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ABSTRACT

Despite their potential to inform sustainable regional harvest and climate-resilient fisheries management, spatial stock assess-
ment models remain underused for management advice. To identify barriers that inhibit broader use of these methods, we con-
ducted a blinded international simulation experiment mimicking real-world stock assessment development when confronting
spatial complexity. Seven analyst teams built spatially aggregated and spatially explicit assessment models using data simulated
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from high-resolution operating models based on Indian Ocean yellowfin tuna and Ross Sea Antarctic toothfish dynamics. Each
team documented how assessment software platform, data analyses, model building approach, and diagnostics influenced model
complexity and realism. A consensus emerged on key assessment building approaches: (1) conduct high-resolution data analy-
ses to identify appropriate spatial structure; (2) start with simplified models and incrementally add complexity; (3) iteratively
evaluate diagnostics to determine necessary spatial complexity; and (4) maintain models with different spatial structures to aid
interpretation. The experiment also revealed several valuable insights for parameterising assessments, including consideration
of data pre-processing with spatiotemporal models to better inform data-sparse regions; regression trees to identify fleet and
spatial structure; trade-offs in complexity between productivity and movement dynamics to achieve tractable and stable model
structures; and ensemble modelling approaches to address structural uncertainty. Our findings demonstrate that international
collaborations and simulation experiments are crucial for addressing challenges in implementing spatial stock assessments and
for evaluating whether their added complexity is justified given management objectives. Broader collaborations are encour-
aged to foster innovation in fisheries management and to help recognise the practical trade-offs between model parsimony and

complexity.

1 | Introduction

Space is a fundamental dimension of most ocean manage-
ment decisions (van den Burg et al. 2019; Pittman et al. 2021).
Sustainable harvest of living marine resources requires scien-
tifically informed management decisions that integrate myr-
iad dynamic biological and fishery processes (Goethel, Omori,
et al. 2023) across a progressively demanding ocean-use land-
scape (Rea et al. 2017). Hence, there has been growing recog-
nition that stock assessments, which provide the scientific
basis to support fisheries management, must more explicitly
incorporate spatial marine information into species harvest
and ecosystem health decision processes. While there has been
increased development of spatial stock assessment models and
software applications to inform spatiotemporal management
actions (Punt 2019b; Goethel, Berger, and Cadrin 2023; see
Berger et al. 2024 for a description of the spatial capabilities of
the most widely implemented assessment platforms), utilisation
of spatial assessments within management frameworks remains
scarce despite a clear need to ensure sustainable regional har-
vest and protect biocomplexity. Primary impediments to wider
operational use of spatial assessments include increased data
requirements, added model complexity, expanded model spec-
ification decisions (e.g., multiplicative effects of dimensionality
and uncertainty; Evans et al. 2015), and institutional inertia
(Berger et al. 2017; Punt 2019a, 2019b; Goethel, Berger, and
Cadrin 2023).

The choice between spatially aggregated (single popula-
tion), spatially implicit (e.g., fleets-as-areas), or spatially
explicit (mechanistic account of spatial dynamics) models
often hinges on data availability and the underlying spatial
complexity of the modelled population (Berger et al. 2024).
Ideally, spatial model complexity should be guided by sim-
ulation testing, which can evaluate variance-bias tradeoffs
and assess performance related to management objectives.
Previous studies have demonstrated that ignoring spatial pro-
cesses in stock assessments can bias estimates of stock status
and management quantities (McGilliard et al. 2015; Goethel
et al. 2021; Bosley et al. 2022). However, spatially explicit
models may perform worse than their spatially implicit or
spatially aggregated counterparts when spatial dynamics are

uncertain or unknown (Li et al. 2015; Lee et al. 2017; Guan
et al. 2019). Despite the obvious recognition that model perfor-
mance depends on how well it reflects population structure,
the influence of the analyst and their decisions—prior knowl-
edge, model development approach, and assessment platform
choice—on model robustness remains poorly understood (e.g.,
NRC 1998; Deroba et al. 2015). Spatial structure increases
the dimensionality and uncertainty associated with these is-
sues. This underscores the need for more realistic simulation
studies that emulate the real-world uncertainties associated
with developing and implementing spatial assessment mod-
els (Goethel et al. 2024). In particular, studies where the true
spatial structure is unknown to analysts (i.e., a blinded study
design) can help identify biases arising from incorrect struc-
tural assumptions and evaluate whether incorporating spatial
structure is necessary.

Simulation studies are an ideal tool to explore barriers and
solutions to including spatial structure in stock assessments for
management (Goethel et al. 2024; Punt et al. 2025). However,
no previous studies have applied multiple spatial stock assess-
ment software packages to the data simulated by spatially
explicit operating models (OMs). To address this gap, we de-
signed a collaborative, blinded, team-oriented simulation ex-
periment to elicit how expert analysts navigate the assessment
process when confronting spatial complexity, with emphasis
on key successes, barriers, uncertainties, and novel approaches
during model development. The objective of the experiment
was to identify practical strategies to support broader adoption
of spatial stock models in operational fisheries advice.

Multiple assessment analyst teams developed stock assessments
based on the same high-resolution OM data, but were blinded
to the true underlying spatial structure and dynamics. Here, we
document and synthesise the analytical processes of each team,
including workflows, model structures, and decision-making
processes, to explore how spatial complexity was interpreted
and addressed across teams. As spatial stock assessments gain
traction in management contexts, this study provides a template
for robust spatial simulation testing and identifies key consid-
erations for integrating spatial dynamics into decision-making
frameworks.
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2 | Methods

A high-resolution, spatially explicit OM was used to simulate
data conditioned on real-world biology and fishery dynam-
ics for two case studies, Indian Ocean yellowfin tuna (YFT;
Thunnus albacares) and Ross Sea region Antarctic toothfish
(TOA; Dissostichus mawsoni; see Figure 1). The two exemplar
stocks were identified as economically and internationally im-
portant case studies with spatial structure driven by unique
processes. Yellowfin tuna is a highly migratory species with a
broad-scale distribution that is harvested using multiple gear
types. Antarctic toothfish is a deep-dwelling demersal species
that exhibits ontogenetic migration patterns and is harvested
by a single gear-type fishery in the Ross Sea region. The gen-
eral population and fishery dynamics for these two species
offered a way to simulate some real-world spatial population
structure situations for this experiment. The study design is
not intended to address specific management concerns for
these species.

An international group of stock assessment analysts was con-
vened to develop stock assessments for the simulated datasets
using various software platforms with spatial modelling ca-
pabilities. We compared model-building processes across the
analyst teams and assessment spatial structures. By emulating
the data and knowledge gaps of real-world assessment appli-
cations, the simulation experimental design was able to repre-
sent the entire stock assessment process from high-resolution
data analysis to model development and diagnostic testing.
The primary goals of the experiment were to document how
each analyst team approached the building of a spatially ex-
plicit stock assessment model, record how various modelling
assumptions and parametrisations were decided, and then
compare overall performance across model spatial structures.
The experiment concluded with an in-person workshop to dis-
cuss and interpret the simulation results, summarise lessons
learned, and provide recommendations for similar simulation
studies in the future.

Objective 1:
T I Document Model
Development
Approach

* Emulate high
resolution YFT or
TOA dynamics

* Integrate random

variability

* Develop spatially
aggregated and

* 7 analyst groups spatially explicit

recruited
® Truth known only by
organizers

The design and results of the experiment are presented across
four research products. A review manuscript summarised the
spatial capabilities of current generalised assessment platforms
(Berger et al. 2024). The utility and development of the spatially
explicit, high-resolution, data-conditioned OMs are forthcoming
(based upon earlier work by Dunn, Hoyle, and Datta 2020). The
simulation results based on the comparison of model outputs
across spatial structures for the yellowfin tuna case study, along
with general conclusions from the simulation experiment, are
provided in Goethel et al. (2024). In this article, we describe the
development process undertaken by each team to implement
a spatial assessment model, including the decisions and ap-
proaches that analyst teams confronted. We provide an overview
of the experimental design, describe each OM and EM (assess-
ment platform), and describe the criteria used to contrast each
team's model building process and resultant model complexity.

2.1 | Experimental Study Design

The experiment organising committee developed and condi-
tioned the OMs, simulated replicate data sets, disseminated data
and guidance documents to each analyst team, and collated
experiment results (Figures 1 and 2). Seven assessment ana-
lyst teams, spanning multiple countries and regional fisheries
management organisations (RFMOs), were each tasked with
developing a spatially aggregated and spatially explicit stock as-
sessment model using an assessment platform of their choosing.
Teams received a standard set of base instructions and guidance
documents! to ensure consistent and identical information was
available. Each team was requested to document the model
building process, including data analysis, parametrisation
choices, model diagnostics, and model validation approaches.
Analyst teams could develop an EM for either or both case stud-
ies, but were encouraged to minimally develop a model for the
yellowfin tuna case study first. EMs were built using a single
representative dataset first and then applied to the remaining
99 replicate data sets for a total of 100 simulations for the given

Objective 3:
Provide Guidance
on Assessment
Model Complexity
to Address Spatial
Structure

* Organizers compare
results to OM truth

* Apply spatially
aggregated and
spatially explicit
models to 100 data
sets

* Make suggestions to
improve spatial
models and
simulation studies

Objective 2:

Compare Results
Across Spatial
Structures

FIGURE1 | A conceptual overview of the simulation study design where the focus of the current article is on objectives one and three (adapted

from Goethel et al. 2024, which address objective 2).
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SIMULATION EXPERIMENT TIMELINE

MILESTONE 1

Operating Models

MILESTONE 2
Datasets

Analyst Teams Test Performance

S

MILESTONE 3 MILESTONE 4

Build Models Compile Results

Share Results Deliver Products

o

Concept Build and Develop100 Disseminate Conduct Teams provide Organizers
and study condition replicate dataand webinarseries model results compile all
design operating datasets instructionsto to share from all results

models teams progress replicate runs
Identify key Assemble Testestimation ~ Teams explore Teams refine Hold 3-day
sources of analystteams propertiesin SS3 data and build andfinalize summaryand
system and establish and SPMusing spatially models discussion
stochasticity commitments representative ~ aggregatedand workshop

dataset(refineas spatially explicit

needed)

models

FIGURE 2 | The key developments, products, and milestones associated with the simulation experiment study design.

case study. Results (including model outputs and descriptions of
the model building process) were provided to the experiment or-
ganisers for synthesis and comparison (see Goethel et al. 2024,
for a summary of model performance results; experiment mate-
rials and model outputs are available at the project GitHub? site).
Further OM (SM.A and SM.B for YFT and TOA, respectively)
and EM (SM.C and SM.D) details are provided in the Supporting
Information.

2.2 | Operating Models

The OMs were developed with the Spatial Population Model
(SPM; Dunn, Rasmussen, and Mormede 2020), a spatially ex-
plicit population modelling program written in C++ (source
code is available3). SPM allows high-resolution modelling of
populations with complex spatial structure and enables integra-
tion of environmental covariates to inform spatial distribution
and movement. The SPM implementations for both exemplar
species were conditioned on empirical data, observed biology,
and expert judgment to inform important ecological processes.

The general structure (Table 1) and subsequent development of
each OM followed several steps.

i. The SPM was tailored for a given species by emulating
assumptions and dynamics from the most recent stock
assessment.

ii. The SPM was then conditioned by running in estimation
mode and fitting to the available empirical datasets (i.e.,
catch, catch-per-unit effort (CPUE), tagging, and length
or age frequency data) and estimating key population and
fishing parameters (e.g., fishery selectivity, catchability,
fishing mortality, and parameters defining the movement
preference functions).

iii. Model validation was conducted (see Dunn, Hoyle, and
Datta 2020) to ensure tractable model performance, in-
cluding fitting the simulated data with an independent
stock assessment platform (Stock Synthesis 3, or SS3, for
YFT; C++ Algorithmic Stock Assessment Laboratory, or
CASAL, for TOA) to ensure that the data was informative
and sufficient to allow model convergence and satisfactory
estimation performance (e.g., estimated spawning stock
biomass trends aligned with the OM reality).

iv. The conditioned OM was then evaluated across one hun-
dred stochastic realisations in simulation mode to gen-
erate simulated (i.e., ‘pseudo’) replicate data sets that
differed according to observation error (CPUE, matu-
rity, compositional, and tagging data) and process error
(recruitment).

v. For the purpose of developing and testing stock assessment
models with different spatial structures, the pseudo-data
for each OM realisation was aggregated and made avail-
able to analyst teams at three different spatial resolutions:
grid cell-specific data (no aggregation) was made available
for data exploration, a post-factum aggregation of the data
to four regions, and a post-factum aggregation to a single
region.

The OMs were uniquely parameterised to calculate abundance-
at-age and biomass-at-age by grid cell, reproductive cate-
gory (immature and mature), and tagged category (tagged,
untagged) by accounting for spatially explicit recruitment,
movement, fishing and natural mortality, and demographic
processes (Figure 3). The primary spatiotemporal popula-
tion and fishery dynamics for the YFT and TOA OMs are de-
scribed next, while the full details of each OM are provided
in Supporting Informations SM.A and SM.B (YFT and TOA,
respectively) and on GitHub.*>
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2.2.1 | Indian Ocean Yellowfin Tuna

Yellowfin tuna is a highly migratory species that ranges across
the Indian Ocean, exhibiting complex spatial structure, move-
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A. Indian Ocean Yellowfin Tuna
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FIGURE 3 | Summary of the primary dynamics and spatial drivers of the Indian Ocean yellowfin tuna (A) and Ross Sea region Antarctic tooth-

fish (B) case studies.

spatially by quarter-specific weighted random deviations in
cell-specific apportionment using correlated Gaussian ran-
dom fields (SM.A).

2.2.2 | Antarctic Toothfish

Spatial dynamics for Antarctic toothfish in the Ross Sea region pri-
marily stem from ontogenetic movement patterns (where fish pro-
gressively move to deeper water as they age) and migrations to and
from spawning grounds, while exploitation is due to a single long-
line fishery. Population dynamics result in spatial selectivity pat-
terns due to differences in the availability of fish to the fishing gear
at different locations according to age and season (Hanchet et al.
2008; Griiss et al. 2021). The TOA OM is based on work originally
developed to better model toothfish spatiotemporal population and
management dynamics (Mormede et al. 2014). Parametrisation of
the OM was informed by an operational spatial assessment built in
CASAL assuming four spatial regions (Dunn 2019).

The TOA OM assumes a single population modelled across
a spatial grid of 189 equal-sized cells (156kmXx156km;
Figure 3). The model was single-sex and age-structured (i.e.,
ages 2 to 30+) with an annual time step (i.e., representing years
1995 to 2021). The life cycle of TOA was emulated by tracking
fish in each grid cell by reproductive state that differed across
ages and within years, including: immature, mature, pre-
spawning, spawning, or post-spawning (Mormede et al. 2014).
The yearly time step was split into three seasons, each allowing
for specific population dynamics. The summer season included

recruitment, fishing, half of natural mortality, tag releases, and
the specification of reproductive state. In winter, the other half
of natural mortality occurred as well as movement of immature
fish, spawning migrations, reproductive transitions from pre-
spawners to spawners, and spawning. Spring was solely used
for reproductive transitions from spawners to post-spawners,
post-spawning migrations, and the annual age increment.

Recruitment occurred at age 2 in all cells with a depth less than
800m (i.e., spatially stationary), and total recruitment was the
product of the stock-recruitment relationship and a year-class
strength multiplier. Movement was modelled using habitat-based
preference functions that differed by reproductive state, where
grid cell preference was based on median depth, temperature at
500m depth, proportion of preferred depth habitat in each cell,
the presence of seamounts, and the distance between cells. The
fishery was modelled as a single longline fleet operating across
the model domain represented by a spatiotemporally invariant
selectivity and catchability (i.e., for CPUE calculations). The
amount and distribution of mark-recapture tagging data and re-
lease events also mimicked actual data for toothfish, where fish
were tagged in proportion to the full-size distribution of the catch
for each age and reproductive state. Tag loss, tag-related mor-
tality, and non-reporting were all assumed to be negligible. The
general spatial dynamics of the TOA OM was primarily based
on the movement preference functions, which led to ontogenetic
distribution patterns according to maturity and spawning states.

Data used to condition the TOA OM included catch, CPUE, catch
age composition, tag releases, tag recaptures, and proportions
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spawning-at-age. The same data types used for conditioning the
OM were simulated, assuming observation and process error, ex-
cept total catch was assumed to be known without error. Process
error in recruitment year class strength was implemented for each
iteration, assuming lognormally distributed deviations with a
standard deviation of 0.6.

2.3 | Assessment Models

Seven analyst teams independently developed stock assessment
model(s) for the experiment using one of four different stock as-
sessment platforms (see Table 1 for model, platform, and team
descriptions). Six teams developed assessment models applied to
data generated from the YFT OM. These included models built
using the Casal2 (C++ algorithmic stock assessment laboratory
2nd Generation; Doonan et al. 2016), MFCL (Multiple Length
Frequency Analysis Catch-at-Length; Fournier et al. 1990),
SPASAM (Spatial Processes and Stock Assessment Methods;
Goethel et al. 2019, 2021), and SS3 (Stock Synthesis; Methot and
Wetzel 2013) stock assessment platforms. One team developed an
assessment model applied to data generated from the TOA OM
using the CASAL (Bull et al. 2012; the predecessor to Casal2)
stock assessment platform. All platforms, at minimum, allow
for a single stratum (panmictic population within a spatially ag-
gregated assessment) and multiple strata (spatial heterogeneity
among assessment regions) population structures. Each platform
has many options (and some limitations) for integrating spa-
tial data and parameterising spatial model structure, including
choices about population structure, recruitment dynamics, con-
nectivity, fleet dynamics, tagging dynamics, and environmental
covariates. Berger et al. (2024) provide a detailed review of the
spatial functionality and capabilities of common stock assess-
ment platforms, including those used here. Detailed descriptions
of each platform can be obtained from user manuals and associ-
ated web-based code management platforms (Table SM.C.1).

2.4 | Model Development and Comparison

Documented data analysis and model building steps, including
specific methods, were considered the observational unit of the
experiment. Specifically, stepwise choices associated with high-
resolution data analysis, parameterisation of key demographics
(e.g., recruitment and movement), spatial model approach and
inference, and spatial diagnostics were compiled for each spatial
assessment and OM pairing. These choices were then compared
across teams to identify commonalities and differences in how
spatial structure and model complexity tradeoffs were confronted
(and ultimately dealt with) by the analyst teams. Qualitative sum-
maries provide a deeper understanding of how analysts approach
spatial stock assessment model building when confronted with
real-world uncertainties, as well as how they address common de-
cision points, particularly those associated with spatial dynamics.

3 | Results

Across the seven independent analyst teams, consistent patterns
emerged in the process of developing spatial stock assessment
models, highlighting both challenges and effective strategies for

addressing spatial complexity. Regardless of software platform,
each team converged on similar approaches, prioritising data ex-
ploration, incremental model building, diagnostic-driven com-
plexity, and multiple model structures.

Each of the seven analyst teams implemented at least two assess-
ments with varying spatial structures (i.e., a spatially aggregated
and either a spatially implicit or spatially explicit assessment)
and applied each to one of the OMs (Table 1). Typically, groups
began with a high-resolution data exploration to understand
the main spatial dynamics and identify data opportunities and
limitations (e.g., sparsity in length or age compositions), while
also aiding subsequent spatial model parametrisation decisions.
All teams implemented a spatially aggregated assessment first,
adding complexity in a stepwise fashion, as deemed necessary
(Figure 4). Residual patterns in the fits of each model were used
to help identify model misspecification, particularly for spatial
processes. Thus, the general process for each team included
incremental steps beginning with data exploration, developing
conceptual models, implementing simple spatially aggregated
models, adding complexity (e.g., fleet structure) within spatially
aggregated models to address diagnostic issues, then, incremen-
tally, adding (or simplifying) spatial complexity. Descriptions of
each analyst team's assessment model development process are
provided in the Supporting Information (SM.D).

3.1 | Data Explorations

The exploration of catch, effort, tagging, and composition data at
the highest resolution available was common (Table 2; Figure 4).
For example, team Casal2 automated data summary procedures
to rapidly adjust and evaluate data aggregations at different
temporal and spatial scales that aligned with a realistic set of
hypotheses, primarily related to population and fishery spatio-
temporal structures. The exploratory analyses of catch, CPUE,
and tagging data highlighted the need for seasonal time-steps
and consideration of movement, while length composition data
indicated potential scale-dependent sparsity issues leading to
minimally sufficient spatiotemporal fishery definitions. Team
SS3_C explicitly categorised data products using regression tree
models (following Lennert-Cody et al. 2023; Maunder et al. 2022)
to quantitatively define fleet structure, thereby removing the
often discretionary (or arbitrary) nature of fleet definitions in
stock assessment. Two teams used species distribution models to
develop spatiotemporal CPUE indices of relative abundance and
to inform regional abundance scaling parameters (following
Hoyle and Langley 2020). One team additionally used species
distribution models to develop spatiotemporal compositional
data. Initial data explorations also informed subsequent model-
ing decisions, such as by providing information on tagging dis-
persion parameters, length composition effective sample sizes,
and model dimensions (including candidate spatial structures).

3.2 | Model Development

Spatially explicit models were typically developed much later in
the process and built iteratively. Each model update was incre-
mental and focused on a specific spatial complexity, after which
analysts investigated the resultant diagnostics to understand
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FIGURE4 | Asummaryacrossanalytical teams (n=7) of key decisions made that informed final model complexity (first column), high-resolution

data analyses utilised (second column), and diagnostic tools implemented (third column). The size and color of the bubble correspond to the number

of teams that utilised a particular approach or analytical process.

model performance. Often, further data analyses would be ex-
plored based on insights gained or questions arising from a poorly
performing spatial parametrisation. For instance, tagging analy-
ses were often revisited once initial spatial models were running
to better understand how best to handle tag nuisance parameters
(such as the mixing period and reporting rate). Teams also un-
dertook unique approaches to balance fleet and region structure,
often focusing on parsimony to reduce the number of parameters
related to movement, recruitment, and fleet selectivity (Table 2).

Residual fits and patterns were the primary diagnostics used by
all teams to investigate model fit and adequacy (Table 2; Figure 4).
In particular, persistent residual patterns during the development
of spatially aggregated models were the driving force behind in-
creases in model complexity. For example, the incorporation of
tagging data was informed by analysts' interpretation of data rep-
resentativeness and model fit diagnostics. Specifically, the lack of
spatial, temporal, and age coverage of the tagging data (i.e., tagged
YFT were mostly immature fish in a small portion of the domain
during a relatively short time period) led some groups to omit it
or develop hypotheses about time at liberty for proper tag mixing.

Sensitivity analyses and profile likelihoods over influential param-
eters were also common tools used to identify alternative plausi-
ble model structures and within-model parameter identifiability.
Other diagnostic tools included model stability metrics (i.e., jittered
parameter runs and retrospective model performance), model se-
lection criteria (i.e., AIC and runs tests), and implementation of
simpler surplus production models. Two teams incorporated
Bayesian diagnostics (e.g., MCMC convergence criteria, posterior
trace plots, chain autocorrelation, and posterior predictions) to
refine model parameterisations that were not identifiable or had
poor convergence properties. Team SPASAM used run time as an
implicit diagnostic to reduce fleet and temporal structure in the
assessment model. In general, teams noted that they would have
explored more model diagnostics if they had had more time or if
spatial models were quicker to converge to a solution.

3.3 | Spatial Model Complexity

Nearly all assessment configurations that attempted to explic-
itly address spatial dynamics (six of eight) incorporated spatial
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TABLE 2 | A summary of approaches used (common and distinctive) and major impediments encountered across all analyst teams during the
model building and development process, with emphasis on those that helped inform the final spatial model complexity.

Spatial consideration = Common approaches

Distinctive approaches Major impediments?

Evalute raw catch, effort,
and composion data
Start simple and add

spatial complexity

Tteratively reweight
composition data
(Francis method)

Data Analysis and
Weighting

Single area with
multiple fleets
Single area with fleets-
as-areas (FAAS)
Pass on single area
parameters as starting
point for multi-
area parameters
Spatially explicit
multi-area model

Spatial Units

Time step matching
the OM as the main
continuous time step

Temporal Structure

Specified per the
structure of the
operating model

Demographics/Biology

Single (global) set of
recruitment deviations
estimated by time
step matching the
OM with stationary
spatial apportionment
to areas across time

Recruitment Dynamics

Fleet Structure Single fleet across
entire domain
Single fleet per area
with area-based
selectivity parameters
(FAA) initialised by
the single area model
Multiple fleets per area

Sparse effective sample sizes
leading to lack of information
Weighting of composition
data relative to tagging data

Explored alternative time steps
Spatiotemporal model explorations
(CPUE, composition data)
Categorise data properties
(regression tree)
Reweight tagging
dispersion parameter

Use fleets-as-areas (FAA)
model to define fleets in
spatially explicit model
Use four-area model
diagnostics to build spatially
explicit two-area model

Reconciling parsimonious
fleet structure
Increasing spatial areas lead
to computing time bottlenecks
and degrading diagnostics

Aggregated seasonal dynamics
to more coarse time steps
Nested seasonal time steps
within annual time steps
Truncated beginning of the time
series to shorten run times

Implementing temporal
autocorrelation among seasonal
time steps across years

Estimates were sensitive to
the method used to aggregate
parameters (e.g., maturity,
natural mortality, and growth)
to alternative time steps

Adjusted operating model
specifications to align with
alternative temporal structures

Only estimate recruitment
deviations for periods
with catch-per-unit-effort
(CPUE) information

Add time-varying apportionment
of recruitment to areas
Fixed apportionment based
on simplier spatial model
configuration estimates
Reduce apportionment parameters
to only primary breeding areas
Constrain apportionment
parameters according to strata-
specific biomass distribution
(catch-per-unit-effort; CPUE)

Identifying parsimonious fleet
structure parameterisation
(though see distinctive
regression tree approach)

Fleets with the same gear
in different areas share
selectivity parameters
Alternative fleet structure
models in single area model
used as diagnostic to idenfity
spatial model fleet structure
External regression tree
analysis conducted to inform
optimal fleet structure

(Continues)
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TABLE 2 | (Continued)

Spatial consideration = Common approaches

Distinctive approaches

Major impediments?

Reduce movement
parameters by age, area,
or time constraints
for tractability
Model movement
rates for mature and
immature fish separately

Movement

Tags used in one and
four area models using
Peterson® or Brownie® (or
both) modelling methods
Nusiance parameters
either fixed or
evaluated across
multiple assumptions
(sensitivity models)

Tagging Dynamics

Pearson residuals
for composition
and tagging data
Likelihood profiles
Sensitivity analyses
Model convergence
through positive
hessian and gradients

Diagnostics

Only occurs during certain
time steps (seasonality)
Time-invariant between

Only occurs in major tag data areas
Imply movement through area-
based selectivity parameters
No movement parameters

Estimated tagging
overdispersion parameter
Used to inform abundance
only (Peterson method)
Used an ensemble of no tagging
and tagging models with
alternative mixing periods
Tag data not used

Markov chain Monte Carlo
(MCMC) trace plots, convergence
diagnostics, and posterior
prediction evaluations
Use of Akaike information criterion
(AIC) for nested model selection
Model stability through model
parameter jitter tests

Tag mixing period assumptions
and sensitivity models
Non-homogenous distribution
of tagging data
Overdispersion of tagging data
Large number of movement
parameters and subsequent
modelling options

certain areas

Identifying appropriate
tag mixing period and
maximum at liberty model
specifications as selected
approach influenced results
Lack of spatial coverage in
tag release and recoveries

Large number of parameters
to diagnose for multiple fleets
and multiple area models

Use of simplier production

models or runs tests

2As highlighted by analysts, not an exhaustive list.

"Based on the Lincoln-Peterson mark-recapture method (Lincoln 1930; Petersen 1896).

“Based on Brownie dead recovery mark-recapture methods (Brownie et al. 1985).

population and fleet structure in a unique way (Table 1), result-
ing in a range across teams of selected spatial model complexity
(where definitions of relative model complexity follow fig. 2 in
Goethel, Berger, and Cadrin 2023). The simplest spatial models
(i.e., spatially implicit) used an areas-as-fleets (AAF) approach,
whereby fleets of each gear type were defined for each region or
further aggregated according to a machine learning algorithm
(i.e., a regression tree approach). One team built a spatially dis-
aggregated model, where independent assessment models were
produced for each region (i.e., including spatial differences in
recruitment but ignoring movement among regions) with fleets
for each regional model defined for all gear types.

Four teams produced more complex, regionally linked models
through the inclusion of explicit spatial recruitment and move-
ment dynamics. Across spatial models, complexity differed ac-
cording to the number of regions modelled and how fleets were
defined (full complement of region and gear type versus simpli-
fications by mirroring selectivity by gear types across regions).
While all teams built up complexity from spatially aggregated
single-region models to spatially explicit multi-region models,
one team subsequently simplified its spatial assumptions (i.e.,
re-aggregating a four-region to a two-region spatial model). All
assessment models produced during the experiment included
region as a primary separator of fleets (and thus selectivity

patterns). No team found the need to explore alternative pop-
ulation structures (e.g., due to regional demographic variation),
primarily because demographics were specified for each species
in the experiment documentation (i.e., each OM assumed a sin-
gle population with spatial heterogeneity in fleet or population
dynamics and no variability across space in growth, maturity, or
natural mortality).

The primary axes for parametric exploration beyond fleet selec-
tivity were related to recruitment apportionment and movement
dynamics for the four assessment models that were explicitly
spatial (Table 1). Recruitment from a global Beverton-Holt stock-
recruitment relationship was apportioned by region in all four
cases, but each team applied unique simplifying assumptions.
The MFCL team used the least restrictive assumption by esti-
mating time-varying recruitment apportionment deviation pa-
rameters for each region. Other teams reduced the number of
apportionment parameters by restricting full time-variation to
a subset of regions (SS3_A), including temporally stationary pa-
rameters for each region (SS3_B), and fixing apportionment for
each region through time (SPASAM). Similarly, all four teams
considerably restricted the number of estimated movement pa-
rameters across space and time (Table 1). The SPASAM team
estimated movement parameters for all region combinations
for two maturity-based age groups and allowed time variation

Fish and Fisheries, 2025
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assuming two season time blocks (i.e., movement was estimated
for every other season in their truncated time period model).
The MFCL team estimated movement rates between regions
with shared boundaries and assumed that movement was age-
and time-invariant except for a seasonal deviation that was
invariant across all years. The two other teams considerably
restricted movement to a reduced number of time-invariant re-
gion combinations for two maturity-based age groups based on
initial explorations of tagging data. In general, teams took dif-
ferent approaches to balancing complexity in productivity and
movement. Some elected for relatively high complexity in the
parameterisation of movement at the cost of less complexity in
recruitment, and vice versa (Table 1).

All teams that integrated tagging data to inform movement
(YFT OM) did so following the Brownie tag-recovery method
(Brownie et al. 1985), which required them to make tag mix-
ing assumptions. Their assumed tag mixing periods ranged
from 0 to 6 time-steps, which had an important influence on
model fit and final model complexity. One team (CASAL for the
TOA OM) elected to integrate tagging data to estimate abso-
lute abundance following the Lincoln-Peterson mark-recapture
method (Lincoln 1930; Petersen 1896), primarily in lieu of using
a fishery-dependent CPUE index of relative abundance. The
choice of how to use the tagging data (i.e., to inform movement
or abundance estimates) was influenced primarily by case study
dynamics. For example, the TOA OM included spatially repre-
sentative tagging information, whereas the YFT OM included
tagging of juveniles largely within a single region (see SM.B and
SML.A, respectively). Given the quality of available tagging data,
two teams elected not to use tagging data, ignore movement,
and make simplifying population structure assumptions (i.e.,
assuming a single area with an AAF model or implementing
spatially disaggregated assessment models without movement).

3.4 | Impediments and Unique Solutions

Several impediments to building and implementing spatial mod-
els were encountered, which also led to differing model building
decisions across analyst teams (Table 2). For instance, teams
found the realistic (i.e., spatiotemporally sparse) levels of data, in
particular length-age composition and tagging data, to be a lim-
iting factor for the degree of spatial complexity that could be inte-
grated into a practical model. Resulting low effective sample sizes
required aggregating composition data, which directly influenced
decisions regarding the number of spatial strata to model and ne-
cessitated careful consideration of how to weight composition
data (e.g., by catch, modelled CPUE, or sample sizes in each grid
cell) to ensure representativeness of the data within and across
regions. Similarly, the limited spatial and age coverage of tagging
data in the YFT OM led to unresolved tag modelling assumptions
(e.g., tag mixing and overdispersion) and necessitated simplifying
assumptions (e.g., grouping movement in age or time blocks).

Collectively, analyst teams' explorations and decisions led
to the evolution of unique solutions to manage model com-
plexity (Table 1). For example, several teams reduced model
complexity through the refinement of fleet, spatial, and tem-
poral dimensions to enable tractable model run times while
simultaneously addressing model fit and parsimony. One

team elected to ignore the sparse tagging data and instead
addressed population structure by developing multiple inde-
pendent disaggregated models, where regional dynamics were
captured through model-specific stock-recruitment functions.
Similarly, another team chose to ignore the tagging data and
instead developed spatiotemporal models that smoothed over
sparse CPUE and length composition data by utilising spatial
autocorrelations to produce representative population infor-
mation across the entire domain (i.e., attempting to capture
the collective end result of unobserved fine-scale dynamics at
asingle aggregated scale). Several teams considerably reduced
the number of movement parameters by restricting movement
among specific regions, aggregating to age and time blocks,
or assuming age- and time-invariance. Besides movement,
tagging data was also used by one team to estimate an abun-
dance trend instead of relying on a fishery-dependent CPUE
time series. Given the difficulty in deciding among different
structural assumptions, particularly for tag mixing, one team
pursued an ensemble modeling approach to implicitly account
for structural uncertainty. However, time and resource con-
straints impeded a full implementation or adequate compari-
son of model ensemble outputs to single model results.

4 | Discussion

This study highlights how assessment model complexity when
confronting spatial structure is not only influenced by biological
or ecological considerations, but also by the analyst's background,
platform constraints, and institutional priorities. Identifying the
appropriate level of complexity in stock assessment models re-
mains a persistent challenge. No comprehensive guidance is avail-
able (or likely possible) that can account for all potential scenarios,
data limitations, and modeling contexts encountered in opera-
tional assessments (though see Punt, 2023 for general guidance).
The challenge of balancing parsimony and complexity becomes
even more difficult in the presence of persistent spatial structure
or spatial dynamics in marine populations (Berger et al. 2017;
Goethel et al. 2024). Although most generalised assessment plat-
forms share similar underlying structure, the types of complexity
that can be integrated typically depend on the species, region, or
institution for which they were developed (Berger et al. 2024).

A notable outcome of this study was the strong ‘analyst effect’,
where model development and final structure were affected by
a combination of region (e.g., RFMO affiliation), software plat-
form, individual expertise, and likely, career stage (e.g., student
versus professional). For instance, platform choice was closely
tied to RFMO affiliation, as RFMOs have often developed pro-
prietary or preferred software. The platform in turn influenced
the diagnostics, methods, and assumptions, particularly regard-
ing movement, recruitment, or tagging, based on the options
available within the platform. Moreover, several RFMOs viewed
the experiment as an opportunity to test specific modelling ap-
proaches aligned with their research interests, which helped jus-
tify participation and funding, and shaped model development.
Finally, resources available, particularly in terms of time dedi-
cated to the project, depended on institutional structure, career
stage, and ongoing commitments. Early career participants often
dedicated more time and explored a wider array of approaches.
Given the many decision points involved in spatial modelling,
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subtle platform differences, and the study's funding limitations, it
is not surprising that this analyst effect was stronger than in pre-
vious blinded simulation experiments (e.g., Deroba et al. 2015).

Despite these differences, most analysts followed a broadly
similar model development trajectory. However, unique ap-
proaches emerged that influenced final model complexity.
Based on observations of the model building process and sub-
sequent discussions, we offer general guidance for developing
stock assessments when spatial structure is present (Figure 5).
Many of the recommendations, such as the use of high-
resolution data analysis, apply to both spatial and non-spatial
contexts, since they are fundamental to understanding resource
dynamics and the representativeness of the data. Moreover, the
experiment demonstrated that common processes inform the
development of both spatially aggregated and spatially explicit
assessment structures, offering insight into when spatially im-
plicit assessments might also be appropriate. Importantly, no
single model structure or development approach consistently
produced unbiased results (Goethel et al. 2024), emphasising
that these recommendations are not necessarily ‘best practices’
but rather ‘common practices’ that can provide insight into un-
derlying dynamics and model parametrisation.

4.1 | Data Analysis and Conceptual Model
Development

The first step in any stock assessment is to compile an inventory
of the available data. High-resolution spatiotemporal analyses
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should follow to evaluate data availability and quality, while
also aiming to identify drivers of population dynamics and spa-
tial structure that should inform parametrisation (e.g., resource
distribution, fleet structure, connectivity patterns, and regional
patterns in age or length). For example, mapping length com-
position and CPUE data were widely utilised to understand the
distribution of the fleets and resources, while identifying data-
sparse regions that might constrain spatial structure. Objective
techniques such as regression trees were found useful for iden-
tifying fleet structure, and high-resolution mapping of tagging
data helped identify representativeness and inform tag mixing
assumptions. Flexible data structures are highly recommended
to allow analysis at various spatiotemporal scales and to support
model comparisons across different spatial resolutions (see next
section).

Although mostly implicit in each group's approach due to time
constraints, a well-developed conceptual model is essential.
This model should describe all hypothesised population and
spatiotemporal dynamics, and be informed by both the initial
data analyses and a comprehensive literature review (Goethel
et al. 2024; Minte-Vera et al. 2024; Cheng et al. 2025). Studies
on growth, genetics, biomass flux, fishery dynamics, and
management history can guide the model's spatial complex-
ity. Population drivers can be prioritised by importance (e.g.,
primary drivers that must be addressed versus secondary or
hypothesised drivers that should be explored) and certainty
(e.g., well-documented versus hypothesised) to help focus
the model development process, especially when time con-
straints exist.
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FIGURE 5 | Flow chart outlining a general approach for identifying appropriate stock assessment model complexity when confronting spatial
structure. Final model complexity was achieved through the development of a conceptual model, data explorations, and implementation of a spatially

aggregated model, which was then expanded to include spatial processes based on key hypotheses, high-resolution data analyses, model diagnostics,

and feedback learning through iterative refinements. The presented steps are inclusive of the collective model development processes undertaken by

the analyst teams.
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4.2 | Identifying Model Complexity

Model development should proceed from the conceptual model,
typically starting with a moderately complex approach that ad-
dresses the primary drivers of population dynamics (e.g., Cheng
et al. 2025). Development should then be iterative and stepwise,
adding or removing elements based on diagnostic feedback.
Diagnostics allow you to evaluate whether: (1) critical elements
are still missing and additional model features are needed, (2) el-
ements are needed but data are lacking or specific processes are
not understood, thus requiring future research, or (3) the model
is performing adequately and no new elements are warranted.
The process cycles through these steps until an adequate model
is selected, often after the major data questions are addressed
and future recommendations are identified.

A spatially aggregated model is often a useful starting point.
These models benefit from increased sample sizes, simpler im-
plementation with well-established modelling approaches, and,
generally, high convergence rates. They also act as diagnostic
tools in themselves: residual patterns and unrealistic population
trajectories can indicate the need to add complexity. As com-
plexity increases, earlier decision points should be revisited and
may need to be adjusted due to interactions among processes
(e.g., recruitment and movement; see next section).

Standard diagnostics can be used for both spatially aggregated
and spatially explicit models (see Carvalho et al. 2021), but di-
agnostics that explicitly identify spatial process error remain
a research priority. Common tools used in this experiment to
refine spatial assessments included residual pattern evaluation,
checking for convergence and parameter estimates near bounds,
likelihood profiles or sensitivity runs to assess data conflicts,
realism checks against expectations from the conceptual model
(e.g., movement and spatial recruitment dynamics), self-tests
(simulate data from an assessment model and rerun the assess-
ment with the new data), fits to tagging data, and comparison
of predicted and observed spatial biomass distributions. For
example, analysts working with simulated YFT data used the
non-homogenous spatial coverage of tag release and recapture
data and tagging sub-model performance (e.g., model sensitivity
to assumed tag mixing period and unreasonably large variance
estimates) as justification to specifically alter model assump-
tions about movement. In some cases, this resulted in analysts
aggregating tagging data across spatial areas, time scales, and
life stages to improve tagging model performance and resulting
movement estimates (Table 2). In other cases, it resulted in the
removal of the tagging data altogether, including alternatively
using a spatiotemporal CPUE model to implicitly capture sea-
sonal movement. A few analyst teams also used less complex,
biomass-based (no age-structure) surplus production models to
diagnose and refine alternative recruitment parameterisations
assumed in age-structured models. Analyst teams collectively
identified further development of diagnostics to evaluate suffi-
cient spatial model complexity as a research priority to better
inform movement and productivity parameters and reduce con-
founding. Approaches such as examining profile likelihoods for
movement with and without age variation, conducting cross-
validation across spatial and temporal blocking schemes, and
performing posterior predictive checks on regional tag flows
and length- or age-compositions would complement this work.

When considering adding further complexity, analysts should
assess whether the data are sufficient to support it. The level of
model complexity should be determined by the quality, spatial
resolution, and sampling distribution of the data (i.e., is there
sufficient data to inform estimates within, and movement
among, all regions?). Complexity should reflect biologically
realistic expectations supported by conceptual models, which,
ideally, would also match signals in the available data. However,
determining whether model complexity is optimal likely re-
quires testing models that are too complex. When added com-
plexity does not improve results or convergence suffers (e.g.,
long run times, high gradients, poor Hessian behavior, or poor
MCMC diagnostics), simpler models may be more appropriate.
Multiple model spatial structures—both spatially aggregated
and spatially explicit—should be maintained throughout the
model-building process to aid comparisons among outputs,
given that unique insight and support (validation) can be pro-
vided by each structure.

4.3 | Addressing Structural Uncertainty

Rather than identifying a single ‘optimal’ spatial structure, the
goal should be to ensure that essential processes are appro-
priately captured. Models should adequately reflect removals
(catch-at-age or length and by region), trends (CPUE or indices),
and known biological processes. In a spatial context, this in-
cludes biomass flux and flows (e.g., movement and recruitment).
Estimates of these processes are often highly correlated (Goethel
et al. 2021), making deliberate and informed decision-making
critical. Supporting evidence from data and literature should
back each structural decision.

In some instances, particularly when data are limited or move-
ment is generally ubiquitous, spatially aggregated or spatially
implicit models may be sufficient. If the scale of the assessment
aligns with the biological population unit and emigration is neg-
ligible, aggregated models can provide adequate management
advice (Kerr et al. 2017; Cadrin 2020). Moreover, when spatial
dynamics are primarily driven by fleet dynamics or differences
in spatial availability to the primary fishing fleet, spatially im-
plicit approaches such as areas-as-fleets (A AF) may be appropri-
ate. As demonstrated in this study, AAF approaches combined
with regression trees helped objectively identify fleet structure,
while preprocessing data using spatiotemporal models ac-
counted for other aspects of spatial variability in the data.

For spatially explicit models, the primary structural decisions
relate to the number of regions, the fleet structure within each
region, and the modelling of recruitment and movement across
regions. These decision points are interconnected. For example,
increasing complexity in regional structure may limit further
complexity in recruitment and movement processes. As with
any model, the complexity is limited by the data and prior in-
formation, given that greater partitioning (e.g., strata, fleets,
ages, sexes) reduces sample sizes, often increases the number
of parameters (e.g., recruitment, movement, and selectivity)
that need to be estimated, and increases computation time.
Techniques such as Bayesian priors, random effects, hierarchi-
cal models, parameter restrictions (e.g., Markovian movement),
and parameter sharing can help reduce the effective number of
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parameters (Maunder et al. 2009; Thorson et al. 2021). However,
one of the major remaining uncertainties is how best to incorpo-
rate tagging data, especially with uncertainty in appropriate tag
mixing periods, to estimate movement and related parameters.
Hybrid spatial modelling frameworks that bridge the extremes
of spatial assessment modelling approaches (i.e., spatially strat-
ified and spatiotemporal) could help address this uncertainty in
the future by embedding high resolution spatiotemporal sub-
models (e.g., movement estimation from electronic tags) within
a broader scale population model to help improve parameter es-
timates (e.g., movement; Thorson et al. 2021).

Finally, addressing structural uncertainty across spatial mod-
els may be best addressed by ensemble models or structural
sensitivity analyses. In this experiment, many different model
structural choices and assumptions were made by analysts using
the same data, resulting in different estimated population dy-
namics (Goethel et al. 2024). The variability in model structure
observed in this experiment suggests that complex population
models, including spatial stock assessments, could gain robust-
ness from ensemble modelling approaches, especially when ex-
tensive simulation testing cannot be conducted. Moving away
from the ‘best assessment’ paradigm, ensembles allow integra-
tion of models with complementary strengths (Goethel, Omori,
et al. 2023). Still, challenges remain in selecting ensemble mem-
bers and defining appropriate weights for models with different
spatial structures (Jardim et al. 2021; Adams et al. 2022). For
instance, analysts must determine whether to include both spa-
tially aggregated and spatially explicit models in the ensemble
while also limiting the dimensions of primary modelling un-
certainties to a tractable number. While these hurdles are sur-
mountable (e.g., Adams et al. 2022), careful interpretation of
ensemble results is essential.

5 | Conclusions

Our experiment did not identify a single optimal spatial structure
or model building approach for stock assessments. However, it
did emphasise the importance of deliberate and comprehensive
data analysis to guide key structural decisions, while highlight-
ing shared elements in the model development process. In par-
ticular, the co-development of models with alternative spatial
structures proved essential to provide deeper insight into assess-
ment performance and uncover potential spatial drivers. Using
high-resolution data analyses was identified as a way to test for
persistent spatial gradients before considering additional spatial
structure and associated connectivity parameters. Although
the need for a spatial model is context-specific—based on un-
derlying spatial dynamics, data availability, and management
needs—maintaining multiple model structures can help eluci-
date regional dynamics (e.g., spatially varying depletion) and
validate model outputs (Li et al. 2025).

Adopting a reproducible and modular development process,
such as the Transparent Assessment Framework (TAF; e.g.,
https://github.com/ices-taf), can facilitate model implementa-
tion and transition among assessment structures. TAF offers
stock assessment workflow support and transparency by or-
ganising assessment data, methods, and results in an archival
central hub. TAF also supports more flexible analysis of data

at various spatiotemporal resolutions, thereby aiding decisions
about model structure. In the coming years, increased research
emphasis should also be placed on identifying best practices for
data aggregation across assessment structures. Because all data
are inherently spatial, some degree of aggregation is unavoid-
able regardless of model structure, and assumptions underlying
how data are aggregated have important consequences (as ob-
served in this experiment; Goethel et al. 2024). Moreover, diag-
nostics that can identify misspecification in relation to spatial
processes, including how poor fit to aggregated data might be
used to identify important spatial dynamics, remain underde-
veloped and should be a future research priority.

Ultimately, overcoming institutional impediments to using spa-
tial models in tactical decision-making requires improved com-
munication across the science-policy divide. This includes open,
frank discussions about whether a spatial model is needed, how
it might inform management decision-making (e.g., distribution
of regional catch limits based on regional abundance scaling
parameters), and what trade-offs are involved. Similarly, im-
proved collaboration and knowledge-sharing across RFMOs is
needed to disseminate spatial modeling expertise and methods,
via experiments such as this one and the publication of spatial
assessments. There must also be clearer recognition that spatial
assumptions are embedded in all assessments. A spatially aggre-
gated model is not a neutral baseline—it represents an explicit
decision that spatial processes are not an important driver of
the dynamics of the resource. Thus, the assessment community
should work together to understand the implications of ignoring
spatial structure and to understand and address spatial drivers
through improved data analyses, modeling approaches, and
management strategy evaluation (MSE).

This experiment, particularly its blinded design and use of a
high-resolution OM, highlighted a fundamental yet not widely
acknowledged reality of stock assessment: all assessments, re-
gardless of complexity or analyst experience, have the potential
for bias. This insight suggests that increasing complexity alone
is unlikely to resolve fundamental uncertainties. In addition to
improving the stock assessments, priority should also be placed
on developing and evaluating harvest control rules (HCRs) that
are robust to both structural uncertainty and assessment bias
(Evans et al. 2015). Future research should explore minimally
complex, maximally robust HCRs, including empirical or quasi-
empirical (e.g., linked to close kin mark-recapture estimates
of absolute abundance) implementations (Goethel, Berger, and
Cadrin 2023; Goethel, Omori, et al. 2023). Though challenging
to implement, blinded simulation studies within high-resolution
closed feedback (i.e., MSE) frameworks would be helpful to re-
alistically evaluate assessment bias and support the design of
resilient management strategies.

As stock assessments become increasingly multidisciplinary,
spatial models provide a unique framework for integrating eco-
system, environmental, and socioeconomic drivers that act at
various spatiotemporal dimensions (Goethel, Omori, et al. 2023).
However, tradeoffs between parsimony and complexity must
remain at the forefront of model development processes, par-
ticularly given the limitations of observed data for informing
complex dynamics and associated parameters. Transparent
communication about these limitations at the science-policy
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https://github.com/ices-taf

interface is critical, given rising expectations for model complex-
ity and sophistication and the ever-present constraints on time,
data, and resources.
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