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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• RiSIM, a river surface image monitoring 
software, was newly developed.

• RiSIM quantifies floating macroplastic 
transport on river surfaces.

• Deep learning models were imple
mented to detect and track floating 
plastics.

• Temporal variabilities in RiSIM-derived 
plastic transport matched ground truth 
data.

• RiSIM revealed a significant relationship 
between plastic transport and discharge.
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A B S T R A C T

Reliable and continuous plastic monitoring in rivers is essential for quantifying plastic flux and guiding miti
gation efforts. One effective strategy for observing floating plastic transport is image-based monitoring using 
deep learning models. We developed river surface image monitoring software (RiSIM) to quantify floating 
macroplastic transport through three core processes: (1) a template matching algorithm, which identifies 
matching areas in a frame that resemble a template given in the previous frame; (2) deep learning models for 
plastic detection, classification, and object tracking; and (3) the evaluation of plastic transport rate in terms of 
both quantity and mass. The RiSIM-derived plastic transport rates were validated through a mark-release- 
recapture experiment and in-situ visual observation under both non-flood and flood conditions. The temporal 
variability and composition of the plastic transport rate in terms of quantity and mass were in good agreement 
with the ground truth data (r = 0.91 and 0.80, respectively). And also, it remained valuable for capturing the 
temporal variability in plastic transport rate (r = 0.87) via the comparison with in-situ visual observation, 
indicating that the RiSIM is valuable for assessing the increase in plastic transport rate due to a flood event. In 
fact, we found a significant relationship (r2 = 0.36 for quantity; r2 = 0.27 for mass) between daily-mean plastic 
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transport rates and river discharge during flood events over four months. Accordingly, the RiSIM, as a near-field 
remote sensing technology, is a powerful tool for quantifying plastic transport and managing mis-managed 
plastic waste in river environments.

1. Introduction

Macroplastic debris (>25 mm; (GESAMP, 2019)) transported from 
land via rivers is a dominant source of mismanaged plastic in marine 
environments (González-Fernández et al., 2023; Meijer et al., 2021; 
Strokal et al., 2023). Plastic transport in rivers is a key process to be 
considered when developing countermeasures for plastic pollution 
(Bergmann et al., 2023; van Emmerik et al., 2023). However, transport 
processes are complex due to horizontal and vertical mixing (Haberstroh 
et al., 2021; Vriend et al., 2023), fluid dynamics, and diverse polymer 
characteristics (Kooi et al., 2018), especially during floods (van 
Emmerik et al., 2023). For example, net sampling in the Rhine-Meuse 
delta showed that plastic concentrations (quantity/mass per unit 
water volume) were lower at mid-depth than near the water surface or 
bottom, and the surface concentration was substantially higher than that 
near the bottom (Blondel and Buschman, 2022). Plastic debris also 
shows cross-sectional variability along river width, influenced by flow 
velocity and/or winds (van Emmerik et al., 2018). Quantifying macro
plastic transport at the water surface, the primary route of microplastic 
dissemination (Haberstroh et al., 2021), is thus crucial for evaluating 
riverine export (Jia et al., 2023).

Previous works quantified plastic transport mainly by visual obser
vation or remote sensing (Hurley et al., 2023). Visual observation, in 
which floating plastics are counted as they pass through a river 
cross-section (van Emmerik et al., 2018), is the most common approach. 
Because it is time- and labor-intensive, recent studies have adopted 
computer vision techniques using fixed cameras (e.g., van Lieshout 
et al., 2020) or uncrewed aerial vehicles (UAVs) (e.g., Schreyers et al., 
2024) to overcome these limitations. Increasingly, deep learning 
methods are applied to detect floating plastic debris (e.g., van Lieshout 
et al., 2020), enabling quantification of debris counts. Counts area 
valuable for assessing spatiotemporal variability (van Emmerik et al., 
2022b) and comparing plastic transport among rivers 
(González-Fernández et al., 2023; Meijer et al., 2021). However, esti
mating mass from counts alone introduces large uncertainties (Hurley 
et al., 2023; Jia et al., 2023; Roebroek et al., 2022; van Emmerik et al., 
2023). To reduce uncertainty, area-based quantification has been pro
posed (Kataoka and Nihei, 2020). We recently developed a You Only 
Look Once version 8 (YOLOv8) architecture with a semantic segmen
tation extension to evaluate the area covered by floating debris, com
bined with object detection to improve mass-based transport estimates 
(Kataoka et al., 2024) .

Despite progress in detection, quantitative assessment of plastic 
transport remains limited. Transport rates require detecting and 
tracking debris across sequential video frames. In our earlier work, 
floating debris transport, including natural objects, was quantified using 
vertical-shoot videos with a color-based image analysis and a template 
matching algorithm (Kataoka and Nihei, 2020). First, pixels corre
sponding to floating debris were segmented from the background based 
on color differences, and the debris-covered area was evaluated in each 
frame. Next, template matching was applied to sequential frames to 
calculate the displacement of the debris. By combining the cumulative 
debris area with the total displacement, the transport area was esti
mated. However, a major limitation of this method was that plastics 
could not be distinguished from other types of floating objects.

Here, we propose river surface image monitoring software (RiSIM) to 
compute floating macroplastic transport in terms of both quantity and 
mass. RiSIM incorporates our YOLOv8-based detection model (Kataoka 
et al., 2024) within the earlier transport evaluation framework (Kataoka 
and Nihei, 2020) and introduces a tracking algorithm to link detections 

across frames. We validate RiSIM using two approaches: a 
mark-release-recapture experiment (MRRE) and comparison with visual 
observations under non-flood and flood conditions. MRRE is used to 
validate both quantity- and mass-based transport rates, while compari
son with visual observations assesses applicability as an alternative 
method. Finally, we examine the relationships between RiSIM-derived 
plastic transport rate and river discharge to evaluate its utility for 
long-term monitoring. RiSIM provides a unified framework for river 
surface monitoring, enabling simultaneous quantification of floating 
plastics at multiple sites, and can contribute to assessing riverine emis
sions and global plastic budgets. Noted that, to improve readability and 
ensure consistency, a list of all abbreviations used in this article is pro
vided in Table 1.

2. Methods

2.1. Framework of RiSIM image processing

The RiSIM encompasses the following three core processes: (1) 
computation of the flow velocity via a template matching algorithm, (2) 
multiobject detection and tracking, and (3) quantification of the plastic 
transport rate (Fig. 1). The details of these core processes are described 
in the following sections.

2.1.1. Template matching to compute flow velocities at the water surface
First, the flow velocity at the water surface is evaluated by applying a 

template matching algorithm to sequences of frames after the video data 
are divided into multiple frames with the original frame rate. In the 
present study, 900 frames are generated from the vertically shot video 
data given the original frame rate (fo) and shooting duration (t) of 30 fps 
and 60 s, respectively (N = t× fo). Each frame is clipped to a tile image 
with a size of 1024 px × 1024 px. Notably, this preprocessing step is 
required for data input into the subsequent deep learning model. The 
pixel displacement between two consecutive tile images is estimated 
along the horizontal and vertical axes and then converted to a real 
metric distance via a ground sampling distance (GSD) defined by 
measuring a view distance until water surface. Finally, the flow velocity 
is computed via the original frame rate.

The flow velocities (vx and vy) in the i and j directions can be 
computed from the pixel displacement, which occurs in the i and j di

Table 1 
Table of abbreviations.

Acronym Definition

ADWP Antecedent dry weather period
mAP50–95 Mean average precision calculated over IoU thresholds ranging from 

0.50 to 0.95 at 0.05 intervals.
COCO Common objects in context
Deep 

SORT
Simple online and realtime tracking with a deep association metric

Fps Frames per second
GSD Ground sampling distance
GUI Graphical user interface
IoU Intersection over union
JSON JavaScript object notation
MRRE Mark-release-recapture experiment
PRIMOS Plastic runoff identification, monitoring & observation software
RGB Red Green Blue
RiSIM River surface image monitoring software
UAV Uncrewed aerial vehicle
WLGCAM Camera system with ultrasonic water level gauge
YOLOv8 You Only Look Once version 8
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rections and is evaluated through a template matching processing (Text 
S1). The displaced pixels are used to determine the transport distance 
(dx, dy) on a metric scale via the GSD. The instantaneous flow velocity 
in the horizontal and vertical directions can be evaluated by dividing the 
transport distance between two sequential tile images into fo. To miti
gate uncertainties caused by template matching errors, spikes in 
instantaneous velocity exceeding three standard deviations are regarded 
as outliers and removed. These missing values are subsequently inter
polated using the mean velocity in the recoding period. Notably, the 
uncertainty of mean flow velocity was validated at six sites in the 
catchment area of the Shigenobu River in the comparison to the mea
surement by the flow meter, which were 0.15 m/s of root mean square 
error and 29 % of scatter index (r = 0.92, p < 0.001; Text S2).

2.1.2. Plastic object detection via an instance segmentation model
The YOLOv8 segment model retrained via the training dataset (8022 

items from 7356 frames) (Kataoka et al., 2024) was implemented in the 
RiSIM as a deep learning model for detecting plastic objects in river 
surface images (Fig. 1). This model can classify four categories of plastic 
objects (drink bottles, food containers, shopping bags, and other plas
tics) in RGB tile images with sizes of 1024 px × 1024 px. Drink bottles, 
food containers and shopping bags are typical forms of disposal plastic 
waste that are found globally in aquatic environments. The category 
“other plastics” included a wide variety of items such as non-beverage 
bottle-shaped plastics (e.g., cleaner or cosmetics containers), 
bag-shaped plastics (e.g., food packaging or snack bags), and plastic 
fragments. On the basis of the available YOLOv8 architectures 
(YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x), five seg
mentation models were developed (Kataoka et al., 2024). The YOLOv8l 
architecture displayed the best performance among the five architec
tures and was adopted as a detection model for plastic objects (Kataoka 
et al., 2024). Notably, the detection performance for plastic debris was 
59 % mAP50–95, and the classification performance was 23 % mAP50–95 
across four categories (Kataoka et al., 2024), as shown in Table S1.

Following YOLOv8-based classification, postprocessing was per
formed to refine object categorization by removing duplicate 

classifications, discarding potential false positives (e.g., small objects), 
and unifying categories based on tracked objects. The YOLOv8 seg
mentation model occasionally classifies the same object into different 
categories. In cases in which different objects of the same type were 
classified in multiple categories, the most plausible category was 
determined on the basis of the intersection over union (IoU) of the 
corresponding bounding boxes. If the IoU between two bounding boxes 
was greater than 0.8, the category of the detected plastic object was 
determined, with a high confidence score. Furthermore, RiSIM allows 
users to configure a threshold for pixel area to reduce false positives. 
Specifically, objects with an area smaller than the threshold are dis
regarded. In this study, a threshold of 900 pixels was applied, based on 
the minimum size of the four categories observed in video data during 
flood events.

Moreover, even the same object can be classified into different cat
egories across multiple frames. To ensure consistency in the categori
zation of detected objects, an object tracking algorithm, namely, simple 
online and real-time tracking with a deep association metric (Deep 
SORT) (Wojke and Bewley, 2018), was implemented (Fig. 1). Deep 
SORT is a powerful tracking tool that incorporates a deep learning 
model to track an object throughout sequential frames and can track 
false-negative objects via YOLOv8 by extracting appearance feature 
information. In the Deep SORT configuration, the maximum age of each 
object for tracking was 50, the maximum cosine threshold, which is a 
similarity limit used to compare the appearance features (128-dimen
sional vectors) of detected objects, was 0.3, and the maximum IoU dis
tance, which is a measure used to compare how much two bounding 
boxes overlap, was 0.9 via trial and error. Note that the other parameters 
of Deep SORT were set to the default values. The YOLOv8-derived 
false-negative case does not include the information on its category 
name or segmentation mask area, even if it can be successfully tracked 
by Deep SORT. Thus, the category name in each false-negative case was 
updated with a mode value for each object, and the area was interpo
lated on the basis of the average of the segmentation mask areas 
detected by the YOLOv8 segment model. Moreover, the 
YOLOv8-derived false-positive case can be removed on the basis of the 

Fig. 1. Three steps of the RiSIM: Computation of the flow velocity, detection and tracking of plastic objects and quantification of the plastic transport rate.
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tracking results of Deep SORT. In the present study, objects tracked 
fewer than three times were discarded as false positives.

Detection outputs from YOLOv8 segmentation model and Deep 
SORT, such as plastic debris classification, bounding boxes, confidence 
scores, segmentation masks, and pixel areas, are stored in the common 
objects in context (COCO) data format. This format, which uses Java
Script object notation (JSON) as a lightweight data-interchange stan
dard, facilitates the storage of annotation information. Storing outputs 
in COCO format enables users to edit RiSIM outputs with existing 
annotation tools (e.g., https://supervisely.com/), which can subse
quently be used to fine-tune the YOLOv8 model. It should be noted, 
however, that in the present study we used only the original model 
without additional fine-tuning.

2.1.3. Evaluation of the plastic flux via the RiSIM
The RiSIM can compute plastic transport rates in terms of quantity 

and mass on the basis of the following equations modified from the 
methodology of Kataoka and Nihei (2020). 

F =

∑
xi

∑
Si
×

∑
Ai

Δt × (N − 1)
(1) 

where xi denotes the quantity or mass of plastic objects found in each tile 
image and the subscript i is an index number of the tile image in the 
range between 0 and N. The mass of plastic objects is converted from the 
segmentation mask area identified by YOLOv8 segmentation model via 
the mass-to-area ratio (Fig. S1). N is the number of images based on the 
original frame rate of the video. For example, when the original frame 
rate was 15 fps (i.e., the time interval between two frames was 0.067 s), 
N = 60 s × 15 fps = 900. The number of plastic objects was counted on 
the basis of object detection, for which YOLOv8l was applied. Moreover, 
the mass of the plastic object was evaluated via the segmentation mask 
generated via YOLOv8l, according to the method proposed by Kataoka 
and Nihei (2020). Considering the GSD, the segmentation mask was 
converted into a metric area, and then the mass was calculated by 
multiplying the mass-to-area ratio for each plastic category in YOLOv8l 
(Fig. S1). Si was predefined based on the size of the tile image (1024 px 
× 1024 px). Hence, the first term represents the mean 
quantity/mass-based concentration of plastic objects calculated from all 
tile images. Δt is based on the optional frame rate (e.g., 0.2 s). Ai is the 
transport area in Δt, which is determined on the basis of the pixel 
displacement in images in the x-axis and y-axis directions via the tem
plate matching (Fig. 1).

2.2. Mark-Release-Recapture experiment (MRRE)

The MRRE for floating macroplastic debris was conducted from 
10:00–12:00 on July 18, 2024, at the Ishite River, Ehime Prefecture, 
Japan, to validate the quantity-based and mass-based plastic transport 
rates evaluated via the RiSIM (Fig. S2). The Ishite River is the largest 
tributary of the Shigenobu River, which is a class A river in Japan. In the 

Ishite River Basin, a custom camera system with an ultrasonic water 
level gauge (WLGCAM) has been installed to monitor floating macro
plastic debris on the river surface from a water pipe bridge over the river 
since July 20, 2023 (Text S3). On the survey date, the water depth was 
lower than 50 cm, which is the non-flood condition. During the MRRE, 
WLGCAM automatically recorded one-minute videos every 2 min. The 
plastic and nonplastic samples were collected and classified into five 
categories (drink bottles, food containers, shopping bags and other 
plastics), which are the same categories used in the YOLOv8 segmen
tation model (see 2.1.2). The quantities of items in these categories are 
listed in Table 2. One surveyor released the samples from upstream of 
the bridge, and two surveyors collected them downstream (Fig. S2).

The samples were released according to seven scenarios: three large, 
two medium and two small scenarios (Table 2). Considering the 
composition of the four categories in Japanese rivers (Kataoka et al., 
2024), eighty, forty and twenty plastic samples were prepared in the 
large, medium and small scenarios, respectively. Unfortunately, several 
samples were not recorded in one-minute videos because the recording 
time ended; thus, the quantity and mass of the samples that were 
recorded are listed in Table 2. Note that the third large scenario (L3) was 
designed to confirm the robustness of the RiSIM under 
high-debris-supply conditions.

The quantity- and mass-based transport rates of the samples were 
evaluated by visually counting objects captured in the one-minute 
videos (Table 2). The quantity-based transport rate was computed by 
dividing the total number of captured samples by the recording time 
(one minute). Additionally, the mass-based transport rate was computed 
by dividing the total mass of the released samples measured by a weight 
scale in advance by the recording time. The total quantity and mass of 
the captured samples in each scenario are shown in Table 2.

Moreover, the quantity-based and mass-based plastic transport rates 
were estimated via RiSIM analyses with the same 1-min video on the 
basis of Eq. (1) (see 2.1.3). During the MRRE, the viewing distance from 
the WLGCAM was 7.04 m, and the GSD was 3.00 mm/px. Since the 
frame size was 4 K (3840 px × 2160 px), the total width and height of the 
frame were 11.52 m and 6.48 m, respectively (Fig. S3). Eighty percent of 
the total width (9.22 m) was determined as the target (red frame of 
Fig. S3). Note that we analyzed the frame by dividing it into three tiles 
because the width of the tile images input into YOLOv8 was 1024 px. 
The mass-based transport rate was derived from the cumulative area of 
the segmentation mask considering the corresponding GSD and mass-to- 
area ratio (Fig. S1).

2.3. Visual observations during non-flood and flood conditions

The visual observation of floating macroplastic debris was conducted 
via the water pipe bridge installed in the WLGCAM system over the 
Ishite River to validate the plastic transport rate in actual situations in 
which an unknown amount of macroplastic debris is transported under 
non-flood and flood conditions (Fig. S4). To date, the quantification of 
macroplastic debris in river environments has been based on visual 

Table 2 
The quantity and mass of plastic samples for the MRRE in 7 scenarios.

Scenarios Prepared 
items

Number Mass

Drink 
bottles

Food 
containers

Shopping 
bags

Other 
plastics

Total Drink 
bottles

Food 
containers

Shopping 
bags

Other 
plastics

Total

Large 1 (L1) 80 9 0 8 26 43 275.6 0 21.8 385.4 682.8
Large 2 (L2) 80 5 8 4 20 37 123 51.5 13 517.9 705.4
Large 3 (L3) 80 5 5 5 22 37 157.6 41.5 14.7 563.8 777.6
Medium 1 

(M1)
40 4 4 3 12 23 127 37.1 9.2 322 495.3

Medium 2 
(M2)

40 3 2 2 12 19 84.7 13.4 5.4 319.6 423.1

Small 1 (S1) 20 3 3 1 7 14 105.1 27.6 1.7 146.9 281.3
Small 2 (S2) 20 2 1 2 6 11 73.7 14.2 5.4 170.6 263.9
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observation because of the advantages of this approach in terms of 
robustness and ease of implementation (Meijer et al., 2021; van 
Emmerik et al., 2023). Thus, we clarify whether the RiSIM can provide 
an alternative to visual observation for quantifying floating macroplastic 
debris through a comparison of both approaches.

Visual observation under non-flood conditions was carried out from 
10:00–16:00 JST on June 26, 2024, with the aim of understanding the 
occurrence of false-positive cases. The maximum discharge in the 
observation date was 5.3 m3/s, which the return period (Text S4) did not 
exceed one year. The vertical distance from the bridge to the water 
surface was, on average, 6.9 m, with small fluctuations of approximately 
0.04 m during the observation period. Three observers were arranged at 
three locations (sections A1 to C1) across the bridge simultaneously, and 
the plastic objects that passed through an approximately 7-m wide 
section (Fig. S4) for 1 min in a 10-min interval were visually counted. 
Owing to the vegetation coverage in the D1 section, which is 4 m wide, it 
was excluded from the observation scope. In total, 84 % of the river 
width (22 m of 26 m) was observed, while the plastic transport rate per 
unit width on the ‘B1’ section in the coverage of WLGCAM was used for 
validating RiSIM-based transport rate. The plastic objects were visually 
classified into four plastic categories, and visual counting was 
performed.

Moreover, visual observations under flood conditions, which is 
defined as a water level rise of >0.5 m within 10 min, were carried out 
from 8:30 to 15:30 JST on June 28, 2024, with the aim of understanding 
the change in the macroplastic transport rate during floods in compar
ison with that during non-flood conditions. The maximum river 
discharge in the observation date was 117.64 m3/s corresponding to 
1.91 years of return period (Text S4). In terms of the increase in water 
level, the distance from the bridge was on average 5.6 m, with larger 
fluctuations of approximately 0.64 m than those under non-flood con
ditions. In the same manner as in the non-flood cases, the four observers 
at the four locations (B2 to D2 and F2) visually counted and classified 
the plastic objects that passed through approximately 7-m wide sections 
(Fig. S4) for 1 min in a 10-min interval. To avoid the influence of bridge 
columns, the A2 section, which is 7 m wide, and the E2 section, which is 
4 m wide, were excluded from the observations. In total, 71 % of the 
river width (27 m of 38 m) was observed, while the plastic transport rate 
per unit width on the ‘B2’ section in the WLGCAM coverage was used for 
the validation.

The plastic transport was evaluated at 10-minute intervals by 
applying the RiSIM to the 1-min video data, followed by calculation of 
the hourly mean transport rates. The plastic transport rates were 
quantified by dividing each frame of the video into three 1024 px-square 
tile images with the RiSIM and then summing the rate from each tile 
image (see 2.2 and Fig. S3). Given that the monitoring width changed in 
response to water level fluctuations, normalization on the basis of the 
observed width was performed to estimate the plastic transport rate per 
unit width, enabling direct comparison with visual monitoring results. 
The observers were pretrained via the International Expert Meeting on 
Remote Sensing Technologies for Plastic Monitoring in Aquatic Envi
ronments (SmartMLRST) organized by the Ministry of the Environment, 
Japan (Isobe et al., 2025).

2.4. Application of RiSIM to long-term monitoring for plastic transport

To demonstrate the ability of the model encompass hydrological 
conditions when estimating the plastic transport rate, we applied the 
RiSIM to 2752 1-min videos obtained by WLGCAM in the daytime 
(6:00–18:00) from June to September 2024 (Fig. S5). After the plastic 
transport rate from each video was computed, the hourly average 
transport rates were calculated to account for the varying recording 
intervals, which differed according to river conditions on the observa
tion days (10 min during flood events and 60 min during non-flood 
periods; see Text S3). Since river discharge was not measured at the 
WLGCAM site, we simply calibrated the river discharge observed at 

Yuwatari station on the basis of the time lag and catchment area ratio 
(Text S3). The time lag was measured based on the temporal fluctuations 
of water level at both sites. And the catchment areas at both sites were 
calculated by QGIS version 3.40.5 (https://qgis.org/).

3. Results and discussion

3.1. Estimation of image-based plastic transport in the MRRE

The image-based plastic transport rates output by the RiSIM were 
compared with the visual-based plastic transport rates (i.e., ground 
truth) from 10:00–12:00 JST on 18 July 2024 (Fig. 2). Note that the 
image-based and visual-based transport rates were normalized based on 
the width of the monitored area. The temporal variabilities in the 
quantity-based and mass-based transport rates quantified from the river 
surface videos were in good agreement with those calculated for the 
ground truth data (r = 0.91 and 0.80; see Fig. 2a and b, respectively) 
according to Pearson’s correlation analysis (Text S4). This demonstrated 
that the RiSIM was effective for quantifying the temporal variability of 
floating macroplastic debris from river surface videos. Nevertheless, the 
quantity-based transport rates were slightly overestimated relative to 
the ground truth, primarily due to the presence of false-positive de
tections and the reassignment of tracking identifiers to the same plastic 
debris across consecutive frames by Deep SORT (Fig. 2a).

The RiSIM categorization was compared with the ground truth 
(Fig. 2d). The primary and secondary plastic categories in terms of 
quantity were “other plastics” and “drink bottles”, which were consis
tent with the ground truth data. The consistency in the item-wise nu
merical composition indicated the reliable performance of the RiSIM 
classification with YOLOv8 and Deep SORT. Moreover, “drink bottles” 
and “other plastics” accounted for the majority of the total mass (85 %), 
which was consistent with the ground truth (93 %) (Fig. 2d), but the 
item-wise mass composition between these two categories differed. In 
the RiSIM, “drink bottles” accounted for a larger proportion, whereas in 
the ground truth, “other plastics” was dominant. This discrepancy was 
likely due to using the mass-to-area ratio for mass estimation. In the 
present study, the average value of the mass-to-area ratio for mass 
conversion was used regardless of the mass-to-area ratio of the “other 
plastics” category, which exhibited substantial variability due to the 
diversity of plastic objects present (Fig. S1). In fact, the mean mass-to- 
area ratio of “other plastics” used for mass conversion in the present 
study (0.038 g/cm2) was one order of magnitude lower than that 
observed in the MRRE (0.20 g/cm2). Consequently, the mass ratio of the 
“other plastics” category estimated with the RiSIM may have been 
underestimated. As one of the solutions, the categorization by YOLOv8 
can potentially be subdivided. In contrast, as our previous works 
demonstrated, the subdivision of categories could yield an increase in 
false-positive and false-negative cases (Kataoka et al., 2024). Hence, 
enhancing the categorization performance of YOLOv8 via the 
fine-tuning of the current model should be explored in the future.

Furthermore, we found a discrepancy in the mass estimation results 
when the mass-to-item ratio was used (Fig. S1). Instead of the use of the 
mass-to-area ratio, we converted the quantity-based plastic transport 
rate to mass-based plastic transport via the mass-to-item ratio. As ex
pected, the temporal variability in the mass-based plastic transport rate 
was consistent with that based on the ground truth data (r = 0.73, p <
0.001; Fig. 2c), whereas the composition of the plastic types differed 
from the ground truth composition (Fig. 2d). Notably, drink bottles were 
dominant in terms of mass (70 %), which can be attributed to their 
greater mass-to-item ratio than other items (Fig. S1). Compared with the 
ground truth observations (26 %), the plastic transport of drink bottles 
appeared to be overestimated. This result suggests that mass conversion 
based on mass-to-item ratios is associated with higher uncertainty when 
estimating plastic transport, whereas mass-to-area-based conversion 
provides a more reliable approach for quantifying plastic transport.

Nevertheless, we successfully constrain the temporal variabilities of 
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both number-based and mass-based transport rates through the RiSIM 
(Fig. 2a and b). The harmonization of monitoring methods is crucial, 
particularly during flood events, for understanding the outflow and 
transport processes of plastic objects from terrestrial areas. However, in 
situ visual observation is accompanied by challenges in terms of the 
continuity and safety of the surveys.

3.2. Applicability of the RiSIM to videos obtained under non-flood and 
flood conditions

Under non-flood conditions (June 26, 2024), very little plastic debris 
was quantified through visual observation, with an average transport 
rate of 0.03±0.02 #/m/min (Fig. 3). Similarly, the RiSIM yielded very 
low transport rates, with an average transport rate of 0.03±0.02 #/m/ 

min. In contrast, a significantly greater amount of plastic debris was 
detected during flood events (June 28, 2024) than during non-flood 
events, which was consistent with the transport rates derived from 
both in situ visual observations and the RiSIM (Fig. 3). On the basis of in 
situ visual observations, the number-based transport rate averaged at 
the daily scale (0.27±0.25 #/m/min) was approximately ten times 
greater than that during the non-flood conditions (0.03±0.02 #/m/ 
min). Consistently, the average transport rate estimated via the RiSIM 
(0.36±0.28 #/m/min) was approximately ten times higher than that 
during non-flood conditions (0.03±0.02 #/m/min) and significantly 
greater than that obtained via visual observation.

In fact, the RiSIM-derived plastic transport rates were significantly 
correlated with visually observed plastic transport rates (r = 0.87, p <
0.001; Fig. 3) via Pearson’s correlation analysis (Text S4), which 

Fig. 2. Temporal variability in plastic transport (a)-(c) and item composition of plastic debris (d). The quantity-based plastic transport rate is shown in panel (a), and 
the mass-based transport rates converted on the basis of mass-to-area and mass-to-item ratios are shown in panels (b) and (c), respectively. The stacked time series in 
panels (a)-(c) shows the RiSIM-based plastic transport rate for each category, and the white circles denote the ground truth. The compositions of the ground truth and 
RiSIM-identified plastic objects are shown in panel (d).

Fig. 3. Comparison of numerical transport rates between the RiSIM and visual observation.
The compositions of the plastic categories identified with the RiSIM and visual observation are shown in panels (b) and (c), respectively.
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demonstrated that the RiSIM is a valuable tool for evaluating the tem
poral variability of plastic transport via remote sensing. While the 
RiSIM-derived plastic transport rates were overestimated compared 
with the visually observed rates (Fig. 3), this outcome can be attributed 
to several potential causes. As the water level ranged from 7.0 to 7.9 m 
during flood condition, the monitoring section of RiSIM was changed 
depending on water level. The difference in monitoring section could 
affect to the evaluation of plastic transport rate. Moreover, in situ visual 
observations from the bridge might not account for all debris, as the high 
flow velocities range from 0.81 to 2.72 m/s. Some objects were 
ambiguous with respect to plastic identification (Fig. S6); however, their 
classification as plastic debris likely depends on subjective interpreta
tion. Unlike visual observation, which may be prone to observer bias, AI- 
based systems such as the RiSIM ensure consistency and objectivity in 
plastic detection.

3.3. Relationship between the plastic transport rate and hydrology

The hourly quantity-based and mass-based plastic transport rates 
fluctuated considerably with increasing river discharge (Fig. 4a and 4b, 
respectively). The maximum river discharge over the four months was 
145.42 m3/s corresponding to 2.35 years of return period estimated 
using the Log-Pearson Type III distribution (Text S4). The hourly plastic 
transport rates greatly fluctuated at river discharge rates lower than 9.47 
m3/s corresponding to about 1 year of return period (i.e., T = 1.01 in Eq. 
S9; see Text S4) (see gray dots in Fig. 4a and b), highlighting poor 
regression performance under low-discharge conditions, as reported in 
several previous works (Aulenbach et al., 2016; Moatar et al., 2017). 
Although several alternative approaches for establishing reliable 
regression equations for environmental loads (e.g., sediment and 

nutrients) have been suggested, we do not discuss these approaches 
because the aim of the present study is to develop an image-based 
monitoring approach. Thus, when focusing on river discharge rates 
greater than 9.47 m3/s, we can perform a regression of the plastic 
transport rate on the basis of discharge by the following equation, 

L = 10aQb (2) 

where L is the quantity-based or mass-based plastic transport rate and Q 
is the calibrated river discharge. The regression coefficients a and b are 
shown in Table 3. The hourly quantity-based and mass-based plastic 
transport rates were effectively regressed (r2 = 0.29 and r2 = 0.20, 
respectively; Table 3). The coefficient b represents the slope of the log- 
log plain, which was slightly greater for the quantity-based plastic 
transport rate than for the mass-based rate (Table 3), but a Z test (Text 
S4) indicated no statistically significant difference (z = 1.40, p > 0.05).

The daily-mean plastic transport rate can be also associated with the 
daily-mean river discharge (Fig. 4c and d). The daily-mean plastic 
transport rate fluctuated when the daily-mean river discharge was 

Fig. 4. L‒Q equations associated with river discharge and the plastic flux. The upper panels show the relationships between the hourly river discharge and plastic 
transport rates in terms of quantity (a) and mass (b). The lower panels denote the relationship between the daily mean river discharge and plastic transport rates for 
quantity (c) and mass (d). The gray plots indicate the plastic transport rates when the river discharge is lower than 9.47 m3/s for panels (a) and (b) and 5.61 m3/s for 
panels (c) and (d). The red line and gray area indicate the L‒Q equation and 95 % confidence interval of the equation, respectively.

Table 3 
Regression coefficients determined via a linear regression method.

n R2 a ± 95 % C.I. b ± 95 % C.I.

Hourly plastic transport rate ​ ​ ​
Quantity based 101 0.29 − 3.35±0.64 1.40±0.43
Mass based 101 0.20 − 2.65±0.76 1.29±0.52

Daily plastic transport rate ​ ​ ​
Quantity based 24 0.36 − 2.81±0.68 0.95±0.56
Mass based 24 0.27 − 2.24±0.78 0.89±0.64
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smaller than 5.61 m3/s corresponding to about 1 year of return period (i. 
e., T = 1.01 in Eq. S9; see Text S4). Interestingly, when the daily-mean 
plastic transport rate and river discharge were computed, the relation
ship significantly improved (r2 = 0.36 for number and r2 = 0.27 for 
mass; Table 3). The coefficient b for both the quantity-based and mass- 
based plastic transport rates was approximately 0.9 (Table 3), and there 
was no statistically significant difference via the Z test (z = 1.14, p >
0.05). These results indicate that the quantity-based and mass-based 
transport rates similarly vary with river discharge.

Nevertheless, overall correlations between plastic transport and river 
discharge remained low, reflecting the high variability in transport re
sponses to discharge fluctuations. Similar to organic pollutant transport 
(e.g., Peter et al., 2020), longer antecedent dry weather periods (ADWP) 
promote greater accumulation of plastic debris in the watershed, 
resulting in higher transport during subsequent flood events, that is a 
first flush effect. Conversely, when the ADWP is short, the transported 
plastic load is expected to be lower. For example, the RiSIM-derived 
plastic transport in late August exceeded that in July despite 
non-extreme floods, owing to the longer ADWP observed (Fig. S5). 
Moreover, plastic transport during the rising stage of flood events often 
exceeds that during the falling stage, even at similar discharge levels 
(Peter et al., 2020). Hence, low correlations are common under 
non-extreme conditions, because plastic transport is primarily limited by 
supply rather than discharge (Roebroek et al., 2022; van Emmerik et al., 
2022a). Hydrological thresholds such as bank overtopping or sewer 
overflow must be exceeded to increase the available plastic supply, but 
in the absence of such thresholds, low correlations can be expected.

3.4. Future outlook of remote sensing for quantifying floating plastic 
transport at the surface of Rivers

In this study, we established a method for quantifying the transport 
of plastic debris floating on river surfaces via vertically captured video 
data. The RiSIM is innovative in two key aspects: deep learning-based 
detection and tracking functions are provided for plastic debris on the 
water surface, and the surface flow velocity is measured with a template 
matching algorithm. This allows for efficient monitoring of the transport 
rate of floating plastic.

To date, numerous researchers have conducted visual counting 
studies from bridges (González-Fernández et al., 2021; Lou et al., 2023; 
Moss et al., 2021; Pinto et al., 2023; Schreyers et al., 2021; van Emmerik 
et al., 2023; van Lieshout et al., 2020). Visual counting is easy to perform 
and can be performed anywhere, as it involves only recording the 
characteristics (e.g., types and colors) of floating objects directly on site. 
This approach is also robust, applicable to a variety of rivers, and can 
yield reasonably reliable data if well-trained observers are involved (van 
Emmerik et al., 2023). Nevertheless, the observation data are inherently 
subject to observer bias, thereby limiting objectivity. Moreover, onsite 
visual counting involves considerable safety risks during flood events, 
when a large outflow of plastic debris may occur (van Emmerik et al., 
2023). Additionally, since observers must remain on site during moni
toring, the method is time and labor intensive, resulting in limited sus
tainability for long-term and/or multisite monitoring (van Lieshout 
et al., 2020).

The RiSIM is expected to serve as a powerful tool for clarifying the 
emission of macroplastic debris transported via river systems and serves 
to overcome the limitations of onsite visual counting. Specifically, 
observer bias can be minimized by implementing a deep learning model 
for detecting and counting floating macroplastics, thereby enhancing 
objectivity. In addition, the installation of a fixed camera at a bridge 
enables safe observation even during high-flow conditions. In fact, we 
successfully observed the temporal variability in the plastic transport 
rate regardless of flood conditions (Fig. S5) and consequently demon
strated that the proposed method is effectively encompasses hydrolog
ical conditions (red line in Fig. 4). The hydrological factors related to 
plastic transport are also valuable for managing plastic waste in river 

basins and for evaluating the effectiveness of mitigation strategies. For 
example, in this study, the slope of the regression equation for daily 
mass-based plastic transport was approximately 1.2 (Table 3). If post
intervention monitoring, such as litter cleanup efforts within the 
watershed, revealed a reduced slope, it would indicate the effectiveness 
of such measures in suppressing plastic outflows from land areas. 
Therefore, the RiSIM can support continuous, long-term monitoring 
across multiple sites and is considered a promising tool for managing the 
outflow of macroplastics from terrestrial sources and implementing 
countermeasures for reducing plastic loads.

Furthermore, during flood events, rising water levels can reduce the 
GSD of video footage. To address this technical challenge, we imple
mented the WLGCAM. Owing to the decrease in GSD during high-flow 
conditions, the monitoring width becomes narrower, preventing 
consistent evaluation of plastic transport from the non-flood to flood 
stages. To address this limitation, in the present study, the GSD was 
calculated on the basis of water level measurements obtained from an 
ultrasonic water level sensor, and the plastic transport rate per unit 
width was successfully quantified. Accordingly, a significant relation
ship with river discharge (Fig. 4) was established, and the monitoring 
width ranged between 7.1 m (GSD: 2.33 mm/px) and 9.7 m (GSD: 3.33 
mm/px). Moreover, by accounting for GSD fluctuations caused by water 
level changes, the area-based plastic transport rate was estimated. 
Specifically, by multiplying the area-based transport rate by the mass-to- 
area ratio, mass-based transport was estimated. Mass conversion can 
provide more reliable estimates of mass-based transport rates than can 
mass conversion on the basis of the mass-to-item ratio (see 3.1).

We have developed and released PRIMOS (Plastic Runoff Identifi
cation, Monitoring & Observation Software), a cloud-based monitoring 
system for floating riverine debris that incorporates the RiSIM frame
work (https://info.river-monitoring.net/en/index.html). Since PRIMOS 
operates through a standard web browser, no local environment setup is 
required. The integration of RiSIM into a cloud-based graphical user 
interface (GUI) platform enables users to conduct plastic transport an
alyses with minimal technical effort. Moreover, because all computa
tions are performed on the server side, no high-performance computing 
resources are needed on the user’s device, making the system both 
accessible and efficient. We anticipate that PRIMOS will serve as a 
conventional tool for plastic transport monitoring in riverine 
environments.

Nonetheless, two technical challenges remain in quantifying plastic 
transport using the RiSIM. First, the applicability of the RiSIM must be 
validated across multiple rivers worldwide and under extreme condi
tions. In this study, the YOLOv8 model for plastic detection developed 
by Kataoka et al. (2024) was applied, but the current performance of 
plastic classification remains limited (Kataoka et al., 2024), introducing 
uncertainty into mass-based transport estimates. Indeed, the mass 
composition of plastic items, as validated by the MRRE, displayed dis
crepancies from the ground truth (Fig. 2d). To improve classification 
performance, strategies such as fine-tuning the YOLOv8 model or 
further subdividing classification categories should be considered when 
applying the RiSIM to diverse river environments in the future. In 
addition, floating plastics may be partially submerged, degraded, or 
trapped within clusters of natural materials. Although some of these 
items can still be detected and evaluated depending on their shape 
(Fig. S6), fully capturing all partially visible plastics remains chal
lenging. Such efforts may increase the likelihood of false positives, even 
with a trained YOLOv8 model. Nonetheless, recent studies have actively 
explored deep learning approaches for detecting and classifying floating 
plastic debris (Astorayme et al., 2024; Jia et al., 2023). As these tech
nologies are rapidly advancing, more accurate and robust models are 
expected to become available in the near future. Since the deep learning 
model embedded in RiSIM can be readily updated or replaced, RiSIM has 
strong potential as a flexible platform for integrating state-of-the-art 
models, thereby enhancing the reliability and accuracy of plastic 
transport estimation.
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Another challenge lies in the limited observational coverage during 
floods due to the use of vertically oriented cameras deployed from 
bridges. In such cases, the monitoring width is narrow, leading to 
reduced representativeness of plastic transport estimates. While a rela
tively narrow river channel was considered in this study (20–91.5 m; see 
Text S3), this limitation would become even more pronounced for large 
rivers. Ideally, the cross-sectional profile of plastic transport should be 
monitored by installing multiple cameras laterally across the channel or 
utilizing aerial video captured by UAVs. In future studies, we will 
attempt to adopt the integrated monitoring framework proposed by van 
Emmerik et al. (2018) to estimate total plastic transport across 
cross-sections via the RiSIM.

4. Conclusion

We developed the RiSIM to quantify floating macroplastic transport 
through three core processes: (1) a template matching algorithm; (2) 
deep learning models for plastic detection, classification, and object 
tracking; and (3) the quantification of plastic transport in terms of both 
quantity and mass via vertically recorded video data. The template 
matching algorithm was employed to compute the surface flow velocity 
via analyses of consecutive frames with a known ground sampling dis
tance (GSD). Four typical types of plastic debris (drink bottles, food 
containers, shopping bags, and other plastics) were detected/catego
rized with the pretrained YOLOv8 mode with a segmentation extension 
and then tracked via simple online and real-time tracking with Deep 
SORT. The YOLOv8 segmentation model was used to evaluate the mass- 
based plastic transport rate via the mass‒to‒area ratios of the four 
plastic categories as well as the quantity-based plastic transport rate. 
The detected plastic objects were consistently tracked by Deep SORT. 
Finally, the quantity-based and mass-based plastic transport rates were 
computed by processing all consecutive frames of video data.

The RiSIM-derived plastic transport rates were validated through an 
MRRE in which the four categories of plastic debris were intentionally 
released from upstream in a river and subsequently recaptured down
stream. The temporal variation and item composition of the quantity- 
based and mass-based plastic transport rates were in good agreement 
with the true values (r = 0.91 and 0.80, respectively), although they 
were slightly overestimated. In addition, the RiSIM effectively modeled 
both the temporal variability and item-wise composition of plastic 
transport in terms of mass.

To demonstrate the applicability of the RiSIM under different hy
drological conditions, we compared the plastic transport rate with in situ 
visual observations under both non-flood and flood conditions and then 
attempted to establish the relationship between the plastic transport rate 
and river discharge. The temporal variability of the RiSIM-derived 
plastic transport rate was consistent with that quantified on the basis 
of visual observation (r = 0.87), indicating that the RiSIM is valuable for 
assessing changes in plastic transport due to a flood event. The RiSIM- 
based plastic transport rates, in terms of quantity and mass, were 
significantly associated with high river discharge when the RiSIM was 
applied to the recorded video data for the four months from June to 
September 2024.

Accordingly, the RiSIM supports the more efficient and safe moni
toring of the floating plastic transport rate than does the conventional in 
situ visual observation method. RiSIM-based continuous monitoring at 
multiple sites is a promising approach for managing the outflow of 
macroplastics from terrestrial sources and implementing countermea
sures for reducing plastic loads. In the future, we will explore the 
applicability of the RiSIM to quantify-based plastic transport in various 
rivers worldwide. Accordingly, we expect that the RiSIM can greatly 
contribute to harmonizing the monitoring of floating plastic debris in 
rivers, as an important tool for quantifying plastic emission and trans
port in river environments and plastic budgets at the global scale.
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Crosti, R., Galletti, Y., Kideys, A.E., Machitadze, N., Pereira de Brito, J., 
Pogojeva, M., Ratola, N., Rigueira, J., Rojo-Nieto, E., Savenko, O., Schöneich- 
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