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The limitations of chemical pesticides and their associated risks
highlight the need for more sustainable pest management
strategies. Biological control using natural enemies offers an
eco-friendly alternative but is sometimes constrained by
efficiency and scalability. Emerging molecular tools—RNA
interference (RNAI) and Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR)-based gene editing—present
novel opportunities to enhance existing biological control or to
control pests directly. RNAi induces targeted gene knockdown
via a non-heritable, transient response. CRISPR enables
precise genetic modifications and could improve traits in
beneficial insects or disrupt essential genes in pests, optionally
including a gene drive for increased power. Although limitations
remain for several species, these technologies could be
valuable tools for integrated pest management. Their future
implementation raises biosafety and regulatory considerations,
particularly for self-propagating systems like gene drives. This
review showcases developments in RNAi and CRISPR-based
pest control, and calls for risk-based, adaptive governance to
enable their responsible use in sustainable agriculture.
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Introduction

There is an urgent need to develop new approaches for
pest control, which largely still relies on the use of broad-
spectrum chemical pesticides. The increased legislation
to ban the use of chemical pesticides, the continuous
evolution of insecticide resistance in insect pests, and
the large concerns regarding the use of chemical in-
secticides for human health (including farmers and
consumers), non-target organisms, and the environment
require the development of more sustainable alter-
natives. The use of natural enemies (predators or para-
sitoids) to control pest species has been implemented in
various forms, from natural and conservation biological
control to importation and augmentative release of nat-
ural enemies. These strategies have been achieving
many important successes, including the complete era-
dication of chemical pesticide usage in several crop
systems across the globe (see van Lenteren et al. [1],
Mason [2], and van Lenteren et al. [3] for recent re-
views).

Despite the successes, biological control does not always
provide effective pest management and developing
these approaches is a time-consuming and labour-in-
tensive process [2]. Since recent years, novel molecular
technologies offer new opportunities to enhance the
efficiency and safety of biological control—specifically,
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by using RNA interference (RNAI) to knock down gene
expression or Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR)-based genome editing
to knock in or out certain genes in pests or their natural
enemies.

In insects, the RNAi pathway is a naturally occurring,
sequence-specific gene-silencing mechanism elicited by
small RNA molecules, often functioning in antiviral
defence [4] (Figure 1a). Pest management can benefit
from RNAi-based biopesticides that silence essential
genes in insects, while minimising toxicity to the en-
vironment. This application involves inducing the exo-
genous (meaning, experimentally activated) small
interfering  RNA (siRNA) pathway by introducing
double stranded RNA (dsRNA) to knock down specific
genes, thereby reducing pest fitness or causing mortality
(Figure 1c¢). Due to its sequence specificity, RNAi poses
minimal risks for off-target effects and is not considered
a genetic modification as its effects are not heritable.
Besides direct pest control, dsRNA can also be used to
silence genes in natural enemies to enhance their ef-
fectiveness as biological control agents (Figure le).

CRISPR is a powerful genome-editing technology that
allows precise modification of DNA sequences in a wide
range of organisms [5] (Figure 1b). It can be used to
disrupt key genes in pest species (Figure 1d) or enhance
the efficacy of beneficial insects in biological control
(Figure le). Furthermore, CRISPR has enabled the
development of synthetic gene drive systems, which bias
their own inheritance pattern to rapidly spread desired
traits through a population, even deleterious ones like
female sterility or a male-biased sex ratio for pest control
[6] (Figure 1d).

In this article, we discuss the use of RNAi and CRISPR
for developing and optimising current pest control stra-
tegies. These tools offer alternative solutions for mana-
ging pests and invasive species that threaten food
security, human health and biodiversity. Importantly, we
also discuss the ecological and regulatory concerns these
technologies raise due to their potential for irreversible
environmental impacts, and thus the need for a balanced
and flexible governance thereof [7].

RNAi-based pest control

Research on RNAI for pest control has surged in the last
28 years, advancing our understanding of biological
processes in many insects [8]. Two extensively studied
species are the red flour beetle, Tribolium castaneum, and
the western corn rootworm, Diabrotica virgifera virgifer-
a—both coleopterans for which RNAI is generally highly
effective. Scientists have also attempted to control po-
pulations of other crop pests, mosquitoes, and invasive
social species by delivering dsRNA via injection,

feeding, or submersion, but results have been mixed.
The first commercial RNAi product was a transgenic
maize expressing dsRNA # planta to protect against
western corn rootworm damage. A sprayable form of
dsRNA biopesticide against the Colorado potato beetle,
Leptinotarsa decemlineata, is now available [9], and a
feeding solution to protect honey bees from Varroa de-
structor mites will be on the market soon [10].

While RNAI is a promising technology, difficulties linger
before wide commercialisation. Firstly, selecting the
best target gene for RNAi-mediated pest control is
paramount, but information on gene function and ex-
pression is limited for most species; the best RNAI lethal
targets for one species might not be the best targets for
another species [11]. Secondly, efficiency of RNAi
varies; while moths and butterflies appear recalcitrant to
its effects [12], target genes in many beetles are suc-
cessfully knocked down [13]. Thirdly, RNAI sensitivity
differs among species due to tissue-specific activation of
double-stranded ribonucleases (dsRNases), which re-
sults in dsRNA digestion. A series of formulations to
shield dsRNA constructs from these dsRNases has been
developed. In Drosophila suzukii larvac and Polistes
dominula adults, gene silencing was achieved when
dsRNA was combined with a transfection reagent op-
posed to when dsRNA was ingested naked [11,14].
BioClay-based dsRNA spray enhances dsRNA uptake
and subsequent control of Bemisia tabaci, outperforming
naked dsRNA in field conditions [15]. Fourthly, even if
dsRNA reaches the cytoplasm, it can be trapped in en-
dosomes. In D. suzukii, effective protection from en-
dosomal entrapment and degradation was achieved
when encapsulating dsRNA into virus-like particles [16].
Finally, the functioning and composition of the core
RNAi machinery also determine whether dsRNA is
processed to siRNA. Large-scale manufacturing and
field deployment of RNAI insecticides are in the early
stages and require species-specific optimisation, as there
is no ‘one size fits all’ for RNAi development [17].
Overall, advances in production and delivery of dsRNA
will facilitate the widespread use of this sustainable
method of pest management in the future.

In addition to efficacy of RNAI, biosafety towards the
environment and non-target organisms like parasitoids,
predators and pollinators should be evaluated before
deployment. The stability and persistence of dsRNA in
the environment depend on UV light, temperature and
pH. Although dsRNA does not appear to accumulate for
long in aquatic or terrestrial environments [18], studies
remain scarce. Potential off-target effects include unin-
tended silencing of non-target genes or silencing ortho-
logous genes in non-target organisms. The likelihood of
these effects correlates with the mismatch rate between
the dsRNA sequence and non-target messenger RNA
(mRNA) [19], gene expression level, and renewing rate
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RNAi and CRISPR technologies and how they can be applied to improve biological control of pests. (a) The exogenous RNAi pathway involves the
capacity of cells to degrade target mRNA with sequence homology to the administered dsRNA. When dsRNAs reach the cell cytoplasm, they are
cleaved by Dicer enzymes into siRNA that are loaded into RNA-Induced Silencing Complexes (RISC). The siRNA fragments guide argonaute-2 (AGO2)/
RISC to target complementary mRNA for degradation, thus impeding replication, transcription and translation of the targeted gene. (b) CRISPR
technology can make precisely targeted changes in genomic DNA. To generate genetically modified insects, Cas9 (MRNA or protein) and gRNAs are
delivered into an embryo, where they find the target match in the genome and generate double-stranded breaks. These breaks are usually repaired via
end-joining repair, which often generates small insertions or deletions in the sequence, thus effectively knocking out that gene. If a donor DNA
sequence homologous to the target locus is supplied along with the CRISPR components, potentially containing extra sequences in between, the
double-stranded break can also be repaired via homologous recombination. One or multiple genes (such as a gene drive) can be knocked in this way.
(c) Direct pest control can be achieved using RNA.. (d) Direct genetic biocontrol can be achieved using CRISPR, potentially also through gene drive.
(e) Biocontrol can be enhanced based on RNAi or CRISPR.
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of gene expression products. Fortunately, bioinformatic
tools that help design dsRNAs and test for off-target ef-
fects on other species’ genomes are available [20,21].
Besides off-target effects, dsRNA may induce immune
response activation or saturation of the RNAi-machinery
(reviewed by Chen and De Schutter [18]). Importantly,
parasitoids, pollinators, decomposers and predators of a
pest will also be exposed to the dsRNA intended for the
target insect. One study found no evidence of dsRNA
harming parasitoid wasps unintentionally [22], and it is
hypothesised that although some off-target down-
regulation might happen, rigorously designed dsRNAs
are not lethal to natural enemies, parasitic wasps, and soil
decomposers [18]. Further research and thorough risk
assessments are still paramount to ascertain how poten-
tial detrimental effects can be mitigated.

CRISPR-based genetic biocontrol and gene
drives

Since 2013, a myriad of CRISPR-based genetic biocon-
trol strategies have been developed [23] to control pest
populations directly or to modify them to remove un-
desirable traits like the ability to transmit disease [24].
Implementing any CRISPR-based biocontrol strategy
presents considerable technical hurdles, because
CRISPR genome editing must first be established and
optimised for each new species. Transformation effi-
ciencies vary among species and may require extensive
optimisation, as seen in Nasonia vitripennis, a model
hymenopteran that has been recalcitrant to transforma-
tion in the past [25]. However, in many species, suc-
cessful CRISPR-based genome editing has been
achieved (reviewed by Sun et al. [26] for arthropod
species). Innovations like DIPA-CRISPR [27], ReMOT/
BAPC-mediated delivery [28], and a delivery formula-
tion called SYNCAS [29] have recently further enabled
gene editing in many arthropods. The development of
viable population suppression strategies also requires
detailed genetic knowledge for identifying gene targets,
similar to RNAi-based approaches. To obtain this fun-
damental genetic knowledge, having functional
CRISPR-based genome editing in a species is critical.

Genetic biocontrol strategies span a spectrum primarily
defined by a trade-off between controllability and power.
On one end are strategies that require the continuous
release of modified insects carrying deleterious traits
(usually male sterility), such as CRISPR-based versions
of Sterile Insect Technique (SIT) called precision-
guided SI'T (pgSIT) [30]. pgSIT provides benefits over
conventional SI'T' because it avoids fitness costs from
radiation and can aid in producing male insects through
sex-biasing genetics. However, mass-rearing is still a
major limiting factor on efficiency [31]. Field trials are
ongoing for D. suzukii [32], but have not yet been re-
ported on. Companies are already running (contained)

field trials with similar, non-CRISPR-based genetic
biocontrol strategies, for example, in Aedes aegypti [33],
the Mediterranean fruit fly (Ceratitis capitata) [34], and
the diamondback moth (Plutella xylostella) [35]. On the
other end of the genetic biocontrol spectrum lie
CRISPR-based homing gene drives, which are capable
of spreading through a population over multiple gen-
erations by biasing inheritance in their own favour [36].
Concurrently, they are designed to induce recessive fe-
male sterility, thus leading to large-scale control of a pest
species [37,38]. Gene drives pose containment chal-
lenges due to their ability to spread autonomously, even
from a single, small release, which necessitates stringent
regulation and confinement strategies. Although this
technology is drastic and comes with obvious ethical
challenges [39], it is under consideration for insect pests
with large, global impacts, such as malaria-transmitting
mosquitoes (Anopheles spp.) and the new world screw-
worm  (Cochliomyia  hominivorax). Interestingly, to
leverage the strengths of both sides of the spectrum,
many hybrid systems combining features of pgSI'T and
gene drives have been proposed to impose spatially or
temporally limited population control, thus creating a
distinction, besides the one between non-gene drive and
gene drive strategies, between local and global gene
drive technologies [40]. For gene drives, no field trials
have been approved yet; only the fitness of an inactive
non-CRISPR-based gene drive in Anopheles coluzzii has
been tested, which revealed moderate fitness costs in
drive-bearing individuals [41].

The efficacy of CRISPR-based genetic biocontrol stra-
tegies will ultimately depend on two factors: 1) the
molecular design and efficiency of the construct, and 2)
the ecological characteristics of the target species [42].
For pgSIT and similar genetic biocontrol strategies, the
identification of female-expressed or sex-determining
genes is vital [30]. Gene drives, however, additionally
demand highly precise control of molecular components,
as they must be active specifically during meiosis in the
germline, while avoiding expression at other times or in
different tissues [43]. In Anoplheles mosquitoes, extremely
high gene drive efficiencies have been achieved [37],
but these same designs have proved entirely inefficient
in P. xylostella |44] and shown reduced efficiency in Aedes
mosquitoes [45] and the fruit fly Drosophila melanogaster
[46]. Increasingly, it seems that ‘the wheel’ may need to
be reinvented for every species in which a CRISPR-
based genetic biocontrol technology is developed
[43,47]. In terms of ecological characteristics of the target
species, SI'T-like strategies are most suitable for insects
that can mate only once and are easily mass-reared [48].
Gene drives are likely more suitable for long-term con-
trol over large areas [38], such as the eradication of an
invasive species like D. suzukii over (part of) its invasive
range [49]. There, both the escape of gene drive in-
dividuals to the native range and re-invasion of the
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species to the invasive range are significant risks, so
controlling migration is key [50]. Ultimately, life history
traits of some insects may be obstructive to genetic
biocontrol, such as inbreeding in V. destructor [51]. Fac-
tors like spatial population structure, density depen-
dence, mate choice, and polyandry can also interfere
with the success of both pgSIT and gene drives [42]. All
in all, much remains unknown about CRISPR-based
genetic biocontrol, and the technology likely has a long
way to go until practical application becomes feasible.

Biocontrol with RNAi- or CRISPR-enhanced
natural enemies

Recent advances in RNAi and CRISPR could improve
existing biological control strategies by enabling targeted
genome manipulation in natural enemies. Generally,
mass rearing of biological control agents poses key
challenges that influence pest management efficiency
[52]. A major constraint is the endosymbiont Wolbachia,
which alters reproductive traits, leading to sex ratio
distortion via feminisation, male Kkilling, or partheno-
genesis [53,54]. Such imbalances hinder efficient mass
rearing, where maintaining optimal female-biased pro-
geny is critical in biological control programs, as females
are responsible for host parasitisation [55]. RNAI studies
in N. vitripennis provide functional insights into sex de-
termination genes, potentially enabling the correction of
such sex ratio anomalies in the future [56]. Similarly, in
Trichogramma brassicae, \f Wolbachia infection can be
suppressed, this alters clock gene expression, in turn
suppressing diapause and boosting fecundity, a phe-
nomenon tied to RNAi-regulated pathways [57]. This
regulatory mechanism influences host-symbiont inter-
actions, ultimately affecting the parasitoid’s reproductive
timing and host-searching efficiency, a key trait for ef-
fective biological control. Thus, if feasible at a large
scale, incorporating RNAI into biocontrol strategies may
overcome rearing constraints like Wolbachia-induced ef-
fects, supporting the development of robust and sus-
tainable pest control agents [58,59].

Likewise, CRISPR can be used for the direct improve-
ment of traits relevant to natural enemy performance.
Recent studies have demonstrated the applicability of
CRISPR in beneficial insects relevant to biological
control. For instance, in Harmonia axyridis, editing of
genes associated with diapause and reproduction en-
hanced its adaptability and predation efficiency under
varying climates [60]. Likewise, disruption of the
nAChR-a subunit in Coccinella septempunctata conferred
insecticide tolerance without compromising fitness [61].
Importantly, successful heritable gene knockouts in
parasitoid wasps such as N. vitripennis [62] and Habro-
bracon hebetor [59] highlight the potential of CRISPR
tools to improve parasitoid performance through ma-
nipulation of host-finding ability, reproductive traits, or
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stress tolerance, thereby strengthening their efficacy in
sustainable pest management. Together, RNAi and
CRISPR present complementary tools that could en-
hance biocontrol agents’ efficacy while minimising eco-
logical impact.

Considerations for governance and biosafety
RNAi and CRISPR enable precise, species-specific insect
control, offering eco-friendly alternatives to pesticides while
minimising off-target impacts [18,23]. However, their im-
plementation requires a robust regulatory framework to
ensure biosafety, efficacy, and public confidence [7,63].
"Therefore, these technologies must undergo comprehensive
environmental and human health risk assessments, focusing
on off-target effects, environmental persistence, and impact
on non-target organisms [64]. CRISPR-based gene drive
systems, due to their capacity for self-propagation and po-
tential transboundary spread, raise complex ecological and
ethical concerns, necessitating a precautionary regulatory
approach and alignment with international frameworks like
the Cartagena Protocol on Biosafety [65,66]. However, a
regulatory distinction between local and global gene drives
is important to avoid unnecessarily delaying the deployment
of a wide range of localised CRISPR-based pest control
strategies. 'The current absence of dedicated regulatory
guidelines for RNAi and gene-editing tools in pest control
underscores the need for technology-specific, case-by-case
evaluations, stakeholder engagement, and inter-agency co-
ordination [67]. Adopting global best practices, such as those
from the United States’ Environmental Protection Agency
and European Food Safety Authority, will enhance reg-
ulatory readiness while fostering innovation and ecological
integrity [68,69]. Harmonised and transparent policies will
facilitate the responsible integration of RNAi and CRISPR
into Integrated Pest Management, ensuring agriculcural re-
silience and environmental sustainability.

Noteworthy, current legislation and governmental bu-
reaucracy already pose challenges to the implementation
of biological control, even without the added complexity
of RNAi and CRISPR [70]. One major hurdle is the
implementation of Access and Benefit Sharing agree-
ments, which give countries sovereign rights to genetic
resources within their borders. While this legislation
rightly governs the collection and exchange of species
for research or commercial use, it also complicates efforts
to develop biological control strategies for invasive pests
and limits access to new potential biocontrol agents [71].
Meanwhile, global trade continues to accelerate the
unintentional spread of invasive species.

Another barrier is the stringent registration process for
new biological control agents or genetic control meth-
odologies, which mirrors the regulatory standards for
chemical pesticides, including extensive risk assess-
ments. Although these precautions are warranted, given
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potential risks such as non-target effects, disruption of
native natural enemy populations, or disease transmis-
sion [72,73], the number of documented harmful out-
comes remains low. The aforementioned stability,
persistence and off-target effects of dsRNA constructs
can be assessed experimentally before field application.
These risks must be weighed against the ecological da-
mage caused by invasive pests and the often-greater
harms associated with chemical control methods [72].
Thus, while regulatory safeguards are essential, a ba-
lanced and flexible framework is needed to facilitate the
development of responsible biological control. Failing
this, we risk delaying sustainable solutions to the
growing threat of invasive pests.
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