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Abstract
Background  Increased liver fat increases the risk of chronic metabolic diseases. This study is an exploratory 
secondary analysis aimed at (1) investigating whether transcriptomic responses of abdominal subcutaneous adipose 
tissue (SAT) to a high-fat-high-glucose meal challenge differ according to varying levels of liver fat accumulation and 
(2) identifying pathways in abdominal SAT metabolism that may be related to liver fat accumulation. We examined 
differences in abdominal SAT gene expression and pathway activity both at fasting and in response to a mixed-meal 
challenge, comparing individuals with varying levels of liver fat.

Method  From the subset of 66 of 110 middle-aged participants of a previous intervention study, we grouped 
participants by tertiles of intrahepatic lipids (IHL) into high liver fat group (n = 22, IHL: 8.0%-32.6%), middle liver fat 
group (n = 22, IHL: 2.5%-8.0%) and low liver fat group (n = 22, IHL: 0.1%-2.5%). Participants received a high-fat-high-
glucose mixed-meal challenge (3833 kJ). Abdominal SAT samples were collected before and 4 h after the challenge 
for microarray gene expression analysis.

Results  At fasting, 87 gene sets were differently expressed (FDR < 0.25) between the high and the low liver fat group, 
and 66 gene sets were differently expressed between the high and middle liver fat group, pathways related to energy 
metabolism were lower expressed in the high compared to the low liver fat group. Postprandially, 17 gene sets 
responded differently to the mixed meal challenge, of which 7 changed within the high liver fat group, 2 changed 
within the middle liver fat group and 4 within the low liver fat group. The challenge increased the expression of genes 
involved in oxidative phosphorylation more in the high compared to the low liver fat group.

Conclusions  Compared to individuals with low liver fat, individuals with high liver fat have lower gene expression 
but a higher response of energy-related pathways in abdominal SAT at fasting and after a high-fat-high-glucose 
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Background
In the last decades, there has been a global rise in obesity 
making it prevalent among the world’s population. Many 
health problems are caused or exacerbated by obesity [1], 
such as type 2 diabetes, metabolic dysfunction-associated 
steatite liver disease (MASLD), which was previously 
known as non-alcoholic fatty liver disease (NAFLD), and 
cardiovascular disease [2, 3]. Adipose tissue and the liver 
play significant roles in the regulation of whole-body 
energy homeostasis [4]. The metabolic activity of both 
adipose tissue and the liver is tightly controlled by insulin 
and other metabolic hormones [5]. The SAT is the most 
important energy storage depot in the body [6]. If the 
SAT is not able to accurately store the increased amount 
of energy in the form of fat because of adipose tissue dys-
function, the energy will partly be stored viscerally and 
at ectopic places such as the liver. Mitochondria also 
plays a key role in SAT by regulating energy metabolism, 
lipid oxidation, ATP production, and thermogenesis, and 
mitochondrial dysfunction in adipose tissue has been 
linked to metabolic disorders such as insulin resistance 
and obesity [7]. The increased accumulation of fat in the 
liver leads to MASLD, which may progress to metabolic 
dysfunction-associated steatohepatitis (MASH), which 
was previously known as non-alcoholic steatohepatitis 
(NASH), then to cirrhosis, and eventually to liver failure 
[4, 5, 8].

Examining the adipose tissue of people in the fasting 
state does however not reflect the metabolic capacity 
of the adipose tissue to respond to an energy load that 
needs to be stored after such as a meal. A widely used 
test to evaluate phenotypic flexibility i.e. the capacity of 
metabolic organs to respond to a challenge and the abil-
ity to maintain or regain homeostasis is by performing 
challenge tests [9, 10]. The oral glucose tolerance test is 
a well-known test that is used to measure how well the 
body can deal with a large amount of glucose [11]. In 
analogy to the metabolic function of OGTT, high-fat tol-
erance tests with high glucose, high fat or high protein 
have also been applied as a challenge to evaluate the met-
abolic adaptation capacity by evaluating the postprandial 
responses to a meal [12–14]. Most of these postprandial 
responses are described by measurements of plasma 
glucose, insulin and lipids. However, blood reflects 
the sum of all processes in metabolic organs and not of 
each organ individually. It is difficult to access the meta-
bolic response of each organ individually as especially in 

relatively healthy people tissues and organs such as the 
liver are not easily accessible. A metabolic active tissue 
that is still accessible in volunteers is the SAT which plays 
a key role in the storage of excess of energy. The adipose 
tissue is critical for determining the fluxes of lipids to the 
liver in both the fasting and fed states, the liver can also 
in turn signal to the adipose tissue to modulate lipoly-
sis [15]. To explore the potential mechanism in adipose 
tissue underlying liver fat accumulation in overweight 
subjects, we would like to explore how far the signaling 
response in the adipose tissue towards a meal high in fat 
and glucose is different between people with high versus 
low liver fat. Therefore, we compared the whole genome 
gene expression profile response of SAT, both in the fast-
ing state and in response to a meal challenge in individu-
als with low and high liver fat.

Methods
Participants
The study population consisted of a subpopulation of a 
previously described study [16]. In this study, 110 partici-
pants were involved in a dietary intervention to explore 
the nutritional regulation of metabolic health. Of these 
110 individuals, intrahepatic lipids (IHL) and adipose 
tissue microarray data were available for 66 persons. 
To select people with high, middle and low liver fat, the 
whole group were divided by tertiles. Subjects in the first 
tertile (0.1%−2.5%) were classified as the low liver fat 
group (n = 22), subjects in the middle tertile (2.5%−8.0%) 
were classified as the middle liver fat group (n = 22), and 
subjects in the last tertile (8.0%−32.6%) were classified 
as the high liver fat group (n = 22). All of the participants 
were abdominally obese and otherwise healthy at the 
time of recruitment. Inclusion factors were body mass 
index (BMI) > 27 kg/m2 or a waist circumference > 88 cm 
in women or > 102  cm in men. Exclusion criteria were: 
(1) Earlier diagnosed with diabetes or diagnosed dur-
ing our screening (OGTT, fasting glucose > 7mmol/L, 
after 2 h > 11.1mmol/L). (2) Daily alcohol intake of > 20 g 
(women) or 30  g (men). (3) Smoking (4) Unstable body 
weight (weight gain or loss of > 3  kg in the past three 
months). (5) Diagnosed with a long-term medical condi-
tion. (6) Using medication is known to interfere with glu-
cose or lipid homeostasis. (7) Being allergic to fish oil or 
restricted to a vegetarian dietary regime.

challenge. Whether this is the cause or consequence of increased liver fat storage or an early stage of insulin 
resistance needs to be investigated.

Trial registration  This trial was registered at clinicaltrials.gov as NCT02194504.

Keywords  Obesity, Adipose tissue, Liver fat accumulation, Fat metabolism, Gene expression
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Study design
This study was a sub-analysis of a previously conducted 
parallel-designed randomized intervention study con-
ducted at Wageningen University, Netherlands [16]. For 
this analysis, we only included the baseline data before 
the intervention. A high-fat-high-glucose mixed meal 
shake was offered to subjects after an overnight fast-
ing. The mixed meal shake was 3833  kJ and comprised 
76.3  g of carbohydrates, 17.6  g of protein, and 60  g of 
fat. Before this day, they were asked to refrain from alco-
hol, avoid strenuous exercise, ensure a sufficient night’s 
rest, and consume a low-fat standardized meal before 
20:00, after which they had to fast for at least 12  h, the 
same with which were reported previously [16, 17]. Blood 
was drawn before and at 30, 60, 120, and 240 min after 
consumption of the mixed meal shake and analyzed for 
plasma glucose and at 60, 120, and 240  min for plasma 
insulin. Blood samples were collected before and at 120, 
240 and 360  min after the mixed meal shake and ana-
lyzed for plasma triglycerides and free fatty acids (FFA). 
Adipose tissue biopsy samples of these participants were 
taken before and 4  h after this mixed meal. The 4-hour 
postprandial time point was chosen based on prior stud-
ies involving postprandial adipose tissue biopsies [18, 19]. 
In addition, our selection was guided by the hypothesis 
that both metabolic and transcriptional responses to the 
ingestion of a mixed meal might be initiated and become 
detectable around this time point.

Clinical measurements
Intrahepatic lipid values were measured by image-
guided single-voxel spectroscopy, a quantitative version 
of 1 H-magnetic resonance spectroscopy (MRS), plasma 
glucose, insulin and triglycerides were analyzed photo-
metrically (Cobas 8000, Roche Diagnostic Limited) by a 
center for medical diagnostics (Stichting Huisartsenlabo-
ratorium Oost). Plasma free fatty acids were determined 
using an enzymatic assay (INstruchemie). Heart rate was 
assessed automatically (DINAMAP PRO100) for 10 min 
with a 3-minute interval, Homeostatic Model Assess-
ment for Insulin Resistance (HOMA-IR) was measured 
using the formula fasting insulin × fasting glucose/22.5, 
with fasting insulin expressed in µU/ml and fasting glu-
cose expressed in mmol/l, more details can be found in 
the previous paper [16]. Adipose tissue insulin resistance 
index (Adipo-IR), which was established to assess the 
insulin sensitivity of the adipose tissue, was calculated by 
multiplying the fasting insulin (mU/L) by the fasting FFA 
(mmol/L) [20, 21].

RNA isolation
Adipose tissue samples were taken before and 4  h after 
the mixed milkshake and were immediately frozen. The 
RNA of these adipose tissue samples were isolated by the 

Trizol method (Trizol-chloroform extraction; Thermo 
Fisher Scientific), purified by Qiagen Mini column kit 
according to the protocol of the manufacturer (Qiagen) 
and qualified by Nanodrop ND 1000 (Nanodrop Technol-
ogies, Wilmington, DE, USA). RNA integrity number was 
checked by an Agilent 2100 Bioanalyser with RNA 6000 
microchips (Agilent Technologies, South Queensferry, 
UK). All RNA samples that were selected for gene expres-
sion analysis had an RNA integrity number (RIN) > 6.2.

Microarray processing
Total RNA was labelled using a 1-cycle cDNA labelling 
kit (MessageAmp™ II-Biotin Enhanced Kit; Ambion, Inc., 
Nieuwekerk a/d IJssel, Netherlands) and hybridized to 
GeneChip Human Gene 2.1 ST arrays (Affymetrix, Inc. 
Santa Clara, CA, USA; RRID: SCR_007817). Sample 
labelling, hybridization to chips, and image scanning 
were performed according to the manufacturer’s instruc-
tions. Raw CEL files were normalized by using the Robust 
Multi-array Average algorithm [22], as implemented in 
the affyPLM R package [23]. We used a custom annota-
tion based on reorganized oligonucleotide probes that 
combine all individual probes for a gene (MBNI Brainar-
ray CDF file; ENTREZG v21) [24]. Genes with log2 sig-
nal > 3.5 in at least 20 arrays were defined as expressed 
and selected for further analysis.

Statistical analysis
In this study, fasting characteristics were compared 
between the liver fat groups, one-way ANOVA with 
Bonferroni post hoc pairwise comparisons was used for 
comparisons of numerical data (mean ± SD), and Fisher’s 
exact test was used for categorical data (%) (software 
IBM SPSS Statistics version 28; RRID: SCR_016479). 
Principal component analysis (PCA) was performed for 
the expressed genes at fasting to explore the patterns of 
adipose tissue gene expression at fasting across liver fat 
groups. Differentially expressed genes were identified by 
using linear models that incorporate an empirical Bayes 
method to shrink probe-wise sample variances towards 
a common value (Bioconductor library limma; RRID: 
SCR_010943) [25]. To account for potential confound-
ing by insulin sensitivity, HOMA-IR was included as a 
covariate. The expression of genes was defined to be sig-
nificantly different liver fat groups when the moderated 
p-value was < 0.05 To correct for multiple testing, the 
Benjamini-Hochberg method was used to calculate false 
discovery rates (FDR).

Changes in gene expression were related to biologically 
meaningful changes using gene set enrichment analysis 
(GSEA) [26]. GSEA evaluates gene expression at the level 
of gene sets that are based on prior biological knowledge, 
e.g. published information about biochemical pathways 
or signal transduction routes, allowing more reproducible 
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and interpretable analysis of gene expression data. As 
no gene selection step (fold change and/or p-value cut-
off) is used, GSEA is an unbiased approach. GSEA was 
performed using the Bioconductor package clusterPro-
filer (RRID: SCR_016884) [27]. Genes were ranked by 
their moderated t-value. Gene sets were retrieved from 
the expert-curated Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway database [28]. Only gene sets 
comprising more than 15 and fewer than 500 genes were 
taken into account. Gene sets with FDR < 0.25 were con-
sidered to be significantly changed.

Ingenuity pathway analysis
Outcomes from microarray analysis were also analyzed 
by Ingenuity Pathway Analysis (IPA; RRID: SCR_008653) 
system for upstream regulators. This analysis can deter-
mine likely upstream regulators that are connected to 
dataset genes through a set of direct or indirect relation-
ships. An activation Z-score is defined by this analysis to 
find likely regulating molecules based on a statistically 

significant pattern match of up-and down-regulation 
and also to predict the activation state (either activated 
or inhibited) of a putative regulator [29]. Regulators 
with a P-value of overlap < 0.05 and a Z-score > 2 or < −2 
between fasting (T = 0) and postprandial (T = 240  min) 
were set as activated or inhibited within the group. 
Regulators with the P-value of overlap < 0.05 and the 
Z-score > 2 or < −2 in the changes of gene expression 
between the high liver fat group and the low liver fat 
group were set as differently regulated between the two 
groups.

Results
Subject characteristics
The flow diagram of the selection of the 22 individuals 
with low liver fat and the 22 individuals with high liver fat 
is shown in Fig. 1.

The fasting characteristics of the study population 
according to liver fat groups are shown in Table  1. As 
expected, the HOMA-IR, Adipo-IR and fasting plasma 

Fig. 1  Flow diagram of the selection of the 22 individuals with low liver fat and the 22 individuals with high liver fat. IHL: intrahepatic lipid
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insulin differed across different liver fat groups. HOMA-
IR and Adipo-IR were significantly higher in the high 
and middle liver fat group compared to the low liver fat 
group, and fasting plasma insulin was higher in the high 
liver fat group compared to the middle and low liver fat 
group. All other variables were not different between 
both groups.

Metabolic response
Comparisons of the postprandial response between the 
high and low liver fat group of plasma glucose, insulin, 
triglycerides and FFA are shown in Fig.  2. Analyses by 
linear mixed-effects models showed that the high liver 
fat group responded with higher postprandial plasma 
glucose and insulin response at 60 and 120 min (Fig. 2A 
and B) and higher postprandial plasma triglycerides at 
360 min, compared with the low liver fat group (Fig. 2C). 
Response in plasma FFA was not different between both 
groups (Fig.  2D). The postprandial responses of these 
clinical markers in the middle liver fat group were gener-
ally intermediate between those of the high and low liver 
fat groups (Fig. 2).

Gene expression changes in the adipose tissue
PCA of gene expression profiles at fasting showed that 
the high liver group diverged from the middle and low 
groups primarily along PC2 (Fig.  3A), while the mid-
dle and low liver fat groups overlapped substantially, 
reflecting lower variability in their adipose tissue gene 
expression patterns. The number of genes significantly 
differently expressed in the SAT between the high and 
the low liver fat groups at fasting and towards the mixed-
meal challenge are shown in Fig.  3B. At fasting, 1733 
genes were significantly differently expressed between 
the high and the low liver fat groups, 2657 genes were 
significantly differently expressed (moderated p < 0.05) 

between the high and middle liver fat groups, and 1681 
genes were significantly differently expressed between the 
middle and the low liver fat groups (moderated p < 0.05). 
However, after the false discovery rate (FDR) correction, 
the number of significant genes was reduced to 108, 572 
and 41, respectively. After the mixed meal challenge, 637 
genes showed a significantly different response (T4-T0) 
between the high and the low liver fat groups, and 621 
genes showed a significantly different response between 
the middle and the low liver fat groups. However, after 
FDR correction, no genes remained significantly different 
in their responses between either the high and low or the 
middle and low liver fat groups. Additionally, the top 10 
differentially responsive genes between the high and low 
liver fat groups exhibited a similar pattern of response in 
the middle and high liver fat groups. However, a distinct 
response pattern was observed in the low liver fat group 
(Supplemental Fig. 1).

Gene set enrichment analysis (GSEA)
Although no genes remained significantly different in 
their responses between either the high and low or the 
middle and low liver fat groups after FDR correction, this 
does not rule out the possibility of subtle but coordinated 
changes in gene expression. To identify these changes, 
Gene set enrichment analysis (GSEA) was performed. 
At fasting 87 gene sets were significantly differently 
expressed between the high and the low liver fat group, 
66 gene sets were significantly differently expressed 
between the high and middle liver fat group, and 93 gene 
sets were significantly differently expressed between the 
middle and low liver fat group. Additionally, 17 gene sets 
responded differently postprandially to the mixed meal, 
of which 7 changed significantly within the high liver fat 
group, 2 changed significantly within the middle liver fat 
group and 4 within the low liver fat group (Fig. 4).

Table 1  Fasting characteristics of subjects according to liver fat groups
Low liver fat group (n = 22) Middle liver fat group (n = 22) High liver fat group (n = 22) P-Value

Age (years) 59 ± 8 58 ± 8 59 ± 8 0.77
Women, n (%) 12 (54.5%) 8 (36.4%) 10 (45.5%) 0.48
BMI (kg/m2) 30.9 ± 3.6 31.5 ± 4.4 32.4 ± 2.7 0.39
Weight (kg) 92.0 ± 13.6 93.6 ± 14.6 95.7 ± 14.6 0.69
Waist circumference (cm) 107.7 ± 10.7 107.3 ± 8.8 109.1 ± 9.2 0.82
Heart rate 58 ± 7 63 ± 9 59 ± 9 0.14
Ratio VAT/SAT (%) 40 ± 30 45 ± 43 65 ± 2 0.21
Plasma FFA (mmol/L) 0.40 ± 0.11 0.5 ± 0.2 0.44 ± 0.22 0.07
Plasma glucose (mmol/L) 5.6 ± 0.5 5.5 ± 0.5 5.6 ± 0.7 0.76
Plasma insulin (mU/L) 9.5 ± 3.0a 12.9 ± 5.5b 19.7 ± 12.3b < 0.001
HOMA-IR 2.374 ± 0.83a 3.2 ± 1.5a 5.162 ± 3.758b < 0.001
Adipo-IR 3.889 ± 2.061a 7.4 ± 5.6a 8.879 ± 8.40b 0.02
Data are presented as means ± 1 SD. Different letters (a and b) indicate significant post hoc differences (P < 0.05) between liver fat groups. Differences between the 
liver fat groups were assessed using one-way ANOVA for numerical data (mean ± SD) and Fisher’s exact test for categorical data (gender)

BMI, body mass index; HOMA-IR, homeostatic model assessment for insulin resistance; Adipo-IR, adipose tissue insulin resistance index; VAT, visceral adipose tissue; 
SAT, subcutaneous adipose tissue; FFA, free fatty acids
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The top 20 significantly enriched gene sets derived 
from the comparison between the high and low liver fat 
groups at fasting are shown in Fig. 5, among the top 20 
significantly differently expressed gene sets between the 
high and low liver fat groups at fasting, mitochondria-
related gene sets exhibited a lower expression levels in 
the adipose tissue of the high compared to the low liver 
fat group, including gene sets related to oxidative phos-
phorylation, thermogenesis and mitophagy. In addition, 
pathways related to protein synthesis and processing, 
such as ribosome, proteasome and N-Glycan biosynthe-
sis, also showed a lower expression in the adipose tis-
sue of the high liver fat group compared to the low liver 
fat group. Conversely, immune-related pathways were 
higher in the adipose tissue of the high liver fat group 
compared to the low liver fat group. Notably, all of the 
lower expressed gene sets of these top 20 gene sets were 
also significantly enriched when comparing the high and 
middle liver fat groups, showing exactly the same direc-
tion of expression comparisons. The complete results of 

the GSEA at fasting are provided in Supplemental Table 
1.

The list of the 17 gene sets that showed a significantly 
different postprandial response between the high and the 
low liver fat groups is shown in Fig. 6. Among these 17 
gene sets, 7 of them changed significantly within the high 
liver fat group upon the mixed meal, including decreased 
cGMP-PKG signaling pathway and increased oxidative 
phosphorylation, 4 of them changed significantly within 
the low liver fat group upon the mixed meal, 2 of them 
changed significantly within the middle liver fat group 
upon the mixed meal. Circadian rhythm decreased in all 
liver fat groups after the consumption of the mixed meal, 
while the magnitude of reduction differed between the 
groups. Ferroptosis increased in both high and low liver 
fat groups upon the mixed meal, while the increase in the 
high liver fat group was greater. Notably, although the 
gene set regulation of lipolysis didn’t change significantly 
upon the mixed meal change in any liver fat group, the 
response of this pathway remained significantly different 
between the high and low liver fat groups, as it decreased 

Fig. 2  Postprandial glucose, insulin, triglycerides and FFA responses to the mixed-meal challenge. Postprandial responses of plasma glucose (A), insulin 
(B), triglycerides (C) and FFA (D) to the mixed meal. Linear mixed model tests were used to compare the differences between the high and low liver fat 
groups. * P-value < 0.05 indicates posthoc analysis differences at that time point between the high and the low liver fat group. Error bars represent stan-
dard deviation (SD)
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in the high liver fat group and increased in the low liver 
fat group.

To explore how postprandial changes in leading-edge 
genes, which are a subset of genes that contribute most to 
the enrichment score, drive differences in the responses 
of pathways, oxidative phosphorylation and regulation 

of lipolysis. The heatmap of the individuals in the high 
and low liver fat groups have different directions in gene 
expression changes in these two pathways (Supplemental 
Fig. 2). On average the expression of genes in the oxida-
tive phosphorylation pathway was significantly increased 
postprandially within the high liver fat group, whereas 

Fig. 3  PCA plot and flowchart and numbers of genes of which the expression changed in fasting and postprandial state. PCA of expressed genes at 
fasting (A), flowchart and numbers of genes of which the expression changed in fasting and postprandial state (B). The results were shown at both the 
levels of p-value < 0.05 and FDR < 0.05
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Fig. 5  Top 20 gene sets significantly different expressed between the low and high liver fat group at fasting. Top 20 gene sets expressed differently 
between the low and high liver fat group at fasting. and the results of these top 20 gene sets from the high and middle liver fat group comparison. NES 
means normalized enrichment score, yellow dots indicate they are higher expressed in the high liver fat group compared to the low or middle liver fat 
group, and the blue dots indicate they are lower expressed in the high liver fat group compared to the low or middle liver fat group, and the grey dots 
indicate they are not expressed significantly different. The size of dots reflects the negative log 10 of adjusted P value (FDR)

 

Fig. 4  Flow chart of GSEA Flow diagram shows the summary of the Gene set enrichment analysis (GSEA) on the number of gene sets enriched signifi-
cantly differently between liver fat groups at fasting, and gene sets changed significantly differently within the liver fat groups after the high fat and high 
glucose mixed meal, as well as the gene sets changed significantly differently in response to the mixed meal between the high and low liver fat groups. 
Gene sets and changes were identified as significant when FDR < 0.25
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not significantly change within the low liver fat group. 
In the lipolysis pathway, the average of the expression of 
genes was significantly decreased postprandially within 
the high liver fat group, whereas no significant change 
within the low liver fat group.

To explore whether the postprandial changes in the 
expression of these leading-edge genes correlate with 
intrahepatic lipids, HOMA IR, Adipo-IR and the fasting 
or postprandial changes in cardiometabolic markers, we 
performed correlation analyses. Postprandial changes in 
the expression of leading-edge genes of pathway oxida-
tive phosphorylation and lipolysis correlated differently 
with cardiometabolic markers between the high and 
low liver fat group. Postprandial changes in the expres-
sion of genes involved in Oxidative phosphorylation 
(COX6C and ATM5MG) are positively correlated with 
IHL, HOMA IR, fasting glucose, fasting insulin and post-
prandial changes in insulin in the high liver fat group, but 
not in the low liver fat group. Postprandial changes in the 
expression of genes involved in the lipolysis pathway neg-
atively correlated with Adipo IR (i.e. ACDY9) and fasting 
glucose (i.e. PIK3CB, PTGS1 and ADCY7) in the high 
liver fat group, but not in the low liver fat group (Supple-
mental Fig. 3).

Ingenuity pathway analysis (IPA)
To identify potential upstream regulators of the genes 
that were differently expressed between the groups, Inge-
nuity Pathway analysis (IPA) was performed. The soft-
ware predicted 4 upstream transcription regulators for 
the differences in postprandial response (ΔHigh com-
pared to ΔLow) between high and low liver fat. Table 2 
shows these 4 upstream transcription regulators, i.e. 
retinoblastoma (RB1), nucleophosmin (NPM1), mothers 
against decapentaplegic homolog 4 (SMAD4) and RuvB-
like 1(RUVBL1). RB1 was predicted to be lower post-
prandially activated in the adipose tissue of people in the 
high liver fat group compare to the low liver fat group. 
The total list of ingenuity pathway analyses is shown in 
Supplemental Table 2.

Discussion
In this secondary analysis, we aimed to investigate 
whether transcriptomic responses of abdominal SAT to 
a high-fat-high-glucose meal challenge differ accord-
ing to varying levels of liver fat accumulation and iden-
tify pathways in subcutaneous fat metabolism that may 
be affected in individuals with increased liver fat com-
pared to those with low liver fat which potentially may 
be affected and influence redirecting fat storage from 

Fig. 6  Gene sets postprandially changed in adipose tissue in high, middle and low liver fat groups. Gene sets responded differentially to the mixed meal 
between the high and low liver fat groups. NES: normalized enrichment score. Yellow dots indicate upregulated postprandially within corresponding liver 
fat groups, the blue dots indicate downregulated postprandially within corresponding liver fat groups, and asterisks indicate the changes are significant 
(FDR < 0.25) within the corresponding liver fat groups. The size of the dots reflects the negative log 10 of FDR within the corresponding groups
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the adipose tissue to the liver. Therefore, we explored 
differences in gene expression changes in SAT at fast-
ing and in response to a mixed-meal challenge between 
individuals with high, middle and low liver fat. At fast-
ing, adipose tissue gene expression profiles were com-
parable between individuals with middle and low liver 
fat, whereas individuals with high liver fat exhibited a 
more distinct gene expression pattern. This may explain 
the large overlapping differentially expressed gene sets 
observed when comparing the high liver fat group with 
both the low and middle liver fat groups. Adipose tissue 
of individuals with high liver fat had a lower expression 
of genes involved in mitochondria-related and protein 
synthesis and processing-related gene sets, such as oxida-
tive phosphorylation, mitophagy, ribosome and protea-
some, compared to subjects with middle and low liver fat. 
Postprandially, individuals with high liver fat showed an 
increased expression of genes in the oxidative phosphor-
ylation pathway compared to individuals with low liver 
fat. Significantly expressed or changed gene sets were 
not consistent for fasting and postprandial states. The 
inconsistency of the fasting and postprandial gene sets 
presented suggests that the fasting and postprandial con-
ditions activate distinct metabolic pathways, which also 
highlights the physiological relevance and importance of 
studying postprandial status/responses.

Pathways related to mitochondrial and energy metab-
olism were lower expressed at fasting in adipose tissue 
of the high compared to the low liver fat group, such as 
oxidative phosphorylation and mitophagy, while the 
pathway of oxidative phosphorylation increased upon a 
high-fat-high-glucose mixed meal challenge.

There are limited published studies on postprandial 
oxidative phosphorylation in human adipose tissue, 
but several are present on fasting. One human study 
showed that genes involved in mitochondrial oxidative 
phosphorylation were lower expressed in SAT of mor-
bidly obese subjects compared with lean subjects, and 
a remarkable number of these genes were up-regulated 
after surgery-induced weight loss [30]. Multiple studies 
have consistently shown reduced expression of oxidative 
phosphorylation genes and proteins in the SAT of obese 

individuals compared to lean or non-obese co-twins [31, 
32]. Typical for all these studies is that they compare peo-
ple with a high and a low BMI, while our study subjects 
had the same BMI and VAT/SAT ratio and only differed 
in liver fat and HOMA-IR. This indicates that differences 
in mitochondrial oxidative phosphorylation may begin 
to emerge as liver fat content and insulin levels start to 
increase. In a human study comparing skeletal muscle 
between individuals with type 2 diabetes and insulin 
resistance and those with normal glucose tolerance, a 
lower expression of genes involved in the oxidative phos-
phorylation pathway was observed individuals with type 
2 diabetes and insulin resistance, who have higher BMI 
[33]. In summary, people with a higher BMI or type2 
diabetes seem to have a lower expression of genes in 
oxidative phosphorylation in metabolic active tissue like 
adipose tissue and muscle. Our study adds that we have 
already observed a lower gene expression of oxidative 
phosphorylation in people with increased liver fat and 
increased insulin levels, but with the same BMI, demon-
strating that these effects are already present at an early 
stage.

A comparison of insulin-resistant and insulin-sensitive 
individuals’ mitochondrial function in adipose tissue was 
conducted in proteomics analysis of subcutaneous adipo-
cytes isolated from adipose tissue biopsy [34]. The analy-
sis demonstrated lower mitochondrial function measured 
by the protein levels in the adipose tissue of the insulin-
resistant group compared to the insulin-sensitive group. 
These findings are consistent with our results, which 
showed lower gene expression of oxidative phosphoryla-
tion in the high liver fat group, which also presents higher 
insulin compared to the low liver fat group. Association 
studies in cohorts, primarily aimed at investigating the 
mitochondrial biogenesis and function in human SAT, 
have found that lower oxidative phosphorylation, as mea-
sured by adipocyte mitochondrial DNA (mtDNA) copy 
number, is associated with increased BMI [35], insulin 
resistance [36] and type 2 diabetes [37]. In our study, we 
found lower gene expression levels of oxidative phos-
phorylation in subjects with high liver fat compared to 
those with low liver fat in the fasting state. Additionally, 

Table 2  Ingenuity pathway analysis
Upstream 
regulator

ΔHigh Vs ΔLow High liver fat group
(T4 Vs T0)

Low liver fat group
(T4 Vs T0)

Fasting
High Vs Low

Target molecules

z-score p-value z-score p-value z-score p-value z-score p-value
RB1 −2.83 < 0.01 1.19 < 0.01 2.46 < 0.01 0.82 0.03 CD274, GADD45A, GADD45B, JUNB, 

KLF10,LCK, PER1,RELB, ZFP36
NPM1 2.64 0.02 1.23 < 0.01 0.17 < 0.01 0.69 0.03 F3, JUNB, 

KLF10,PLOD1,SGK1,STC1,SYDE1, mir-204
SMAD4 2.03 < 0.01 −0.53 < 0.01 −0.98 0.01 No prediction ACVR1C, 

ARHGEF2,CITED2,FSTL3,GADD45A, 
GADD45B, IER3,SGK1

RUVBL1 2.00 < 0.01 No prediction −1.41 < 0.01 No prediction CARS1, GADD45B, SOCS3,SPACA9
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the high liver fat group also exhibited higher HOMA-IR 
and Adipo-IR levels. These results point towards that 
people with a higher liver fat, HOMA IR and Adipo-IR 
may have a reduced function and reduced presence of the 
mitochondria of adipose tissue in the high liver fat com-
pared to the low liver fat.

Interestingly, in the fasting state, we also observed a 
lower expression of genes involved in mitophagy in the 
high compared to the low and middle liver fat groups. 
Mitophagy plays a crucial role in maintaining mitochon-
drial quality and turnover, and reduced mitophagy is a 
known marker of impaired mitochondrial function [38, 
39]. This supports the notion that mitochondrial dysfunc-
tion in adipose tissue may already be present at an early 
stage, even when BMI is similar. This may also explain the 
more pronounced increase in postprandial gene expres-
sion in the subjects with high liver fat in our study as it 
may need to compensate for a reduced number of mito-
chondria or a reduced Function requiring a higher activa-
tion of gene expression after consuming the same mixed 
meal challenge. Even though we could not find studies 
on postprandial gene expression changes, we previously 
showed that postprandial responses in PBMCs gene 
expression profiles also resulted in a lower induction of 
oxidative phosphorylation gene expression after the 20% 
energy restriction intervention in people with weight loss 
which was paralleled with a reduced liver fat compared 
to the weight-stable control group [40]. Furthermore, the 
correlation heatmap shows positive correlations between 
the cardiometabolic markers and the response of genes 
involved in oxidative phosphorylation in both groups.

From the difference in postprandial genes changed by 
the mixed meal challenge, RB1 is the upstream regulator 
predicted to be a reduced activation postprandially in the 
liver fat group, although the gene expression of RB1 was 
not affected. A study in RB1 KO muscle cells showed an 
increase in the expression of genes related to oxidative 
metabolism and glucose and fatty acid disposal compared 
with control cells [41]. This points towards an inhibitory 
regulation of RB1 on the gene expression of oxidative 
metabolism. People with high liver fat showed a more 
pronounced postprandial activation of oxidative phos-
phorylation, hence a reduced activation of RB1 might 
play a role in the adipose issue of people with high liver 
fat and insulin resistance compared to people with low 
liver fat.

Genes involved in lipolysis showed differential 
responses to the mixed meal challenge between the high 
and low liver fat groups. The most important function of 
adipose tissue is energy storage and lipid fuel release [42, 
43]. In healthy conditions, the rise in insulin during the 
postprandial state suppresses lipolysis in adipose tissue 
[44]. Interestingly, genes involved in lipolysis decreased 
in the adipose tissue of the high liver fat group but 

increased in the low liver fat group, although the change 
was not significant within each group. This was opposite 
to what we expected because the subjects in the high liver 
fat group presented more insulin resistance compared to 
the low liver fat group. On the other hand, this finding is 
in line with a previous study that showed that compared 
to non-diabetic normal weight controls, both diabetic 
and non-diabetic subjects with obesity were character-
ized by decreased lipolysis measured by the lipoprotein 
lipase activity in both mRNA and enzyme levels at both 
fasting and postprandial states [45]. A possible explana-
tion could be that after an overnight fast, the sensitivity 
of the antilipolytic effect of insulin is markedly enhanced 
in the high compared to the low liver fat group, which 
was also reported in subjects with obesity compared with 
controls previously [46]. However, such a hypothesis 
warrants further investigation.

There are several advantages and limitations of the cur-
rent study. First, we had the opportunity to have a study 
in which we compared the whole genome gene expres-
sion response of SAT, the use of adipose tissue biop-
sies enables tissue-specific mechanistic insights that go 
beyond peripheral blood markers. Additionally, the inclu-
sion of gene expression in both the static fasting state 
and in response to a meal challenge provides insight into 
metabolic flexibility and postprandial responses, which 
provide more information than only at fasting states. Fur-
thermore, the various levels of liver fat were determined 
with a high-quality proton magnetic resonance spectros-
copy which accurate liver fat content can be measured. 
However, the limitation is that in this secondary analysis 
and due to the distribution of people with high, middle 
and low liver fat the number of participants per subgroup 
is limited, which may limit generalizability and statisti-
cal power for detecting subtle differences. Additionally, 
although there is a meal challenge, the adipose tissue 
gene expression data is observational per group and can-
not establish causality. Also, at the fasting state, HOMA-
IR, Adipo-IR and plasma insulin levels are higher in the 
high liver fat group compared to the low liver fat group. 
This indicates that the findings cannot be attributed 
solely to the differences in liver fat but are likely also due 
to differences in insulin resistance and adipose tissue 
insulin resistance in the subjects. Furthermore, due to 
limitations in the availability of the original adipose tis-
sue samples, we unfortunately were not able to measure 
the protein levels of the related genes. Future studies with 
integrated findings on protein levels and transcriptomic 
levels are warranted to further validate and extend these 
findings.
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Conclusions
In conclusion, we demonstrated that individuals with 
increased liver fat respond with different gene expression 
changes in abdominal SAT to a high-fat-high-glucose 
meal than people with lower liver fat. The main differ-
ences were related to oxidative phosphorylation in which 
a lower level at fasting resulted in a higher induction of 
gene expression changes postprandially; this might be 
due to a reduced number or function of mitochondria 
leading to a reduced capacity of the oxidative phos-
phorylation pathway to deal with postprandial energy 
load in the adipose tissue, which need to be compen-
sated for. Whether this is the cause, or the consequence 
of increased storage of liver fat or early stage of insulin 
resistance needs to be further investigated.
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