincoln 1930; Petersen 1896), primarily in lieu of using 
a fishery-dependent CPUE index of relative abundance. The 
choice of how to use the tagging data (i.e., to inform movement 
or abundance estimates) was influenced primarily by case study 
dynamics. For example, the TOA OM included spatially repre-
sentative tagging information, whereas the YFT OM included 
tagging of juveniles largely within a single region (see SM.B and 
SM.A, respectively). Given the quality of available tagging data, 
two teams elected not to use tagging data, ignore movement, 
and make simplifying population structure assumptions (i.e., 
assuming a single area with an AAF model or implementing 
spatially disaggregated assessment models without movement).

3.4   |   Impediments and Unique Solutions

Several impediments to building and implementing spatial mod-
els were encountered, which also led to differing model building 
decisions across analyst teams (Table  2). For instance, teams 
found the realistic (i.e., spatiotemporally sparse) levels of data, in 
particular length-age composition and tagging data, to be a lim-
iting factor for the degree of spatial complexity that could be inte-
grated into a practical model. Resulting low effective sample sizes 
required aggregating composition data, which directly influenced 
decisions regarding the number of spatial strata to model and ne-
cessitated careful consideration of how to weight composition 
data (e.g., by catch, modelled CPUE, or sample sizes in each grid 
cell) to ensure representativeness of the data within and across 
regions. Similarly, the limited spatial and age coverage of tagging 
data in the YFT OM led to unresolved tag modelling assumptions 
(e.g., tag mixing and overdispersion) and necessitated simplifying 
assumptions (e.g., grouping movement in age or time blocks).

Collectively, analyst teams' explorations and decisions led 
to the evolution of unique solutions to manage model com-
plexity (Table  1). For example, several teams reduced model 
complexity through the refinement of fleet, spatial, and tem-
poral dimensions to enable tractable model run times while 
simultaneously addressing model fit and parsimony. One 

team elected to ignore the sparse tagging data and instead 
addressed population structure by developing multiple inde-
pendent disaggregated models, where regional dynamics were 
captured through model-specific stock-recruitment functions. 
Similarly, another team chose to ignore the tagging data and 
instead developed spatiotemporal models that smoothed over 
sparse CPUE and length composition data by utilising spatial 
autocorrelations to produce representative population infor-
mation across the entire domain (i.e., attempting to capture 
the collective end result of unobserved fine-scale dynamics at 
a single aggregated scale). Several teams considerably reduced 
the number of movement parameters by restricting movement 
among specific regions, aggregating to age and time blocks, 
or assuming age- and time-invariance. Besides movement, 
tagging data was also used by one team to estimate an abun-
dance trend instead of relying on a fishery-dependent CPUE 
time series. Given the difficulty in deciding among different 
structural assumptions, particularly for tag mixing, one team 
pursued an ensemble modeling approach to implicitly account 
for structural uncertainty. However, time and resource con-
straints impeded a full implementation or adequate compari-
son of model ensemble outputs to single model results.

4   |   Discussion

This study highlights how assessment model complexity when 
confronting spatial structure is not only influenced by biological 
or ecological considerations, but also by the analyst's background, 
platform constraints, and institutional priorities. Identifying the 
appropriate level of complexity in stock assessment models re-
mains a persistent challenge. No comprehensive guidance is avail-
able (or likely possible) that can account for all potential scenarios, 
data limitations, and modeling contexts encountered in opera-
tional assessments (though see Punt, 2023 for general guidance). 
The challenge of balancing parsimony and complexity becomes 
even more difficult in the presence of persistent spatial structure 
or spatial dynamics in marine populations (Berger et  al.  2017; 
Goethel et al. 2024). Although most generalised assessment plat-
forms share similar underlying structure, the types of complexity 
that can be integrated typically depend on the species, region, or 
institution for which they were developed (Berger et al. 2024).

A notable outcome of this study was the strong ‘analyst effect’, 
where model development and final structure were affected by 
a combination of region (e.g., RFMO affiliation), software plat-
form, individual expertise, and likely, career stage (e.g., student 
versus professional). For instance, platform choice was closely 
tied to RFMO affiliation, as RFMOs have often developed pro-
prietary or preferred software. The platform in turn influenced 
the diagnostics, methods, and assumptions, particularly regard-
ing movement, recruitment, or tagging, based on the options 
available within the platform. Moreover, several RFMOs viewed 
the experiment as an opportunity to test specific modelling ap-
proaches aligned with their research interests, which helped jus-
tify participation and funding, and shaped model development. 
Finally, resources available, particularly in terms of time dedi-
cated to the project, depended on institutional structure, career 
stage, and ongoing commitments. Early career participants often 
dedicated more time and explored a wider array of approaches. 
Given the many decision points involved in spatial modelling, 
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13Fish and Fisheries, 2025

subtle platform differences, and the study's funding limitations, it 
is not surprising that this analyst effect was stronger than in pre-
vious blinded simulation experiments (e.g., Deroba et al. 2015).

Despite these differences, most analysts followed a broadly 
similar model development trajectory. However, unique ap-
proaches emerged that influenced final model complexity. 
Based on observations of the model building process and sub-
sequent discussions, we offer general guidance for developing 
stock assessments when spatial structure is present (Figure 5). 
Many of the recommendations, such as the use of high-
resolution data analysis, apply to both spatial and non-spatial 
contexts, since they are fundamental to understanding resource 
dynamics and the representativeness of the data. Moreover, the 
experiment demonstrated that common processes inform the 
development of both spatially aggregated and spatially explicit 
assessment structures, offering insight into when spatially im-
plicit assessments might also be appropriate. Importantly, no 
single model structure or development approach consistently 
produced unbiased results (Goethel et al. 2024), emphasising 
that these recommendations are not necessarily ‘best practices’ 
but rather ‘common practices’ that can provide insight into un-
derlying dynamics and model parametrisation.

4.1   |   Data Analysis and Conceptual Model 
Development

The first step in any stock assessment is to compile an inventory 
of the available data. High-resolution spatiotemporal analyses 

should follow to evaluate data availability and quality, while 
also aiming to identify drivers of population dynamics and spa-
tial structure that should inform parametrisation (e.g., resource 
distribution, fleet structure, connectivity patterns, and regional 
patterns in age or length). For example, mapping length com-
position and CPUE data were widely utilised to understand the 
distribution of the fleets and resources, while identifying data-
sparse regions that might constrain spatial structure. Objective 
techniques such as regression trees were found useful for iden-
tifying fleet structure, and high-resolution mapping of tagging 
data helped identify representativeness and inform tag mixing 
assumptions. Flexible data structures are highly recommended 
to allow analysis at various spatiotemporal scales and to support 
model comparisons across different spatial resolutions (see next 
section).

Although mostly implicit in each group's approach due to time 
constraints, a well-developed conceptual model is essential. 
This model should describe all hypothesised population and 
spatiotemporal dynamics, and be informed by both the initial 
data analyses and a comprehensive literature review (Goethel 
et al. 2024; Minte-Vera et al. 2024; Cheng et al. 2025). Studies 
on growth, genetics, biomass flux, fishery dynamics, and 
management history can guide the model's spatial complex-
ity. Population drivers can be prioritised by importance (e.g., 
primary drivers that must be addressed versus secondary or 
hypothesised drivers that should be explored) and certainty 
(e.g., well-documented versus hypothesised) to help focus 
the model development process, especially when time con-
straints exist.

FIGURE 5    |    Flow chart outlining a general approach for identifying appropriate stock assessment model complexity when confronting spatial 
structure. Final model complexity was achieved through the development of a conceptual model, data explorations, and implementation of a spatially 
aggregated model, which was then expanded to include spatial processes based on key hypotheses, high-resolution data analyses, model diagnostics, 
and feedback learning through iterative refinements. The presented steps are inclusive of the collective model development processes undertaken by 
the analyst teams.
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14 Fish and Fisheries, 2025

4.2   |   Identifying Model Complexity

Model development should proceed from the conceptual model, 
typically starting with a moderately complex approach that ad-
dresses the primary drivers of population dynamics (e.g., Cheng 
et al. 2025). Development should then be iterative and stepwise, 
adding or removing elements based on diagnostic feedback. 
Diagnostics allow you to evaluate whether: (1) critical elements 
are still missing and additional model features are needed, (2) el-
ements are needed but data are lacking or specific processes are 
not understood, thus requiring future research, or (3) the model 
is performing adequately and no new elements are warranted. 
The process cycles through these steps until an adequate model 
is selected, often after the major data questions are addressed 
and future recommendations are identified.

A spatially aggregated model is often a useful starting point. 
These models benefit from increased sample sizes, simpler im-
plementation with well-established modelling approaches, and, 
generally, high convergence rates. They also act as diagnostic 
tools in themselves: residual patterns and unrealistic population 
trajectories can indicate the need to add complexity. As com-
plexity increases, earlier decision points should be revisited and 
may need to be adjusted due to interactions among processes 
(e.g., recruitment and movement; see next section).

Standard diagnostics can be used for both spatially aggregated 
and spatially explicit models (see Carvalho et al. 2021), but di-
agnostics that explicitly identify spatial process error remain 
a research priority. Common tools used in this experiment to 
refine spatial assessments included residual pattern evaluation, 
checking for convergence and parameter estimates near bounds, 
likelihood profiles or sensitivity runs to assess data conflicts, 
realism checks against expectations from the conceptual model 
(e.g., movement and spatial recruitment dynamics), self-tests 
(simulate data from an assessment model and rerun the assess-
ment with the new data), fits to tagging data, and comparison 
of predicted and observed spatial biomass distributions. For 
example, analysts working with simulated YFT data used the 
non-homogenous spatial coverage of tag release and recapture 
data and tagging sub-model performance (e.g., model sensitivity 
to assumed tag mixing period and unreasonably large variance 
estimates) as justification to specifically alter model assump-
tions about movement. In some cases, this resulted in analysts 
aggregating tagging data across spatial areas, time scales, and 
life stages to improve tagging model performance and resulting 
movement estimates (Table 2). In other cases, it resulted in the 
removal of the tagging data altogether, including alternatively 
using a spatiotemporal CPUE model to implicitly capture sea-
sonal movement. A few analyst teams also used less complex, 
biomass-based (no age-structure) surplus production models to 
diagnose and refine alternative recruitment parameterisations 
assumed in age-structured models. Analyst teams collectively 
identified further development of diagnostics to evaluate suffi-
cient spatial model complexity as a research priority to better 
inform movement and productivity parameters and reduce con-
founding. Approaches such as examining profile likelihoods for 
movement with and without age variation, conducting cross-
validation across spatial and temporal blocking schemes, and 
performing posterior predictive checks on regional tag flows 
and length- or age-compositions would complement this work.

When considering adding further complexity, analysts should 
assess whether the data are sufficient to support it. The level of 
model complexity should be determined by the quality, spatial 
resolution, and sampling distribution of the data (i.e., is there 
sufficient data to inform estimates within, and movement 
among, all regions?). Complexity should reflect biologically 
realistic expectations supported by conceptual models, which, 
ideally, would also match signals in the available data. However, 
determining whether model complexity is optimal likely re-
quires testing models that are too complex. When added com-
plexity does not improve results or convergence suffers (e.g., 
long run times, high gradients, poor Hessian behavior, or poor 
MCMC diagnostics), simpler models may be more appropriate. 
Multiple model spatial structures—both spatially aggregated 
and spatially explicit—should be maintained throughout the 
model-building process to aid comparisons among outputs, 
given that unique insight and support (validation) can be pro-
vided by each structure.

4.3   |   Addressing Structural Uncertainty

Rather than identifying a single ‘optimal’ spatial structure, the 
goal should be to ensure that essential processes are appro-
priately captured. Models should adequately reflect removals 
(catch-at-age or length and by region), trends (CPUE or indices), 
and known biological processes. In a spatial context, this in-
cludes biomass flux and flows (e.g., movement and recruitment). 
Estimates of these processes are often highly correlated (Goethel 
et  al.  2021), making deliberate and informed decision-making 
critical. Supporting evidence from data and literature should 
back each structural decision.

In some instances, particularly when data are limited or move-
ment is generally ubiquitous, spatially aggregated or spatially 
implicit models may be sufficient. If the scale of the assessment 
aligns with the biological population unit and emigration is neg-
ligible, aggregated models can provide adequate management 
advice (Kerr et al. 2017; Cadrin 2020). Moreover, when spatial 
dynamics are primarily driven by fleet dynamics or differences 
in spatial availability to the primary fishing fleet, spatially im-
plicit approaches such as areas-as-fleets (AAF) may be appropri-
ate. As demonstrated in this study, AAF approaches combined 
with regression trees helped objectively identify fleet structure, 
while preprocessing data using spatiotemporal models ac-
counted for other aspects of spatial variability in the data.

For spatially explicit models, the primary structural decisions 
relate to the number of regions, the fleet structure within each 
region, and the modelling of recruitment and movement across 
regions. These decision points are interconnected. For example, 
increasing complexity in regional structure may limit further 
complexity in recruitment and movement processes. As with 
any model, the complexity is limited by the data and prior in-
formation, given that greater partitioning (e.g., strata, fleets, 
ages, sexes) reduces sample sizes, often increases the number 
of parameters (e.g., recruitment, movement, and selectivity) 
that need to be estimated, and increases computation time. 
Techniques such as Bayesian priors, random effects, hierarchi-
cal models, parameter restrictions (e.g., Markovian movement), 
and parameter sharing can help reduce the effective number of 
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parameters (Maunder et al. 2009; Thorson et al. 2021). However, 
one of the major remaining uncertainties is how best to incorpo-
rate tagging data, especially with uncertainty in appropriate tag 
mixing periods, to estimate movement and related parameters. 
Hybrid spatial modelling frameworks that bridge the extremes 
of spatial assessment modelling approaches (i.e., spatially strat-
ified and spatiotemporal) could help address this uncertainty in 
the future by embedding high resolution spatiotemporal sub-
models (e.g., movement estimation from electronic tags) within 
a broader scale population model to help improve parameter es-
timates (e.g., movement; Thorson et al. 2021).

Finally, addressing structural uncertainty across spatial mod-
els may be best addressed by ensemble models or structural 
sensitivity analyses. In this experiment, many different model 
structural choices and assumptions were made by analysts using 
the same data, resulting in different estimated population dy-
namics (Goethel et al. 2024). The variability in model structure 
observed in this experiment suggests that complex population 
models, including spatial stock assessments, could gain robust-
ness from ensemble modelling approaches, especially when ex-
tensive simulation testing cannot be conducted. Moving away 
from the ‘best assessment’ paradigm, ensembles allow integra-
tion of models with complementary strengths (Goethel, Omori, 
et al. 2023). Still, challenges remain in selecting ensemble mem-
bers and defining appropriate weights for models with different 
spatial structures (Jardim et  al.  2021; Adams et  al.  2022). For 
instance, analysts must determine whether to include both spa-
tially aggregated and spatially explicit models in the ensemble 
while also limiting the dimensions of primary modelling un-
certainties to a tractable number. While these hurdles are sur-
mountable (e.g., Adams et  al.  2022), careful interpretation of 
ensemble results is essential.

5   |   Conclusions

Our experiment did not identify a single optimal spatial structure 
or model building approach for stock assessments. However, it 
did emphasise the importance of deliberate and comprehensive 
data analysis to guide key structural decisions, while highlight-
ing shared elements in the model development process. In par-
ticular, the co-development of models with alternative spatial 
structures proved essential to provide deeper insight into assess-
ment performance and uncover potential spatial drivers. Using 
high-resolution data analyses was identified as a way to test for 
persistent spatial gradients before considering additional spatial 
structure and associated connectivity parameters. Although 
the need for a spatial model is context-specific—based on un-
derlying spatial dynamics, data availability, and management 
needs—maintaining multiple model structures can help eluci-
date regional dynamics (e.g., spatially varying depletion) and 
validate model outputs (Li et al. 2025).

Adopting a reproducible and modular development process, 
such as the Transparent Assessment Framework (TAF; e.g., 
https://​github.​com/​ices-​taf), can facilitate model implementa-
tion and transition among assessment structures. TAF offers 
stock assessment workflow support and transparency by or-
ganising assessment data, methods, and results in an archival 
central hub. TAF also supports more flexible analysis of data 

at various spatiotemporal resolutions, thereby aiding decisions 
about model structure. In the coming years, increased research 
emphasis should also be placed on identifying best practices for 
data aggregation across assessment structures. Because all data 
are inherently spatial, some degree of aggregation is unavoid-
able regardless of model structure, and assumptions underlying 
how data are aggregated have important consequences (as ob-
served in this experiment; Goethel et al. 2024). Moreover, diag-
nostics that can identify misspecification in relation to spatial 
processes, including how poor fit to aggregated data might be 
used to identify important spatial dynamics, remain underde-
veloped and should be a future research priority.

Ultimately, overcoming institutional impediments to using spa-
tial models in tactical decision-making requires improved com-
munication across the science-policy divide. This includes open, 
frank discussions about whether a spatial model is needed, how 
it might inform management decision-making (e.g., distribution 
of regional catch limits based on regional abundance scaling 
parameters), and what trade-offs are involved. Similarly, im-
proved collaboration and knowledge-sharing across RFMOs is 
needed to disseminate spatial modeling expertise and methods, 
via experiments such as this one and the publication of spatial 
assessments. There must also be clearer recognition that spatial 
assumptions are embedded in all assessments. A spatially aggre-
gated model is not a neutral baseline—it represents an explicit 
decision that spatial processes are not an important driver of 
the dynamics of the resource. Thus, the assessment community 
should work together to understand the implications of ignoring 
spatial structure and to understand and address spatial drivers 
through improved data analyses, modeling approaches, and 
management strategy evaluation (MSE).

This experiment, particularly its blinded design and use of a 
high-resolution OM, highlighted a fundamental yet not widely 
acknowledged reality of stock assessment: all assessments, re-
gardless of complexity or analyst experience, have the potential 
for bias. This insight suggests that increasing complexity alone 
is unlikely to resolve fundamental uncertainties. In addition to 
improving the stock assessments, priority should also be placed 
on developing and evaluating harvest control rules (HCRs) that 
are robust to both structural uncertainty and assessment bias 
(Evans et al. 2015). Future research should explore minimally 
complex, maximally robust HCRs, including empirical or quasi-
empirical (e.g., linked to close kin mark-recapture estimates 
of absolute abundance) implementations (Goethel, Berger, and 
Cadrin 2023; Goethel, Omori, et al. 2023). Though challenging 
to implement, blinded simulation studies within high-resolution 
closed feedback (i.e., MSE) frameworks would be helpful to re-
alistically evaluate assessment bias and support the design of 
resilient management strategies.

As stock assessments become increasingly multidisciplinary, 
spatial models provide a unique framework for integrating eco-
system, environmental, and socioeconomic drivers that act at 
various spatiotemporal dimensions (Goethel, Omori, et al. 2023). 
However, tradeoffs between parsimony and complexity must 
remain at the forefront of model development processes, par-
ticularly given the limitations of observed data for informing 
complex dynamics and associated parameters. Transparent 
communication about these limitations at the science-policy 
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interface is critical, given rising expectations for model complex-
ity and sophistication and the ever-present constraints on time, 
data, and resources.
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