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HIGHLIGHTS

o RiSIM, a river surface image monitoring
software, was newly developed.

o RiSIM quantifies floating macroplastic
transport on river surfaces.

e Deep learning models were imple-
mented to detect and track floating
plastics.

e Temporal variabilities in RiSIM-derived
plastic transport matched ground truth
data.

o RiSIM revealed a significant relationship
between plastic transport and discharge.
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ABSTRACT

Reliable and continuous plastic monitoring in rivers is essential for quantifying plastic flux and guiding miti-
gation efforts. One effective strategy for observing floating plastic transport is image-based monitoring using
deep learning models. We developed river surface image monitoring software (RiSIM) to quantify floating
macroplastic transport through three core processes: (1) a template matching algorithm, which identifies
matching areas in a frame that resemble a template given in the previous frame; (2) deep learning models for
plastic detection, classification, and object tracking; and (3) the evaluation of plastic transport rate in terms of
both quantity and mass. The RiSIM-derived plastic transport rates were validated through a mark-release-
recapture experiment and in-situ visual observation under both non-flood and flood conditions. The temporal
variability and composition of the plastic transport rate in terms of quantity and mass were in good agreement
with the ground truth data (r = 0.91 and 0.80, respectively). And also, it remained valuable for capturing the
temporal variability in plastic transport rate (r = 0.87) via the comparison with in-situ visual observation,
indicating that the RiSIM is valuable for assessing the increase in plastic transport rate due to a flood event. In
fact, we found a significant relationship (> = 0.36 for quantity; r* = 0.27 for mass) between daily-mean plastic
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transport rates and river discharge during flood events over four months. Accordingly, the RiSIM, as a near-field
remote sensing technology, is a powerful tool for quantifying plastic transport and managing mis-managed
plastic waste in river environments.

1. Introduction

Macroplastic debris (>25 mm; (GESAMP, 2019)) transported from
land via rivers is a dominant source of mismanaged plastic in marine
environments (Gonzalez-Fernandez et al., 2023; Meijer et al., 2021;
Strokal et al., 2023). Plastic transport in rivers is a key process to be
considered when developing countermeasures for plastic pollution
(Bergmann et al., 2023; van Emmerik et al., 2023). However, transport
processes are complex due to horizontal and vertical mixing (Haberstroh
et al., 2021; Vriend et al., 2023), fluid dynamics, and diverse polymer
characteristics (Kooi et al., 2018), especially during floods (van
Emmerik et al., 2023). For example, net sampling in the Rhine-Meuse
delta showed that plastic concentrations (quantity/mass per unit
water volume) were lower at mid-depth than near the water surface or
bottom, and the surface concentration was substantially higher than that
near the bottom (Blondel and Buschman, 2022). Plastic debris also
shows cross-sectional variability along river width, influenced by flow
velocity and/or winds (van Emmerik et al., 2018). Quantifying macro-
plastic transport at the water surface, the primary route of microplastic
dissemination (Haberstroh et al., 2021), is thus crucial for evaluating
riverine export (Jia et al., 2023).

Previous works quantified plastic transport mainly by visual obser-
vation or remote sensing (Hurley et al., 2023). Visual observation, in
which floating plastics are counted as they pass through a river
cross-section (van Emmerik et al., 2018), is the most common approach.
Because it is time- and labor-intensive, recent studies have adopted
computer vision techniques using fixed cameras (e.g., van Lieshout
et al., 2020) or uncrewed aerial vehicles (UAVs) (e.g., Schreyers et al.,
2024) to overcome these limitations. Increasingly, deep learning
methods are applied to detect floating plastic debris (e.g., van Lieshout
et al.,, 2020), enabling quantification of debris counts. Counts area
valuable for assessing spatiotemporal variability (van Emmerik et al.,
2022b) and comparing plastic transport among rivers
(Gonzalez-Fernandez et al., 2023; Meijer et al., 2021). However, esti-
mating mass from counts alone introduces large uncertainties (Hurley
et al., 2023; Jia et al., 2023; Roebroek et al., 2022; van Emmerik et al.,
2023). To reduce uncertainty, area-based quantification has been pro-
posed (Kataoka and Nihei, 2020). We recently developed a You Only
Look Once version 8 (YOLOv8) architecture with a semantic segmen-
tation extension to evaluate the area covered by floating debris, com-
bined with object detection to improve mass-based transport estimates
(Kataoka et al., 2024) .

Despite progress in detection, quantitative assessment of plastic
transport remains limited. Transport rates require detecting and
tracking debris across sequential video frames. In our earlier work,
floating debris transport, including natural objects, was quantified using
vertical-shoot videos with a color-based image analysis and a template
matching algorithm (Kataoka and Nihei, 2020). First, pixels corre-
sponding to floating debris were segmented from the background based
on color differences, and the debris-covered area was evaluated in each
frame. Next, template matching was applied to sequential frames to
calculate the displacement of the debris. By combining the cumulative
debris area with the total displacement, the transport area was esti-
mated. However, a major limitation of this method was that plastics
could not be distinguished from other types of floating objects.

Here, we propose river surface image monitoring software (RiSIM) to
compute floating macroplastic transport in terms of both quantity and
mass. RiSIM incorporates our YOLOv8-based detection model (Kataoka
et al., 2024) within the earlier transport evaluation framework (Kataoka
and Nihei, 2020) and introduces a tracking algorithm to link detections

across frames. We validate RiSIM wusing two approaches: a
mark-release-recapture experiment (MRRE) and comparison with visual
observations under non-flood and flood conditions. MRRE is used to
validate both quantity- and mass-based transport rates, while compari-
son with visual observations assesses applicability as an alternative
method. Finally, we examine the relationships between RiSIM-derived
plastic transport rate and river discharge to evaluate its utility for
long-term monitoring. RiSIM provides a unified framework for river
surface monitoring, enabling simultaneous quantification of floating
plastics at multiple sites, and can contribute to assessing riverine emis-
sions and global plastic budgets. Noted that, to improve readability and
ensure consistency, a list of all abbreviations used in this article is pro-
vided in Table 1.

2. Methods
2.1. Framework of RiSIM image processing

The RiSIM encompasses the following three core processes: (1)
computation of the flow velocity via a template matching algorithm, (2)
multiobject detection and tracking, and (3) quantification of the plastic
transport rate (Fig. 1). The details of these core processes are described
in the following sections.

2.1.1. Template matching to compute flow velocities at the water surface

First, the flow velocity at the water surface is evaluated by applying a
template matching algorithm to sequences of frames after the video data
are divided into multiple frames with the original frame rate. In the
present study, 900 frames are generated from the vertically shot video
data given the original frame rate (f,) and shooting duration (t) of 30 fps
and 60 s, respectively (N =t x f,). Each frame is clipped to a tile image
with a size of 1024 px x 1024 px. Notably, this preprocessing step is
required for data input into the subsequent deep learning model. The
pixel displacement between two consecutive tile images is estimated
along the horizontal and vertical axes and then converted to a real
metric distance via a ground sampling distance (GSD) defined by
measuring a view distance until water surface. Finally, the flow velocity
is computed via the original frame rate.

The flow velocities (v and v,) in the i and j directions can be
computed from the pixel displacement, which occurs in the i and j di-

Table 1
Table of abbreviations.
Acronym Definition
ADWP Antecedent dry weather period
mAPsg o5 Mean average precision calculated over IoU thresholds ranging from
0.50 to 0.95 at 0.05 intervals.
COCO Common objects in context
Deep Simple online and realtime tracking with a deep association metric
SORT
Fps Frames per second
GSD Ground sampling distance
GUI Graphical user interface
ToU Intersection over union
JSON JavaScript object notation
MRRE Mark-release-recapture experiment
PRIMOS Plastic runoff identification, monitoring & observation software
RGB Red Green Blue
RiSIM River surface image monitoring software
UAV Uncrewed aerial vehicle
WLGCAM Camera system with ultrasonic water level gauge

YOLOvV8 You Only Look Once version 8
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rections and is evaluated through a template matching processing (Text
S1). The displaced pixels are used to determine the transport distance
(dx, dy) on a metric scale via the GSD. The instantaneous flow velocity
in the horizontal and vertical directions can be evaluated by dividing the
transport distance between two sequential tile images into f,. To miti-
gate uncertainties caused by template matching errors, spikes in
instantaneous velocity exceeding three standard deviations are regarded
as outliers and removed. These missing values are subsequently inter-
polated using the mean velocity in the recoding period. Notably, the
uncertainty of mean flow velocity was validated at six sites in the
catchment area of the Shigenobu River in the comparison to the mea-
surement by the flow meter, which were 0.15 m/s of root mean square
error and 29 % of scatter index (r = 0.92, p < 0.001; Text S2).

2.1.2. Plastic object detection via an instance segmentation model

The YOLOvV8 segment model retrained via the training dataset (8022
items from 7356 frames) (Kataoka et al., 2024) was implemented in the
RiSIM as a deep learning model for detecting plastic objects in river
surface images (Fig. 1). This model can classify four categories of plastic
objects (drink bottles, food containers, shopping bags, and other plas-
tics) in RGB tile images with sizes of 1024 px x 1024 px. Drink bottles,
food containers and shopping bags are typical forms of disposal plastic
waste that are found globally in aquatic environments. The category
“other plastics” included a wide variety of items such as non-beverage
bottle-shaped plastics (e.g., cleaner or cosmetics containers),
bag-shaped plastics (e.g., food packaging or snack bags), and plastic
fragments. On the basis of the available YOLOvV8 architectures
(YOLOvV8n, YOLOV8s, YOLOv8m, YOLOvVS8I, and YOLOvVS8x), five seg-
mentation models were developed (Kataoka et al., 2024). The YOLOvS8I
architecture displayed the best performance among the five architec-
tures and was adopted as a detection model for plastic objects (Kataoka
et al., 2024). Notably, the detection performance for plastic debris was
59 % mAPsq g5, and the classification performance was 23 % mAPsg g5
across four categories (Kataoka et al., 2024), as shown in Table S1.

Following YOLOv8-based classification, postprocessing was per-
formed to refine object categorization by removing duplicate
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classifications, discarding potential false positives (e.g., small objects),
and unifying categories based on tracked objects. The YOLOvV8 seg-
mentation model occasionally classifies the same object into different
categories. In cases in which different objects of the same type were
classified in multiple categories, the most plausible category was
determined on the basis of the intersection over union (IoU) of the
corresponding bounding boxes. If the IoU between two bounding boxes
was greater than 0.8, the category of the detected plastic object was
determined, with a high confidence score. Furthermore, RiSIM allows
users to configure a threshold for pixel area to reduce false positives.
Specifically, objects with an area smaller than the threshold are dis-
regarded. In this study, a threshold of 900 pixels was applied, based on
the minimum size of the four categories observed in video data during
flood events.

Moreover, even the same object can be classified into different cat-
egories across multiple frames. To ensure consistency in the categori-
zation of detected objects, an object tracking algorithm, namely, simple
online and real-time tracking with a deep association metric (Deep
SORT) (Wojke and Bewley, 2018), was implemented (Fig. 1). Deep
SORT is a powerful tracking tool that incorporates a deep learning
model to track an object throughout sequential frames and can track
false-negative objects via YOLOv8 by extracting appearance feature
information. In the Deep SORT configuration, the maximum age of each
object for tracking was 50, the maximum cosine threshold, which is a
similarity limit used to compare the appearance features (128-dimen-
sional vectors) of detected objects, was 0.3, and the maximum IoU dis-
tance, which is a measure used to compare how much two bounding
boxes overlap, was 0.9 via trial and error. Note that the other parameters
of Deep SORT were set to the default values. The YOLOv8-derived
false-negative case does not include the information on its category
name or segmentation mask area, even if it can be successfully tracked
by Deep SORT. Thus, the category name in each false-negative case was
updated with a mode value for each object, and the area was interpo-
lated on the basis of the average of the segmentation mask areas
detected by the YOLOv8 segment model. Moreover, the
YOLOvV8-derived false-positive case can be removed on the basis of the
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Fig. 1. Three steps of the RiSIM: Computation of the flow velocity, detection and tracking of plastic objects and quantification of the plastic transport rate.
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tracking results of Deep SORT. In the present study, objects tracked
fewer than three times were discarded as false positives.

Detection outputs from YOLOvV8 segmentation model and Deep
SORT, such as plastic debris classification, bounding boxes, confidence
scores, segmentation masks, and pixel areas, are stored in the common
objects in context (COCO) data format. This format, which uses Java-
Script object notation (JSON) as a lightweight data-interchange stan-
dard, facilitates the storage of annotation information. Storing outputs
in COCO format enables users to edit RiSIM outputs with existing
annotation tools (e.g., https://supervisely.com/), which can subse-
quently be used to fine-tune the YOLOv8 model. It should be noted,
however, that in the present study we used only the original model
without additional fine-tuning.

2.1.3. Evaluation of the plastic flux via the RiSIM

The RiSIM can compute plastic transport rates in terms of quantity
and mass on the basis of the following equations modified from the
methodology of Kataoka and Nihei (2020).

PRI >A
TS T Atx (N—1)

where x; denotes the quantity or mass of plastic objects found in each tile
image and the subscript i is an index number of the tile image in the
range between 0 and N. The mass of plastic objects is converted from the
segmentation mask area identified by YOLOv8 segmentation model via
the mass-to-area ratio (Fig. S1). N is the number of images based on the
original frame rate of the video. For example, when the original frame
rate was 15 fps (i.e., the time interval between two frames was 0.067 s),
N = 60 s x 15 fps = 900. The number of plastic objects was counted on
the basis of object detection, for which YOLOv8I was applied. Moreover,
the mass of the plastic object was evaluated via the segmentation mask
generated via YOLOVS]I, according to the method proposed by Kataoka
and Nihei (2020). Considering the GSD, the segmentation mask was
converted into a metric area, and then the mass was calculated by
multiplying the mass-to-area ratio for each plastic category in YOLOvS8I
(Fig. S1). S; was predefined based on the size of the tile image (1024 px
x 1024 px). Hence, the first term represents the mean
quantity/mass-based concentration of plastic objects calculated from all
tile images. At is based on the optional frame rate (e.g., 0.2 s). A; is the
transport area in At, which is determined on the basis of the pixel
displacement in images in the x-axis and y-axis directions via the tem-
plate matching (Fig. 1).

(€Y

X

2.2. Mark-Release-Recapture experiment (MRRE)

The MRRE for floating macroplastic debris was conducted from
10:00-12:00 on July 18, 2024, at the Ishite River, Ehime Prefecture,
Japan, to validate the quantity-based and mass-based plastic transport
rates evaluated via the RiSIM (Fig. S2). The Ishite River is the largest
tributary of the Shigenobu River, which is a class A river in Japan. In the
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Ishite River Basin, a custom camera system with an ultrasonic water
level gauge (WLGCAM) has been installed to monitor floating macro-
plastic debris on the river surface from a water pipe bridge over the river
since July 20, 2023 (Text S3). On the survey date, the water depth was
lower than 50 cm, which is the non-flood condition. During the MRRE,
WLGCAM automatically recorded one-minute videos every 2 min. The
plastic and nonplastic samples were collected and classified into five
categories (drink bottles, food containers, shopping bags and other
plastics), which are the same categories used in the YOLOv8 segmen-
tation model (see 2.1.2). The quantities of items in these categories are
listed in Table 2. One surveyor released the samples from upstream of
the bridge, and two surveyors collected them downstream (Fig. S2).

The samples were released according to seven scenarios: three large,
two medium and two small scenarios (Table 2). Considering the
composition of the four categories in Japanese rivers (Kataoka et al.,
2024), eighty, forty and twenty plastic samples were prepared in the
large, medium and small scenarios, respectively. Unfortunately, several
samples were not recorded in one-minute videos because the recording
time ended; thus, the quantity and mass of the samples that were
recorded are listed in Table 2. Note that the third large scenario (L3) was
designed to confirm the robustness of the RiSIM under
high-debris-supply conditions.

The quantity- and mass-based transport rates of the samples were
evaluated by visually counting objects captured in the one-minute
videos (Table 2). The quantity-based transport rate was computed by
dividing the total number of captured samples by the recording time
(one minute). Additionally, the mass-based transport rate was computed
by dividing the total mass of the released samples measured by a weight
scale in advance by the recording time. The total quantity and mass of
the captured samples in each scenario are shown in Table 2.

Moreover, the quantity-based and mass-based plastic transport rates
were estimated via RiSIM analyses with the same 1-min video on the
basis of Eq. (1) (see 2.1.3). During the MRRE, the viewing distance from
the WLGCAM was 7.04 m, and the GSD was 3.00 mm/px. Since the
frame size was 4 K (3840 px x 2160 px), the total width and height of the
frame were 11.52 m and 6.48 m, respectively (Fig. S3). Eighty percent of
the total width (9.22 m) was determined as the target (red frame of
Fig. S3). Note that we analyzed the frame by dividing it into three tiles
because the width of the tile images input into YOLOv8 was 1024 px.
The mass-based transport rate was derived from the cumulative area of
the segmentation mask considering the corresponding GSD and mass-to-
area ratio (Fig. S1).

2.3. Visual observations during non-flood and flood conditions

The visual observation of floating macroplastic debris was conducted
via the water pipe bridge installed in the WLGCAM system over the
Ishite River to validate the plastic transport rate in actual situations in
which an unknown amount of macroplastic debris is transported under
non-flood and flood conditions (Fig. S4). To date, the quantification of
macroplastic debris in river environments has been based on visual

Table 2
The quantity and mass of plastic samples for the MRRE in 7 scenarios.
Scenarios Prepared  Number Mass
tems Drink Food Shopping Other Total  Drink Food Shopping Other Total
bottles containers bags plastics bottles containers bags plastics
Large 1 (L1) 80 9 0 8 26 43 275.6 0 21.8 385.4 682.8
Large 2 (L2) 80 5 8 4 20 37 123 51.5 13 517.9 705.4
Large 3 (L3) 80 5 5 5 22 37 157.6 41.5 14.7 563.8 777.6
Medium 1 40 4 4 3 12 23 127 37.1 9.2 322 495.3
1)
Medium 2 40 3 2 2 12 19 84.7 13.4 5.4 319.6 423.1
M2)
Small 1 (S1) 20 3 3 1 7 14 105.1 27.6 1.7 146.9 281.3
Small 2 (S2) 20 2 1 2 6 11 73.7 14.2 5.4 170.6 263.9
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observation because of the advantages of this approach in terms of
robustness and ease of implementation (Meijer et al., 2021; van
Emmerik et al., 2023). Thus, we clarify whether the RiSIM can provide
an alternative to visual observation for quantifying floating macroplastic
debris through a comparison of both approaches.

Visual observation under non-flood conditions was carried out from
10:00-16:00 JST on June 26, 2024, with the aim of understanding the
occurrence of false-positive cases. The maximum discharge in the
observation date was 5.3 m3/s, which the return period (Text S4) did not
exceed one year. The vertical distance from the bridge to the water
surface was, on average, 6.9 m, with small fluctuations of approximately
0.04 m during the observation period. Three observers were arranged at
three locations (sections Al to C1) across the bridge simultaneously, and
the plastic objects that passed through an approximately 7-m wide
section (Fig. S4) for 1 min in a 10-min interval were visually counted.
Owing to the vegetation coverage in the D1 section, which is 4 m wide, it
was excluded from the observation scope. In total, 84 % of the river
width (22 m of 26 m) was observed, while the plastic transport rate per
unit width on the ‘B1’ section in the coverage of WLGCAM was used for
validating RiSIM-based transport rate. The plastic objects were visually
classified into four plastic categories, and visual counting was
performed.

Moreover, visual observations under flood conditions, which is
defined as a water level rise of >0.5 m within 10 min, were carried out
from 8:30 to 15:30 JST on June 28, 2024, with the aim of understanding
the change in the macroplastic transport rate during floods in compar-
ison with that during non-flood conditions. The maximum river
discharge in the observation date was 117.64 m>/s corresponding to
1.91 years of return period (Text S4). In terms of the increase in water
level, the distance from the bridge was on average 5.6 m, with larger
fluctuations of approximately 0.64 m than those under non-flood con-
ditions. In the same manner as in the non-flood cases, the four observers
at the four locations (B2 to D2 and F2) visually counted and classified
the plastic objects that passed through approximately 7-m wide sections
(Fig. S4) for 1 min in a 10-min interval. To avoid the influence of bridge
columns, the A2 section, which is 7 m wide, and the E2 section, which is
4 m wide, were excluded from the observations. In total, 71 % of the
river width (27 m of 38 m) was observed, while the plastic transport rate
per unit width on the ‘B2’ section in the WLGCAM coverage was used for
the validation.

The plastic transport was evaluated at 10-minute intervals by
applying the RiSIM to the 1-min video data, followed by calculation of
the hourly mean transport rates. The plastic transport rates were
quantified by dividing each frame of the video into three 1024 px-square
tile images with the RiSIM and then summing the rate from each tile
image (see 2.2 and Fig. S3). Given that the monitoring width changed in
response to water level fluctuations, normalization on the basis of the
observed width was performed to estimate the plastic transport rate per
unit width, enabling direct comparison with visual monitoring results.
The observers were pretrained via the International Expert Meeting on
Remote Sensing Technologies for Plastic Monitoring in Aquatic Envi-
ronments (SmartMLRST) organized by the Ministry of the Environment,
Japan (Isobe et al., 2025).

2.4. Application of RiSIM to long-term monitoring for plastic transport

To demonstrate the ability of the model encompass hydrological
conditions when estimating the plastic transport rate, we applied the
RiSIM to 2752 1-min videos obtained by WLGCAM in the daytime
(6:00-18:00) from June to September 2024 (Fig. S5). After the plastic
transport rate from each video was computed, the hourly average
transport rates were calculated to account for the varying recording
intervals, which differed according to river conditions on the observa-
tion days (10 min during flood events and 60 min during non-flood
periods; see Text S3). Since river discharge was not measured at the
WLGCAM site, we simply calibrated the river discharge observed at
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Yuwatari station on the basis of the time lag and catchment area ratio
(Text S3). The time lag was measured based on the temporal fluctuations
of water level at both sites. And the catchment areas at both sites were
calculated by QGIS version 3.40.5 (https://qgis.org/).

3. Results and discussion
3.1. Estimation of image-based plastic transport in the MRRE

The image-based plastic transport rates output by the RiSIM were
compared with the visual-based plastic transport rates (i.e., ground
truth) from 10:00-12:00 JST on 18 July 2024 (Fig. 2). Note that the
image-based and visual-based transport rates were normalized based on
the width of the monitored area. The temporal variabilities in the
quantity-based and mass-based transport rates quantified from the river
surface videos were in good agreement with those calculated for the
ground truth data (r = 0.91 and 0.80; see Fig. 2a and b, respectively)
according to Pearson’s correlation analysis (Text S4). This demonstrated
that the RiSIM was effective for quantifying the temporal variability of
floating macroplastic debris from river surface videos. Nevertheless, the
quantity-based transport rates were slightly overestimated relative to
the ground truth, primarily due to the presence of false-positive de-
tections and the reassignment of tracking identifiers to the same plastic
debris across consecutive frames by Deep SORT (Fig. 2a).

The RiSIM categorization was compared with the ground truth
(Fig. 2d). The primary and secondary plastic categories in terms of
quantity were “other plastics” and “drink bottles”, which were consis-
tent with the ground truth data. The consistency in the item-wise nu-
merical composition indicated the reliable performance of the RiSIM
classification with YOLOv8 and Deep SORT. Moreover, “drink bottles”
and “other plastics” accounted for the majority of the total mass (85 %),
which was consistent with the ground truth (93 %) (Fig. 2d), but the
item-wise mass composition between these two categories differed. In
the RiSIM, “drink bottles” accounted for a larger proportion, whereas in
the ground truth, “other plastics” was dominant. This discrepancy was
likely due to using the mass-to-area ratio for mass estimation. In the
present study, the average value of the mass-to-area ratio for mass
conversion was used regardless of the mass-to-area ratio of the “other
plastics” category, which exhibited substantial variability due to the
diversity of plastic objects present (Fig. S1). In fact, the mean mass-to-
area ratio of “other plastics” used for mass conversion in the present
study (0.038 g/cm?) was one order of magnitude lower than that
observed in the MRRE (0.20 g/cm?). Consequently, the mass ratio of the
“other plastics” category estimated with the RiSIM may have been
underestimated. As one of the solutions, the categorization by YOLOv8
can potentially be subdivided. In contrast, as our previous works
demonstrated, the subdivision of categories could yield an increase in
false-positive and false-negative cases (Kataoka et al., 2024). Hence,
enhancing the categorization performance of YOLOv8 via the
fine-tuning of the current model should be explored in the future.

Furthermore, we found a discrepancy in the mass estimation results
when the mass-to-item ratio was used (Fig. S1). Instead of the use of the
mass-to-area ratio, we converted the quantity-based plastic transport
rate to mass-based plastic transport via the mass-to-item ratio. As ex-
pected, the temporal variability in the mass-based plastic transport rate
was consistent with that based on the ground truth data (r = 0.73, p <
0.001; Fig. 2c), whereas the composition of the plastic types differed
from the ground truth composition (Fig. 2d). Notably, drink bottles were
dominant in terms of mass (70 %), which can be attributed to their
greater mass-to-item ratio than other items (Fig. S1). Compared with the
ground truth observations (26 %), the plastic transport of drink bottles
appeared to be overestimated. This result suggests that mass conversion
based on mass-to-item ratios is associated with higher uncertainty when
estimating plastic transport, whereas mass-to-area-based conversion
provides a more reliable approach for quantifying plastic transport.

Nevertheless, we successfully constrain the temporal variabilities of
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both number-based and mass-based transport rates through the RiSIM
(Fig. 2a and b). The harmonization of monitoring methods is crucial,
particularly during flood events, for understanding the outflow and
transport processes of plastic objects from terrestrial areas. However, in
situ visual observation is accompanied by challenges in terms of the
continuity and safety of the surveys.

3.2. Applicability of the RiSIM to videos obtained under non-flood and
flood conditions

Under non-flood conditions (June 26, 2024), very little plastic debris
was quantified through visual observation, with an average transport
rate of 0.03+0.02 #/m/min (Fig. 3). Similarly, the RiSIM yielded very
low transport rates, with an average transport rate of 0.03+0.02 #/m/

(a)

min. In contrast, a significantly greater amount of plastic debris was
detected during flood events (June 28, 2024) than during non-flood
events, which was consistent with the transport rates derived from
both in situ visual observations and the RiSIM (Fig. 3). On the basis of in
situ visual observations, the number-based transport rate averaged at
the daily scale (0.27+0.25 #/m/min) was approximately ten times
greater than that during the non-flood conditions (0.03+£0.02 #/m/
min). Consistently, the average transport rate estimated via the RiSIM
(0.36+0.28 #/m/min) was approximately ten times higher than that
during non-flood conditions (0.03+0.02 #/m/min) and significantly
greater than that obtained via visual observation.

In fact, the RiSIM-derived plastic transport rates were significantly
correlated with visually observed plastic transport rates (r = 0.87, p <
0.001; Fig. 3) via Pearson’s correlation analysis (Text S4), which
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demonstrated that the RiSIM is a valuable tool for evaluating the tem-
poral variability of plastic transport via remote sensing. While the
RiSIM-derived plastic transport rates were overestimated compared
with the visually observed rates (Fig. 3), this outcome can be attributed
to several potential causes. As the water level ranged from 7.0 to 7.9 m
during flood condition, the monitoring section of RiSIM was changed
depending on water level. The difference in monitoring section could
affect to the evaluation of plastic transport rate. Moreover, in situ visual
observations from the bridge might not account for all debris, as the high
flow velocities range from 0.81 to 2.72 m/s. Some objects were
ambiguous with respect to plastic identification (Fig. S6); however, their
classification as plastic debris likely depends on subjective interpreta-
tion. Unlike visual observation, which may be prone to observer bias, Al-
based systems such as the RiSIM ensure consistency and objectivity in
plastic detection.

3.3. Relationship between the plastic transport rate and hydrology

The hourly quantity-based and mass-based plastic transport rates
fluctuated considerably with increasing river discharge (Fig. 4a and 4b,
respectively). The maximum river discharge over the four months was
145.42 m3/s corresponding to 2.35 years of return period estimated
using the Log-Pearson Type III distribution (Text S4). The hourly plastic
transport rates greatly fluctuated at river discharge rates lower than 9.47
m®/s corresponding to about 1 year of return period (i.e., T = 1.01 in Eq.
S9; see Text S4) (see gray dots in Fig. 4a and b), highlighting poor
regression performance under low-discharge conditions, as reported in
several previous works (Aulenbach et al., 2016; Moatar et al., 2017).
Although several alternative approaches for establishing reliable
regression equations for environmental loads (e.g., sediment and
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nutrients) have been suggested, we do not discuss these approaches
because the aim of the present study is to develop an image-based
monitoring approach. Thus, when focusing on river discharge rates
greater than 9.47 m°/s, we can perform a regression of the plastic
transport rate on the basis of discharge by the following equation,

L=10Q @
where L is the quantity-based or mass-based plastic transport rate and Q
is the calibrated river discharge. The regression coefficients a and b are
shown in Table 3. The hourly quantity-based and mass-based plastic
transport rates were effectively regressed (> = 0.29 and r* = 0.20,
respectively; Table 3). The coefficient b represents the slope of the log-
log plain, which was slightly greater for the quantity-based plastic
transport rate than for the mass-based rate (Table 3), but a Z test (Text
S4) indicated no statistically significant difference (z = 1.40, p > 0.05).

The daily-mean plastic transport rate can be also associated with the
daily-mean river discharge (Fig. 4c and d). The daily-mean plastic
transport rate fluctuated when the daily-mean river discharge was

Table 3
Regression coefficients determined via a linear regression method.
n R? a+95%C.L b+ 95%C.L
Hourly plastic transport rate
Quantity based 101 0.29 —3.354+0.64 1.40+0.43
Mass based 101 0.20 —2.65+0.76 1.29+0.52
Daily plastic transport rate
Quantity based 24 0.36 —2.81+0.68 0.95+0.56
Mass based 24 0.27 —2.244+0.78 0.89+0.64
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smaller than 5.61 m>/s corresponding to about 1 year of return period (i.
e., T =1.01 in Eq. S9; see Text S4). Interestingly, when the daily-mean
plastic transport rate and river discharge were computed, the relation-
ship significantly improved (r* = 0.36 for number and r? = 0.27 for
mass; Table 3). The coefficient b for both the quantity-based and mass-
based plastic transport rates was approximately 0.9 (Table 3), and there
was no statistically significant difference via the Z test (z = 1.14, p >
0.05). These results indicate that the quantity-based and mass-based
transport rates similarly vary with river discharge.

Nevertheless, overall correlations between plastic transport and river
discharge remained low, reflecting the high variability in transport re-
sponses to discharge fluctuations. Similar to organic pollutant transport
(e.g., Peter et al., 2020), longer antecedent dry weather periods (ADWP)
promote greater accumulation of plastic debris in the watershed,
resulting in higher transport during subsequent flood events, that is a
first flush effect. Conversely, when the ADWP is short, the transported
plastic load is expected to be lower. For example, the RiSIM-derived
plastic transport in late August exceeded that in July despite
non-extreme floods, owing to the longer ADWP observed (Fig. S5).
Moreover, plastic transport during the rising stage of flood events often
exceeds that during the falling stage, even at similar discharge levels
(Peter et al., 2020). Hence, low correlations are common under
non-extreme conditions, because plastic transport is primarily limited by
supply rather than discharge (Roebroek et al., 2022; van Emmerik et al.,
2022a). Hydrological thresholds such as bank overtopping or sewer
overflow must be exceeded to increase the available plastic supply, but
in the absence of such thresholds, low correlations can be expected.

3.4. Future outlook of remote sensing for quantifying floating plastic
transport at the surface of Rivers

In this study, we established a method for quantifying the transport
of plastic debris floating on river surfaces via vertically captured video
data. The RiSIM is innovative in two key aspects: deep learning-based
detection and tracking functions are provided for plastic debris on the
water surface, and the surface flow velocity is measured with a template
matching algorithm. This allows for efficient monitoring of the transport
rate of floating plastic.

To date, numerous researchers have conducted visual counting
studies from bridges (Gonzdlez-Fernandez et al., 2021; Lou et al., 2023;
Moss et al., 2021; Pinto et al., 2023; Schreyers et al., 2021; van Emmerik
etal., 2023; van Lieshout et al., 2020). Visual counting is easy to perform
and can be performed anywhere, as it involves only recording the
characteristics (e.g., types and colors) of floating objects directly on site.
This approach is also robust, applicable to a variety of rivers, and can
yield reasonably reliable data if well-trained observers are involved (van
Emmerik et al., 2023). Nevertheless, the observation data are inherently
subject to observer bias, thereby limiting objectivity. Moreover, onsite
visual counting involves considerable safety risks during flood events,
when a large outflow of plastic debris may occur (van Emmerik et al.,
2023). Additionally, since observers must remain on site during moni-
toring, the method is time and labor intensive, resulting in limited sus-
tainability for long-term and/or multisite monitoring (van Lieshout
et al., 2020).

The RiSIM is expected to serve as a powerful tool for clarifying the
emission of macroplastic debris transported via river systems and serves
to overcome the limitations of onsite visual counting. Specifically,
observer bias can be minimized by implementing a deep learning model
for detecting and counting floating macroplastics, thereby enhancing
objectivity. In addition, the installation of a fixed camera at a bridge
enables safe observation even during high-flow conditions. In fact, we
successfully observed the temporal variability in the plastic transport
rate regardless of flood conditions (Fig. S5) and consequently demon-
strated that the proposed method is effectively encompasses hydrolog-
ical conditions (red line in Fig. 4). The hydrological factors related to
plastic transport are also valuable for managing plastic waste in river
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basins and for evaluating the effectiveness of mitigation strategies. For
example, in this study, the slope of the regression equation for daily
mass-based plastic transport was approximately 1.2 (Table 3). If post-
intervention monitoring, such as litter cleanup efforts within the
watershed, revealed a reduced slope, it would indicate the effectiveness
of such measures in suppressing plastic outflows from land areas.
Therefore, the RiSIM can support continuous, long-term monitoring
across multiple sites and is considered a promising tool for managing the
outflow of macroplastics from terrestrial sources and implementing
countermeasures for reducing plastic loads.

Furthermore, during flood events, rising water levels can reduce the
GSD of video footage. To address this technical challenge, we imple-
mented the WLGCAM. Owing to the decrease in GSD during high-flow
conditions, the monitoring width becomes narrower, preventing
consistent evaluation of plastic transport from the non-flood to flood
stages. To address this limitation, in the present study, the GSD was
calculated on the basis of water level measurements obtained from an
ultrasonic water level sensor, and the plastic transport rate per unit
width was successfully quantified. Accordingly, a significant relation-
ship with river discharge (Fig. 4) was established, and the monitoring
width ranged between 7.1 m (GSD: 2.33 mm/px) and 9.7 m (GSD: 3.33
mm/px). Moreover, by accounting for GSD fluctuations caused by water
level changes, the area-based plastic transport rate was estimated.
Specifically, by multiplying the area-based transport rate by the mass-to-
area ratio, mass-based transport was estimated. Mass conversion can
provide more reliable estimates of mass-based transport rates than can
mass conversion on the basis of the mass-to-item ratio (see 3.1).

We have developed and released PRIMOS (Plastic Runoff Identifi-
cation, Monitoring & Observation Software), a cloud-based monitoring
system for floating riverine debris that incorporates the RiSIM frame-
work (https://info.river-monitoring.net/en/index.html). Since PRIMOS
operates through a standard web browser, no local environment setup is
required. The integration of RiSIM into a cloud-based graphical user
interface (GUI) platform enables users to conduct plastic transport an-
alyses with minimal technical effort. Moreover, because all computa-
tions are performed on the server side, no high-performance computing
resources are needed on the user’s device, making the system both
accessible and efficient. We anticipate that PRIMOS will serve as a
conventional tool for plastic transport monitoring in riverine
environments.

Nonetheless, two technical challenges remain in quantifying plastic
transport using the RiSIM. First, the applicability of the RiSIM must be
validated across multiple rivers worldwide and under extreme condi-
tions. In this study, the YOLOv8 model for plastic detection developed
by Kataoka et al. (2024) was applied, but the current performance of
plastic classification remains limited (Kataoka et al., 2024), introducing
uncertainty into mass-based transport estimates. Indeed, the mass
composition of plastic items, as validated by the MRRE, displayed dis-
crepancies from the ground truth (Fig. 2d). To improve classification
performance, strategies such as fine-tuning the YOLOv8 model or
further subdividing classification categories should be considered when
applying the RiSIM to diverse river environments in the future. In
addition, floating plastics may be partially submerged, degraded, or
trapped within clusters of natural materials. Although some of these
items can still be detected and evaluated depending on their shape
(Fig. S6), fully capturing all partially visible plastics remains chal-
lenging. Such efforts may increase the likelihood of false positives, even
with a trained YOLOv8 model. Nonetheless, recent studies have actively
explored deep learning approaches for detecting and classifying floating
plastic debris (Astorayme et al., 2024; Jia et al., 2023). As these tech-
nologies are rapidly advancing, more accurate and robust models are
expected to become available in the near future. Since the deep learning
model embedded in RiSIM can be readily updated or replaced, RiSIM has
strong potential as a flexible platform for integrating state-of-the-art
models, thereby enhancing the reliability and accuracy of plastic
transport estimation.
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Another challenge lies in the limited observational coverage during
floods due to the use of vertically oriented cameras deployed from
bridges. In such cases, the monitoring width is narrow, leading to
reduced representativeness of plastic transport estimates. While a rela-
tively narrow river channel was considered in this study (20-91.5 m; see
Text S3), this limitation would become even more pronounced for large
rivers. Ideally, the cross-sectional profile of plastic transport should be
monitored by installing multiple cameras laterally across the channel or
utilizing aerial video captured by UAVs. In future studies, we will
attempt to adopt the integrated monitoring framework proposed by van
Emmerik et al. (2018) to estimate total plastic transport across
cross-sections via the RiSIM.

4. Conclusion

We developed the RiSIM to quantify floating macroplastic transport
through three core processes: (1) a template matching algorithm; (2)
deep learning models for plastic detection, classification, and object
tracking; and (3) the quantification of plastic transport in terms of both
quantity and mass via vertically recorded video data. The template
matching algorithm was employed to compute the surface flow velocity
via analyses of consecutive frames with a known ground sampling dis-
tance (GSD). Four typical types of plastic debris (drink bottles, food
containers, shopping bags, and other plastics) were detected/catego-
rized with the pretrained YOLOv8 mode with a segmentation extension
and then tracked via simple online and real-time tracking with Deep
SORT. The YOLOv8 segmentation model was used to evaluate the mass-
based plastic transport rate via the mass—to-area ratios of the four
plastic categories as well as the quantity-based plastic transport rate.
The detected plastic objects were consistently tracked by Deep SORT.
Finally, the quantity-based and mass-based plastic transport rates were
computed by processing all consecutive frames of video data.

The RiSIM-derived plastic transport rates were validated through an
MRRE in which the four categories of plastic debris were intentionally
released from upstream in a river and subsequently recaptured down-
stream. The temporal variation and item composition of the quantity-
based and mass-based plastic transport rates were in good agreement
with the true values (r = 0.91 and 0.80, respectively), although they
were slightly overestimated. In addition, the RiSIM effectively modeled
both the temporal variability and item-wise composition of plastic
transport in terms of mass.

To demonstrate the applicability of the RiSIM under different hy-
drological conditions, we compared the plastic transport rate with in situ
visual observations under both non-flood and flood conditions and then
attempted to establish the relationship between the plastic transport rate
and river discharge. The temporal variability of the RiSIM-derived
plastic transport rate was consistent with that quantified on the basis
of visual observation (r = 0.87), indicating that the RiSIM is valuable for
assessing changes in plastic transport due to a flood event. The RiSIM-
based plastic transport rates, in terms of quantity and mass, were
significantly associated with high river discharge when the RiSIM was
applied to the recorded video data for the four months from June to
September 2024.

Accordingly, the RiSIM supports the more efficient and safe moni-
toring of the floating plastic transport rate than does the conventional in
situ visual observation method. RiSIM-based continuous monitoring at
multiple sites is a promising approach for managing the outflow of
macroplastics from terrestrial sources and implementing countermea-
sures for reducing plastic loads. In the future, we will explore the
applicability of the RiSIM to quantify-based plastic transport in various
rivers worldwide. Accordingly, we expect that the RiSIM can greatly
contribute to harmonizing the monitoring of floating plastic debris in
rivers, as an important tool for quantifying plastic emission and trans-
port in river environments and plastic budgets at the global scale.
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